
Haren: A Framework for Ad-Hoc Thread Scheduling Policies for Data
Streaming Applications

Downloaded from: https://research.chalmers.se, 2020-01-17 16:00 UTC

Citation for the original published paper (version of record):
Palyvos-Giannas, D., Gulisano, V., Papatriantafilou, M. (2019)
Haren: A Framework for Ad-Hoc Thread Scheduling Policies for Data Streaming Applications
Proceedings of the 13th ACM International Conference on Distributed and Event-based Systems : 19-30
http://dx.doi.org/10.1145/3328905.3329505

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Haren: A Framework for Ad-Hoc Thread Scheduling Policies for
Data Streaming Applications

Dimitris Palyvos-Giannas
Chalmers University of Technology

Gothenburg, Sweden
palyvos@chalmers.se

Vincenzo Gulisano
Chalmers University of Technology

Gothenburg, Sweden
vinmas@chalmers.se

Marina Papatriantafilou
Chalmers University of Technology

Gothenburg, Sweden
ptrianta@chalmers.se

ABSTRACT
In modern Stream Processing Engines (SPEs), numerous diverse
applications, which can differ in aspects such as cost, criticality or
latency sensitivity, can co-exist in the same computing node. When
these differences need to be considered to control the performance
of each application, custom scheduling of operators to threads is
of key importance (e.g., when a smart vehicle needs to ensure that
safety-critical applications always have access to computational
power, while other applications are given lower, variable priorities).

Many solutions have been proposed regarding schedulers that
allocate threads to operators to optimize specific metrics (e.g., la-
tency) but there is still lack of a tool that allows arbitrarily complex
scheduling strategies to be seamlessly plugged on top of an SPE. We
propose Haren to fill this gap. More specifically, we (1) formalize
the thread scheduling problem in stream processing in a general
way, allowing to define ad-hoc scheduling policies, (2) identify the
bottlenecks and the opportunities of scheduling in stream process-
ing, (3) distill a compact interface to connect Haren with SPEs,
enabling rapid testing of various scheduling policies, (4) illustrate
the usability of the framework by integrating it into an actual SPE
and (5) provide a thorough evaluation. As we show, Haren makes
it is possible to adapt the use of computational resources over time
to meet the goals of a variety of scheduling policies.

CCS CONCEPTS
• Information systems → Online analytical processing en-
gines; • Software and its engineering → Scheduling; Middle-
ware.

KEYWORDS
Stream processing, Scheduling, Middleware

ACM Reference Format:
Dimitris Palyvos-Giannas, Vincenzo Gulisano, and Marina Papatriantafilou.
2019. Haren: A Framework for Ad-Hoc Thread Scheduling Policies for
Data Streaming Applications. In DEBS ’19: The 13th ACM International
Conference on Distributed and Event-based Systems (DEBS ’19), June 24–
28, 2019, Darmstadt, Germany. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3328905.3329505

DEBS ’19, June 24–28, 2019, Darmstadt, Germany
© 2019 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in DEBS ’19: The
13th ACM International Conference on Distributed and Event-based Systems (DEBS ’19),
June 24–28, 2019, Darmstadt, Germany, https://doi.org/10.1145/3328905.3329505.

1 INTRODUCTION
Data streaming is leveraged in applications dealing with heteroge-
neous data sources, variable input rates (and data distributions) as
well as heterogeneous hardware (ranging from high-end servers
to embedded edge devices). Stream Processing Engines (SPEs), the
platforms running streaming queries (or simply queries), deploy the
latter’s operators to multiple SPE instances (i.e., processes) exist-
ing within or across multiple computational nodes. In this context,
resource scheduling [3, 13, 27–29] chooses how and to which SPE
instances to deploy queries’ operators while thread scheduling, our
focus, chooses how to allocate an SPE instance’s threads to the
operators deployed to it to meet specific performance goals.

Many related works have shown that custom thread scheduling
(or simply scheduling) can reach better performance (e.g., lower
processing latency) than that achieved when SPEs instantiate per-
operator threads [7, 12, 24] which are scheduled by the Operating
System (OS) [9]. Existing solutions discuss nonetheless specific
scheduling policies (in combination with certain SPEs), without
considering how to express the scheduling goals of a policy without
the need to code its logic within an SPE.

This observation forms the basis of our work, which aims at
identifying and generalizing the logic of a general scheduler that
can encapsulate existing policies while decoupling its internals
from those of an SPE. Thus, our research question is the follow-
ing: Is it possible to define an all-purpose SPE scheduling framework,
which (i) allows the user to easily plug-in custom scheduling policies,
(ii) transparently enforces those policies at runtime and (iii) requires
minimal programming effort? These requirements can be crucial,
especially in large cyber-physical systems (such as smart grids and
vehicular networks) in which users and analysts can continuously
deploy applications of different criticality, priority or latency sen-
sitivity [19, 23] and SPEs themselves can perform adaptive live
reconfigurations (e.g., operator fusion and fission [11]) to adjust re-
sources to query loads and costs. We provide an affirmative answer
and present Haren, a general tool which can be used in combination
with an SPE with minimal modifications. We evaluate it in combi-
nation with Liebre, a lightweight SPE for edge-computing [14]. In
summary, we make the following contributions:
• We distill a compact set of primitives that can encapsulate the
logic of the most common scheduling policies proposed in the
literature, allowing users to define scheduling semantics without
the need for altering the internals of the SPE.
• Together with these primitives, we define the facilities that the
SPE needs to provide for custom scheduling to happen.
• We design and implement a framework that leverages such prim-
itives in a lightweight fashion without dedicated threads but by
sharing the job among threads running the analysis.

https://doi.org/10.1145/3328905.3329505
https://doi.org/10.1145/3328905.3329505
https://doi.org/10.1145/3328905.3329505

DEBS ’19, June 24–28, 2019, Darmstadt, Germany D. Palyvos-Giannas et al.

• We perform a thorough evaluation for different scheduling poli-
cies (of different complexity) leveraging hardware that can be
employed at the edge of large cyber-physical systems, where
custom scheduling policies are needed the most [19].

As we show, Haren allows the user to define rich scheduling poli-
cies (even multiple dedicated ones when not all queries in an SPE
instance share the same performance goals) and enforces them
with minimal overhead, achieving performance goals that are not
matched when the SPE relies on the underlying OS scheduler.

Outline: § 2 covers preliminaries about data streaming and sched-
uling. § 3 presents our goals and systemmodel. § 4 overviews Haren
while § 5 and § 6 discuss its internals. § 7 presents our evaluation
of Haren. Last, § 8 covers related work and § 9 concludes the paper.

2 PRELIMINARIES
Streams & Operators. A stream is an unbounded sequence of

tuples sharing a schema composed by attributes ⟨a1, . . . ,an⟩. A
query is a DAG of operators connected by streams. External data
sources generate tuples to be processed by the operators of the query.
These tuples, which are referred to as ingress tuples, are delivered to
queries by Ingress operators (also called Sources or Spouts [7, 12, 24]),
are pushed through the rest of the operators of the query, possibly
resulting in new tuples, and are eventually delivered as egress tuples
to Egress operators (also called Sinks [7]), which forward them to
users or other applications. Streaming operators define at least
one input stream and one output stream. The only exceptions are
Ingress, which has no input and a single output stream, and Egress,
which has one input but no output streams. The output tuples of
an operator that are waiting to be processed by another operator
connected to it are maintained in a queue shared between the two.

Clock time attribute. We assume that, apart from the user-defined
attributes, all tuples carry a clock time ta attribute1. This attribute
carries the clock time at the moment in which the tuple is forwarded
by the Data Source producing it2. If a tuple t is created by an
operator of the query, its clock time is set to the respective value
of the latest input tuple triggering the creation of t at the operator.
By extension, each tuple t that is not an ingress tuple carries the
clock time of the latest ingress tuple triggering its creation.

Sample Query. Figure 1 presents a sample query composed by
two operators (plus one Ingress and one Egress). For each input
tuple, operator op1 creates an output tuple carrying the same ta
attribute of the input tuple plus an attribute c for the sum of a and
b. Operator op2 produces tuples carrying, for each fixed window [2]
of 10 minutes, the attribute ta of the latest tuple contributing to
the window, the attribute d containing the maximum value of c
observed in the window and the attributew , to specify the start time
of the window. The figure also shows the tuples currently present
in each queue. Since attribute ta is set for each output tuple created
by an operator to the value of the latest input tuple contributing to
such output tuple, it can be observed that all the tuples in a queue
of a particular operator have ta values that are smaller than or
equal to those of the latter’s input queues. We use in the remainder
1Clock time is sometimes referred to as arrival time in the literature [6]. If the data
source is generating (and not replaying) the data, clock time is equal to event time [2].
2We assume that clocks of Data Sources and the processing node are synchronized
with a time synchronization protocol such as NTP.

the terms upstream and downstream peers to refer to the operators
preceding and following an operator, respectively (e.g., op1 is the
upstream peer of op2 while op2 is the downstream peer of op1).

Scheduling. An SPE instance running a set of operators (from
one or more queries) has access to one or more CPU cores (mapped
to hardware threads). In our work, scheduling refers to the pro-
cess of periodically deciding which operators (possibly of different
queries) should be run and in which order, within an SPE instance.
A scheduled operator runs its code inside a hardware thread. At
any moment, an operator can be run by at most one thread.

A challenge in scheduling streaming operators is that, because
of the varying rates and data distribution of data sources (which in
turn affect the rates, data distribution and behavior of the queries’
operators), scheduling policies cannot be defined statically at com-
pile time, but need to be continuously refined over time.

The goal of custom scheduling for SPE instances is to control
the performance characteristics of the queries. We quantify the
performance of one or multiple queries as follows. Starting from
the operator level, we quantify its performance over a period of
time with the following metrics:
(1) Throughput, the number of tuples processed by the operator.
(2) Latency, the average clock time elapsed in between the opera-

tor’s processing of each tuple t and t ’s clock time (i.e., the clock
time of the latest ingress tuple triggering the production of t).

(3) CPU Utilization, the average CPU utilization (%) of the operator.
(4) Memory Cost, the maximum amount of memory consumed by

the tuples maintained in the operator’s input queues.
Extending the performance characterization from operators to

whole queries, we define (i) the query throughput as the average
throughput of the query’s Ingress operators, (ii) the mean and max
query latency as the average and maximum latency observed at
its Egress operators, respectively, (iii) the CPU utilization as the
sum of the CPU utilization of the query’s operators, and (iv) the
memory cost as the sum of the memory costs of all the operators of
the query. These definitions can be extended to multiple queries by
means of the sums, averages, and maximums of all their operators.

It should be noticed that these performance metrics depend on
multiple aspects such as (i) the scheduling decisions, (ii) the arrival
pattern of the incoming data, as well as (iii) the data distribution
of the input values. For example, both the throughput as well as
the memory cost depend on the CPU time allocated for a certain
operator as well as the rate of the data source(s).

With respect to the example of Figure 1, one can observe that
(i) given the tuples currently stored in the operators’ queues and
(ii) assuming that the next scheduled operator can process all its
shown input tuples, the scheduling choice would depend on the
desired performance metric. More concretely, scheduling the Egress
operator would minimize the query’s latency, scheduling operator
op1 would minimize the overall memory used while scheduling the
Ingress operator would maximize the query’s throughput.

3 GOALS AND SYSTEM MODEL
We aim at designing and implementing a general purpose sched-
uling framework that allows users to define ad-hoc scheduling
policies. More concretely, we want to allocate the threads of an SPE
instance in a streaming-application-aware fashion that can meet

Haren: A Framework for Ad-Hoc Thread Scheduling Policies in Data Streaming DEBS ’19, June 24–28, 2019, Darmstadt, Germany

Data source

ta a b

08:30 3 4
08:31 5 6
08:37 3 7

Ingress

ta a b

08:18 2 4
08:22 5 2
08:26 4 7
08:27 3 5
08:28 4 6

op1

For each input tuple, sum a and b values into attribute c

ta c

08:15 8
08:18 9

op2

Find max value of c over a fixed window of 10 minutes.

ta d w

07:59 13 07:50
08:08 12 08:00

Egress

Figure 1: Sample query composed by two operators (plus one Ingress and one Egress) that sums the values carried by each
tuple and then computes the max for such sum over a fixed window of 10 minutes.

complementary and richer performance goals than those enabled
by the OS itself. Hence, we focus our study on a thread schedul-
ing framework and assume that one or more query operators are
deployed to a single SPE instance, where Haren also runs.

Our goal is to shape Haren as a component (accessible to both
the user and the SPE) that sits in-between the OS and the SPE.
On the one hand, Haren should expose an interface that allows
users to deploy queries and define scheduling policies, as well as
SPEs themselves to perform adaptive runtime reconfigurations (e.g.,
operator fusion or fission [11]). At the same time, Haren should
also orchestrate the execution of the SPE and retrieve over time
any information needed from the SPE to enforce the user-defined
scheduling policies. In summary, Haren’s aims at:

G1 Distilling a compact interface for a scheduling middleware that
can implement user-defined scheduling policies that optimize
performance metrics agnostic to the OS (e.g., throughput, latency
or memory utilization, among others).

G2 Allowing the implementation of custom, user-defined rules for
both inter-thread scheduling (i.e., specifying the assignment of
operators to threads) and intra-thread scheduling (i.e., specifying
the scheduling of operators within each thread).

G3 Distributing and sharing scheduling overheads among available
physical threads to take advantage of multi-core nodes.

3.1 System model
Tuples, operators, and queries have various features that character-
ize their behavior and state. A general-purpose scheduling frame-
work must be aware of the changing nature of these features to
make informed decisions and orchestrate the execution of queries’
operators according to a user-defined scheduling policy.

Not all features are equal in terms of how they change and in
terms of how their changes can be observed. A first distinction can
be made between static features (e.g., the type of an operator) and
dynamic ones (e.g., the selectivity of an operator, which depends
among other things on the data being fed to it). A second distinction
can be made between features that are immediately derived from
an operator (e.g., its number of input streams) and features that are
derived from the input/output queues of an operator and/or the
tuples maintained in such queues (e.g., the clock time of the earli-
est tuple maintained in any of the operator’s input queues). This
second distinction is crucial because it results in two critical obser-
vations. First, certain features can change over time independently
of whether the operator is scheduled or not. This is the case, for
instance, for the earliest clock time of any tuple in the input queues
of an operator, given that it could change if any of its upstream

ID Feature Type

c Cost Dynamic, independent,
execution-intrinsic

s Selectivity Dynamic (except for Egress opera-
tors), independent,
execution-intrinsic

lH Head clock time Dynamic, dependent on upstream
and downstream peers, execution-
intrinsic for Ingress operators

Table 1: Table of features considered in the paper.

operators are scheduled. Second, it might not be possible to update
particular features of some operators unless these operators are
executed (e.g., the average time needed by an operator to process
one tuple, also referred to as the cost of an operator). Based on
these observations, we introduce the following definitions.

Definition 3.1. A feature F of operator opi is independent if it
can change only upon execution of opi .

Definition 3.2. An operator opi is feature-depended on operator
opj for feature F if F for opi can change upon execution of opj .

Definition 3.3. A feature F of operator opi is dependent if it can
change upon execution of opi as well as operators on which opi is
feature-dependent.

Definition 3.4. A feature F of operator opi is execution-intrinsic
if it can be updated only upon execution of opi .

Since operators, queues and tuples are accessed by the SPE, we
assume the latter provides an interface (such as a metrics system
[7, 12]) for Haren to retrieve up-to-date feature values. Although
the features used by Haren can be arbitrarily complex, to keep the
discussion tractable, we will focus on a specific set of them. These
features, presented in Table 1, are required to implement most of
the scheduling policies proposed in the literature, including the
policies we later use in our evaluation. The table displays features
along with their abbreviated id and type. For brevity, we do not
include static features that can be trivially computed, such as the
operator type. As aforementioned, the cost is the average time
spent by an operator to process a single input tuple. The selectivity
defines the average number of output tuples produced per processed
input tuple. Observe that it can be higher than 1 for operators
that generate multiple output tuples for every input tuple (e.g., an
operator that splits a sentence into words). Cost and selectivity are
used in many scheduling policies, to optimize for different metrics

DEBS ’19, June 24–28, 2019, Darmstadt, Germany D. Palyvos-Giannas et al.

such as the average latency or the memory cost of the queries [23].
The head clock time is the earliest clock time of the tuples at the
head of the input streams of an operator. This feature is also used in
various scheduling policies (e.g., to optimize the maximum latency
of a query based on its operators head latency, which is derived
from their head clock time [6]).

We assume in the remainder that the SPE instance has K active
CPU cores which correspond to hardware Processing Threads (PTs).
We refer to the i-th processing thread as PTi | i ∈ {1, . . . ,K} and
to the i-th operator of the j-th query as opji (but omit the query
number if it is not essential for the discussion).

4 OVERVIEW
Streaming applications have a live and changing nature, with vary-
ing input stream rates and data distributions. In order to correctly
enforce a scheduling policy, features and priorities that change over
time need to be periodically updated. Since changes in features
can depend on scheduling decisions (see § 3), information about
scheduling decisions must also be collected over time.

Figure 2 shows the two main tasks executed by Haren’s PTs,
namely execution (TE) and scheduling (TS). PTs run task TE dur-
ing the majority of the time and switch periodically to task TS .
These tasks isolate the portions of time during which scheduling
information is gathered for priority updates (i.e., when PTs must
synchronize) from those during which PTs can be dedicated to run-
ning the operators deployed to the SPE instance. The separate tasks
give fine-grained control over the scheduling overhead, which is
proportional to the time spent gathering information about sched-
uled operators and updating features and priorities.

As stated in § 3, we aim at distributing and sharing the sched-
uling overhead among all PTs (Goal G3). Because of this, Haren
parallelizes the costly parts ofTS and lets all PTs (in a random fash-
ion) take care of the portions of TS that can be run more efficiently
in a sequential fashion. We overview in the following tasks TE and
TS and refer the reader to § 5 and § 6 for more detailed descriptions.

time

Task TS : PTs coordinate and take scheduling decisions for the next TE .

Task TE : PTs schedule operators
(with the computed priorities). Parallel portion of TS

Sequential portion of TS

LEGEND

Figure 2: Alternation of TE (execution task) and TS (schedul-
ing task) during the runtime execution of Haren.

Overview of TE . During this task, each PT locally executes the
operators that were assigned to it, keeping track of the executed
operators, in order to share this information during the followingTS .
To make certain that fresh values of the operators’ features are
available, PTs also ensure that operators with execution-intrinsic
features do not stay unscheduled for an excessive period of time.

Overview ofTS . During this task, PTs update the scheduling deci-
sions by sharing information about the operators scheduled during

the previous TE . In § 3, we distinguished features into independent
and dependent (Definition 3.1 and Definition 3.3). Although it is
easy for a PT to detect if an independent feature of its operators
needs to be updated, the same is not true for dependent features,
because such features might depend on the actions of multiple
PTs. Haren reduces overheads by defining a sequential portion of
TS in which exactly one PT (chosen randomly) updates all the de-
pendent features that have potentially changed and, subsequently,
redistributes the operators to all PTs. Then, each PT, in parallel,
computes priorities for its operators and sorts these operators based
on the recently updated priorities, concluding TS .

Note that an operator might be assigned to different PTs in
distinct executions of TS . To prevent situations where two PTs
try to execute the same operator at the same time (see § 2), the
sequential portion of TS also acts as a barrier that marks, for all
PTs, the end of the current TE and the beginning of the next. For
the same reason, no operator is executed during TS .

4.1 Inter-thread and intra-thread scheduling
Since SPE instances can run onmultiple threads, Haren allows users
to specify how to (i) assign operators to PTs and (ii) decide the order
with which each PT should schedule the operators assigned to it. It
does this by means of an inter-thread scheduling function (f) and
an intra-thread scheduling function (д). F being the set of available
features and O the set of operators deployed to the SPE instance,
we define these functions as follows.

The inter-thread scheduling function f : R |F |× |O | → {1, . . . ,K}
identifies which PT should execute which operator, for all the op-
erators deployed to the SPE instance. Note that, when computing
which PT should be in charge of executing a certain operator, the
features of all the operators deployed to the SPE instance are given
as input to f . Thus, f can be used to implement both simple thread
assignment policies (e.g., assign the operators of queries to PTs in
a round-robin fashion), as well as much more complex ones (e.g.,
assign operators so that the load is equal for all the PTs).

The intra-thread scheduling function д : R |F |× |O | → RD maps
the features of operator opi to a D-dimensional priority vector
Pi = ⟨pi1,pi2, . . . ,piD ⟩. Also in this case, the features of all opera-
tors deployed to the SPE instance are input to д when computing
the priority of each operator. Each element of the priority vector
reflects a priority dimension. The execution of operators is prior-
itized based on a lexicographic sorting of their priority vectors.
For example, a possible priority vector might describe two dimen-
sions ⟨queryClass, cost⟩ (each computed based on the operators’
features). In this case, operators with higher queryClass would be
scheduled before others with lower queryClass, while operators
with equal queryClass would be scheduled according to their cost.

4.2 Architecture
Figure 3 shows the APIs coupling an SPE instance with Haren, used
by the latter to schedule the operators deployed to the former.

The user interested in running a set of operators belonging to
queries Q1,Q2, . . . with a particular scheduling policy can invoke

Haren: A Framework for Ad-Hoc Thread Scheduling Policies in Data Streaming DEBS ’19, June 24–28, 2019, Darmstadt, Germany

the SPE’s deploy function3 and pass the queries’ operators to be
executed. She also initializes Haren with the inter-thread and the
intra-thread scheduling functions f and д and the runtime parame-
ters P ,b and d (described in the figure). For simplicity and without
loss of generality, the figure and our following discussion focus on
a single SPE instance. When the queries’ operators are deployed to
either one or multiple SPE instances (see § 1), each SPE instance
is coupled with one instance of Haren. The SPE instance notifies
the associated Haren instance of the new deployment by calling
update. Internally, Haren inspects the queries in order to identify
the set O of operators to be scheduled (and their interconnections)
at the coupled SPE instance. Once Haren identifies the set F of
features used by f and д, Haren’s PTs schedule the execution of
the operators. This is done by invoking:
• SPE.canRun(i, j), to check whether operator op ji can be executed
(i.e., if it has input tuples and space to place potential results in
its output streams’ queues).
• SPE.run(i, j,b), to run op ji , specifying b as the maximum number
of tuples it can process during the function invocation (we refer
to § 5 for more details about the role of b in scheduling).
• SPE.getFeature(i, j, F), to retrieve feature F for op ji .
The SPE instance can also invoke the function update when, due
to runtime reconfigurations (e.g., operator fusion or fission [11]),
the list of operators scheduled by Haren changes.

SPE instance

Haren
Processing

Threads (PTs)

User

init(f , д, P, b, d)

update(Q1, Q2, . . .)

deploy(Q1, Q2, . . .)

canRun(i, j)

run(i, j, b)

getFeature(i, j, F)

Haren input parameters

f Inter-thread sched-
uling function.

д Intra-thread sched-
uling function.

P Scheduling period
(interval between
TS invocations).

b Maximum number
of tuples an operator
is allowed to process
at every invocation.

d Maximum amount
of time an operator
that has execution-
intrinsic features
used by f or д can
stay non-scheduled.

Figure 3: APIs coupling Haren, the user and the SPE instance.

5 EXECUTION TASK (TE)
In this section, we provide a detailed description of the actions per-
formed by PTs duringTE . More concretely, we discuss (i) how each
PT chooses the next operator to run, (ii) how it backs-off if there is
no operator to be scheduled, and (iii) how it takes care of running
operators for which execution-intrinsic features (Definition 3.4)
have not been updated for more than the user-defined d time units.

The different variables accessed by each PT are presented in
Table 2 while the main loop is shown in Algorithm 1. ListA contains
the operators assigned to each PT at the end of the previous TS
3For simplicity, Figure 3 depicts the user directly invoking the SPE instance’s deploy
function. In reality, she might do so indirectly, through an intermediate component
such as a resource scheduler.

Algorithm 1:Main loop of PT – TE
1 tγ ← now()
2 while true do
3 op∗← �
4 run← false
5 for op ji ∈ A do
6 if (op∗ , � ∧ д(op∗) > д(op

j
i)) ∨ (now() - tγ > P) then

7 break

8 if SPE.canRun(i , j) then
9 SPE.run(i , j, b)

10 LUi ← time()
11 E← E ∪ op

j
i

12 run← true
13 op∗ = op ji

14 if not run then
15 backoff()
16 if now() - tγ > P then

// PT enters TS
17 Haren.update() // Algorithm 2

// PT leaves TS
18 tγ ← now()

// Run delayed operators

19 for op ji ∈ A do
20 if tγ − LUi > d then
21 SPE.run(i, j, b)
22 LUi ← time()
23 E← E ∪ op

j
i

task. Before the first execution of TS , all operators are given the
same priority and assigned randomly to PTs. This also applies for
operators added, removed or changed at runtime due to adaptive
reconfigurations triggered by SPE instances (their assignment to
threads and priorities are then updated during the firstTS following
the reconfiguration).

Each PT traverses A until it finds the operator with the highest
priority that can run, or until it reaches the end of A (lines 5-13).
Here, we remind the reader that an operator can generally run (i) if

ID Description

Thread-local variables

A List with the operators assigned to the PT.
E Set that contains the operators that were executed by the PT

at least once during the last TE .

Shared variables

LU Array of size |O |.LUi is the latest timestampwhen an operator
was executed.

Table 2: Variables used during TE .

DEBS ’19, June 24–28, 2019, Darmstadt, Germany D. Palyvos-Giannas et al.

it has tuples in its input queues as well as (ii) free space in its output
queues (function SPE.canRun, line 9). If such an operator is found, it
is executed and allowed to process at most b tuples, where b is one
of the user-defined parameters (§ 4.2) which we refer to as batch
size. Subsequently, the next operator in A is scheduled only if (i) it
has the same priority of the previously run operator (and it can
run)4 and (ii) if the elapsed time is less than the scheduling period
P . Intuitively, b is defined to limit the execution time of a given
operator, allowing other operators to be scheduled too. Although
Haren does not interrupt operators during the processing of a tuple,
it can enforce preemptive scheduling policies, with the batch size b
defining the preemption granularity. Smaller values of b allow for
more frequent preemption of the scheduled operators, at the price
of higher context-switching overhead.

If the PT reaches the end of the operator list A and does not
find any operator that can run, it invokes a back-off function to
avoid spinning (lines 14-15). PTs sleep using a simple exponential
back-off algorithm. More specifically, they start with a very small
sleep duration and double it at every invocation. The back-off time
never exceeds the remaining duration of TE and is reset every time
a PT enters this task. Afterward (line 16), the PT checks if the time
spent in the loop has surpassed the user-defined scheduling period
P and if so, it enters TS (line 17, later described in § 6).

As discussed in § 4, if any execution-intrinsic feature of operator
op

j
i is used by f and д, Haren needs to run op ji if the latter has not

been scheduled for more than d time units in order (i) for its feature
to be up-to-date, and (ii) for the scheduling policies to be enforced
correctly. Because of this, PTs record the last execution time for
each operator they schedule (line 10). Moreover, when task TS is
completed, each PT checks if there are any operators in A that have
not been scheduled for more than d time units and runs them if
that is the case (lines 19-23). Lastly, observe that when PTs run
an operator, they also add that operator to their set of executed
operators E (lines 11, 23). This allows PTs to selectively update only
features of specific operators during the next TS task, based on the
ones executed during TE , as described in the following section.

6 SCHEDULING TASK (TS)
The purpose of the scheduling task is to produce, for each PT, a listA
of operators sorted by their priority vectors Pi = ⟨pi1,pi2, . . . ,piD ⟩.
This list of operators will then be used by each PT during the
following TE to pick operators for execution.

As mentioned in § 4, Haren tries to minimize the scheduling
overhead by parallelizing the costly steps of this task and splitting
the work between all PTs. However, as we discussed before (and
further elaborate in this section),TS also defines a sequential portion
executed by exactly one (randomly selected) PT, which we denote
as t∗. The sequential portion acts as a logical meeting point for PTs
to synchronize their parallel work. In particular, the mechanics of
TS can be broken down into four main steps:

(1) Computing the up-to-date features, done partly in parallel (for
independent features) and partly sequentially by t∗ (for depen-
dent features).

4The actual implementation does not invoke д but uses the priority value computed
during the previous TS . In the algorithm д is used for compact notation.

ID Description

Global constants

F Set of all the features used by the user-defined scheduling
functions f and д.

FD Set of dependent features.
FC Set of constant features.
D Number of dimensions of the scheduling function д.
K Number of PTs
PT Array of dimension K, of all the available PTs.

Thread-local variables

P Matrix of size |O | × D that has a row per operator in A and
a column for each dimension of the intra-thread scheduling
function д. Each entry (i, j) contains the priority value of the
operator with index i for priority dimension j .

Shared variables

O Array of all the operators deployed to the SPE instance.
F Matrix of size |O | × |F | that has a row per operator in O and

a column for each feature in F . Each entry (i, j) of the matrix
contains the latest reported value of feature with index j for
operator with index i .

D Bitmap of size |O | × |O | where Di, j is 1 if, based on the user-
defined priority function, running the i-th operator implies
that the features of the j-th operator should also be updated.
Statically filled in at the beginning. Diagonal full of 1s.

U Bit array of length |O |. Ui is 1 if the dependent features of
operator i need to be updated.

t ∗ The PT that runs the sequential part of TS .

Table 3: Additional variables used during TS .

(2) Assigning operators to PTs using the inter-thread scheduling
function f , done sequentially by t∗.

(3) Updating the priority vectors Pi using the intra-thread schedul-
ing function д, done in parallel by all PTs.

(4) Sorting the operators based on their priority vectors Pi , done
in parallel by all PTs.
In the following, we discuss the challenges of the above steps

and outline Haren’s solutions to each one. All the new variables
related to this task are presented in Table 3.

Updating the features. To begin with, this step is needed in order for
Haren to compute the new priorities of the operators, since for the
latter it needs to access the latest values of those operators’ features.
As previously discussed in § 3, these features can differ in how fre-
quently they change, with some of them being static and others
dynamic. Moreover, features can differ on how they change, with
some being independent or dependent and execution-intrinsic or
not execution-intrinsic. This heterogeneity of the features presents
an opportunity to reduce the cost of the feature update. More specif-
ically, Haren tries to selectively update only the values of (operator,
feature) combinations which can have potentially changed since
the lastTS . In order to facilitate such selective updates and improve
performance, Haren stores, for every operator, the latest feature
values it has retrieved in an |O | × F matrix denoted by F, shared be-
tween PTs. When PTs execute TS , they use their knowledge about
possible feature dependencies to only update (operator, feature)

Haren: A Framework for Ad-Hoc Thread Scheduling Policies in Data Streaming DEBS ’19, June 24–28, 2019, Darmstadt, Germany

Algorithm 2: Haren.update() – TS (Parallel Steps)
// Update independent features

1 for op ji ∈ E do
2 Fi ← SPE.getFeatures(i, j, F − FD − FC)
3 Ui ← 1
4 for op jk ∈ O | Di,k = 1 do

// Mark feature-dependent ops for update

5 Uk ← 1

6 Haren.coordinate() // Algorithm 3

// Compute priorities

7 for op ji ∈ A do
8 Pi ← д(i, j,F)

// Sort based on priorities

9 sortOperators(A,P)

combinations whose value can have potentially changed. Updating
features is a two-step process, the first executed in parallel by all
PTs and the second executed sequentially by one PT at each TS .

Independent Features. In this first part of the feature update, each
PT updates the independent features of each operator in its (local)
set of executed operators, E. This step is shown in Algorithm 2 (line
2). Updating independent features can be done safely in parallel.
This is because the values of an operator’s independent features
can change only if that operator is scheduled by the PT responsible
for it. Since no scheduling of operators happens during TS , Haren
can be certain that any update to an independent feature of any
operator will be final (for this TS).

Dependent Features. As discussed in § 4, dependent features
might change based on the scheduling decisions of more than one
PT. Haren avoids concurrent attempts to update the value of the
same feature for the same operator by multiple PTs, since deciding

Algorithm 3: Haren.coordinate() – TS (Coordination Step)
1 entryBarrier.await()
2 if last then

// Start sequential (only t∗ enters)

// Update dependent features

3 for op ji ∈ O | Ui = 1 do
4 Fi ← SPE.getFeatures(i, j, FD)
5 Ui ← 0

// Inter-thread scheduling

6 for op ji ∈ O do
7 t ← f (i, j,F)

8 At .append(op)
// End sequential

9 exitBarrier.await()
10 else
11 exitBarrier.await()

on a correct ordering of these concurrent updates would require
the use of a synchronization protocol and thus add overhead to the
system (e.g., SPE.getFeature() would need to return the value
of the feature and the timestamp of its invocation atomically). At
the same time, PTs would waste CPU cycles, since all updates to
the same position of F, except the last one, would be replaced. For
these reasons, the second step of updating the features in Haren is
done sequentially by t∗. This procedure is shown in Algorithm 3,
lines 3-5. t∗ decides which operators need to have their depen-
dent features updated, using the shared bit array U. This array is
initialized during the previous, parallel step, with each PT mark-
ing (i) the operators they executed (Algorithm 2, line 3), as well
as (ii) the feature-dependent operators of the executed operators
(lines 4-5). For (ii), each PT needs to know which operator(s) are
feature-dependent on each operator they executed. This knowledge
is encoded in bitmap D, which is initialized once, at the beginning
of the execution, based on the structure of the streaming queries
and the dependent features used in the scheduling policy. For this
phase to work correctly, all updates to U by PTs must have finished
and be visible to t∗. To ensure this, PTs are forced to wait at the
entryBarrier (Algorithm 3, line 1) before the update of the depen-
dent features can begin. When all PTs arrive at that barrier, they
are allowed to pass it, and immediately afterward, all PTs, except t∗,
are blocked at the exitBarrier (line 11). The PTs will wait there
until the dependent features have been updated by t∗. The need
for the second barrier is explained in the next paragraph. Since the
only requirement for choosing a PT to become t∗ is that there can
be only one at every TS , the PT is chosen arbitrarily: the last PT
that leaves the entryBarrier is appointed to be t∗ (line 2).

Assigning operators to PTs. After the features have been updated, t∗
assigns operators to PTs, using the inter-thread scheduling function
f , as seen in Algorithm 3 lines 6-8. Care is needed in this step so
that the updated mapping of operators to PTs takes effect at the
same time for all PTs. This ensures that Haren avoids situations
where, for example, the same operator (which could be mapped
to two distinct PTs in two distinct TE) is executed concurrently
by two different PTs. Such situations are avoided having all PTs
except one block at exitBarrier (introduced above). Only when
t∗ has finished its work (and has called await() at the barrier), can
all PTs move forward to update the priorities. If a reconfiguration
was triggered by the SPE during the previous TE , Haren’s data
structures will be resized during this step, and any new operators
will be randomly assigned to PTs. After the operator assignment,
the two final parts ofTS , namely the calculation of the new priority
vectors and the sorting of operators, are done in parallel by all PTs.

Priority Update. As discussed in § 4.1, the intra-thread scheduling
functionд can use features of any deployed operator to compute the
priority vector Pi = ⟨pi1,pi2, . . . ,piD ⟩ of operator opi . To maintain
simplicity without sacrificing performance, Haren performs the
feature and priority updates separately, but executes them both in
parallel in all PTs. To do the priority update, each PT applies the
intra-thread scheduling function д to all operators in its operator
list A (Algorithm 2, lines 7-8). This process begins immediately
after the assignment of operators to PTs. The resulting priority
vectors are stored in a thread-local |O | × D matrix denoted by P.

DEBS ’19, June 24–28, 2019, Darmstadt, Germany D. Palyvos-Giannas et al.

Note that many of the priority functions in the literature can be
defined recursively, i.e., the value of the function for an operator
can depend on its respective value for other operators. Haren is
optimized for such cases by taking advantage of the dependencies
in the query DAG to update the priorities in an efficient order.

Sorting. After a PT has updated the priorities of all operators in
A, the only task that remains before PTs can enter TE is to sort
these operators by their priority. Thus, sorting is the final step of
TS , which once again is done in parallel by all PTs (Algorithm 2,
line 9). The operators in A are lexicographically sorted according
to the values of their priority vectors. More precisely, an operator
opm is considered to have higher priority than opn if

(∀k < l : pmk = pnk) ∧ (pml > pnl)

After the sorting is complete, each PT can immediately enter TE
without the need to synchronize with the other PTs.

7 EVALUATION
We evaluate Haren by integrating it with a real-world SPE, imple-
menting several scheduling policies of different complexities and
studying their behavior and performance. We utilize small, low-end
devices usually found at the edge of cyber-physical systems. We
chose them because, while Haren can provide custom scheduling
facilities to SPEs running in any kind of computational node, sched-
uling decisions can have a higher impact on performance when
processing resources are limited. We first describe the experimen-
tal setup, then cover the various scheduling policies we use and
present results for different complexities of the latter.

7.1 Experiments setup
Hardware/software. We use Odroid-XU4 [17] devices (or simply

Odroid) with Samsung Exynos5422 Cortex-A15 2Ghz and Cortex-
A7 Octa core CPUs and 2 GB of RAM, running Ubuntu 18.04.2 LTS
and Java HotSpot(TM) Client VM 1.8.0_201-b09. Haren’s PTs run
on the four big cores (i.e., K = 4). CPU consumption is measured
with ps and memory usage is retrieved from the JVM Runtime.

Haren Implementation. We evaluate a fully-featured version of
Haren, implemented in Java, and integrated with Liebre, a light-
weight SPE for edge-computing [14]. The integration builds on
Haren’s API (§ 4) with few changes in the SPE’s implementation.

Queries. We evaluate Haren using synthetic queries, each con-
sisting of a chain of operators with custom cost and selectivity (see
Table 1). The source data is artificially generated. Each chain has
one Ingress operator that retrieves data from a Data Source, which
runs independently of the SPE. All chains have the same length
L. The selectivity and cost values of operators are chosen using
a strategy inspired by [23]. More specifically, selectivity and cost
are chosen at two levels: query-level and operator-level. Regarding
selectivity, each query j is assigned a selectivity value s j , which
expresses the number of egress tuples produced for every ingress
tuple, chosen uniformly at random from [0.01, 1]. Then, to satisfy
the query selectivity, each operator of the query gets a selectivity
equal to eloдs

j /L ± 10%. For the cost selection, each query j is as-
signed a cost class z ∈ [0, 4] and then the query’s cost is computed
as c j = B × 2z . The cost of a query is proportional to the minimum

time required for an ingress tuple to be processed by all query’s
operators. The cost of the operators is then set to c j ± 10%. B is the
base cost parameter that allows us to vary the load and thus the uti-
lization of the system. We use operator chains in our evaluation to
stress-test Haren in a tractable manner by simulating an SPE with
a heterogeneous load. However, it should be noted that Haren’s
model can handle complex query graphs that contain forks or joins,
without any alteration. The correct handling of such cases depends
only on the implementation of scheduling functions f and д.

7.2 Scheduling Policies
As described in § 1, Haren is a general scheduling framework that
can implement most scheduling policies defined in the literature.
To give evidence of this, we evaluate three scheduling policies from
the literature, each of which optimizes a different performance
metric. We also study a custom policy that we define in § 7.4. Apart
from these policies, we also evaluate the performance when the
SPE runs without Haren, executing each operator in a dedicated
thread instead. An overview of the features, dimensions and goals
of each policy is given in the following (discussing how they define
function д) and also in Table 4. In all experiments, the inter-thread
scheduling function f randomly distributes operators to all PTs.
The queries are chains of operators with L = 12. The scheduling
period P is 100ms and the batch size b is 10 tuples. Each experiment
runs for at least five minutes and is repeated at least five times.

Dedicated Threads (OS), the baseline policy, is the default for
many SPEs. Haren is not used and, instead, each operator runs in a
dedicated thread. Threads are thus scheduled by the OS. Since the
OS is agnostic to specific streaming-related metrics, the metric this
policy optimizes depends on the OS scheduler.

First-Come-First-Serve (FCFS) has been shown to optimize the
maximum latency of the queries [6]. Our implementation uses the
inverse of the head clock time lH (defined in § 3) as the operator
priority. To minimize the maximum latency of the system, operators
with higher head latency (earlier lH) are given higher priorities.

Highest Rate (HR), presented in [21], aims at minimizing the
average latency of the queries running in the system. The priority
value of each operator is equal to its global output rate, which
represents the number of egress tuples that would be produced per
time unit if that operator and all its downstream operators were
executed. This policy prioritizes operators that are more productive
(higher selectivity) and less costly (lower cost). Since the priorities
depend on the features of multiple operators, we expect this policy’s
overhead to be higher than that of FCFS.

Chain policy [5] tries to minimize runtime memory usage. It
groups operators based on how many tuples they discard and how
quickly they do so and prioritizes operators that belong to the

Policy Features # Dims Optimizes Sections

FCFS lH 1 Max Latency § 7.3, § 7.4
HR c , s 1 Mean Latency § 7.3, § 7.4
Chain c , s , lH 2 Memory § 7.3
Multi-Class c , s , lH 2 Custom § 7.4

Table 4: Scheduling policies studied in the evaluation.

Haren: A Framework for Ad-Hoc Thread Scheduling Policies in Data Streaming DEBS ’19, June 24–28, 2019, Darmstadt, Germany

500

1000

5
qu

er
ie

s

Throughput (t/s)

0.05
0.10

Mean Latency (s)

0.0

0.5

Max Latency (s)

0

250

Queued (tuples)

11

12
Max Memory (MB)

25

50

75
CPU (%)

500

1000

10
 q

ue
rie

s

0

25

0

200

0.0

2.5
×10

5

25

50

50

100

500

1000

15
 q

ue
rie

s

0

50

0

250

0

1
×10

6

50

100

60

80

500 1000 1500
base cost (B)

500

1000

20
 q

ue
rie

s

500 1000 1500
base cost (B)

0

50

500 1000 1500
base cost (B)

0

250

500 1000 1500
base cost (B)

0

1

×10
6

500 1000 1500
base cost (B)

50
100

500 1000 1500
base cost (B)

80
90

OS HR FCFS Chain

Figure 4: Comparison of the performance of four single-class scheduling policies.

groups that discard the most tuples for the least cost. If two opera-
tors have equal value of priority returned by the chain algorithm,
the operator with the earliest head clock time is executed. Thus,
the used intra-thread scheduling function д has two dimensions:
the priority of the chain algorithm and the head clock time.

Multi-Class is a combination of multiple of the previous policies,
which are applied depending on the priority class of each query. It
is described in detail and studied in § 7.4.

7.3 Single-Class Scheduling
In this first part of the evaluation, we study the behavior of intra-
thread scheduling functionsд that assume that all the queries belong
to the same priority class and only prioritize operators based on
the value calculated by each specific policy.

Performance Comparison. Figure 4 compares the performance of
scheduling using dedicated threads or custom scheduling with the
FCFS, HR and Chain policies. We evaluate the mean throughput
at the Ingress operators, the mean and maximum latency at the
Egress operators and the total number of queued tuples. We also
evaluate the maximum memory consumption and the average CPU
utilization of the SPE process, including the scheduling overheads.
The comparison is made for 5, 10, 15 and 20 queries running in par-
allel. When the processing load is much lower than the maximum

0

2

%

parallelism = 5 parallelism = 10

Priority Sort Update Coord Total
0

2

%

parallelism = 15

Priority Sort Update Coord Total

parallelism = 20

HR FCFS Chain

Figure 5: Complete overheads of scheduling task TS .

capacity of the system (5 queries), OS scheduling can be optimal in
throughput and latency, since there is no contention for resources.
In such cases, the OS scheduler can respond faster than Haren’s
PTs which use an exponential back-off to conserve resources (Algo-
rithm 1). However, OS scheduling’s advantage diminishes as utiliza-
tion and resource contention increase (>5 queries). For throughput,
the Chain policy always performs better, which is expected since it
prioritizes operators closer to the Ingress operators. Moreover, HR
and FCFS policies optimize for mean and maximum latency respec-
tively, as expected, outperforming OS scheduling. The Chain policy
meets its goal of minimizing the total number of tuples in operator
queues. Although FCFS results in more queued tuples, its memory
consumption is usually lower or equal to Chain. We believe this is
because different scheduling strategies result in different behaviors
of the garbage collector. The CPU utilization is almost always lower
for Haren than for OS scheduling.

Scheduling Overhead. Figure 5 shows a breakdown of the over-
heads introduced by the scheduling task TS . More specifically, it
shows the percentage of time spent (i) calculating priorities using
the intra-thread scheduling function д (Priority), (ii) sorting the
operators based on their priorities (Sort), (iii) updating the indepen-
dent features and marking operators that need dependent feature
updates (Update), (iv) running coordinate (Algorithm 3) (Coord)

0.0

0.5

%

parallelism = 5 parallelism = 10

Assign Update Total
0.0

0.5

%

parallelism = 15

Assign Update Total

parallelism = 20

HR FCFS Chain

Figure 6: Overheads of the sequential part of TS .

DEBS ’19, June 24–28, 2019, Darmstadt, Germany D. Palyvos-Giannas et al.

5 10 15 20
#queries

0

2

4

%

P
25ms
100ms
400ms

Figure 7: Algorithm 3 overhead for different P .

and (v) the total time spent inTS (Total). As shown, the total sched-
uling overhead remains very low, almost always less than 2%. The
overhead of computing operator priorities is negligible for FCFS
since its intra-thread scheduling function д is simply the inverse
value of one feature of a single operator. That overhead is higher for
HR and Chain since they compute costly functions д involving the
features of many operators. The time to sort operators by priority
and update the independent features is negligible (lower than 1%).

The highest overhead of scheduling in most experiments is the
duration of Algorithm 3 (Coord). In that phase, t∗ runs the sequen-
tial part ofTS (Algorithm 3, L3-8), while all other PTs block. Figure 6
shows a breakdown of the sequential part, illustrating (i) the per-
centage of time spent updating the dependent features (Update), (ii)
computing the inter-thread scheduling function f (Assign), and (iii)
the total percentage of time spent in that part (Total). The figure
shows that overheads usually increase with the number of queries.
The HR policy has only an assignment overhead since it does not
use any dependent features. On the other hand, FCFS and Chain
also have an update overhead because they use the clock time, a
dependent feature which needs updating. In all cases, the total time
spent by t∗ in the sequential part is less than the total duration of
Algorithm 3 (Coord in Figure 5). The time difference is due to the
synchronization overhead of the entryBarrier and exitBarrier.
This overhead is needed not only to coordinate the PTs entering
the different scheduling phases together but also to ensure memory
visibility of actions happening before and after the barriers.

Figure 7 shows the duration of Algorithm 3 for different #queries
and values of the scheduling period P . It depicts executions of the
same policy (FCFS); the size of the dots indicates the magnitude of

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (t

/s
)

×10
3

0

2

4

M
ea

n
La

te
nc

y
(s

) ×10
−2

HIGH LOW
0

1

2

M
ax

 L
at

en
cy

 (s
)

×10
−1

OS HAREN

0

1
×103 OS HAREN

2.5

5.0

×10−2

0 100 200
t

0

1

2
×10−1

0 100 200
t

HIGH LOW

Figure 8: Multi-Class Scenario 1 (steady state)

B (100-1600). In all cases, the overhead remains lower than 5%. Also,
we observe an inverse relationship between the length of P and the
overhead, which is expected since shorter P causes more frequent
invocations of TS . Additionally, the overhead increases with the
#queries (and consequently, operators), since there is more data to
update and synchronize. These results show a trade-off between
the freshness of priorities and the overhead imposed by scheduling.
Depending on the scheduling policy, it might be beneficial to pay a
higher overhead for more up-to-date priorities, because the gain in
performance will counterbalance the loss due to the overhead.

7.4 Multi-Class Scheduling
In this section, we focus on a more complex scheduling scenario
and (i) study scheduling queries that belong to different priority
classes, giving higher priority to the queries of higher classes and
(ii) apply different scheduling policies for the queries belonging
to each priority class. Scheduling based on priority classes can be
important in many use cases of stream processing. For example, in
edge and fog cyber-physical systems, there are frequently many
streaming queries with different levels of criticality deployed to a
single processing node [18, 19]. A smart vehicle, for instance, can be
running many different streaming queries. Some of the queries can
be very urgent, such as a query that detects obstacles, while others
can be less urgent, such as a query that checks if the fuel is running
low. Motivated by the use-case above, we construct the following
evaluation scenario: each query belongs to a user-defined priority
class which is provided to Haren, and represents the criticality
of the query. Several synthetic queries are deployed using Haren
having one of two possible priority class values, HIGH or LOW.

In our Multi-Class scheduling policy, queries of HIGH priority
are always scheduled before LOW priority ones (objective 1). HIGH
priority queries are scheduled using the FCFS policy that minimizes
the maximum latency (objective 2) while LOW priority queries are
scheduled with the HR policy, to minimize the average latency
(objective 3). We run 3 HIGH and 10 LOW queries with different
loads, comparing the behavior and ability of OS scheduling and
Haren to meet the scheduling objectives. The base cost B is 600.

Scenario 1 (steady state). In this experiment, there are adequate
processing resources, and the SPE is at a steady state. The HIGH

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (t

/s
)

×10
3

0

2

M
ea

n
La

te
nc

y
(s

)

HIGH LOW
0

20

40

M
ax

 L
at

en
cy

 (s
)

OS HAREN

0.0

0.5
×104 OS HAREN

0

5

0 100 200
t

0

20

0 100 200
t

HIGH LOW

Figure 9: Multi-Class Scenario 2 (dynamic – high load)

Haren: A Framework for Ad-Hoc Thread Scheduling Policies in Data Streaming DEBS ’19, June 24–28, 2019, Darmstadt, Germany

and LOW data sources emit at a constant rate of 500 t/s and 1000 t/s
respectively. Figure 8 shows the throughput, mean and max latency
for the two query classes. Both scheduling techniques match the
throughput of the data sources. However, Haren achieves a much
lower max and mean latency for the HIGH queries (objective 2),
while keeping the mean latency of the LOW queries at similar levels
as the OS (objective 3). The overall performance of HIGH queries is
higher than that of the LOW queries (objective 1). Since the policy
does not optimize for the maximum latency of LOW queries, this
metric shows a higher increase.

Scenario 2 (dynamic — high load). In this scenario, the source
rate fluctuates and the system is in an overloaded state. The data
sources of HIGH queries emit tuples at a rate of 5000 t/s for 5
seconds and then stop emitting for another 15 seconds. The data
sources of the LOW queries emit at a constant rate of 1000 t/s, as
before. Figure 9 shows the same performance metrics of the HIGH
and LOW queries. Similarly to scenario 1, Haren prioritizes HIGH
queries compared to the LOW ones, in contrast with OS scheduling
(objective 1). More specifically, Haren achieves better throughput
than OS for the HIGH queries, while it is slightly worse for the
LOW ones. The figure shows that, for OS scheduling, the maximum
latency of all queries keeps increasing. On the other hand, Haren
dramatically reduces the maximum latency of HIGH queries (-17.4s)
and at the same time keeps it at a near-constant level during the
whole execution (0.1s), achieving objective 2. Moreover, the mean
latency of the LOW priority queries increases but remains stable
and at lower values (2.6s) than those achieved for HIGH queries by
OS scheduling (3.5s), thus achieving objective 3. The max latency
of LOW queries increases faster, which is expected since Haren’s
custom policy does not have this scheduling objective. The results
highlight that, especially in the presence of resource contention,
Haren’s application-level scheduling allows the users to choose
which metric (of which queries) they want to prioritize, until the
load decreases or more resources become available.

8 RELATEDWORK
Scheduling in data streaming can refer to resource scheduling (how
to deploy operators, from one or more queries, to SPE instances
within and across computational nodes [3, 13, 27–29]) and thread
scheduling (how to allocate threads to operators within each SPE
instance). These complementary views can be joint to meet perfor-
mance metrics (e.g., latency) from both a top-down (e.g., to decide
which node should run a certain query or operator) and a bottom-up
perspective (e.g., to customize CPU threads allocation to operators).
Since we focus on thread scheduling, Haren’s approach is orthogo-
nal to resource scheduling (see § 1) and can work in synergy with
it. For a given resource allocation, Haren can take care of thread
scheduling at each SPE instance (e.g., Flink TaskManager or Storm
Worker [7, 24]) and run operators (that would otherwise be run by
dedicated task/executor threads) based on the scheduling policies.
The features can be retrieved either from the SPE’s API or from
secondary monitoring components (e.g., Flink’s metric system).

Haren is mainly orthogonal to existing work, since it does not
rely on any hard-coded policy but rather distills the functional-
ity required from a scheduler to implement general, user-defined

scheduling policies. We believe ours is the first work proposing and
evaluating a concrete implementation of such a scheduler.

Many scheduling policies and metrics proposed in the litera-
ture aim at meeting the growing requirements that users have for
streaming applications. The First-Come-First-Serve (FCFS) policy
was first proposed in [6] to optimize for the maximum latency
of streams of continuous requests, in the context of database and
web servers, and has been further studied in the context of stream
processing [22, 23]. The Rate-Based (RB) policy optimizes for the
average latency of a single streaming query and was described in
[25]. In [21], Sharaf et al. present an extension of the Rate-Based
policy called Highest Rate (HR) that extends the former to multiple
queries. Chandramouli et al. [10] introduce a metric called Mace
(Maximum cumulative excess) and describe a scheduling frame-
work for the StreamInsight SPE that uses this metric to accurately
estimate the latency imposed by the stream processing pipeline.
The Chain scheduling policy, described in [5], tries to minimize the
runtime memory usage of multiple queries at the same time. It is
proven to be near-optimal for many types of single-stream queries
and also acceptable for multi-stream queries; it is also extended in
[4] to take maximum latency into account. Aurora, a pioneer SPE,
provided a detailed description of its scheduling policy [8, 9] based
on two schedulers with different functionalities and goals. The first
two-level scheduler schedules queries (superboxes) using Round-
Robin, whereas operators (boxes) are scheduled with one of three
policies that either optimize for average throughput (Min-Cost), av-
erage latency (Min-Latency, which is very similar to the Rate-Based
policy) or available memory (Min-Memory). The second scheduler
of Aurora aims at optimizing the QoS of the system by utilizing
user-provided graphs that correlate the latency with the QoS of
queries. The work explores various optimizations to minimize the
scheduling overhead while matching user-defined goals.

When many heterogeneous queries run in the same node, it
can be crucial to achieve fairness, i.e., balance the degree of slow-
down experienced by co-scheduled queries. One way to express
this notion is the slowdown or stretch [1, 16] metric. The Longest
Stretch First (LSF) metric has been shown to optimize the maximum
slowdown [1]. Sharaf et al. propose operator scheduling policies
to optimize for latency or slowdown or to balance both of these
metrics, either in the average or in the worst case [22, 23]. Hetero-
geneous queries deployed in the same system can exhibit different
QoS requirements. Scheduling queries based on different priority
classes is explored in [15], with the Continuous Query Class (CQC)
scheduler, a two-level scheduler relying onWeighted Round Robin
and Highest Rate schedulers [23]. CQC aims to minimize the latency
of high-priority queries and maintain reasonable latency values for
the low-priority ones. Pham et al. extend this work and explore the
relationship between scheduling and load management in [19, 20].
Their scheduler and load manager work in synergy, exchanging run-
time information to consistently honor the user-defined priorities
of the queries while increasing the system’s utilization.

9 CONCLUSIONS AND FUTUREWORK
We study the problem of thread scheduling in stream processing,
searching for a solution that is not bound to a specific SPE imple-
mentation nor scheduling policy. As a result, we propose Haren, an

DEBS ’19, June 24–28, 2019, Darmstadt, Germany D. Palyvos-Giannas et al.

all-purpose scheduling framework that can be integrated into an
SPE through a well-defined API and that allows users to define ad-
hoc scheduling policies with minimal programming effort. Haren
implements such policies efficiently by parallelizing the work to
multiple processing threads in a transparent fashion.We thoroughly
evaluate Haren and observe that its expressiveness and efficiency
not only allow to define many of the scheduling policies in the
literature but also outperform widely-adopted approaches in which
SPEs rely on the Operating System scheduler.

Interesting future work studies include the possibilities given
by the inter-thread deployment function of Haren to elastically
adjust threads of an SPE and boost Haren’s adaptivity by means of
autonomous adjustments of its configuration parameters (e.g., the
scheduling period P). Other interesting directions include a more
in-depth exploration of Haren’s behavior for complex queries that
involve parallel branches [26] as well as for runtime changes of the
queries or the policies used to schedule their operators.

ACKNOWLEDGMENTS
We thank the shepherd, Ruben Mayer, and the anonymous review-
ers for their insightful comments and suggestions. The work was
supported by the Swedish Foundation for Strategic Research, proj.
“FiC” grant nr. GMT14-0032, by the Chalmers Energy AoA frame-
work proj. INDEED and STAMINA and by the Swedish Research
Council (Vetenskapsrådet) proj. “HARE” grant nr. 2016-03800.

REFERENCES
[1] Swarup Acharya and S. Muthukrishnan. 1998. Scheduling On-demand Broad-

casts: New Metrics and Algorithms. In Proceedings of the 4th Annual ACM/IEEE
International Conference on Mobile Computing and Networking (MobiCom ’98).
ACM, New York, NY, USA, 43–54. https://doi.org/10.1145/288235.288248

[2] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and Sam Whittle. 2015. The Dataflow Model: A Practical Ap-
proach to Balancing Correctness, Latency, and Cost in Massive-scale, Unbounded,
Out-of-order Data Processing. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1792–1803.
https://doi.org/10.14778/2824032.2824076

[3] Leonardo Aniello, Roberto Baldoni, and Leonardo Querzoni. 2013. Adaptive
Online Scheduling in Storm. In Proceedings of the 7th ACM International Confer-
ence on Distributed Event-based Systems (DEBS ’13). ACM, New York, NY, USA,
207–218. https://doi.org/10.1145/2488222.2488267

[4] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Dilys Thomas.
2004. Operator Scheduling in Data Stream Systems. The VLDB Journal 13, 4 (Dec.
2004), 333–353. https://doi.org/10.1007/s00778-004-0132-6

[5] Brian Babcock, Shivnath Babu, Rajeev Motwani, and Mayur Datar. 2003. Chain:
Operator Scheduling for Memory Minimization in Data Stream Systems. In
Proceedings of the 2003 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’03). ACM, New York, NY, USA, 253–264. https://doi.org/10.
1145/872757.872789

[6] Michael A. Bender, Soumen Chakrabarti, and S. Muthukrishnan. 1998. Flow
and Stretch Metrics for Scheduling Continuous Job Streams. In Proceedings of
the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’98).
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 270–279.
http://dl.acm.org/citation.cfm?id=314613.314715

[7] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink: Stream and batch processing in a
single engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

[8] Don Carney, Uǧur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,
Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. 2002. Mon-
itoring Streams: A New Class of Data Management Applications. In Proceedings
of the 28th International Conference on Very Large Data Bases (VLDB ’02). VLDB
Endowment, 215–226. http://dl.acm.org/citation.cfm?id=1287369.1287389

[9] Don Carney, Uğur Çetintemel, Alex Rasin, Stan Zdonik, Mitch Cherniack, and
Mike Stonebraker. 2003. Operator Scheduling in a Data Stream Manager. In
Proceedings of the 29th International Conference on Very Large Data Bases - Volume

29 (VLDB ’03). VLDB Endowment, 838–849. http://dl.acm.org/citation.cfm?id=
1315451.1315523

[10] Badrish Chandramouli, Jonathan Goldstein, Roger Barga, Mirek Riedewald, and
and. 2010. Accurate Latency Estimation in a Distributed Event Processing Sys-
tem. Technical Report. https://www.microsoft.com/en-us/research/publication/
accurate-latency-estimation-in-a-distributed-event-processing-system/

[11] Martin Hirzel, Robert SoulÃľ, Scott Schneider, Bugra Gedik, and Robert Grimm.
2011. A catalog of stream processing optimizations. Technical Report.

[12] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher
Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.
2015. Twitter Heron: Stream Processing at Scale. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data (SIGMOD ’15). ACM,
New York, NY, USA, 239–250. https://doi.org/10.1145/2723372.2742788

[13] Teng Li, Zhiyuan Xu, Jian Tang, and Yanzhi Wang. 2018. Model-free Control for
Distributed Stream Data Processing Using Deep Reinforcement Learning. Proc.
VLDB Endow. 11, 6 (Feb. 2018), 705–718. https://doi.org/10.14778/3199517.3199521

[14] liebre 2017. Liebre SPE. https://github.com/vincenzo-gulisano/Liebre.
[15] Lory Al Moakar, Thao N. Pham, Panayiotis Neophytou, Panos K. Chrysanthis,

Alexandros Labrinidis, and Mohamed Sharaf. 2009. Class-based Continuous
Query Scheduling for Data Streams. In Proceedings of the Sixth International
Workshop on Data Management for Sensor Networks (DMSN ’09). ACM, New York,
NY, USA, Article 9, 6 pages. https://doi.org/10.1145/1594187.1594199

[16] S. Muthukrishnan, Rajmohan Rajaraman, Anthony Shaheen, and Johannes E.
Gehrke. 1999. Online Scheduling to Minimize Average Stretch. In Proceedings of
the 40th Annual Symposium on Foundations of Computer Science (FOCS ’99). IEEE
Computer Society, Washington, DC, USA, 433–. http://dl.acm.org/citation.cfm?
id=795665.796508

[17] Odroid-XU4 2016. Odroid-XU4. http://www.hardkernel.com.
[18] Dimitris Palyvos-Giannas, Vincenzo Gulisano, and Marina Papatriantafilou. 2018.

GeneaLog: Fine-Grained Data Streaming Provenance at the Edge. In Proceedings
of the 19th International Middleware Conference (Middleware ’18). ACM, New York,
NY, USA, 227–238. https://doi.org/10.1145/3274808.3274826

[19] Thao N. Pham, Panos K. Chrysanthis, and Alexandros Labrinidis. 2016. Avoiding
Class Warfare: Managing Continuous Queries with Differentiated Classes of
Service. The VLDB Journal 25, 2 (April 2016), 197–221. https://doi.org/10.1007/
s00778-015-0411-4

[20] T. N. Pham, L. A. Moakar, P. K. Chrysanthis, and A. Labrinidis. 2011. DILoS:
A dynamic integrated load manager and scheduler for continuous queries. In
2011 IEEE 27th International Conference on Data Engineering Workshops. 10–15.
https://doi.org/10.1109/ICDEW.2011.5767652

[21] M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis. 2005. Preemptive Rate-based
Operator Scheduling in a Data Stream Management System. In Proceedings of the
ACS/IEEE 2005 International Conference on Computer Systems and Applications
(AICCSA ’05). IEEE Computer Society, Washington, DC, USA, 46–I. http://dl.
acm.org/citation.cfm?id=1249246.1249645

[22] Mohamed A. Sharaf, Panos K. Chrysanthis, Alexandros Labrinidis, and Kirk Pruhs.
2006. Efficient Scheduling of Heterogeneous Continuous Queries. In Proceedings
of the 32Nd International Conference on Very Large Data Bases (VLDB ’06). VLDB
Endowment, 511–522. http://dl.acm.org/citation.cfm?id=1182635.1164172

[23] Mohamed A. Sharaf, Panos K. Chrysanthis, Alexandros Labrinidis, and Kirk
Pruhs. 2008. Algorithms and Metrics for Processing Multiple Heterogeneous
Continuous Queries. ACM Trans. Database Syst. 33, 1, Article 5 (March 2008),
44 pages. https://doi.org/10.1145/1331904.1331909

[24] storm 2017. Apache Storm. http://storm.apache.org/.
[25] Tolga Urhan and Michael J. Franklin. 2001. Dynamic Pipeline Scheduling for

Improving Interactive Query Performance. In Proceedings of the 27th International
Conference on Very Large Data Bases (VLDB ’01). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 501–510. http://dl.acm.org/citation.cfm?id=645927.
672188

[26] Ivan Walulya, Dimitris Palyvos-Giannas, Yiannis Nikolakopoulos, Vincenzo
Gulisano, Marina Papatriantafilou, and Philippas Tsigas. 2018. Viper: A mod-
ule for communication-layer determinism and scaling in low-latency stream
processing. Future Generation Computer Systems 88 (2018), 297 – 308. https:
//doi.org/10.1016/j.future.2018.05.067

[27] Joel Wolf, Nikhil Bansal, Kirsten Hildrum, Sujay Parekh, Deepak Rajan, Rohit
Wagle, Kun-Lung Wu, and Lisa Fleischer. 2008. SODA: An Optimizing Scheduler
for Large-Scale Stream-Based Distributed Computer Systems. InMiddleware 2008,
Valérie Issarny and Richard Schantz (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 306–325.

[28] Y. Xing, S. Zdonik, and J. . Hwang. 2005. Dynamic load distribution in the Borealis
stream processor. In 21st International Conference on Data Engineering (ICDE’05).
791–802. https://doi.org/10.1109/ICDE.2005.53

[29] J. Xu, Z. Chen, J. Tang, and S. Su. 2014. T-Storm: Traffic-Aware Online Scheduling
in Storm. In 2014 IEEE 34th International Conference on Distributed Computing
Systems. 535–544. https://doi.org/10.1109/ICDCS.2014.61

https://doi.org/10.1145/288235.288248
https://doi.org/10.14778/2824032.2824076
https://doi.org/10.1145/2488222.2488267
https://doi.org/10.1007/s00778-004-0132-6
https://doi.org/10.1145/872757.872789
https://doi.org/10.1145/872757.872789
http://dl.acm.org/citation.cfm?id=314613.314715
http://dl.acm.org/citation.cfm?id=1287369.1287389
http://dl.acm.org/citation.cfm?id=1315451.1315523
http://dl.acm.org/citation.cfm?id=1315451.1315523
https://www.microsoft.com/en-us/research/publication/accurate-latency-estimation-in-a-distributed-event-processing-system/
https://www.microsoft.com/en-us/research/publication/accurate-latency-estimation-in-a-distributed-event-processing-system/
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.14778/3199517.3199521
https://doi.org/10.1145/1594187.1594199
http://dl.acm.org/citation.cfm?id=795665.796508
http://dl.acm.org/citation.cfm?id=795665.796508
http://www.hardkernel.com
https://doi.org/10.1145/3274808.3274826
https://doi.org/10.1007/s00778-015-0411-4
https://doi.org/10.1007/s00778-015-0411-4
https://doi.org/10.1109/ICDEW.2011.5767652
http://dl.acm.org/citation.cfm?id=1249246.1249645
http://dl.acm.org/citation.cfm?id=1249246.1249645
http://dl.acm.org/citation.cfm?id=1182635.1164172
https://doi.org/10.1145/1331904.1331909
http://dl.acm.org/citation.cfm?id=645927.672188
http://dl.acm.org/citation.cfm?id=645927.672188
https://doi.org/10.1016/j.future.2018.05.067
https://doi.org/10.1016/j.future.2018.05.067
https://doi.org/10.1109/ICDE.2005.53
https://doi.org/10.1109/ICDCS.2014.61

	
	
	
	
	

	
	
	

	
	
	
	
	
	
	

	
	
	
	

