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Joint Design and Co-integration
of Antenna-IC Systems

Marianna. V. Ivashinal,
lChalmers, Department of Electrical Engineering, Goteborg, Sweden, marianna.ivashina@chalmers.se

Abstract—An overview of design challenges for beamform-
ing active antenna arrays, which are needed to meet high-
performance demands of future emerging applications, is pre-
sented. The critical role of antenna element mutual coupling on
the receiving system sensitivity of array receivers, and effective
radiated power of MIMO-type array transmitters is discussed.
Trade-offs, common misconceptions, and practical examples are
shown and discussed. Techniques towards strong integration
between antennas and LNAs/PAs that blurs the geometrical
boundaries between them are presented. This will cover mm-
wave antenna design examples, where direct matching of active
devices to their optimal source/load impedances eliminates the
losses of 50-Ohm impedance matching networks. An antenna-
integrated high-efficiency (Doherty) PA, operating at the sub-6
GHz band and utilizing active load modulation, will be taken as
an on-antenna power combining example, including optimization
aspects and over-the-air characterization.

Index Terms—Co-design, co-integration, antennas, amplifiers

I. INTRODUCTION

Conventionally, the microwave and antenna research fields
have developed as separate disciplines, using distinct modeling
methodologies and relying on good isolation between individ-
ually optimized system components. However, the past decade
has seen a dramatic departure from classical methodologies
towards system-level optimal designs, as needed to meet
high-performance demands of future emerging applications
(e.g., 5G and future connectivity, autonomous driving, Space
exploration).

Antenna systems for such applications typically involve
arrays of many antenna elements and active front ends, with
power amplifiers (PAs) and low noise amplifiers (LNAs) in the
proximity to the antenna or even integrated with the antenna.
Such systems require a combined circuit-electromagnetic mod-
eling approach, and these are nonreciprocal and potentially
nonlinear. Furthermore, array beamforming and signal pro-
cessing should be considered from the start to enable full
system analysis and design optimization. A key result of the
past decades of research in this area is the understanding that
antenna element mutual coupling has a significant impact on
the overall system performance, and requires important trade-
offs to be made in the design process. On the one hand, strong
antenna mutual coupling effects can be used to enhance the
beam scanning range and frequency bandwidth in terms of the
antenna impedance and efficiency [1]. On the other hand, these
effects result in a strong correlation between the signal & noise
waves propagating through the system, and hence strong noise
coupling effects between LNAs (and lower SNR) of receiving

systems, or strong non-linear distortion effects between PAs
(and lower effective radiated power) of transmitting systems
occur [2], [3].

In this paper, a modern approach to the design of ac-
tive beamforming array antennas in the receiving situation
that reflects the state-of-the-art in the academic literature is
presented. This approach has been included in the recently
published textbook [2]. Techniques for the optimal noise
match of a multi-channel receiver to an array antenna, in the
presence of antenna mutual coupling effects and associated
noise coupling phenomena, are discussed — including trade-
offs, common misconceptions, and practical examples.

Afterwards, the latest studies highlighting some of the
current research involving circuit-antenna co-integration so-
lutions for active beamforming transmitting array antennas
are presented. The focus is on integration strategies which
are tailored to high-efficiency PA architectures and suited
for applications with demanding performance requirements.An
antenna-integrated high-efficiency (Doherty) PA utilizing ac-
tive load modulation will be taken as an on-antenna power
combining example, including optimization aspects and over-
the-air characterization methods. Other examples will cover
novel mm-wave circuit-antenna transitions employing a direct
antenna-PA impedance matching technique.

II. BEAMFORMING ARRAY RECEIVERS

A. Application requirements

High-sensitive receiving array antennas find application in
radio astronomy, satellite communications, active and passive
remote sensing, and other microwave sensing areas [2], [4]—
[11]. The common denominator of these applications is that
the external microwave sky noise environment as seen by the
receiver has a low brightness temperature, which is only a
couple of Kelvin at L-band. As a consequence, the incremental
improvements of receiver noise figure and antenna radiation
efficiency are much more critical than for terrestrial commu-
nication and radar applications, for which the external noise
contribution is typically dominated by interference from other
transmitters. As detailed later in this section, a significant
research effort has been made towards the increased level
of integration between the receiving antenna elements and
LNAs in order to minimize the self-generated system noise
contributions, i.e. due to Ohmic losses in the array elements,
and receiver noise introduced by LNAs and electronics in the
signal paths after the antenna elements.



TABLE I

COMPARISON OF APPLICATIONS FOR ARRAY RECEIVERS AND TRANSMITTERS

Specific Receivers Transmitters
conditions and ; Passive remote Satellite Space-borne Terrestrial cellular
. Radio astronomy . . Defense L .
requirements sensing communication communications communications
Location of an- space/ground, cars, fixed or mobile
ground space : space walls, masts
tenna airplanes platform

Strength and ori-
gin of signals of
interest

weak, distant natural
emissions

weak, distant natural
emissions

strong, distant
man-made signals

strong, distant
man-made signals

strong, distant
man-made signals

strong at sub-6GHz
bands, weaker at
mm-wave bands

RFI situation

RFI quiet area

rich RFI

minor importance

RFI eavesdrop-
ping/jamming

minor importance

important from
other transmitters

Key performance
metrics

Ae /T sys, ant.
efficiency, system
noise temp.

radiometric res.,
bias, spatial res.

G /Tsys, polarization

purity, min. adjacent

satellite interference,
scan range, cost

footprint and
volume coverage,
power efficiency,
cost in relative terms

coverage,
beamwidth, power
efficiency,
robustness to
manufact. and
operational
tolerances

coverage, capacity,
user throughput,
power efficiency,
footprint, ease of
deployment, cost

for small integrated

element (peak)

(<40 GHz)

Physical size of | AA: 1 to 100 m2, 1-15 Typically ~1 meter arrays, 100 mm depends on coverage 128 ‘or more
. 2 ~1-1.5 meter . and number of elements, potentially
the array aperture | PAF: 1 X1 m or smaller diameter, 50 mm 1
depth beams 500-1000
6-18, 26-40 GHz, 17.5-20 2 GHz sub-6GHz (10% and
Bandwidth (ultra-)wide multi-band, narrow 50-500 MHz 1-20% depend. on ’ . ? more), 12-30 GHz
10-15%
coverage (10%)
Output power per 1 Watt CW (<20
put power p - - - 0.1 Watt GHz), 0.1 Watt CW 15-20 dBm

critical for uplink,

critical for uplink,

Sidelobe levels low-moderate very low less for downlink low-moderate less for downlink less critical
Cross-

polarization low-moderate very low very low low-moderate very low low-moderate
level/purity

While maximizing the Signal-To-Noise Ratio (SNR) and
receiving sensitivity it is of paramount importance to weigh-
in other performance metrics, such as beam shape, sidelobe
levels, and polarization purity, depending on the particular
operating conditions of the antenna and application specific
requirements (cf. Table I). To achieve the desired performance,
modern array antenna systems use digital signal processing
and beamforming algorithms to control the phases and ampli-
tudes of the antenna element weights.

B. Design challenges

An important lesson of the last decade research in the area of
high-sensitivity receiving array antennas is that of maximizing
the receiver SNR. LNAs must be noise-matched to active
reflection coefficients (scan impedances) of the array antenna
elements, rather than passive reflection coefficients (passive
impedances) as traditionally done [12], [13]. Furthermore,
since all elements may have different weights when they
are used to form certain optimum beam characteristics, and
because each element may contribute simultaneously to several
beams (a typical situation for digital beamforming arrays), the
array element excitation environment varies. This implies that
all noise temperature contributions (e.g. due to antenna losses
and noisy LNAs) are dependent on the beamformer weights
and hence also vary with the beam scan angle. The variation
in the system noise temperature within the required scan-angle
range that is caused solely by a change in the noise coupling

contribution can be as large as 30% [14], this is in the order
of 10-15 Kelvin for L-band room-temperature aperture array
(AA) receivers.

To account for these important relations between antenna
element mutual coupling, array receiver noise, and beam-
former weights, various complementary methods have been
developed, including: (i) numerical methods for characterizing
a complete (final) system that includes an antenna array,
multi-channel receiver, and beamforming network [15]-[19];
and (ii) practical figures of merit [20]-[22] and measurement
procedures [14] based on analytic methods which tie together
network, antenna analysis, and microwave noise theories. The
latter methods allow predominant factors affecting the overall
system performance to be isolated and analyzed in detail, and
thus are useful for design optimization. Examples of such
figures of merit are the sub-efficiencies and system noise
temperature of a receiving antenna array that can be expressed
analytically in terms of the isotropic noise response of the
array [20] or through an equivalent system representation [21],
[22].

Another important result from the above research work
is the proposed new terms for active antenna arrays [23],
which have been included in the most recent revision of the
IEEE Standard for Definitions of Terms for Antennas [24].
The terms which have been added or updated are isotropic
noise response, active antenna available gain, active antenna



available power, receiving efficiency, effective area for active
arrays, noise matching efficiency, and noise temperature for
active arrays.

C. Integration methods

To improve the receiving sensitivity, various integration
approaches have been implemented. A common starting point
is to select an element type according to the operating fre-
quency and bandwidth, and optimize its geometry numerically
to achieve an optimal active impedance noise match to a given
LNA, as well as high aperture efficiency so that the overall
system sensitivity is maximized [25], [26]. For large-scale
arrays, this is often done using infinite array simulations as
the initial starting point, where the objective is to minimize
the variation of the active impedance that satisfies the optimal
noise-match condition over the operating frequency bandwidth
and scan range [19], [27].

The above integration approach can be extended by match-
ing the antenna element to the optimal noise impedance of
the LNA, without extra impedance matching network on the
antenna structure, so as to maximize the antenna radiation
efficiency and reduce the system noise temperature [28], [29].
As an example, the ambient-temperature array LNAs in [28]
have been designed specifically for the phased-array feed
(PAF) applications in radio telescopes with the particular
focus on the minimum array noise performance (see Fig.
1), and have shown to yield the array beam-equivalent noise
temperatures as low as 20 Kelvin. This is over 10 Kelvin
improvement in the receiver noise temperature, and is the state
of the art in terms of array beam-equivalent noise tempera-
tures at these frequencies. Further improvement in the system
performance can be achieved by avoiding any intermediate
feeding lines and impedance matching networks between the
antenna element and LNA; one complication is, however, to
maintain a desired wide bandwidth and large scan range for
such implementations.

III. BEAMFORMING ARRAY TRANSMITTERS
A. Application requirements

The continued growth in data traffic, both in terrestrial
wireless and space-based communications, implies that con-
ventional antenna technologies presently in use will not suffice
in supporting future demands. Instead, array antenna systems
with a large number of active antenna elements and advanced
beamforming capabilities, such as massive MIMO (Multiple-
Input and Multiple-Output) arrays [30], are required. However,
the implementation of such complex systems into energy-
and cost-effective solutions has been proven very challenging,
due to the combination of multiple demanding performance
characteristics, and application specific constraints. Table I
provides a brief overview of emerging use-cases of integrated
transmitting arrays for three application domains, i.e. space-
based communication, defense-oriented applications, and ter-
restrial cellular wireless communications [31], [32]. As can be
seen, a common design goal for such systems is high effective
radiated power with minimum size, weight, and cost.

Fig. 1. LNA-integrated Tapered Slot Antenna (TSA) element of a phased
array receiver operating at 0.7-1.5 GHz: (a) Antenna element with the 65-nm
CMOS LNA (seen on the underside of the green printed-circuit board) where
coupling from the slotline to the LNA is realized by a pin, which is visible
in (b-c) that extends across the slot and is terminated in a grounded socket.
(©2016, IEEE. Reprinted, with permission, from [28, Fig. 1 and Fig. 2].

B. Design challenges

One important lesson of the research in this area is that
power amplifiers (PAs) should be directly matched to their
optimal load and source impedances for maximize output
power and efficiency, while eliminating 50-Ohm reference
impedance and matching networks that may increase losses,
size, and cost as well as reduce the bandwidth the larger the
impedance transformation is [33], [34]. For practical PAs and
radiating antenna elements, this can be challenging as the
optimal load impedance values for practical PAs and antennas



are profoundly distinct. A PA prefers a relatively small load
resistance, which is typically related to the breakdown voltage
of the semiconductor technology (e.g. 4-5 Ohm for CMOS and
17-20 Ohm for GaN HEMT at 20GHz), and relatively large
inductive load. At the same time, conventional antenna designs
prefer relatively high resistance values, which are more close
to 50-Ohm for higher radiation efficiency. Therefore, direct
optimal antenna-PA matching requires a trade-off between the
antenna radiation efficiency (which are affected by the antenna
dimensions), and the optimal PA load impedance on the other
hand [32], [35]. It is worth mentioning, however, that this
trade-off does not apply to general antenna classes and is
mainly relevant to electrically small antennas. In [32], it has
been shown that an electrically small loop antenna (with the
circumference of 0.25 wavelength), which is directly matched
to the PA optimal load impedance, has the radiation efficiency
of approximately 26%, while the PA power added efficiency
(PAE) is 15%. The efficiency values can be improved by
increasing the antenna dimensions that would also lead to a
deterioration of the PAE to be lower than 15%, and vice versa.

Furthermore, circuit losses associated with power com-
bining can be avoided by utilizing the antenna itself for
power combining [33], [36]-[38]. This can also help to
reduce the heat dissipation problems utilizing the metal
parts of the antenna as the heat sink, and yields a more
compact design [35]. These important findings have moti-
vated new non-conventional design concepts, where an an-
tenna can provide multiple functionalities, i.e. radiation, PA-
impedance-matching, PA-tailored-power-combining, filtering,
etc. Examples are the integration concepts involving antenna
elements with distributed multi-point feeding or contactless
EM-coupling based transitions to multiple PAs [38]-[41].

The concepts in [35], [40], [41] (see Figs. 2, 3, and 4) will
be discussed during the presentation, and be used to highlight
the current trends in mm-wave antenna design towards more
generalized forms of integration, where the the geometrical
boundaries between individual components (e.g. antennas,
PAs) are blurred, and the antenna and PAs are merged into
a single medium [42]-[44].

C. Integration methods

A literature survey on this subject shows that the above
integration techniques have been demonstrated primarily for
single antenna elements and conventional relatively inefficient
(e.g. single-ended class-B) PA architectures, where the focus
was on improved performance at peak power levels [39],
[45]-[47]. Significantly fewer publications are dedicated to
integrated antenna-PA systems that can enable much higher
efficiency at backed-off power levels where the probability
density of communication signals is highest [48]-[50].

Recently, novel design methods using antenna-integrated
Doherty power amplifiers (DPAs) have been proposed to in-
crease efficiency at back-off power levels [52]-[54]. The DPA
architectures are based on active load modulation between a
main- and an auxiliary PA that is traditionally realized by a tai-
lored circuit combiner network before the antenna. However,

(a) (b)

Fig. 2. Antenna integration approach employing direct impedance matching
to the PA, without intermediate impedance matching circuitry: (a) A K-band
PA-Integrated active b-shaped slot antenna on a ground plane comprising a
bed of nails (dimensions: 9.1mmx7.3mm) [35]. (b) The drain of the Qorvo
GaN HEMT die is directly integrated over the radiating slot and bonded to
the Tecdia MIM (Metal-Insulator-Metal) capacitor.

Conventional
T

Proposed

o

50Q

tapered ML

Si MMIC 4xML SiMMIC

4xPA

Fig. 3. (a) Classical single channel transition interfacing an array of
power amplifiers with a substrate integrated waveguide (SIW); (b) The novel
transition where an array of PAs is interfaced to an SIW via multiple spatially
distributed and strongly coupled microstrip lines (MLs). Also visualized is the
transfer from the ML mode(s) to the fundamental TE10 SIW mode. The MLs
are closely spaced and, hence, strongly coupled, which causes mutual coupling
effects to play a critical role in the proposed transition performance and its
design. (©2018, IEEE. Reprinted, with permission, from [40, Fig. 1].

such a network occupies space and increases power losses,
especially at mm-wave frequencies. To overcome these limi-
tations in the above designs, active load modulation has been
achieved through the mutual coupling between two spatially-
separated identical antennas [52], [53] or two symmetrically
located feeding points of a single antenna [54] [compare
Fig. 5(a) and Fig. 5(b)]. The resulting antennas were therefore
simultaneously acting as a radiating element and a Doherty
power combiner, thereby for the first time demonstrating on-
antenna power combining for DPAs. A common disadvantage
of these designs, however, is that intermediate impedance
matching circuitry at one of the PA branches is required, which
increases its size and losses. Most importantly, this approach
does not guarantee optimum performance, since the optimal
loading condition for DPAs is highly non-symmetric [55], and
therefore the Doherty antenna impedance matrix must be non-
symmetric as well, if no extra impedance matching circuitry



Fig. 4. Back-to-back E-band contactless IC-to-waveguide transition. The ridge
waveguide field excites a metal cavity where four probes in the BEOL of the
Silicon IC couple the resonant cavity field onto the four on-chip microstrip
lines [41].
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Fig. 5. Doherty PA-Antenna integration approaches: (a) conventional ap-
proach, where the main- and the auxiliary PAs are connected to the antenna
via a tailored combiner network; (b) integration approach employing on-
antenna power combining with two spatially-separated antenna elements;
and (c) the proposed approach in [51] where a dual-fed antenna with non-
symmetrical feeding enables on-antenna power combining and on-antenna
matching directly to the optimal PA impedances.

is to be added.

An improved integrated antenna-integrated DPA concept has
been proposed in [51], where the above problems are solved
by synthesizing a dual-fed antenna with a non-symmetric
impedance matrix that is directly connected to the branches of
the DPA and provides the optimal non-symmetrical impedance
matrix for high-efficiency DPA operation. This integration ap-
proach allows to simultaneously eliminate intermediate power-
combining and impedance-transforming networks by employ-
ing on-antenna power combining and on-antenna matching
directly to the optimal PA impedances [cf. Fig. 5(c)].

The key design implementation challenges of such a highly
integrated antenna-DPA system are: (i) to satisfy the optimal
impedance matching condition and desired power-combining
requirement over a relatively wide frequency band, and a
required scan range when used in arrays of such antenna
elements; (ii) to reduce the antenna radiation pattern variation
as a function of input power due to the different non-linear

Signal generator

(b)

Fig. 6. The antenna & PA-testboard for the Doherty PA-Antenna integration
approach in Fig. 5(c) [51]. The antenna is a dual-fed PIFA element with non-
symmetric impedance matrix, operating at 2.14GHz. The PA test boards are
made modular by including SMA-connectors; this allows for characterization
of the PA test boards in Doherty configuration using either the antenna
combiner (Fig. 5(c)) or a conventional circuit combiner (Fig. 5(a)). A dual-
channel signal generator is used to excite the PAs with a given amplitude
and phase difference. The SMA connectors would not be included in a final
integrated design.

TABLE 11
SUMMARY OF THE OTA CHARACTERIZATION OF THE INTEGRATED
DOHERTY PA-ANTENNA SYSTEM IN FIG. 6: MAXIMUM OUTPUT POWER
Pyax AND DRAIN EFFICIENCY 7) WITH APPROXIMATED MEASUREMENT
UNCERTAINTY AND CORRESPONDING TRUST REGION OF THE EFFICIENCY.

n @ -~ Prax un- 7 trust
illg‘]x’ Prs. T]O I()@B 5 6[ ((711]3 certainty, region @
[%] P [dB] Prax, [%]
sim. 44 64 62 - -
AC 44 64 56 +1.3 48...86
RC 33.5 63 59 +0.35 58...68

output currents versus input power of the main and auxiliary
PAs, and; (iii) to improve the accuracy of the measured output
power and efficiency due to different sources of measurement
uncertainties (i.e. the above mentioned variations of the an-
tenna pattern shape, and possible degradation of the antenna-
PA impedance match condition for certain measurement sce-
narios and methods).

D. OTA characterization methods

The above mentioned challenge on the measurement accu-
racy involves the research on the Over-The-Air (OTA) char-
acterization. Relevant questions are: Which OTA methods and
chambers are suitable for integrated antenna systems, where
individual antenna element ports are either not accessible or no
available? How to control and possibility mitigate the measure-
ment uncertainties as introduced by the different transmitted
signals of the PAs, and the corresponding variations of the
antenna impedance and radiation characteristics in the mea-
surement process? In [51], an OTA-characterization method in
a reverberation chamber (RC) has been introduced to assess
the efficiency of the integrated DPA antenna system shown
in Fig. 6. This method has seen to yield the measurement
accuracies in the order of +0.35 dB in terms of the transmitter
efficiency (cf. Table II). At the same time, the measurements
in an anechoic chamber (AC) with the same system has shown



to suffer from relatively larger measurement uncertainties (in
the order of +1.3 dB) and therefore require a complex and
time-consuming calibration procedure to correct for the above
mentioned varying antenna characteristics.

IV. CONCLUSION

The latest studies highlighting some of the key results and
lessons in the research area of circuit-antenna co-integration
solutions for active beamforming receiving and transmitting
array antennas have been presented. The directions of future
studies reflect the trend towards stronger integration between
multiple components and sub-systems, where the focus is
on more sophisticated multi-amplifier architectures and multi-
functional antenna element designs for optimum overall sys-
tem performance, and reduced cost. For such systems, it is
of importance to investigate wide-band solutions and include
the array mutual coupling effects in the course of the antenna-
amplifier co-design process. Finally, improving the Over-The-
Air characterization methods, or developing new ones, that
take into account measurement uncertainties which are specific
for such integrated active antenna systems is of high demand
as well.
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