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Abstract
Online real-time traffic data services could effectively deliver traffic information to people all over the world and provide 
large benefits to the society and research about cities. Yet, city-wide road network traffic data are often hard to come by on 
a large scale over a longer period of time. We collect, describe, and analyze traffic data for 45 cities from HERE, a major 
online real-time traffic information provider. We sampled the online platform for city traffic data every 5 min during 1 year, 
in total more than 5 million samples covering more than 300 thousand road segments. Our aim is to describe some of the 
practical issues surrounding the data that we experienced in working with this type of data source, as well as to explore the 
data patterns and see how this data source provides information to study traffic in cities. We focus on data availability to 
characterize how traffic information is available for different cities; it measures the share of road segments with real-time 
traffic information at a given time for a given city. We describe the patterns of real-time data availability, and evaluate meth-
ods to handle filling in missing speed data for road segments when real-time information was not available. We conduct a 
validation case study based on Swedish traffic sensor data and point out challenges for future validation. Our findings include 
(i) a case study of validating the HERE data against ground truth available for roads and lanes in a Swedish city, showing 
that real-time traffic data tends to follow dips in travel speed but miss instantaneous higher speed measured in some sensors, 
typically at times when there are fewer vehicles on the road; (ii) using time series clustering, we identify four clusters of 
cities with different types of measurement patterns; and (iii) a k-nearest neighbor-based method consistently outperforms 
other methods to fill in missing real-time traffic speeds. We illustrate how to work with this kind of traffic data source that is 
increasingly available to researchers, travellers, and city planners. Future work is needed to broaden the scope of validation, 
and to apply these methods to use online data for improving our knowledge of traffic in cities.

Keywords Big data · Urban traffic · Data availability · Travel delays · Time series clustering

Introduction

By mid-century, the global population could very well reach 
10 billion, with three out of every four people likely to be 
living in highly urbanized places. Large efforts have already 
been made in intelligent traffic systems, real-time traffic 

information, traffic control management, accident alert sys-
tems, and it is widely believed that innovation in digital tech-
nologies and the availability of big traffic data in real-time 
can enable the construction of advanced traveler information 
systems for route choice, and improve the possibility for traf-
fic planning to become even better for urban mobility (Lyons 
2016) and provide significant value to individual travelers 
and urban planners in future cities (Levinson 2003; Xu and 
González 2017; Hensher 2018). Yet, congestion and traffic 
delays are still one of the largest challenges that big cities 
face today and city-level road network traffic data are often 
hard to come about (Barthelemy 2016). The societal costs of 
congestion are high; besides lost wages and inconvenience 
costs, there are also costs of extra fuel, accidents (includ-
ing deaths and health costs), air pollution and many oth-
ers (Arnott and Small 1994). A TRB report (Transportation 
Research Board 2009) concludes that in the US “In 2005, 
congestion cost travelers more than 4.2 billion hours and 
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nearly $80 billion and resulted in the waste of approximately 
3 billion gallons of fuel. One of the most significant impacts 
of congestion on the individual driver is the increasing dif-
ficulty of predicting how long a given trip will take. This 
lack of travel time reliability has both personal and economic 
costs”. It is, thus, clear that traffic congestion disrupts eco-
nomic activities on societal levels; and we need to know 
more about the modern sources of traffic data.

Background and Motivation

The rise of real-time and online traffic data has the potential 
to generally increase the availability of the data that form the 
basis of traffic planning and adaptive demand, but it is also 
known that individual travelers are known to react by select-
ing their transport routes and modes in response to particular 
conditions of traffic data; main factors include traffic route 
delays, the reliability of data, and ambiguity aversion (Ben-
Elia and Avineri 2015; Chorus et al. 2006). This clearly moti-
vates a study of the availability aspect of heterogeneous traf-
fic conditions. Individuals and small groups of travelers may 
be mainly interested in single or some small set of particular 
routes and the reliability of traffic information for the route 
to their destination, but demand for these data may come also 
from others where, e.g., city planners may be interested in 
getting an overall view of the city or relevant urban area to 
quantify, track, and follow-up regular and unexpected traffic.

HERE Traffic (HERE) is one of the several large-scale 
data sources with the capability to collect and provide infor-
mation about real-time traffic in at least 83 countries to date 
(for more about coverage, see http://www.here.com). The 
data are available through an open application programming 
interface (API) that is partially free, partially commercial, 
with access up to a certain data limit. In addition to traffic 
speed information, HERE also collects incident and accident 
information including location, duration, severity, as well as 
other data such as real-time weather information from multi-
ple weather stations close to cities. Given the wide potential 
of using these data for both commercial and public use, there 
has been little research to date that provides independent 
evaluation of the data availability in one of these platforms 
that tracks traffic on the large scale. A scientific evaluation 
of this type of data that highlights the possibilities as well 
as the limitations is both timely and critical for travellers, 
researchers, practitioners, and private entities who can use 
the information to further models, tools, and make planning 
decisions for traffic in cities.

Traditional Sources and Online Real‑Time Traffic 
Data

Reliable transportation information is arguably one of the 
most important services needed in an urban environment. 

Traditionally, speed data are collected by government agen-
cies setting up fixed-point sensors in selected major arterial 
or freeways across cities or some rural roads. In recent years, 
traffic services such as Google Traffic, Tom Tom Traffic, 
Here Traffic, INTRIX Traffic, and Waze began offering traf-
fic services including speed, travel time, congestion infor-
mation, and accident reports that have now reached a much 
wider range of the public than never before. Most of these 
services rely on floating car data (FCD), or probe vehicle 
data where vehicle speed data are collected from a vari-
ety of connected vehicle sources such as in-built navigation 
services, commercial vehicle logistics and tracking devices, 
and from mobile phone applications (Jurewicz et al. 2018; 
Ambros and Jurewicz et al. 2017).

Numerous studies including government reports and aca-
demic studies have examined the quality of FCD. Most of 
these studies compare the level of similarity between FCD 
and a ground truth data source, typically stationary detector 
data, in terms of the relevant traffic variables, e.g., speed 
and travel time (Jurewicz et al.  2018; de Boer and Krootjes 
2012; Clergue and Buttignol 2014; Clergue and Buttignol 
2015; Hrubes and Blümelová 2015; Diependaele et al. 2015; 
Ambros et al. 2017). Some also look at other aspects such as 
the coverage of the road network (Jurewicz et al. 2018; Aarts 
et al. 2015) or timeliness to recognize jams (Hu et al. 2016; 
Kessler et al. 2018; Wang et al. 2014). It has been suggested 
that theoretically mean point speed from sensors would 
often be greater than mean link speeds from FCD (Jurewicz 
et al. 2018) and this has turned out to be the case in some 
empirical observations (Jurewicz et al. 2018; Clergue and 
Buttignol 2015; Hrubes and Blümelová 2015). Jurewicz 
et al. (2018) found FCD speeds are on average 23% lower 
than mean loop point-speeds. Others, however, found FCD 
speeds higher than fixed-point measurements (Diependaele 
et al. 2015; Ambros et al. 2017). Studies have also suggested 
poor agreements between private and ground truth data, and 
concluded that private sector data are not suitable for real-
time measurements as they tended to show less variability 
though they could still be suitable for a longer-term trend 
analysis (Hu et al. 2016).

Characterizing Traffic Information and Congestion, 
and Known Limitations

In this paper, we present a systematic overview of how a 
large-scale and high-availability online data source pro-
vides traffic information for 45 cities in different countries. 
Because of the nature of the commercial data source, algo-
rithms and methods to compute some of the traffic informa-
tion are proprietary, so the accuracy of this private sector 
data is not fully transparent. This creates challenges for 
broader use by the public, government agencies, private 
industry, researchers, and we can expect an increasing 

http://www.here.com
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demand for validation and performance reports to become 
public. In this paper, we, therefore, describe how cities have 
varying levels of available real-time data and examine how 
to fill in the gaps for roads where data are unavailable, but 
we also examine what challenges might arise when attempt-
ing to validate the information from the data source against 
ground truth road sensor data. This paper is organized as fol-
lows. In the next section, we present key summaries regard-
ing traffic information, including data description, data avail-
ability, and data pre-processing. In the following section, we 
use time series clustering to discover and explore patterns 
of real-time traffic data availability. Moreover, we provide 
a case study of validating the traffic data against ground 
truth, and describe, evaluate, and compare methods to fill in 
missing data. The results are summarized in the last section 
where we also discuss and suggest future research.

Data Exploration

We collected traffic data from 50 cities during 12 months, 
and after filtering and pre-processing outliers and periods 
with measurement errors, ended up analyzing 45 cities dur-
ing a 6-month period. This section outlines data characteris-
tics and pre-processing together with a first look at different 
patterns in the data.

Data Collection, Data Volume, and Data Description

We collected traffic data from 50 cities approximately every 
5 min from Jan 1 2018 to December 31 2018, and because 
of slight changes in timing of the sampling and varying net-
work delays, we group these samples into 15-min time win-
dows (96 windows per day, in total 35,040 samples per road 
segment in each city). After collecting all samples into the 
corresponding time window of the day (96 bins), we aver-
age the measured traffic speeds in each bin for each day. We, 
thus, use the same number of time windows per day through-
out the sample period to simplify data processing and use 
this as a basis for comparison. We shifted time stamps to 
the local time zone for each city before further processing.

Roads are geographically represented by road segments 
as a sequence of edges with WGS 84/GPS coordinates. The 
cities were chosen to represent several different countries, 
different types of urban environments, and areas that should 
include both highly congested or with relatively low conges-
tion. There were also countries and cities for which we were 
not able to obtain any data. City characteristics including 
number of roads with measurements, number of roads seen 
persistently throughout each month of the year, and other 
information are provided in Table 1, with all units being 
in km and traffic speeds in km/h. Our data collection cov-
ers mainly major cities, but we also did include two cities 

that can be characterized as greater urban areas: Amsterdam 
and Johannesburg/Pretoria. For details about data collection 
and filtering, see Supplementary Information A.1. For maps 
using osmnx (Boeing 2017), see Supplementary A.3.

According to HERE, the traffic data come from “billions 
of GPS data points every day and leverage over 100 different 
incident sources to provide a robust foundation for our traf-
fic services” (see https ://www.here.com/en/produ cts-servi 
ces/here-traffi c-suite /here-traffi c-overv iew). The information 
is collected from a variety of devices in the cities, including 
vehicle sensor data, smart phones, personal navigation devices, 
road sensors and connected cars, as well as public incident 
and accidents reports (HERE 2016). Traffic data are asynchro-
nously updated in the HERE infrastructure in approximately 
3-min intervals. The data have a typical delay between 1.5 and 
3 min in relation to the real-world state (HERE 2016).

The real-time traffic data were obtained by purchasing 
and using network access to the HERE API and using com-
puter programming to request and download the data every 
5 min. More specifically, with the HERE flow API, each 
request gives an additional set of features besides traffic flow 
speed that includes the time when traffic information was 
last updated for the road segment, confidence score (whether 
the traffic speed data is a real-time measurement, or a histor-
ical estimate), the direction of traffic, free flow traffic speed, 
traffic speed limit, and a geographical description of the road 
segments as a sequence of WGS84 coordinates.

Data Availability, Persistent Roads, and Removal 
of Measurement Errors

There is variation over time both between cities and within 
a city in the number and share of the road segments with 
real-time information. For several cities, their road networks 
had small changes over the months: in some cases, some 
road segments have been added by HERE during the sam-
ple period, and in some cases road segments were removed 
during the year in a re-design of the network. We wanted to 
study the variation in traffic information availability under 
typical long-term conditions, so we filtered out the minority 
of road segments that were either added or removed dur-
ing the year. For more details about the pre-processing, see 
Section A.1 (Supplementary) and the properties in Table 1 
describes the 45 cities studied over the first 6 months of 2018.

We start by looking at how data availability varies over 
time in the cities: Fig. 1 shows variations across the day for 
four of the cities. The scatterplots of data availability against 
time of day shows that day times and what are typical peak 
hours are associated with a higher level of available traf-
fic information. This makes intuitive sense given that the 
traffic speeds are significantly influenced by traffic flows. 
It suggests that, as more real-time measurements are avail-
able when traffic delays are high, the mean value of data 

https://www.here.com/en/products-services/here-traffic-suite/here-traffic-overview
https://www.here.com/en/products-services/here-traffic-suite/here-traffic-overview
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Table 1  Summary statistics for 
the 45 out of 50 cities that were 
analyzed for a 6-month period, 
after filtering out periods of 
measurement error in the 
second part of the year and non-
persistent roads

Further details are found in Sections A.1 and A.3 (Supplementary Information)

City Number of road 
segments

Percent 
persistent

Average 
length 
(km)

Min length (km) Max length (km)

Amsterdam 7366 98 1.44 0.004 15.36
Auckland 4603 96 0.66 0.006 16.95
Bangalore 4283 94 0.53 0.005 10.40
Bangkok 12,222 98 0.50 0.002 10.18
Barcelona 9760 88 0.74 0.003 50.34
Berlin 4440 89 1.18 0.005 16.17
Buenos Aires 4716 96 0.36 0.004 6.29
Cape Town 3897 100 1.11 0.006 33.24
Chicago 14,809 98 0.85 0.002 9.57
Detroit 8117 98 1.25 0.005 12.95
Dublin 9087 99 0.28 0.003 10.41
Edinburgh 231 89 2.43 0.014 38.58
Florence 1141 87 1.75 0.007 20.22
Glasgow 562 78 1.97 0.012 21.84
Gothenburg 2118 98 0.73 0.005 11.83
Jakarta 12,880 100 0.46 0.002 9.71
Johannesburg Pretoria 14,533 96 1.20 0.007 98.51
Kuwait City 1796 99 0.55 0.008 6.56
London 5510 91 1.59 0.006 25.24
Los Angeles 12,833 96 0.78 0.005 7.94
Madrid 4532 92 0.56 0.003 14.80
Makkah 2041 97 0.79 0.006 16.99
Marseilles 754 47 0.99 0.007 11.47
Mexico City 3604 99 0.81 0.007 35.24
Moscow 23,648 99 0.52 0.004 34.35
Mumbai 4590 95 0.36 0.005 4.93
New York 20,855 96 0.77 0.005 21.88
Oslo 1138 84 0.83 0.007 8.71
Ottawa 1863 99 2.34 0.003 21.59
Oxford 98 82 2.45 0.039 7.70
Palermo 556 90 1.03 0.004 24.32
Paris 7661 26 1.33 0.008 14.22
Prague 5338 93 0.57 0.006 8.49
Rio 7025 96 0.47 0.004 11.48
Riyadh 7759 99 0.73 0.005 33.78
Rome 3427 94 0.69 0.003 9.44
San Francisco 3370 97 0.48 0.007 18.56
Sao Paulo 18,959 90 0.39 0.002 13.73
Sofia 11,656 94 0.15 0.003 5.34
St Petersburg 9466 99 0.78 0.006 17.62
Stockholm 3435 99 0.73 0.006 16.85
Sydney 9424 95 0.53 0.002 17.04
Tallinn 829 98 0.72 0.007 10.19
Vienna 4019 92 0.67 0.006 12.38
Warsaw 2980 97 0.57 0.006 7.33
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availability could be misleading. Moreover, interestingly, 
Fig. 1 also shows that there exist distinct states or levels of 
how well a city is measured. The cities can be in a few differ-
ent distinct states at the same time of the day; this partially 
depends on the differences between weekdays and weekends.

Figure 2 shows longer-term time series of data availabil-
ity, and that there are large differences in the levels of the 
share of road segments with real-time measurements. Some 
even have a slowly increasing trend, which may be connected 
to slow changes in technology. The short-term dips are con-
sistent with different types of public holidays and shorter 
vacation periods. The few spikes downwards to a level of 
zero illustrate network outages on our side of the data col-
lection process. Supplementary Figure A.8 shows a weekly 
time series for the first week in 2018, and that besides the 
level we have a complex seasonality with repeated variation 
across the day, between weekdays/weekends, and between 
weeks. This suggests that part of the explanation for the 

distinct levels in Fig. 1 is the variations of days and weeks. 
As for whether there is a grouping of cities beyond the obvi-
ous mean levels of data availability will be addressed below 
with time series clustering.

Traffic Data Analysis

As we have seen above, most roads in all cities have some 
degrees of missing data. We address the following research 
questions: (i) Are there regular recurring patterns of data 
availability that differ between different cities? (ii) Are the 
real-time data measurements valid, and what challenges can 
arise with validation? (iii) What methods are efficient in fill-
ing in the missing data when real-time measurements are not 
available for some road segments? This section addresses 
these three questions to assist with using the data source for 
further analysis.

Fig. 1  Share of real-time traffic data, distributed across time of day. 
Traffic data with real-time information (vertical axis) as share of 
roads, vs. time of day (horizontal axis). Examples from four cities 
during 6 months, where time has been adjusted to the local time zone. 
In general, day times are associated with a higher share of real-time 
measurements, suggesting that larger traffic volume is significantly 

related to the number of real-time measurements. For each city, there 
can be several distinct levels of measurement at the same time of day 
(partially explained by  the differences between weekdays and week-
ends). Zeroes are outliers due to a small rate of measurement failures 
in this study



 Journal of Big Data Analytics in Transportation

1 3



Journal of Big Data Analytics in Transportation 

1 3

Patterns of Data Availability

To find patterns of data availability beyond those seen vis-
ually in Fig. 2 and on aggregate forms such as in Table 1, 
we consider the shape of the time series. To focus on vari-
ation of the shape, we standardize the time series (shift 
with mean and divide by standard deviation) to capture 
similar patterns over time. We thus chose to disregard the 
absolute level to find whether there are similarities in how 
availability varies over time.

After standardization, we still have significant varia-
tion in the time series; for an illustration of this, see Fig. 3 
that shows 4 weeks of data (May–June 2018). Some of the 
variations among standardized time series are shifts in time 
(despite that the series have been adjusted to local time 
zone); different cultural habits might mean that peaks occur 
at different times of the day, i.e., that they can be the simi-
lar patterns but shifted in time. Moreover, daylight condi-
tions and using the same time zone in a large country might 
mean that there are differences in cities that are far apart, 
affecting their peak hours. We would also like to take into 
account these shifts to group cities that have similar patterns 
throughout the day, even if they are shifted by a lag (we 
expect this to be on the scale of minutes to hours).

To address this property of the series, we compute a 
similarity metric between every pair of time series using 
dynamic time warping (DTW) (Aghabozorgi et al. 2015; 
Sardá-Espinosa 2019). This will find the best possible 
match between a pair of time series by considering the dif-
ferent possible shifts to minimize the distance (how well the 
sequences can be aligned optimally with each other to mini-
mize the sum of absolute distances between pairs of aligned 
indices). We then use this distance metric to cluster time 
series into groups of similar series. One instance of hierar-
chical clustering (using Ward’s method) is shown in Fig. 4.

With a hierarchical clustering, the number of clusters is 
not obvious; it just gives us many different possible ways to 
partition cities into different numbers of clusters. To address 
this arbitrariness of choice, we evaluate the quality of differ-
ent clusters ranging from 2 to 8 clusters. Using six quantita-
tive metrics that have been proposed to measure quality for 
time series clustering algorithms including Silhouette index 
(Rousseeuw 1987), Calinski–Harabasz index (Johnson and 
Wichern 1988), DB index (Davies and Bouldin 1979), Modi-
fied DB index (Kim and Ramakrishna 2005), Dunn index 
(Dunn 1974), and the COP index (Arbelaitz et al. 2013), the 
results are shown in Table 2. From these results, we judge 

that the cases with either four or two clusters are most inter-
esting as these cases have a majority of the two best scores 
for the different clustering metrics.

The case with four clusters is shown in Fig. 5 (the same 
data as in Fig. 4, but the series are now grouped in their 
clusters). 

• Cluster 1: Amsterdam, Berlin, Cape Town, Edinburgh, 
Florence, Glasgow, Johannesburg/Pretoria, London, Mar-
seilles, Mexico City, Moscow, Oxford, Palermo, Paris, 
Rio, Rome, Sao Paulo, St Petersburg, Vienna, Warszawa.

• Cluster 2: Auckland, Buenos Aires, Chicago, Detroit, 
Dublin, Ottawa, Sofia.

• Cluster 3: Bangalore, Jakarta, Kuwait City, Makkah, 
Mumbai, Riyadh.

• Cluster 4: Bangkok, Barcelona, Gothenburg, Los Ange-
les, Madrid, New York, Oslo, Prague, San Francisco, 
Stockholm, Sydney, Tallinn.

We also note that clustering often keeps cities that are cul-
turally related together, e.g., as being in the same or neigh-
boring countries. This suggests that the clustering picks up 
groups of cities that are similar in shape partially because of 
spatial dependence. Future work would be needed to form an 
explanation for these differences and to explore what these 
factors precisely are.

Validation: A Case Study Based on Swedish Traffic 
Sensor Data

The wide geographical and temporal span of the data means 
that full validation would require a coordination of large 
research efforts. A first step towards more validation can be a 
case study of validation with sensor data that we can access. 
The primary aim with the following analysis is to provide a 
comparison between the HERE data and the ground truth, 
and to provide a qualitative understanding of questions that 
might emerge when comparing the HERE data to the ground 
truth. Our attempt is to conduct analyses that are simple and 
clear to explore both possibilities and challenges for future 
validation efforts.

We have access to traffic sensor data collected by the 
Swedish Transport Administration. The sensors are located 
at major roads and highways to measure traffic speeds and 
vehicle volumes in several large Swedish cities. The data 
includes vehicle counts as well as mean vehicle speeds every 
1 min throughout 2018. We compare HERE traffic speeds 
from road segments with data from these traffic sensors 
located on the same roads; as a first step, we pair HERE 
road segments with high availability to roads where there 
are also traffic sensors with high availability (some missing 
data was also the case for some of the road sensors). More 
details about location can be found in the Supplementary 

Fig. 2  Data availability for 45 of the cities in 15-min time win-
dows during 6 months: The share of road segments in each city with 
real-time information. Spikes (to zero) represent network problems as 
part of our data collection process (HERE data was always available 
as far as we could observe; so measurement errors were on our side.)

◂
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Fig. 3  The standardized time 
series for the 45 cities used for 
shape-based time series cluster-
ing. 4 weeks from May to June 
2018

Fig. 4  Hierarchical clustering of the 45 time series, using Dynamic 
Time Warping to compute the distance metric between each pair of 
series, and using Ward’s method for hierarchical clustering. The tree 

shows that the candidates for the number of clusters for grouping cit-
ies tends to group cities with geographical proximity

Table 2  Clustering the 
standardized time series for 
45 cities: comparing different 
metrics to help discover an 
appropriate number of clusters 

DB* index stands for modified DB index
For each index proposed to measure quality of a clustering, the two best (either smallest or largest) values 
are printed in bold

Number of 
clusters

Silhouette index Calinski–Har-
abasz index

DB index DB* index Dunn index COP index

2 0.226 34.963 1.349 1.349 0.221 0.481
3 0.171 20.388 1.873 1.890 0.230 0.402
4 0.177 15.129 1.415 1.428 0.268 0.326
5 0.107 10.597 1.850 1.992 0.182 0.323
6 0.047 8.819 1.765 1.981 0.235 0.306
7 0.059 7.085 1.682 1.996 0.223 0.295
8 − 0.013 5.796 2.001 2.674 0.197 0.292
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Information. Supplementary Figures A.9 and A.10 show a 
road network map of Gothenburg, Sweden, including where 
HERE data had availability share greater than 0.9, and the 
sensors had availability share greater than 0.99. The HERE 
road segments and number of sensors are summarized in 
Table 3.

We illustrate the HERE data (grouped into 15-min inter-
vals) directly to the sensor data (collected and averaged in 
1 min intervals), but besides this, we also make the compari-
son where the readings for each traffic sensor was aggregated 
into 15-min time intervals by taking the mean speeds in each 
interval. Measuring a road segment at only one point (one 
sensor) has obvious limitations especially as the HERE road 
segments have lengths on the scale of a kilometer; another 
issue is that the sensors measure traffic in particular lanes, 
but the HERE data treat a two-lane as one road segment (in 
our case with these particular roads). We, therefore, study 
several sensors along the same road segment and also con-
sider taking the speed average along consecutive sensors in 
the same lane, and consider whether there are differences 
between sensors that are placed in parallel in two lanes. For 

the case study we had available (i) two longer road seg-
ments with two lanes where there are high-availability sen-
sor measurements at more than one point along the road 
segment, and (ii) two road segments where there is a set of 
high-availability sensor measurements for two lanes sitting 
in “parallel” in practically the same location (metres of each 
other).

Figure 6 illustrates the results for traffic measurements 
from a slow lane and a corresponding HERE road segment 
with a length of 2.9 km. This road has two lanes in each 
direction, and five sensors along each lane. So, we consider 
in total five sensors; these are from the bottom five loca-
tions from the road network illustrated in Supplementary 
Figure A.10 and the speed readings are shown on the differ-
ent rows in Fig. 6. The figure shows a comparison between 
sensor data and the corresponding HERE speeds for a period 
of the first 14 days in 2018.

From the figure, we can see that for this particular road 
segment (i) sensors can be biased toward both higher (sensor 
5487) or lower speeds (sensor 5485) compared to the HERE 
data, (ii) the average of the different sensors tend to follow 

Fig. 5  Four clusters of time series, hierarchically clustered with 
dynamic time warping distance and Ward’s method. Showing four 
weeks out of the 6-month time series.  Cluster 1 (top left): week-
days and weekends are similar. Cluster 2 (top right): weekdays and 

weekends differ notably, with an additional dip on Sundays. Cluster 
3 (lower left): noisy measurements with few weekday/weekend pat-
terns. Cluster 4 (lower right): a weaker dip on Sundays

Table 3  Characteristics of 
the road segments, lanes and 
sensors in the validation case 
study

Validation includes sensors from in total 8 lanes intersecting with 4 HERE road segments, and compari-
sons with 24 traffic road sensors both on the lane and road segment

Road segment Direction Lane type Sensors Description

E_10353− Northbound Slow 5476, 5479, 5482, 5485, 5487 Highway, 2.92 km
E_10353− Northbound Fast 5475, 5478, 5481, 5484, 5486 Highway, 2.92 km
E_10352+ Southbound Slow 5520, 5517, 5514, 5511, 5508 Highway, 2.03 km
E_10352+ Southbound Fast 5519, 5516, 5513, 5510, 5507 Highway, 2.03 km
E_10381− Eastbound Slow 35,027 Highway, 0.54 km
E_10381− Eastbound Fast 35,028 Highway, 0.54 km
E_10380+ Westbound Slow 35,025 Highway, 0.83 km
E_10380+ Westbound Fast 35,026 Highway, 0.83 km
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the profile of the HERE speeds except for the high speeds, 
(iii) HERE speeds tend to follow dips (down-wards) in real 
time to a larger degree than spikes upwards (iv) traffic in 
individual locations can be much slower than the HERE road 
segments (third column, rows 3 and 4). A likely explana-
tion for (iii) and (iv) can be seen in the speed–volume plots 
on the right in general there are fewer vehicles that can be 
measured when the speed is high. Taken together, this seems 
consistent with the idea that HERE real-time traffic infor-
mation tends to describe an average traffic speed in several 
locations along a road for a number of vehicles.

Similar findings showing more traffic sensors matched 
with the HERE data for both fast and slow lanes along this 
parallel stretch of highway, in both directions, are found in 
Supplementary Figs. A.11, A.12, and A.13. These different 
cases illustrate similar patterns for a majority of the sensors, 
generalizing to longer time periods, suggesting the hypothesis 
that the HERE system captures a majority of the speed dips on 
major roads (averages in bottom row of each plot).

One issue can also be demonstrated when we turn to 
another  road segment with two lanes and one sensor in 
each lane (at the rightmos location in Supplementary Fig. A.9). 
Supplementary Figures A.14 and A.15 show pairs of sensors 
are located nearly in parallel on the same stretch of road for 
7 days; we observe that the fast lane at the same location has 
on average higher speeds as expected, and the fast lane seems 
mainly used during day time, but besides that it looks similar 
to other sensor readings. However, consider the time series 
over the longer time span of 180 days: Supplementary Figs. 
A.16 and A.17 reveal an artifact. The dips to the far right of 
the series show a period of low traffic speed where there are 
no correspondent values in the HERE traffic data. The expla-
nation for the low sensor readings was planned road works 
during the time with restricted access to one of the lanes; 
this shows that there are certain kinds of speed dips that can 
go undetected also on shorter road segments. To learn more 
about the scale at which measurements from moving vehicles 
become representative of one point on the road is a question 
for further validation efforts.

Taken together, our findings in this case study is that HERE 
traffic data tends to agree with the ground truth when aver-
aged across several sensors along a HERE road segment, and it 
seems that HERE can detect and report on many dips in traffic 
speed in real time. It is important to note that the limitations 

of our conclusions are: (i) based only on a few roads, (ii) only 
highways with large volumes of traffic, (iii) longer road seg-
ments, and (iv) a case study in one city. We expect that any 
further efforts to validate the information could add more 
nuance to these findings, e.g., for different types of roads in 
the road network of a city. Future work is needed along these 
different aspects of validation, and we have outlined several 
questions that can be investigated in future studies.

Filling in Missing Data: Evaluating and Comparing 
Methods

In this section, we address that the road segments do not 
have real-time traffic information at some of the time win-
dows. We compare different statistical methods to fill in 
the gaps with missing data, based on relationships in the 
available data, and filling in the data in retrospect and not 
in real time.

For each 15-min time window in the HERE data, if there 
was no real-time measurement available we consider it a 
missing value. We, thus, fill in a matrix of type (17,472, 
ni), reflecting all 15-min time windows in the first 6 months 
of 2018 with ni as the number of persistent road segments 
in city i (Table 1). As we have seen above, the cities vary 
not only with respect to the level and profile of data avail-
ability but also with several other characteristics, and it is 
not obvious whether some method to fill in missing values 
would work better in one city than others in another. We 
evaluate four different methods to fill in missing values: (i) 
A mean-based method that simply fills in all missing values 
for a particular road segment with the observed mean speed 
value of the segment (we can see this as a simple baseline), 
(ii) A correlation-based method depending on the previously 
observed correlations between pair-wise real-time measure-
ments for each pair of road segments (resulting in a linear 
regression, with the predictors at a given time chosen from 
the observed roads at that time), (iii) A k-nearest neighbors-
based method (knn) that fills in a value for road i in a given 
row based on an average of k most similar other rows in the 
data where there are real-time measurements for i, and (iv) 
A sliding window k-nearest neighbors-based method, using 
a time window of 1 month as basis for filling in the missing 
value (knn window). In the last case, the method is the same 
as for the k-nearest neighbors, but with a temporal restriction 
of the data. The latter could possibly have the advantage to 
take into account factors such as the differences between 
months of the year, while restricting the available data to 
a more relevant time period. This, however, carries with it 
the tradeoff between the size of available data versus choos-
ing more recent data. The evaluation of each method was 
made with respect to the root mean squared error (rmse) and 
tenfold cross-validation: For each city and each method, a 
random 10% of the known real-time measurements are held 

Fig. 6  Five sensors cover a northbound highway to Gothenburg, Swe-
den. Sensor data (red) vs HERE data (blue) from the first 14 days of 
2018. Speeds (km/h) vs time on the two left-most plots. Ground truth 
speed vs HERE speeds in  the third column. Volume given in vehi-
cle counts  (vehicles/minute). Each of the top five rows corresponds 
to one sensor along the road  segment. Bottom row: data based on 
averaging the five sensors. The right-most column has speed–volume 
plots that show traffic volumes vs. speeds using the sensor speeds 
(red) and the HERE speeds (blue) (the volume data from the sensors)

◂
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out from fitting the method and the method is evaluated by 
predicting these. The results of evaluating the four methods 
are summarized in Table 4 for data from 14 cities during 
6 months, and the scores show that there are several consist-
ent results across the methods.

First, across all cities, using historical correlations 
improves on the naive mean-based method. Second, the 
knn methods consistently give better results than the other 
methods. This improvement is also larger in size than what 
was gained from historical correlations, which suggests that 
traffic speed has a important non-linear dependence. Third, 
the typical (but relatively smaller) improvement with the 
time-dependent knn method indicates that the cities can be 
in different states during different times of the year and that 
estimation can be improved by taking this into account; we 
do not always see an improvement when estimating the miss-
ing value based on more recent observations, but it does not 
tend to make the result much worse.

Taken together, the knn methods consistently perform 
better than the simpler methods, despite the clear differ-
ences in the dimension and road network characteristics of 
the cities. Different directions would be possible to pursue to 
improve on the results, and it would be possible to including 
knowledge about the geography of roads and the structure of 
the road network. This demonstrates that it is possible to fill 
in the missing values to have an average root mean square 
error less than 10 km/h. Further work would be needed to 
explore the tradeoffs between sample size and other perfor-
mance indicators that are important for applications.

Discussion and Conclusion

We analyze 6 months of traffic data from 45 large cities/
urban regions available in one of the large-scale online plat-
forms available to travelers, policy-makers, and researchers 
interested in city traffic around the world. We examine sev-
eral areas where cities may vary and examine the data avail-
ability. Despite varying characteristics of the cities such as 
different road segment length, shares of real-time measure-
ments, and difference in the patterns of data availability, a 
few common characteristics emerged from of our observa-
tions and results.

The findings include (i) using time series clustering, we 
identify four clusters of cities with distinct groups of data 
availability patterns, with the main difference being how 
availability changes in weekends and (ii) k-nearest neighbor 
based methods consistently improve on other methods to 
fill in missing values for traffic speeds. Moreover, (iii) the 
validation case study with ground truth for one city shows 
that the HERE data can follow dips in traffic speed quite well 
in real time, more so than sudden increases in speed that 
happen with fewer vehicles on the road. Taken together, this 
data source can be a basis for further research leading to a 
more complete view of city traffic compared with sensor 
data at fewer locations. We also found some challenges fur-
ther research using this scale of data over time, including 
changes in the road networks by the addition or removal of 
road segments between months. It can also be important 
to take into account granularity of ground truth data with 
respect to different lanes on a road, and there tends to be 
better agreement between online data and ground truth when 
averaging several sensors.

Future work could be done in the following directions. 
Adding more data such as weather, socio-economic varia-
bles, and information about traffic incidents could be used to 
understand the variability in traffic data. Another possibility 
is to zoom in on particular parts and properties of the road 
networks to find similarities and differences in the cities. 
An important issue will be to improve our understanding of 
the coverage and validation against more types of ground 
truth data; to study the possibility of using different publicly 
available data sources for large-scale validation could be 
important, as validation with traffic sensor data on a large 
scale can be both expensive and difficult. Understanding the 
reasons behind the identified clusters of cities having similar 
data availability patterns could add to our understanding of 
why traffic information is available on different levels and 
at different times in the different cities, and the relationship 
to traffic congestion/delays.

In this study, we find patterns in how and when traffic 
data is available, and show that there is a sound basis for fur-
ther studies that are directly related to applications of traffic 

Table 4  Evaluating different methods on filling in missing traffic 
speeds value with the metric average root mean square error using 
tenfold cross-validation

Methods from left to right: (i) mean, (ii) historical correlations, (iii) 
k-nearest neighbors (full data), (iv) k-nearest neighbor (restrict to 
same month). The k-nearest neighbors were run with k = 10 and con-
sistently out-perform the naive and correlations-based methods

City mean correlations knn knn window

Barcelona 7.63 7.46 4.79 4.95
Berlin 7.58 7.05 4.58 4.24
Cape Town 8.86 7.84 4.89 4.61
Chicago 5.53 5.19 3.03 2.95
Detroit 5.26 5.11 3.20 3.26
Florence 7.08 6.53 4.23 4.12
Gothenburg 6.91 6.70 4.35 4.82
London 7.42 6.12 3.57 3.23
Moscow 6.59 6.23 4.21 4.06
New York 5.46 5.08 2.94 2.48
Sao Paulo 7.15 6.50 4.11 4.01
Stockholm 7.73 7.43 4.47 4.15
St Petersburg 7.84 7.33 4.74 4.52
Rio 8.07 7.20 4.48 4.42
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data such as studies of traffic congestion and traffic delays. 
Congestion and traffic delays continue to affect many cities 
around the world, and, by understanding the availability of 
traffic data from new data sources like large-scale online 
platforms, and developing methods that fill in the gaps of 
missing data and address the new challenges with this data 
source, we see a promising basis to improve our knowledge 
about traffic in current and future cities.
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