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Abstract
The computational efficiency of CAE tools for analysing failure progression in large layered composites is key. In particular,
efficient approximation and solution methods for delamination modelling are crucial to meet today’s requirements on virtual
development lead times. For that purpose, we present here an adaptive continuum shell element based on the isogeometric
analysis framework, suitable for the modelling of arbitrary delamination growth. To achieve an efficient procedure, we utilise
that, in isogeometric analysis, the continuity of the approximation field easily can be adapted via so-called knot insertion.
As a result, the current continuum shell provides a basis for an accurate but also computationally efficient prediction of
delamination growth in laminated composites. Results show that the adaptive modelling framework works well and that, in
comparison to a fully resolved model, the adaptive approach gives significant time savings even for simple analyses where
major parts of the domain exhibit delamination growth.

Keywords Isogeometric analysis · Delamination · Stress reconstruction · Adaptivity · Continuum shell formulation

1 Introduction

To accurately predict damage growth in large, thin-walled
laminated composite structures, it is required to have mod-
els that are able to capture relevant deformation mechanisms
in a computationally efficient manner. Thus, the deforma-
tion kinematics as well as the potential material degradation
mechanisms should be well represented in areas where dam-
age occurs, at the same time as unnecessary detail should
be avoided. When non-linear material phenomena such as
intraply1 damage development or delamination growth need
to be considered in the analysis, an accurate prediction of the
three-dimensional stress field in critical areas is key. Both

1 In this paper, wewill use ply and layer interchangeably to denote each
lamina of a laminate.
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because intraply damage is generally driven by the inter-
action of three-dimensional stresses in the ply, and because
delamination is physically driven by interlaminar normal and
shear stresses.

Traditional finite element (FE) based shell elements fall
short in these cases, since the availability of only planar stress
components is insufficient. Therefore, FE continuum shell
elements, cf. e.g. Parisch [1],whichpossess three-dimensional
kinematic descriptions and stress fields, are a natural alter-
native. However, such shell theories are commonly based
on first shear deformation theory, meaning that the laminate
must be represented by at least one continuum shell element
per ply to obtain a good prediction of the three-dimensional
stress state.Moreover, to capture delamination growth, all ply
interfaces must be modelled using interface elements. In the
end, this leads to a computationally, very expensive approach
(both in terms of simulation time andmemory requirements).

A strategy to alleviate the computational cost associated
with such detailed modeling of each ply, which is currently
increasing in popularity in the literature, is to make the
through-thickness kinematics adaptive, e.g. by exploiting
the partition-of-unity property of Lagrange polynomials as
inspired by [2]. Several alternative, but similar, methods have
been developed that support laminate failure analyses requir-
ing initially only one shell element through the thickness
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with the common feature that (arbitrary) delamination prop-
agation is considered only in areas where it is needed [3–7].
Common challenges associated with many of these meth-
ods are to correctly predict the onset of delamination growth
since transverse stress predictions in general are of low accu-
racy in traditional (inexpensive) shell elements, and how to
enable the kinematic enrichment in an efficient manner.

In this respect, continuum shell elements based on the con-
cept of isogeometric analysis (IGA) provide an interesting
option. In IGA [8,9], rather than using Lagrange polyno-
mials as in traditional FE, higher-order splines (NURBS or
T-splines) are used as basis functions in the approximations.
A benefit of the use of such splines is that the displacement
approximation is higher-order continuous, thereby provid-
ing a basis for well-performing shell [10–12] and continuum
shell formulations [13–15], where in the latter case an accu-
rate geometric description of the shell mid-surface (via
in-plane NURBS) is combined with the three-dimensional
stress representation of conventional continuum shell ele-
ments, realised via a higher-order through-thicknessB-spline
approximation.

Furthermore, as shown byHosseini et al. [15], by adopting
an isogeometric continuum shell modelling framework it is
rather straightforward to, by so-called knot-insertion, modify
the through-thickness kinematics to incorporate weak and
strong discontinuities, see also [16]. By introducing weak
discontinuities at ply interfaces, the through-thickness strain
discontinuities at these locations are explicitly accounted for.
This enables a much better 3D strain and stress prediction,
which is key for a good estimation of the amount of intraply
damage. By introducing strong discontinuities, the element
is also capable to represent initiation and growth of one or
several delamination cracks.

In the current paper, we extend the shell formulation from
[15] into an adaptive continuum shell that allows for an
update of the through-thickness kinematics at any required
time instant during the simulation. The adaptivity is facili-
tated by that the knot insertion can be fully automated due
to the hierarchical nature of the isogeometric approximation
functions.

In the current paper we also demonstrate that the higher
order in-plane continuity obtained with an IGA approach
allows for an element-local recovery procedure for accu-
rate prediction of out-of-plane (transverse) stresses, similar
to [17,18]. Thereby, the possibility for delamination initia-
tion can be assessed element-wise, something which is not
generally possible in traditional FE based approaches if a sin-
gle shell element (through the thickness) is used to represent
the laminate.2

2 As shown by e.g. [6], to obtain an accurate prediction of the through-
thickness stress distribution of transverse stress componentswhen using
conventional first order shear deformation theory shell elements a non-
local stress smoothing algorithm has to be applied.

As a result, the current shell provides a good basis for an
accurate but also computationally efficient prediction of the
progressive failure in laminates, without a-priory knowledge
of where damage will occur. Results show that the adaptive
modelling framework works well, both to predict the full
3D stress states in multiaxial laminates, but also to capture
growth of delaminations. Furthermore, in comparison to a
fully resolved model, the adaptive approach gives signifi-
cant time savings even for simple analyses where significant
parts of the domain exhibit delaminationgrowth.This implies
that computational efforts (time andmemory) can be reduced
considerably when using this adaptive concept in large-scale
analyses where damage develop only in a confined, but ini-
tially unknown area of the structure.

This paper is ordered as follows. In the next section,
we will give a concise review of the isogeometric con-
tinuum shell element. Since out-of-plane stresses in the
standard element are of a rather poor quality, an algorithm
that reconstructs these components based on element-wise
post-processing of the smooth stress fields [6], is presented
here as well. Subsequently, the accuracy of the computed
stresses in the element with different discretisations through-
the-thickness of the shell is assessed inSect. 3. Thevalidity of
the reconstructed stresses is also presented in this section. In
Sect. 4, a strategy to perform the automatic knot-insertion to
enhance the interpolation in thickness direction is presented.
The performance of the automatically adapting element is
studied by means of three benchmark problems in Sect. 5.
Finally, the paper is closed with some conclusions and an
outlook to future developments.

2 Isogeometric continuum shell element

The kinematic relations and the discretisation of the isogeo-
metric continuum shell element discussed in this section, are
presented in detail in Hosseini et al. [15].

2.1 Kinematics and equilibrium equations

Figure 1 shows the undeformed and the deformed configu-
ration of the continuum shell element. The reference surface
of the shell is denoted by S0 and S for each respective con-
figuration. The variables ξ and η are the local curvilinear
coordinates in the two independent in-plane directions and ζ

is the local curvilinear coordinate in the thickness direction of
the shell. Furthermore, the position of a material point within
the shell body in the undeformed configuration is written as
a function of the three curvilinear coordinates:

X(ξ, η, ζ ) = X0(ξ, η) + ζD(ξ, η) with − 1 ≤ ζ ≤ 1,

(1)
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Fig. 1 Kinematics of the continuum shell in the undeformed and deformed configuration. The corresponding covariant triads for any point in the
shell body are denoted by Gi and gi

whereX0(ξ, η) is the projection of the point on the reference
mid-surface of the shell and D(ξ, η) is the thickness director
perpendicular to the mid-surface S0 in this point.

In any material point, a local reference triad can be estab-
lished. The covariant base vectors are then obtained as the
partial derivatives of the position vectors with respect to the
curvilinear coordinates �i = [ξ, η, ζ ]. We define a set of
basis vectors on the reference surface in the undeformed con-
figuration as:

Eα = ∂X0

∂�α
with α = 1, 2,

E3 = D = E1 × E2

||E1 × E2||
t

2
,

(2)

where t is the thickness of the shell. Now, using Eq. (1),
the covariant triad for any point within the undeformed shell
body is obtained as:

Gα = ∂X
∂�α

= Eα + ζD,α with α = 1, 2,

G3 = D,

(3)

where the comma subscript •,α denotes partial differentiation
with respect to the directions in the undeformed configura-
tion.

The position of a material point in the deformed configu-
ration x(ξ, η, ζ ) is related to that in the undeformed config-
uration X(ξ, η, ζ ) via the displacement field u(ξ, η, ζ ):

x(ξ, η, ζ ) = X(ξ, η, ζ ) + u(ξ, η, ζ ). (4)

With this relation, we can define the covariant triad in the
deformed shell element gi at any material point as:

gi = ∂x
∂�i

= Gi + u,i with i = 1, 2, 3. (5)

This reference triad is used to construct the Green–Lagrange
strain tensor γ :

γ = 1

2

(
FT · F − I

)
, (6)

where I andF respectively are the unit tensor anddeformation
gradient tensor. The latter one is given by:

F = gi ⊗ Gi . (7)

The virtual internal work δWint in a Total Lagrangian
setting (referring to the undeformed configuration	0) is for-
mulated as:

δWint =
∫

	0

δγ : S d	0, (8)

where S denotes the Second Piola–Kirchhoff stress tensor
that arises from a linear constitutive relation between the
material stiffness tensor C and the Green–Lagrange strain
tensor:

S = C : γ . (9)

The strain field in Eq. (9) is expressed in the framework
of the contravariant base vectors Gi , i = 1, 2, 3. These

123



102 Computational Mechanics (2020) 65:99–117

Fig. 2 The undeformed shell body 	0 with its outer surface boundary
∂	0. Dirichlet (displacement) boundary conditions are applied on 
u ,
whereas the Neumann (traction) boundary conditions are imposed on

t

strain components γkl can be transformed to the local ele-
ment framework Ti via:

γ l
i j = γkl tki tl j with: tki = Gk · Ti , (10)

where, for a fibre-reinforced orthotropic material, T1 is the
fibre direction and T2 and T3 respectively are the in-plane
and out-of-plane perpendicular directions.

The virtual external work δWext is defined as:

δWext =
∫

	0

q · δu d	0 +
∫


t

t · δu d
. (11)

In this expression the contribution is split in first Piola–
Kirchhoff tractions t acting on the undeformed outer surface

t and body forces q, see Fig. 2.

The principle of virtual work states that the work done by
internal forces equates the work done by external forces:

δWint = δWext . (12)

This yields a system of non-linear equations that can be
solved by an incremental-iterative procedure, wherein the
total loading is applied in a finite number of load steps. For
more information on this, the reader is referred to [15].

2.2 Discretisation

The mid-surface of the shell is constructed using NURBS
basis functions as shown in Fig. 3. In the thickness direction,
the displacements are discretised using higher order B-spline
basis functions [14]. A B-spline volume patch is generated
by multiplying the bivariate (planar) splines Si with the uni-
variate spline function in thickness direction, Hj .

The total displacement field u can then be approximated
as:

u(ξ, η, ζ ) =
Ncp∑
I=1

NI (ξ, η, ζ )aI , (13)

where aI is the vector containing the displacement degrees
of freedom and Ncp = n × m is the total number of control
points (or shape functions), with n being the number of planar
shape functions andm the amount of shape functions present
along the shell thickness. The combined shape functions NI

are now given by:

NI (ξ, η, ζ ) = Si (ξ, η)Hj (ζ ),

I = i + ( j − 1)n,

i ∈ {1, . . . , n} ,

j ∈ {1, . . . ,m} .

(14)

Consequently, the component k of the displacement field can
be obtained by:

uk(ξ, η, ζ ) =
n∑

i=1

m∑
j=1

ai jk Si (ξ, η)Hj (ζ ), (15)

where the index k indicates either the x-, y- or z- directions.
The displacement field u in Eq. (13) can be of any

arbitrary order, but is chosen higher than one to obtain
a B-spline function (for lower orders, B-splines depreci-
ate to the traditional finite element shape functions). This
means that the strain field varies at least linearly over the
thickness, which is important to avoid thickness locking.
This is similar to the standard continuum shell formulation,
where an internal stretch term is added to obtain a quadratic
term in the displacement field through-the-thickness of the
shell [1].

2.2.1 Fundamentals of B-splines

B-spline basis functions are defined along a knot vector
�, which contains knots ξi symbolizing coordinates in the
parameter domain:

� = [
ξ1, ξ2, . . . , ξn+p+1

]
. (16)

In this definition, n denotes the number of basis functions that
get defined and p represents the degree of the functions. Uni-
variateB-splines are generated via theCox–deBoor recursive
algorithm [8], where basis functions of a certain degree
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Fig. 3 Isogeometric shape
functions over a 4 × 4 element
patch: Planar third order
NURBS functions Si (ξ, η) and
through-the-thickness third
degree B-spline functions
Hj (ζ ). (Color figure online)

are are expressed as functions of one order lower until a
piece-wise constant (p = 0) is obtained:

Ni,p(ξ) = ξ − ξi

ξi+p − ξi
Ni,(p−1)(ξ)

+ ξi+p+1 − ξ

ξi+p+1 − ξi+1
N(i+1),(p−1)(ξ). (17)

The piece-wise constant is given by:

Ni,0(ξ) =
{
1 ξi ≤ ξ < ξi+1,

0 otherwise.
(18)

It should be noted that each constant function defines a single
element along the parameter domain (between ξi and ξi+1),
analogous to an element in conventional finite element meth-
ods (FEM).

B-splines of degree p are C p−k continuous at a knot with
multiplicity k [19]. This means that we are able to control
the continuity of the basis functions at a knot by arbitrar-
ily selecting its multiplicity. We benefit from this property
in two ways. On one hand, we use it to compute the Bézier
extraction operator, required to obtain an element-wise data
structure for isogeometric analysis analogous to traditional
finite elements. On the other hand, this property is used to
model layered structures with C0 continuity (weak discon-
tinuities) between the layers [16] as well as traction-free
cracks or cohesive interfaces by enforcing C−1 continuity
at the interfaces (strong discontinuities).

2.2.2 Bézier extraction

A characteristic of B-splines or NURBS of order p is that
they are present along a knot interval

[
ξi , ξi+p+1

]
. It indi-

cates that basis functions exist along multiple elements
and thus, elements support different shape functions (see
shape functions along the two elements at the left side

of Fig. 4). This property is in contrast to the traditional
FEM, where identical shape functions are defined within
all elements. In FEM software, integral equations are typ-
ically solved on a single parent element using quadrature
rules. In order to retain this finite element structure for the
discretisation of the mid-surface of the isogeometric shell
element, we make use of the Bézier extraction technique
[20].

The principle of Bézier extraction is explained in Fig. 4.
It shows that identical third order, p = 3, displacement
fields can be obtained using both bases (bottom). The
left basis is defined along � = [

0, 0, 0, 0, 1
2 , 1, 1, 1, 1

]
,

whereas the right basis is developed along
� = [

0, 0, 0, 0, 1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1]. The second knot vec-

tor contains two additional knots that reduce the continuity
of the basis functions halfway the parameter domain to
C0. Via this knot insertion process, the original basis is
decomposed into one consisting of two C0 continuous
Bézier elements with identical (Bernstein) shape functions
B(ξ). Upon insertion of additional knots, also new shape
functions and control points are defined. To ensure that
the displacement field remains unaltered, the positions of
the new set of control points Pnew must be determined
by:

Pnew = (C)T Pold . (19)

In this expression, Pold is the array with old positions and
C is the total Bézier extraction operator, composed from all
operators resulting from single repetitive knot insertions:

CT = (
Cm)T (

Cm−1
)T

. . .
(
C1

)T
, (20)

wherem (in this context) denotes the total number of inserted
knots. The process of finding this Bézier extraction matrixC
is explained in detail in [20].
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Fig. 4 Basis transformation as a result of knot insertion. The displace-
ment fields of the beam (red plot at the top) are identical, while the
continuity of the basis (shape function plots at the center) is modified.

The bottom of the figure shows the mapping from a Bézier parent ele-
ment onto an isogeometric parent element. (Color figure online)

The extraction operator can then be used to map the Bern-
stein basis functions B(ξ) onto the original shape functions
N(ξ):

N(ξ) = C B(ξ). (21)

By defining Ne = LeN and B = L̂eBe to extract only the
shape functions belonging to element e, Eq. (21) can be
rewritten into an element-wise mapping:

N(ξ) = C B(ξ),

Le
−1 Ne = C L̂e Be,

Ne = Ce Be with Ce = Le C L̂e.

(22)

This final expression allows us to use Bézier extraction to
map a regular Bernstein basis Be onto the element specific
shape functions Ne. By doing so, the Bernstein basis func-
tions (Bézier elements) can be used as the finite element
representation of splines and NURBS. The Bézier extraction
technique also holds for multivariate NURBS (surfaces or
solids), which in the current work is exploited to discretise
the mid-plane of the continuum element.

2.3 Introducing discontinuities in the displacement
field

Figure 5 shows the steps in order to create discontinuities
through-the-thickness of the shell structure. Assume that
quadratic B-spline basis functions Hj (ζ ), defined along a
knot vector � = [−1,−1,−1, 1, 1, 1], have been used as
the univariate functions in thickness direction. Three basis
functions are then present along the total thickness of the ele-
ment, which in this configuration will be called the lumped
element.

Now suppose that we want to have a composite shell con-
sisting of two layers of equal thickness. The deformation of
layered composite structures requires a unique displacement
at the interfaces and different strain fields in the adjacent
layers. In the example of Fig. 5, this is simply achieved
by having a displacement field which is C0 continuous at
the interface at ζ = 0. This leads to a new knot vector
� = [−1,−1,−1, 0, 0, 1, 1, 1], with five basis functions
through-the-thickness. Henceforth, we will denote this ele-
ment as the layered element.
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Fig. 5 Introducing weak and strong discontinuities in thickness direction of the shell by knot-insertion. In the remainder of this work, the three
configurations are denoted lumped, layered and discontinuous

Fig. 6 Interface kinematics of a
discontinuous element in the
undeformed and deformed
configuration

Subsequently, complete separationof the layers is obtained
ifwe insert another knot, such that:� = [−1,−1,−1, 0, 0, 0,
1, 1, 1], which gives six basis functions along the shell thick-
ness. An element in this state is denoted as the discontinuous
element and at the moment it obtains this configuration, a
cohesive zonemodel is introduced to govern the delamination
failure process. In Fig. 6 a discontinuous element is shown
in the undeformed and deformed configuration. The cohe-
sive crack surface 
 that arises from splitting the element is
defined in the deformed configuration as the average between
the top (
+) and bottom (
−) crack surface.

In the figure, u+ and u− are the displacements of the
originalmaterial point on the top (
+) and bottom (
−) crack
surface. The displacement jump v between two layers can be
written as:

v(ξ, η) = u+(ξ, η) − u−(ξ, η). (23)

The Cauchy traction vector at the interface is acquired from
the cohesive zone model and is defined as:

t = σ · n, (24)

where σ is the Cauchy stress tensor andn is the vector normal
to 
, defined below.

The internal virtual work is established in the global coor-
dinate system, yet cohesive material laws are often expressed
in a local reference framework. The coordinate systems in
the implementation are therefore transformed by a rotation
matrix Q that relates the global directions (ex , ey , ez) to the
local ones (n, s2, s3):

Q =
⎡
⎣
cos(ex ,n) cos(ex , s2) cos(ex , s3)
cos(ey,n) cos(ey, s2) cos(ey, s3)
cos(ez,n) cos(ez, s2) cos(ez, s3)

⎤
⎦ with: cos (u, v)

= u · v
||u|| ||v|| , (25)

where n denotes the vector normal to the surface and s2 and
s3 indicate the shear directions. This local reference system
is assumed to be the average of the respective directions on
the top (
+) and bottom (
−) surface:
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n = 1

2

(
n+ + n−)

with: n+ = g+
1 × g+

2

||g+
1 × g+

2 || and n− = g−
1 × g−

2

||g−
1 × g−

2 || ,

s2 = 1

2

(
s+2 + s−2

)
with: s+2 = g+

1

||g+
1 || and s

−
2 = g−

1

||g−
1 || ,

s3 = 1

2

(
s+3 + s−3

)
with: s+3 = n+ × s+2 and s−3 = n− × s−2 .

(26)

The displacement jump and traction vector in the local frame-
work are then given by:

vloc = QT · v,
tloc = QT · t. (27)

The interface behavior is accounted for when elements are
in the discontinuous configuration. In that case, the virtual
internal work first defined in Eq. (8) is expanded to:

δWint =
∫

	0

δγ : S d	0 +
∫




δv · t d
, (28)

where the latter term is related to the cohesive tractions.

2.4 Stress enhancement scheme for lumped
elements

The lumped continuum shell element yields accurate in-
plane stress results for layered composite structures, as will
be shown in the next section. However, using this element
configuration to calculate transverse out-of-plane stresses in
layered composites, generally leads to a poor prediction due
to oversimplified out-of-plane kinematics. To still be able to
obtain reliable predictions of these stresses we adopt a strat-
egy similar to Kant and Manjunatha [21] where improved
values are recovered from the three-dimensional momentum
balance equations. Here, the first and second order deriva-
tives of the in-plane stress components need to be extracted
from the solution. In traditional finite element shell models,
the in-plane stress components are predicted with good accu-
racy, however, the stress derivatives are not well predicted
because of only C0 in-plane continuity of the shape functions.
Since the derivatives of these traditional shape functions are
discontinuous across element edges, the resulting stresses
are non-smooth also for elastic problems. The benefit from
the IGA approach is that stresses indeed are smooth when
crossing element edges, which means the derivatives of
each component can be computed element-wise with good
accuracy.

For zero body forces under quasi-static conditions, the
balance equations are given by ∇ · σ = 0, which can be
written in components:

σxx,x + σxy,y + σxz,z = 0,

σxy,x + σyy,y + σyz,z = 0,

σxz,x + σyz,y + σzz,z = 0.

(29)

We can reconstruct the transverse stress variation through-
the-thickness of the shell by rewriting Eqs. (29) into integrals
over the shell thickness:

σ̂αz = −
N∑

n=1

z(n)∫

z(n−1)

(
σαx,x + σαy,y

)
dz + Cα with α = x, y,

(30)

σ̂zz =
N∑

n=1

z(n)∫

z(n−1)

z(n)∫

z(n−1)

(
σxx,xx + σyy,yy + 2σxy,xy

)
dz2 + C3z + C4,

(31)

where z is the local transverse direction, z(n−1) and z(n)

denote the lower and upper thickness coordinate of ply n and
N represents the total number of composite layers. Further,
the first and second order derivatives with respect to coordi-
nate α = [x, y] are indicated by •,α and •,αα respectively
and the recovered values are denoted by •̂.

As can be seen above, the integration of the three-
dimensional equilibrium equations yields integration con-
stants which in general have to be determined from the
traction conditions at the top and bottom shell surface,
cf. Främby et al. [22]. In that paper it is also shown that the
integration constants can be used to average the integration
error3 over the thickness, such that the discrepancy between
the predicted stresses at the surfaces and the applied tractions
is minimised.

In our procedure to solve Eqs. (30) and (31), we make
use of the continuity of the stresses and project per element
the stress variation in each plane of integration points on a
second order Lagrangian basis (using conventional second
order finite element shape functions). This projected stress
field can then, for each layer of integration points, be used
to evaluate first and second derivatives of the planar stress
components in the element centre point at a given position
through the thickness. As a final step, we integrate the stress
derivatives according to Eqs. (30) and (31) to obtain themore
accurate recovered stress profiles.

Note that, for a sufficient level of accuracy of the second
order stress derivatives in Eq. (31), at least a C2 in-plane con-
tinuity is required, i.e. cubic NURBS are necessary for the
in-plane displacement approximation. If a lower approxima-
tion degree is to be used, the stress projection onto the second
order Lagrangian basis needs to pursued in a non-local man-
ner, e.g. [22].

3 Integrating Eqs. (30) and (31) from the bottom to the top surface often
leads to a small resulting shear traction at the top even if the surface
is traction free. This is due to numerical errors introduced during the
procedure.
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Fig. 7 Geometry and loading conditions of the rectangular composite
panel

3 Element performance assessment

The performance of the continuum shell element and stress
enhancement scheme is first studied in the simulation of the
deflection of a multi-layered composite panel. For this prob-
lem, zero-thickness shell elements would generally suffice
to accurately calculate the displacements, but would not be
adequate to compute the fully three-dimensional stresses and
strains in the individual layers accurately.

We consider the laminate shown in Fig. 7. The laminate
is a = 600 mm long and b = 400 mm wide. It con-
sists of five equally thick layers, stacked in a

[
0/90/0̄

]
s

sequence. The laminate with a total thickness of t = 10 mm,
is loaded at the top surface by a bi-harmonic pressure load;
p(x, y) = −q0 sin(πx

a ) sin(π y
b ). The amplitude of the pres-

sure load at the centre is q0 = 0.01 N/mm2, which leads to
small deformations of the laminate. Because of symmetry,
only a quarter of the model is considered.

The total model is simply supported (S.S.) along its four
mid-plane edges, which corresponds to two lines of the quar-
ter model. Along the long line, uy = uz = 0 and along the
short line ux = uz = 0. At the symmetry (Symm.) surfaces,
uy = 0 (long boundary) and ux = 0 (short boundary) over
the complete thickness.

The transverse isotropic plies have a Young’s modulus of
E11 = 25 × 105 N/mm2 in fibre direction, whereas perpen-
dicular to the fibres, the elastic moduli are E22 = E33 =
105 N/mm2. Poisson’s ratio’s ν12 = ν13 = ν23 = 0.25 and
the shear moduli are G12 = G13 = G23 = 5 × 104 N/mm2.

The analyses are all conducted using third order Bézier
elements.4 In thickness direction, fourth order B-splines have
been employed, which results in a third order stress profile
through-the-thickness. All numerical results in this work are
mesh converged.

4 Third order elements provide well-defined second order in-plane
stress derivatives.

Fig. 8 Displacement field of the composite panel in a deformed con-
figuration (magnification factor: 1000)

Fig. 9 Comparison of stresses in fibre direction through-the-thickness
of the composite laminate

3.1 In-plane stress comparison

The stress results in thickness direction are compared at
x = 290 mm and y = 190 mm (element centre), see Fig. 8.
In Fig. 9 the stresses in fibre direction obtained by lumped
and layered elements are compared to outcomes of the Clas-
sical Laminate Theory (CLT). It is evident that the results of
both lumped and layered elements are in excellent agreement
with the CLT solution. Similar statements can be made for
the remaining in-plane stress components σ12 and σ22 (not
included).

3.2 Out-of-plane stress comparison

The out-of-plane element stresses are compared in the global
coordinate system. The analytical solutions proposed by
Pagano [23] are used as a reference.

Figure 10 shows that out-of-plane shear stresses are pre-
dicted very well when the elements are in the layered
configuration. The resulting stress profile is symmetrical and
ends up indicating zero at the top and bottom face of the shell
element. According expectations, the lumped shear stress
profile deviates from the reference solution. The stresses are
smeared out over the entire thickness of the panel and are
independent of the composite lay-up. Identical conclusions
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Fig. 10 Comparison of out-of-plane shear stresses in thickness direc-
tion of the composite laminate in the global reference system

Fig. 11 Comparison of out-of-plane stresses through-the-thickness of
the composite laminate in the global reference system

can be drawn upon investigation of σyz results and are there-
fore not shown.

Figure 11 shows the through-the-thickness normal stress
component along the panel thickness. Layered elements cap-
ture the physical stress profile accurately. The value of the
pressure load is accepted at the top surface, while stresses
vanish at the bottom surface. In the centre layer a small
stress oscillation appears. This is a boundary effect caused
by enforcing simply supported boundary conditions at the
mid-plane [14]. The lumped stress profile does not fulfill
the stress boundary conditions at the top or bottom face of
the shell. Moreover, the appearing stress jumps violate the
interface continuity conditions. In conclusion, elements in
a lumped configuration are able to capture in-plane stress
components accurately, but indeed return poor out-of-plane
stress predictions.

Fig. 12 Comparison of reconstructed out-of-plane shear stresses
through-the-thickness of the composite laminate in the global reference
system

Fig. 13 Comparison of reconstructed out-of-plane stresses in thickness
direction of the composite laminate in the global reference system

3.3 Reconstructed stress comparison

In Fig. 12 the reconstructed out-of-plane shear stress com-
ponent σxz is presented. Here, the values of the integration
constants are C1 = C2 = 0 as the top and bottom surfaces
are traction free. From the results it is clear that the stress
enhancement scheme somewhat underestimates the stress
magnitudes, yet the stress profiles are in good accordance.

Figure 13 shows the reconstructed result for the stress
component in thickness direction of the panel. The recon-
structed stress profile nearly coincides with the analytical
solution. The integration constantsC3 andC4 are determined
to fit the traction boundary conditions at the top and bottom
face of the elements.

The stress enhancement scheme confirms a significant
improvement of the out-of-plane stress predictions for
lumped elements.
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Fig. 14 Graphical representation of introducing new degrees of freedom during element enhancements. Each planar control point i has degrees of

freedom ai =
[
ai1x , ai1y , ai1z , . . . , aimx , aimy , aimz

]T

4 Adaptive discretisation

In the previous section, different element configurationswere
introduced based on the discretisation in thickness direction.
In principle, the discretisation through-the-thickness of the
shell element can be changed during the simulation such
that elements can adopt different configurations based on
an interface stress criterion. To overcome the problem of a
poor out-of-plane stress resolution acquired from lumped ele-
ments, the more accurate reconstructed stresses can be used
in this stress criterion when upgrading from a lumped to a
layered element configuration. However, to enable such an
automatic update of the discretisation, some essential prob-
lems have to be addressed. First, the initial values of the new
degrees of freedom of the element need to be determined.
Second, theDirichlet boundary conditions need to be updated
as well.

4.1 Initialisation of new degrees of freedom

Upon enhancement of an element, the displacement field in
a control point is discretised using more degrees of freedom.
The initial values of these new degrees of freedom are not
equal to zero, in contrast tomostX-FEMprocedures. Instead,
these initial values must be calculated using the values of the
existing degrees of freedom (which in turn will obtain other
values too). For this purpose the Bézier extraction operator
C, similar to the one formulated in Sect. 2.2.2, can be utilized
(see examples in Fig. 14):

ãik = C aik . (32)

In this expression, the new vector of degrees of freedom, ãik ,
is related to the old vector of degrees of freedom aik , where

k indicates the x-,y- and z-directions and i denotes a planar
control point.

4.2 Updating Dirichlet boundary conditions

During the upgrading of the elements, the prescribed degrees
of freedom must be updated in order to maintain the same
conditions at the boundaries. There are multiple ways of
updating these, depending on the type of boundary condi-
tion. We will use a simply supported boundary condition to
demonstrate this, see Fig. 15.

In the lumped element state, only one control point in
thickness direction is constrained (at the mid-plane), such
that the boundary rotation is free. During an upgrade, the
original constraints are imposed on the new control point(s)
located at the mid-plane. Additionally, the old constraints on
the original control point(s) are removed, such that the same
boundary conditions are preserved.

4.3 Extended crack tip andmixed elements

Adaptive elements adjacent to each other can be in differ-
ent configurations (discretisation states). When an element
upgrades, all control points that are linked to that element are
enhanced. Since isogeometric elements share a larger num-
ber of control points or nodes compared to conventional finite
elements, it is worthwhile investigating the inter-element
compatibility.

The element configuration is determined by the control
point with the least refined through-the-thickness kinematics
that belongs to that element. When all control points corre-
sponding to an element have equal discretisation states, then
this is a pure element in that respective state. If this is not the
case (due to neighbouring elements in a different state), then
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Fig. 15 Graphical representation of updating clamped and simply supported boundary conditions when second order B-splines are employed
through-the-thickness

Fig. 16 Graphical
representation of the ’extended’
crack tip in one dimension.
Discretisation states are denoted
as follows: blue is lumped, green
is layered and red is
discontinuous. The in-plane
control point numbers are
colored to match with the
corresponding shape function.
The element connectivity (in
1D) is encapsulated in curly
brackets. (Color figure online)

the element is denoted as mixed and requires more consider-
ation.

To illustrate this, we consider a propagating crack in one
dimension inFig. 16, togetherwith the in-plane control points
and shape functions. Due to the higher order continuity of the
shape functions, they have support overmultiple in-plane ele-
ments. In the figure, all discontinuous control points belong
to element IV, yet it is clear that the crack extends all the
way into element II, which is a lumped one. This originates
from the fact that the brown in-plane shape function belong-
ing to control point number four has support in element II.
Since this control point is in a discontinuous configuration,
the interface (out-of-plane) displacement jump also prolongs
into the lumped element. The shape function vanishes exactly
at the boundary between element I and II. The actual crack
tip therefore is present at this element boundary, instead of
in-between the layered and discontinuous element.

Due to this ’extended’ crack tip, interface displacement
jumps can also occur in layered and lumped elements. How-
ever, this can only occur when these are mixed elements and

thus, the cohesive material law is considered also for such
elements.

5 Numerical examples

In this section the capabilities of the element with auto-
matically adapting through-the-thickness discretisation are
assessed by means of three benchmark cases. Simulations
using both adapting and non-adapting5 elements are con-
ducted in order to compare computational size (in terms
of degrees of freedom) and run times. In all cases, the
delamination behaviour is described by the cohesive zone
model proposed by Xu and Needleman [24]. Simulations
are compared through force-displacement characteristics and
upon an identical adaptive and non-adaptive response, the
improvement of the computational efficiency is quantified.

5 Non-adaptive simulations are executed by initializing the entire com-
putational domain in the discontinuous configuration.
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Fig. 17 Schematic of the double cantilever beam model

In the benchmark simulations, initial cracks are modelled
by initializing specific elements in the discontinuous state.
For these elements, the cohesive constitutive behaviour is
neglected, which yields a traction-free interface.

5.1 Double cantilever beam simulation

The first benchmark case is the double cantilever beam
(DCB) shown in Fig. 17. The DCB model has a length of
L = 100.0 mm, a width of b = 5.0 mm and a thickness
of t = 0.5 mm. The material is considered to be elastic
and isotropic, with a Young’s modulus of E = 105 N/mm2

and Poisson ratio of ν = 0.3. This model does not con-
tain any initial cracks, in order to test whether the adaptive
element is able to capture crack initiation. For the cohesive
zone model an ultimate traction of tult = 10 N/mm2 has
been used in combination with a mode I fracture toughness
GC = 1 N/mm.

At the left boundary (x = 0), the DCB model is clamped,
i.e. ux = uy = uz = 0. At the right boundary (x = L ,
z = −h,+h) the model is loaded by by applying positive
andnegative displacements in z-direction until a final value of
uz,limit = ±2.0 mm is obtained. The displacement is applied
in non-uniform steps as uz = λ(t) × uz,limit , where λ(t) ∈
[0, 1] is the load factor as a function of the equally sized
pseudo time steps t ∈ [0, 1]. In order to describe the crack
initiation with a higher resolution, the load factor is chosen
as λ(t) = t3.

The DCB model is built up from 200 × 1 (L × b) Bézier
elements with second order bivariate in-plane B-splines and
univariate second order B-splines through-the-thickness of
the elements. Nomaterial non-linearities other than the cohe-
sive constitutive relation are considered.

In this example, the initiation and propagation of a delam-
ination crack is driven by out-of-plane normal tractions at
the composite interface. These stresses are used in a stress
criterion to change the element configurations. The elements
upgrade from lumped to layered when the normal out-of-
plane traction (at any sample point at the interface) exceeds
0.05 × tult . Similarly, the transition from layered to discon-
tinuous occurs at a stress level of 0.1 × tult . It is necessary
to upgrade elements a certain distance in front of the fully
cracked region (traction-free part in the cohesive material
law) to get a correct response. On the other hand, the delami-

nation driving stresses are in this case very concentrated near
the crack tip, which indicates that many (small) incremental
load steps are required to prevent elements from upgrading
too late. Hence, it should be noted that the stress thresholds
are a trade-off between accuracy and efficiency.

The numerical results are compared to the analytical pre-
diction of linear elastic fracture mechanics (LEFM) in the
damage regime:

Fz =
√

1

3uz
(GcbE Isub)

1
4 . (33)

Due to the strong stress concentrations at the right bound-
ary when the simulation starts, there is no difference in the
predicted location of first failure with or without the stress
reconstruction model. In any case, a mode I delamination
crack initiates at the right boundary. For this reason, the stress
reconstruction model is disabled for this benchmark case.

5.1.1 Results

In Fig. 18, the force-displacement curves obtained from the
adaptive and non-adaptive simulations are shown. A small
elastic regime is visible, where the layers are extended in
thickness direction. Upon a significantly large out-of-plane
normal traction, a delamination crack initiates at the inter-
face and the curves adapt towards the LEFM solution. An
explanation for the deviation in the first part of the damage
regime is that the LEFM solution is based on clamped bound-
ary conditions for both layers at the crack tip, while rotations
are present in the simulations (material is deformable). These
rotations are more significant when the crack length is small,
hence the larger deviation for small displacements. The fig-
ure shows that both simulations predict the same response
and this allows us to compare run times and simulation sizes
later.

In Fig. 19, the element states are shown for a number
of time steps. In the first time step, all elements are in the
lumped configuration, indicating perfectly attached layers. In
subsequent steps, the two layers are opened, causing elements
to upgrade to the discontinuous state via the intermediate
layered configuration.

5.1.2 Efficiency gain

For this benchmark case, a total number of 80 incremen-
tal time steps has been used. The non-adaptive simulation
contains a fixed amount of 10,908 degrees of freedom and
runs for 2566 s. The simulation that utilizes adaptive ele-
ments, starts and endswith 5454 and6471degrees of freedom
respectively and takes 403 s to complete. This yields a
speed-up of 6.4 for this particular simulation when adap-
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Fig. 18 DCB benchmark:
Comparison between the
adaptive and non-adaptive
response

Fig. 19 DCBbenchmark: Element states throughout the adaptive simu-
lation in the deformed configuration (magnification factor = 1.0). Blue is
lumped, green is layered and red is discontinuous. (Color figure online)

tive elements are used, even when a significant part of the
domain is delaminated.6

5.2 End notch flexure simulation

In the second benchmark case, an end notch flexure (ENF)
specimen is analysed, see Fig. 20. The model has a length of
L = 120 mm, a width of b = 20 mm and is t = 4 mm thick.
The specimen contains an initial crack of a0 = 46.9 mm (this
value assures a stable crack growth) and is present along the
full width at z = 0. The area moment of inertia is defined as
I = 1

12bh
3.

The ENF sample consists of two unidirectional composite
plies of equal thickness, both having the fibers aligned with
the global x-axis. Thematerial properties are listed inTable 1.

The left (x = 0, z = −h) and right (x = L, z = −h) bot-
tom edge boundaries are constrained in the y- and z-direction,

6 The speed-up is calculated as the wall-clock time needed to run the
non-adaptive simulation divided by the wall-clock time for the adaptive
simulation.

Fig. 20 Schematic of the end notch flexure model

Table 1 Properties of the utilized unidirectional material for the ENF
benchmark

E11 (GPa) E22 (GPa) ν12 (−) G12 (GPa)

126.0 10.0 0.29 8.0

i.e. uy = uz = 0. These boundary conditions allow the ENF
specimen to rotate at the supports and set it free to contract
in the x-direction. At the top layer in the centre of the speci-
men (x = L

2 , z = +h), a step-wise prescribed displacement
uz = λ(t) × uz,limit up to uz,limit = −4.0 mm is applied. In

this case, the load factor is given by λ(t) = (t−1)3+1
2 , with

λ(t) ∈ [0, 1] and t ∈ [0, 2]. This expression for the load
factor results in reduced load increments when sudden crack
growth is expected (to prevent the upgrading sequence from
lagging). At the same time, the displacements in x-direction
are constrained at this point to avoid rigid body movements.

The numerical results are compared to analytical solutions
of Euler–Bernouilli beam theory in the elastic regime and
LEFM in the damage regime:

uz = Fz
(
L3 + 12a30

)

384E11 I
(Euler–Bernouilli), (34)

uz =

⎧⎪⎨
⎪⎩

Fz L3

384E11 I
+ 16

F2
z

√
E11 I

(
bGc
3

) 3
2

0 ≤ a ≤ L
2 (LEFM),

Fz L3

96E11 I
+ 16

F2
z

√
E11 I

(
bGc
3

) 3
2 L

2 ≤ a ≤ L (LEFM).

(35)
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Fig. 21 ENF benchmark:
Comparison between the
adaptive and non-adaptive
response

Fig. 22 ENF benchmark:
Deformed model throughout the
adaptive simulation
(magnification factor = 1.0).
Left: Element configuration
[blue is lumped, green is
layered, red is discontinuous].
Right: Interface damage
parameter [blue is undamaged,
red is fully damaged]. (Color
figure online)

In order to get a physically correct behaviour, a cohesive
penetration stiffness is used to prevent intrusion of the two
fractured layers. The friction forces arising between the
cracked layers are not considered in this benchmark case
and no non-linear material behaviour is included in the sim-
ulations. The in-plane displacement field is approximated by
second order bivariate B-splines and the displacements in
thickness direction are also discretised by second order B-
splines. 175 × 1 (L × b) Bézier elements have been used in
this example.

The interlaminar shear stresses that are present drive the
crack propagation. In order to upgrade the elements, the
utilized stress criterion couples the shear stress at the inter-
face to the ultimate cohesive shear traction. The transition
from lumped to layered elements occurs at a stress level of
0.07 × tult and the evolution from layered to discontinuous
configurations takes place at a stressmagnitude of 0.09×tult .
It is noted that the stress recovery model is not enabled in this
simulation.

The cohesive zonemodel is providedwith an ultimate trac-
tion of tult = 50.0 N/mm2 and themode II fracture toughness
has been set to Gc = 0.50 N/mm.

5.2.1 Results

In Fig. 21, the force-displacement results are presented. The
adaptive and non-adaptive outcomes are identical and are in
excellent agreement with the analytical predictions, both in
the linear elastic and damage regime.

In Fig. 22 the element configurations and interface dam-
age parameter are shown for a number of time steps. The
initial crack is represented by the discontinuous elements in
the first time step. In subsequent time steps the elements are
refined to allow the crack to propagate through the specimen.
In this example, the stress thresholds that govern the upgrad-
ing sequencemostly affect the results at larger displacements
(when the crack passed the center). Initially the response is
linear, so the elements are not required to upgrade. During
first crack growth (a ≤ L

2 ), the simulation is controlled by
very small load increments, which assures a smooth and cor-
rect way of upgrading. However for larger displacements
(a > L

2 ), the load increments increase and this makes the
elements sensitive to lagging. Raising the adaptive settings
(stress thresholds), leads to deviations that first appear in the
final time steps.
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5.2.2 Efficiency gain

During the ENF simulations, 100 equally sized time steps
have been used. The non-adaptive simulation contains 9558
degrees of freedom and takes 971 s to complete. The adaptive
one start with 6579 and ends with 7902 degrees of freedom
and runs for 681 s before it successfully terminates. These
results yield a speed-up of 1.4 when adaptive elements are
used in the ENF simulation. The efficiency gain is less com-
pared to the DCB case for a number of reasons. First, a
significant amount of elements are initialized in the discon-
tinuous configuration. These elements are already in themost
expensive computational state and therefore this has a neg-
ative influence on the efficiency improvement. The second
reason is very similar; a large part of the domain eventually
gets delaminated, which means many elements must obtain
the discontinuous configuration and this decreases the speed-
up.

5.3 Simply supported thick beam simulation

The final benchmark case is the simulation of a simply sup-
ported thick beamsubjected to a bending load. The aimof this
example is to first predict the correct location of interlaminar
damage initiation by using the stress reconstruction model
and subsequently investigate the damage propagation. The
bi-layered beam model is shown in Fig. 23. It has a length of
L = 9 mm, a width of b = 0.9 mm and is t = 1 mm thick.
The laminate is built up from an elastic composite material,
where the fibers are aligned with the global x-direction. The
properties of the composite material are listed in Table 2.

The boundaries are simply supported at z = 0, which
means that ux = uy = uz = 0 at the left boundary and
uy = uz = 0 at the right boundary. At the top layer, the

Fig. 23 Schematic of the simply supported thick beam model (exam-
ple 5.3)

Table 2 Properties of the transversely isotropic material for the simply
supported thick beam benchmark

E11 (GPa) E22 (GPa) ν12 (−) G12 (GPa)

134.8 9.6 0.32 5.3

beam is loaded by a triangular distributed load given by:

pz,limit =
{−2 p0

x
L 0 ≤ x ≤ L

2 ,

2 p0
( x
L − 1

) L
2 < x ≤ L.

(36)

with p0 = 15 N/mm2.Themaximumforce exerted on the top
surface equals Fz = 1

2 p0 b L . During the non-linear simula-
tion, the Neumann boundary condition is applied according
to pz = λ(t) × pz,limit , where the load factor λ(t) ∈ [0, 1]
is controlled by a Riks arc-length solution procedure. This
method is capable of accurately capturing instabilities that
would lead to snap-back (displacement-controlled) or snap-
through (force-controlled) behavior in a total Lagrangian
calculation. With the current choice for the thickness-to-
length ratio of the beam, a mode II delamination crack is
expected to initiate simultaneously at both supports. Formore
details, the reader is referred to [6].

The total applied force by the distributed load, Fz , is
related to the deflection of the centre of the beam uz . The
numerical results are compared to Timoshenko’s beam the-
ory:

uz = 1

E11 I

∫ ∫ ∫ ∫
pz,limit dx

4 − 1

κAG12

∫ ∫
pz,limit dx

2,

(37)

where A = bt is the cross-sectional area and κ = 10(1+ν12)
12+11ν12

is
the shear coefficient according to Cowper [25]. The second
moment of inertia is given by:

I =
{

2
3bh

3 (undamaged),
1
6bh

3 (fully damaged).
(38)

The in-plane displacements are described by third order bi-
variateB-splines,whereas the out-of-planedisplacements are
discretised by univariate second order B-splines. Due to the
relatively small geometry of the beam, a total number of
30 × 1 (L × b) uniform Bézier elements is sufficient.

In order to assess whether the stress reconstruction model
captures both the correct location of damage initiation and
corresponding delamination failure mode, the failure crite-
rion proposed by Ochoa et al. [26] has been used to evaluate
whether elements should change in configuration:

f I =
( 〈σ33〉+

tult

)2

+ σ 2
13 + σ 2

23

t2ult
, (39)

where 〈·〉+ represents the Macaulay bracket. The upgrading
thresholds f I have been chosen, such that the transition from
lumped to layered occurs at f I = 0.45 and that the next
change, from layered to discontinuous, occurs at f I = 0.55.
The fracture toughness for this case has been set to Gc =
0.20 N/mm and the ultimate traction tult = 25 N/mm2.
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5.3.1 Results

The force-displacement plot is shown in Fig. 24. The adap-
tive and non-adaptive outcomes are not identical, yet they
are in agreement. It is visible that the initial response of
both the adaptive and non-adaptive simulations is not entirely
elastic. The deviation between these results and the ana-
lytical solution of Timoshenko is due to accumulation of
some interlaminar damage already here. For comparison,
a linear elastic simulation with the same beam geometry
but without any interface was conducted. As can be seen,
the force-displacement results from this simulation are in

good accordance with the Timoshenko elastic stiffness (blue
dashed line in Fig. 24).

Moreover, the adaptive simulation is stiffer at the begin-
ning where lumped elements are present for the greater part.
The non-adaptive simulation adds more compliance, due to
the predefined cohesive interface. The sudden load drop,
which is conceivable due to the arc-length method (nega-
tive incremental load factor�λ(t)), indicates a sudden crack
growth. At the point where the beam exhibits a significant
amount of damage, the top and bottom layers are separated
and start to slide over each other. The numerical results then

Fig. 24 Simply supported beam
benchmark: Comparison
between the adaptive and
non-adaptive response

Fig. 25 Simply supported beam
benchmark: Deformed model
during the adaptive simulation
(magnification factor = 1.0).
Left: Element configuration
[blue is lumped, green is
layered, red is discontinuous].
Right: Interface damage
parameter [blue is undamaged,
red is fully damaged]. (Color
figure online)
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converge towards the analytical Timoshenko solution that
holds for a beam with a fully cracked interface.

In Fig. 25, the adaptive beam is shown in the deformed
configuration. Please note that the load factor λ(t) is now
also able to decrease during the calculations. The simulation
starts with lumped elements, where the stress reconstruction
model is active with the intention of predicting the out-of-
plane stresses accurately. The first elements upgrade exactly
at the left and right boundaries as this is where the transverse
shear stresses are dominant. This leads to the initiation of
a mode II fracture at the supports. Further on, the elements
refine towards the center of the beam, matching nicely with
the crack propagation. In the final load steps, all elements are
upgraded to the discontinuous configuration and the crack
extends almost throughout the complete patch.

5.3.2 Efficiency gain

Although the number of time steps for both simulations are
not equally chosen by the arc-length method, there is no
significant difference preventing us from comparing the sim-
ulations in terms of efficiency. The non-adaptive simulation,
counting 2376 degrees of freedom, finishes successfully after
1266 s. The adaptive one starts with 1188 and ends up with
2376 degrees of freedom and takes only 634 s to complete.
These outcomes result in a run time speed-up of 2.0 when
adaptively refined elements are considered.

6 Conclusions

In this paper we presented an isogeometric continuum shell
element inwhich the displacement interpolation through-the-
thickness of the shell can be modified automatically. Based
on an interface stress criterion, the considered element can be
upgraded while the simulation is ongoing in order to improve
the accuracy of the element under high stress states or to
model delamination cracks.

The use of isogeometric shape functions is essential here.
It enables to introduce weak and strong discontinuities at
the layer interfaces by means of knot insertion. In addition,
the higher order continuity of the B-spline shape functions
allows for an element-wise reconstruction of the rather poor
out-of-plane stresses of lumped elements. These enhanced
stress results can then be utilized in the stress criterion.

Simple numerical benchmark problems containing a sin-
gle interface have already shown significant reductions in
the simulation time without compromising in precision. The
element currently accounts for single interface models and
still needs to be extended to account for the initiation and
progression of multiple delamination cracks. This approach
remains to be demonstrated in large scale analyses of layered
composite structures.
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