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ARTICLE

Modelling the ultra-strongly coupled spin-boson
model with unphysical modes
Neill Lambert1, Shahnawaz Ahmed 1,2, Mauro Cirio3 & Franco Nori 1,4

A quantum system weakly coupled to a zero-temperature environment will relax, via spon-

taneous emission, to its ground-state. However, when the coupling to the environment is

ultra-strong the ground-state is expected to become dressed with virtual excitations. This

regime is difficult to capture with some traditional methods because of the explosion in the

number of Matsubara frequencies, i.e., exponential terms in the free-bath correlation func-

tion. To access this regime we generalize both the hierarchical equations of motion and

pseudomode methods, taking into account this explosion using only a biexponential fitting

function. We compare these methods to the reaction coordinate mapping, which helps show

how these sometimes neglected Matsubara terms are important to regulate detailed balance

and prevent the unphysical emission of virtual excitations. For the pseudomode method, we

present a general proof of validity for the use of superficially unphysical Matsubara-modes,

which mirror the mathematical essence of the Matsubara frequencies.
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The spin-boson model is a cornerstone of the theory of
open-quantum systems, and its elegance often belies its
power to describe a wide range of phenomena1–3. It not

only allows us to understand the relationship between quantum
dissipation and classical friction, but is a powerful model to study
topics ranging from physical chemistry to quantum information.
Practically speaking, a number of perturbative approaches and
assumptions such as the Born–Markov and rotating-wave
approximation (RWA) are usually employed to obtain tractable
solutions2. However, research areas, such as energy transport in
photosynthetic systems4–9, quantum thermodynamics10,11, and
the ultra-strong coupling regime in artificial light-matter sys-
tems12–17, have demanded the development of numerically exact
methods to explore non-perturbative and non-Markovian para-
meter regimes18–20, which are out of reach of traditional
approaches.

In the limit of a discrete environment consisting of a single
bosonic mode, as arises in cavity QED (cQED)21, the non-
perturbative limit, in which the coupling is a significant fraction
of the cavity frequency, is sometimes referred to as the ultra-
strong coupling (USC) regime16,17. This regime harbors a range
of new physics, including higher-order coupling effects, the
possibility to excite two atoms with one photon22, the ability to
prepare Bell and GHZ states in cQED23, and the potential to
generate a ground state which contains virtual excitations12,24–26.
In the latter, the excitations are called virtual because they are
energetically trapped in the hybridized light-matter ground state.
A correct theoretical understanding of this trapping, such that
unphysical emission from the ground state is avoided, was only
developed recently27. It is now understood that nonadiabatic
external forces must be applied to transmute them into real,
observable, excitations24,28–31.

Numerical simulations32–34 have suggested that a similar
phenomenon occurs when a spin, or two-level system, is ultra-
strongly coupled to a continuum environment (i.e., an infinite
number of bosonic modes), as traditionally described with the
spin-boson model25. This scenario is now becoming experimen-
tally accessible in one-dimensional transmission lines19,35, and
superconducting metamaterials36–38. In addition, even at nonzero
temperatures, it has been shown that virtual excitations can
influence the efficiency of a photosynthetic quantum heat
engine39.

Methods and techniques are needed which are both quantita-
tively accurate and able to provide a qualitative understanding of
the physics in this non-perturbative low-temperature regime.
However, many successful numerical methods used to study the
spin-boson model away from the normal perturbative limits, such
as the hierarchical equations of motion (HEOM) technique40,41

and the pseudomode method42,43, are limited in their ability to
access low temperatures.

Here, we go beyond these restrictions and show how general-
ized versions of the HEOM and pseudomode methods can help us
understand the nature of the ground state in the continuum, and
explain how virtual excitations are trapped therein. In particular,
in our generalization of the pseudomode method, the original
continuum environment is replaced by a discrete set of modes42

which not only help to quantitatively describe the correct low-
energy non-perturbative physics but also help simplify the model
to the essential mathematical elements needed to give a physical
intuition about properties of the ground state. In addition, the
methods we develop herein may also enable the exploration of
virtual processes in quantum field theory, which are usually
considered not physically accessible44. They can also assist in the
exploration of new physics and the development of applications in
coupled light-matter systems16,17, and allow the modeling of
complex light-harvesting processes in new parameter regimes9.

We begin with an overview of our main results. We then
introduce the spin-boson model and free-bath correlation func-
tions, and provide an intuitive explanation of why omitting the
apparently negligible Matsubara terms can have large con-
sequences, even in the weak coupling regime. Next we demon-
strate our correlation function fitting method for the HEOM,
before turning to the pseudomode method and the reaction
coordinate mapping to more transparently explain what happens
when Matsubara terms are ignored in the ultra-strong coupling
regime. Finally, we compare all three methods, with and without
Matsubara contributions, and show their predictions for the
dynamics and steady-state occupation of certain
environment modes.

Results
Overview. We now summarize our main results in detail. As
mentioned, using the HEOM technique in the low-temperature
limit is difficult45–47, typically making this regime inaccessible.
This is because the HEOM relies on a decomposition of the bath
correlation function into a sum of exponentials. Unfortunately,
due to the physical constraint disallowing Hamiltonians unbound
from below (i.e., that the environment only consists of positive
frequency modes), even a simple Lorentzian spectral density gives
correlation functions which cannot be analytically decomposed
into a finite sum. The same restriction has historically applied to
the pseudomode method42,43, as we will describe below.

To overcome this difficulty, we separate the correlation
function into an analytical part, comprised of a finite number
of exponentials, and the Matsubara part, given by an infinite sum
of exponentials (the latter of which was neglected in other works
studying the zero-temperature limit of the HEOM method48,49).
In the zero-temperature limit, we analytically integrate the infinite
sum, and then fit it with a biexponential function. Fitting the total
correlation function to exponentials for use with the HEOM has
also been explored in refs. 45–47,50, but our approach allows us to
limit the fitting error51 to the Matsubara component, and gives us
physical insight into the role of the different contributions to the
correlation function. The fitting inevitably introduces some error
in the system dynamics, which we analyze in detail in Supple-
mentary Notes 3 and 4.

By comparing results with and without this Matsubara
contribution, we find that the neglect of the Matsubara terms
in both the HEOM formulation, and a generalized pseudomode
method, induces a very specific error in the dynamics and steady
state. This error corresponds to an unphysical system tempera-
ture, even at weak coupling, due to violation of detailed balance.
Conversely, when including the Matsubara terms, detailed
balance is restored, albeit with a finite error due to the fit. In
the ultra-strong coupling regime, we find that, via comparison
with the reaction coordinate method10,52–54 neglecting the
Matsubara terms leads to an unphysical emission of photons
from the ground state of the coupled light-matter system (to
which we will refer as our main example).

In generalizing the pseudomode method, which employs the fit
of the Matsubara frequencies in the form of two additional zero-
frequency Matsubara modes with non-Hermitian coupling to the
system, we find that it can exactly reproduce the full HEOM
results for all parameter regimes. It can also be used to give
meaning to the auxiliary density operators (ADOs) of the HEOM,
indicating a strong relationship between the two approaches. To
account for the unusual form of the Matsubara modes, we
explicitly generalize the proof of validity of the pseudomode
method42,43. Our derivation shows that by combining the non-
Hermitian Hamiltonian together with what we call a pseudo-
Schrödinger equation, the Dyson equation for the reduced
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dynamics of the system is formally equivalent to one where the
system is physically interacting with the original continuum
environment.

The spin-boson model. The iconic spin-boson model considers a
two-level system (the spin, or qubit) in a bath of harmonic
oscillators with the total system-bath Hamiltonian given by
(setting ħ= 1 throughout):

H ¼ ωq

2
σz þ

Δ

2
σx þ

X
k

ωkb
y
kbk þ σz ~X ; ð1Þ

where ωq is the qubit splitting, ωk is the frequency of the kth bath
mode, Δ is the tunneling matrix element, σz(x) are the Pauli matrices
acting on the qubit. For later use, we define �ω ¼ ðω2

q þ Δ2Þ1=2=2, as
the free qubit eigenfrequency. The kth mode of the bath, associated
with annihilation operators bk, interacts with the qubit via the
operators ~Xk ¼ gk=

ffiffiffiffiffiffiffiffi
2ωk

p ðbk þ bykÞ in terms of the couplings
gk, so that ~X ¼Pk

~Xk.
The effect of the bath can be considerably simplified when the

initial state of the environmental modes is Gaussian, and in a
product state with the system (the qubit). Specifically, we assume
the bath to be in a thermal state at a temperature T. In this case,
the influence of the environment is contained in the two-time
correlation function CðtÞ ¼ h~XðtÞ~Xð0Þi. The correlation function
of the free bath, when it is not in contact with the system, can be
written (in the continuum limit) as,

CðtÞ ¼
Z 1

0
dω

JðωÞ
π

coth
βω

2

� �
cos ðωtÞ � i sin ðωtÞ

� �
: ð2Þ

Here, JðωÞ ¼ π
P

k g
2
k=2ωkδðω� ωkÞ is the spectral density,

which parameterizes the coupling coefficients gk, and β= 1/kBT
is the inverse temperature. Throughout this article, we focus on
the following under-damped Brownian motion spectral density,

JðωÞ ¼ γλ2ω

ðω2 � ω2
0Þ2 þ γ2ω2

; ð3Þ

which is characterized by a resonance frequency ω0, a width γ,
and a strength λ. A spectral density of this form is a convenient
basis, in which one can represent a range of other spectral
densities55,56.

In the under-damped limit (γ < 2ω0), it is convenient to
decompose the correlation function, for Eq. (3) in Eq. (2), as C(t)
= C0(t)+M(t), where

C0ðtÞ ¼
λ2e�γt=2

4Ω
CR
0 ðtÞ þ CI

0ðtÞ
� �

; ð4Þ

in terms of CR
0 ¼ coth βðΩþ iΓÞ=2½ � expðiΩtÞ þH:c: (where H.c.

denotes Hermitian conjugation) and CI
0 ¼ e�iΩt � eiΩt , and

MðtÞ ¼ � 2λ2γ
β

X1
k>0

ϵke
�ϵkt

ðΩþ iΓÞ2 þ ϵ2k
� � ðΩ� iΓÞ2 þ ϵ2k

� � ; ð5Þ

with the definitions Γ= γ/2, Ω2 ¼ ω2
0 � Γ2, and ϵk ¼ 2πk=β

(k∈ℕ) for the Matsubara frequencies.
Intuitively, the C0(t) part of the correlation function char-

acterizes the resonant part of the bath, with a shifted resonant
frequency Ω and decay rate γ/2. On the other hand, the M(t) part
of the correlation function seems to have a less transparent
description: it has no resonances but infinite sub-contributions
which decay at rates equal to ϵk (hence we will name it the
Matsubara correlation). One way to explore its meaning is to
study what happens to the qubit dynamics after imposing C(t)→
C0(t), i.e., completely neglecting it. Note that this will induce an
error even at zero temperature (β→∞) due to the competition

between the factor β−1 and the Matsubara frequencies approach-
ing the continuum.

To proceed with our intuitive analysis, it is worth considering
the Fourier transform of the correlation function, i.e., the power
spectrum SðωÞ ¼ R1�1dt CðtÞeiωt ¼ JðωÞ½1þ coth ðβω=2Þ�. From
this expression, it is possible to check that the power-spectrum
encodes the symmetry condition

SðωÞ ¼ expðβωÞSð�ωÞ : ð6Þ
When the coupling to the environmental degrees of freedom
is small compared with the qubit eigenfrequency
�ω ¼ ðω2

q þ Δ2Þ1=2=2, the effect of the bath can be studied
perturbatively (for example by using the Fermi golden rule). In
this case, the qubit will absorb (relax) energy from (into) the
environment at rates proportional to Sð��ωÞ (Sð�ωÞ) so that Eq. (6)
encodes the physical meaning of the detailed balance condition.
As a consequence, by neglecting the Matsubara correlations, we
are then going to break this balance57–59. Nevertheless, the qubit
will still reach an equilibrium thermal state at the effective
temperature

βeff ¼
1
�ω
log

S0ð�ωÞ
S0ð��ωÞ ; ð7Þ

where S0ðωÞ ¼
R1
�1dt C0ðtÞeiωt . The relation between βeff and the

actual temperature β intuitively quantifies the effect of the
Matsubara correlations when the coupling to the environment is
very weak.

On the other hand, when the coupling with the environment
starts to be a significant fraction of the system eigenfrequency,
hybridization effects between the system and the bath become
relevant. As it will be shown in a later section, the Matsubara
correlations are essential to be able to correctly model both the
non-Markovian and the equilibrium properties in this parameter
regime (and which, in this case, were encoded in the detailed
balance condition). We first describe the HEOM, and how the
Matsubara term can be included, even at zero temperature, with a
fitting approach.

The hierarchical equations of motion. The HEOM method can
in principle describe the exact behavior of the system in contact
with a bosonic environment, without approximations. The deri-
vation can be found in refs. 40,41,48, and the general procedure can
be described as follows. Using the Gaussian properties of the free
bath, one can write down a formally exact time-ordered integral
for the reduced state of the system (or equivalently, a path-
integral representation). This is difficult to solve directly. How-
ever, by assuming that the free bath correlation functions can be
written as a sum of exponentials, one can take repeated time
derivatives to construct an exact series of coupled equations
describing the physical density matrix, and auxiliary ones
encoding the correlations between system and environment.
These can be truncated at a level that gives convergent results.

The problem then lies in parameterizing the correlation
functions of a given physical bath with a sum of exponentials.
In practice, one can either fit46,47,50 the correlation functions
directly with exponentials or fit the spectral density using a sum
of overdamped (Drude-Lorentz) or under-damped Brownian
motion spectral densities7,55,56. However, for the latter, as one
might expect from the discussion so far, the Matsubara
frequencies in Eq. (5) become increasingly important at low
temperatures. These frequencies, in the HEOM, are numerically
challenging to take into account due to the increasing number of
auxiliary density operators45,60 (though using an alternative Padé
decomposition with the HEOM has been explored as a way to
optimally capture the influence of these terms61).
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In the zero-temperature (β→∞) limit, the Matsubara
frequencies ϵk ¼ 2πk=β approach a continuum, i.e., 2π/β→
dx→ 0 for 2πk/β→ x. As a consequence, we can represent the
Matsubara correlation in Eq. (5) as the integral

MðtÞ ¼ � γλ2

π

Z 1

0
dx

xe�xt

ðΩþ iΓÞ2 þ x2
� � ðΩ� iΓÞ2 þ x2

� � : ð8Þ

However, this integral representation does not give a direct
solution in exponential form. Using a fitting procedure, we have
found that we can capture the influence of these terms with a
biexponential function,

MbiexpðtÞ ¼ c1e
�μ1t þ c2e

�μ2t ð9Þ
where cm and μi are real (for the choice of Matsubara
decomposition we use here). Adding more exponential terms
increases the accuracy of the fit only marginally for the parameter
ranges we study here. In addition, each exponent leads to a large
numerical overhead with the HEOM method, thus one would like
to keep the number of exponents to a minimum. In Fig. 1, we give
an example of the fitting of the correlation function.

Given the above decomposition, we can finally write the full
equations of motion. However, a fully generic formulation of the
HEOM46 treats the real and imaginary parts of the correlation
function separately, which turns the (for β=∞) single non-
Matsubara exponent in Eq. (4) into four exponents. It is more
numerically convenient to reduce these to two exponents,
following ref. 48, by defining (again, only for β=∞ for notational
simplicity) the new parameters c3= λ2(1− i)/4Ω, c4= λ2 (1+ i)/
4Ω, μ3=−iΩ+ Γ, and μ4= iΩ+ Γ. Meanwhile, as described
above, the Matsubara terms are entirely real, and given by Eq. (9).

In the HEOM itself, we denote the physical and auxiliary
density matrices as ρ�n where �n ¼ ½n1; n2; ::; nK �, (where here K=
4), is a multi-index composed of non-negative integers nk. The
physical density matrix of the system, traced over the environ-
ment, is given by ρ�0 ¼ ρ½0;0;:::;0� � TrEðρTÞ. Any other index
denotes an auxiliary density operator which encodes the

correlations between system and environment, as we will discuss
later. We use ρ�nk± to denote a higher-order ADO, which differs
from ρ�n in the kth index by ±1. For instance, ρ02þ ¼ ρ½0;1;0;:::;0�.
The equations of motion given by HEOM can be compactly
written as

_ρ�n ¼ �iL �
XK
k¼1

nkμk

 !
ρ�n � i

XK
k¼1

L�
k ρ�nk� þ Lþ

k ρ�nkþ

	 

ð10Þ

where Lρ ¼ ½Hs; ρ� and the L±
k are Liouville space operators,

depending on the spin-bath coupling operator and the exponen-
tial decomposition of the correlation function40,41 given by
L�
k ρ�nk� ¼ nkðcRk ½Q; ρ�nk� � þ cIkfQ; ρnk� gÞ and Lþ

k ρ�nkþ ¼ ½Q; ρnkþ �.
Note again that this is not a generic construction46, but is specific
for the choice of decomposition of correlation functions we
use here.

Environment as a discrete set of modes. Before discussing
results predicted by the HEOM, it is useful to consider two
complementary methods based on discrete decompositions of the
environment. The idea that the behavior of an infinite continuum
environment can be described by a finite set of discrete modes
arises in both the methodology of pseudomodes42,43,62–64 and the
so-called reaction coordinate mapping52–54. The former is based
on the identification of frequencies in the correlation functions
which are then assigned to a set of unphysical pseudomodes42,43.
In contrast, the reaction coordinate (RC) method is instead based
on a formal mapping of the full Hamiltonian environment
Hamiltonian to a single reaction coordinate and a residual (per-
turbative) environment.

Pseudomodes model. As shown in the seminal work of Garr-
away42 (and recently confirmed and generalized in ref. 43), as long
as the free correlation function of a discrete set of modes accu-
rately reproduces the correlation function of the full bath, their
effect on a given system should be identical, a concept that recalls
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Fig. 1 Free-bath correlation functions. The top two panels show (a) real and (b) imaginary parts of the correlation function for the under-damped Brownian
motion spectral density with λ= 0.4ω0,γ= 0.4ω0, T= 0. The blue solid curves show the evaluation of the formula from Eq. (2) using Eqs. (4) and (8). The
red-dashed curves show the reconstruction of the same using Eq. (9) to fit the Matsubara term, Eq. (8). In the bottom left panel (c), we explicitly plot the
Matsubara part of the correlation function Eq. (4) alone, and its fit Eq. (9). The error in the fit is shown in the bottom right panel (d), which is also the same
as the error in the real part of the correlation function. The imaginary part is exact, and has no error after the reconstruction
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in spirit Baudrillard: “The simulacrum is never that which con-
ceals the truth—it is the truth which conceals that there is none.
The simulacrum is true.”65.

From the discussion so far, and the generalized proof in ref. 43,
it is evident that we can capture the full correlation function of
the free environment, Eq. (2), with a single under-damped mode
for the non-Matsubara part Eq. (4), and two additional modes,
from the fitting procedure Eq. (9), which capture the Matsubara
frequency contributions Eq. (5). By construction, at zero
temperature, the resulting dynamics of the system coupled to
these effective modes should obey the total Hamiltonian,

Hpm ¼ ωq

2
σz þ

Δ

2
σx þ σz

X3
i¼1

λiðai þ ayi Þ þ
X3
i¼1

ζ ia
y
i ai : ð11Þ

Here, ζ1=Ω, Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 � Γ2

p
, ζ2= ζ3= 0, λ1 ¼ λ=

ffiffiffiffiffiffi
2Ω

p
,

λ2 ¼ ffiffiffiffi
c1

p
, λ3 ¼ ffiffiffiffi

c2
p

(where c1 and c2 are the coefficients of the
fitted Matsubara terms in Eq. (9), and ζ2= ζ3= 0 because Eq. (9)
contains no oscillating components).

The damping of each pseudomode is simply described by a
Lindbladian with the corresponding loss rate,

Di½ai� ¼ Gið2aiρayi � ayi aiρ� ρayi aiÞ ; ð12Þ
where G1 ¼ Γ, G2 ¼ μ1, G3 ¼ μ2.

Note that the couplings λ2 and λ3 between the pseudomodes
associated with the Matsubara terms and the system are complex
(since c1 and c2 are required to be negative), and thus the above
Hamiltonian is strangely non-Hermitian66. This situation is not
immediately covered by the general proof in ref. 43. We extend that
proof in Supplementary Note 6, and show that, to properly take into
account the negative c1 and c2, the dynamics of the system has to be
computed by solving the following equation of motion for the
density matrix ρ (which, throughout this article, will be referred to
as the pseudo-Shrödinger equation for simplicity)

d
dt

ρ ¼ �i½Hpm; ρ� þ D½ρ� ; ð13Þ

where D½ρ� ¼P3
i¼1 Di½ai�. The adjective “pseudo” not only refers

to the pseudomodes in question but also to the fact that, when Hpm

is non-Hermitian, we are purposely not taking the Hermitian
conjugate when Hpm acts on the right of ρ.

While we refer to Supplementary Note 6 for a detailed
justification, given the non-Hermitian nature of the Hamiltonian
in Eq. (11), it is worth presenting here a sketch of the proof.

Following a parallel strategy to the one presented in ref. 43, it is
possible to show that the dynamics of observables in the system
+pseudomodes space (obtained by solving the pseudo-
Shrödinger equation above), is equivalent to a reduced pseudo-
unitary dynamics, in which each pseudomode is coupled to a
bosonic environment under a rotating-wave approximation and
with a constant spectral density (defined for both positive and
negative frequencies).

As mentioned, the prefix pseudo- refers to the fact that the
Hermitian conjugate is never taken when considering equation of
motion for the density matrix. From this auxiliary model, the
reduced system’s dynamics can be obtained through a Dyson
equation. When the pseudomodes and their environments are in an
initial Gaussian state, this equation is fully specified by the two-time
correlation function of the coupling operator

P3
i¼1 λiðai þ ayi Þ.

The advantage of considering a non-Hermitian Hamiltonian
together with a pseudo-Schrödinger equation in this derivation is
that, by doing so, the Dyson equation for the reduced dynamics of
the system is formally equivalent to one where the system is
physically interacting with a single environment via a Hermitian
coupling operator characterized by the same correlation function
C0(t)+Mbiexp(t). This completes the proof.

To summarize, the reduced system dynamics computed from
Eq. (13) is equivalent to that of the original spin-boson model, Eq.
(1), under the assumption (or, in our case, approximation, due to
the fitting procedure used to capture the Matsubara terms) that
the correlation in Eq. (2) has the form

CðtÞ ¼ C0ðtÞ þMbiexpðtÞ : ð14Þ
Remarkably, we will see in a later section that this pseudomode

model precisely reproduces the results of the HEOM model, both
when the Matsubara frequencies (modes) are neglected, and when
they are included, and it also allows for an interpretation of the
auxiliary density matrices in the HEOM. In addition, the latter
suggests that the HEOM can be derived, in some cases, from the
pseudomode model itself (akin to the dissipaton model
introduced by Yan67). It is also interesting to note that like the
HEOM68, and unlike a normal Lindblad master equation, Eq.
(13) does not guarantee complete positivity because of the non-
Hermitian couplings. In Supplementary Note 8, we discuss this in
detail, and provide criteria for guaranteeing complete positivity in
terms of the parameters in the fit.

We finish this section with a brief note on the effect of neglecting
the Matsubara correlations, i.e., in considering the approximation
CðtÞ7!C0ðtÞ. In this case, only a single pseudomode is needed, i.e.,
i= 1 in Eqs. (11) and (12). Alternatively, as we show in
Supplementary Note 7, this single pseudomode can be understood
as mediating the interaction between the system and a residual bath
of bosonic modes (with annihilation operator fk and frequency ωk′)
with the Hamiltonian

HMats ¼ ωq

2 σz þ Δ
2 σx þ λσz

ða1þay1Þffiffiffiffiffi
2Ω

p þΩay1a1

þP
k
ωk′f

y
k fk þ

P
k

gk′ffiffiffiffiffi
2Ω

p ffiffiffiffiffiffi
2ω′

k

p f yk a1 þ ay1fk
	 


;
ð15Þ

where the couplings gα′ describing the interaction with the residual
environment are characterized by the spectral density JMats(ω)= γΩ
and defined for both positive and negative frequencies. This system
has an interesting relation to another technique used to model the
spin-boson model: the reaction coordinate mapping.

Reaction coordinate (RC) mapping. Returning to the full spin-
boson Hamiltonian, in the reaction coordinate approach a unitary
transformation maps the environment to a single-mode reaction
coordinate and a residual bath. As discussed in10,54,69, for the
under-damped Brownian motion spectral density the new
Hamiltonian is

HRC ¼ ωq

2 σz þ Δ
2 σx þ λσz

ðaþayÞffiffiffiffiffiffi
2ω0

p þ ω0a
ya

þP
k
ωk′′d

y
kdk þ aþ ay

� �P
k

gk′′ dkþdykð Þffiffiffiffiffiffi
2ω0

p ffiffiffiffiffiffiffiffi
2ωk′′

p ;
ð16Þ

where the residual bath, described by operators dk, with fre-
quencies ωk′′ and couplings gk′′, has an Ohmic spectral density
Jres(ω)= γω. Importantly, this Hamiltonian is still “exact”, and
properties of the RC mode are related to the original environ-
ment54 via X

k

gkffiffiffiffiffiffiffiffi
2ωk

p ðbyk þ bkÞ �
gffiffiffiffiffiffiffiffi
2ω0

p ðay þ aÞ : ð17Þ

Using this new degree of freedom, for small γ, such that a
Born–Markov-secular approximation for the residual bath is
valid, one can derive a new master equation which describes the
dynamics of the system coupled to the reaction coordinate, and
which preserves detailed balance by definition [see Supplemen-
tary Eq. (3) in Supplementary Note 1].
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As can be seen by direct comparison, the Hamiltonians in Eqs.
(15) and (16) are related by a rotating-wave approximation
(RWA) and a Markov approximation in the coupling between the
reaction coordinate and its residual environment (and a
renormalization of the RC frequency). In Supplementary Note 1,
we present an alternative intuitive argument showing why
applying a RWA and Markov approximation leads to a
correlation function without Matsubara terms. Subsequently,
deriving a master equation for the residual environment under
these conditions leads to one which does not conserve detailed
balance as explicitly shown in Supplementary Eq. (7).

Overall this suggests that the Matsubara frequencies play two
roles: first of all, they restore detailed balance, both on the level of
the system (in the weak coupling regime, as expected), and also
on the level of the system and RC mode (in the strong coupling
and narrow-bath regime). Secondly, beyond the weak coupling
and narrow-bath regime, they describe the non-negligible
influence of “background” modes in the environment not
captured by the reaction coordinate itself (e.g., strong correlations
with the residual bath).

Virtual excitations in the ground state. Before discussing the
strong coupling limit, we first consider the weak coupling case
and illustrate how neglecting the Matsubara terms leads to an
artificial temperature. In Fig. 2, we plot the probability for the
qubit to be excited in the steady state ρ11(t)= 〈1|ρ(t→∞)|1〉
(where |1〉 is the excited state of the free qubit Hamiltonian) as a
function of qubit frequency �ω. We immediately see that both
HEOM and pseudomode approaches give a steady-state popula-
tion identical to that suggested by Eq. (7) when the Matsubara
terms are neglected. Similarly, by fitting the Matsubara terms, and
introducing them into both methods, we find that the population
drops close to zero, as expected. The residual error in the fit
produces a deviation from the expected β=∞↔ ρ11(t→∞)= 0,
which becomes large as the qubit frequency becomes small, and
hence more sensitive to the residual effective temperature.

As we increase the coupling, the detailed balance condition in
terms of the bare qubit Hamiltonian and the original bath
temperature in Eq. (7) is no longer a good measure of the fit. This
is because in the ultra-strong coupling regime, when the effect of
the environment on the system is non-perturbative, so-called
virtual excitations can become important25. For example, in this
scenario, the hybridized system–environment ground state
(which in principle should be the steady-state at zero tempera-
ture) contains a finite population of photons which cannot be
directly observed (or emitted into other modes or environments).

In our treatment of the ultra-strong coupling regime, we find
that the Matsubara terms are crucial to obtain the correct photon
population in a single collective mode, and trap that population.
In order to show this, we first consider the RC picture where the
collective bath coordinates are defined in terms of a single
mode54, as per Eq. (17). The RC mapping gives a very clear
picture of the dominant influence of the environment in terms of
the collective RC mode such that any virtual or real photon
population of the collective mode is given by the expectation of
the number operator aya

 �
(though this does not directly

correspond to the original bath-mode occupation).
Can a similar quantity be extracted from the HEOM? It has

been shown70,71 that higher-order moments of the total bath
coupling operator can be extracted from certain combinations of
auxiliary density operators returned by the HEOM. Similarly, for
a single undamped mode, ref. 72 showed that the population is
given by the second-level auxiliary density matrix. In our case, we
can extract populations that correspond to precisely those of the
pseudomodes (see Supplementary Note 2). For example, the

occupation of the first pseudomode is given by

ay1a1
D E

¼ ρ1;1;0;0
λ21

: ð18Þ

It is clear then that the ADOs and the pseudomodes bear a close
relationship.

As we can see in Fig. 3 (starting from the initial condition of a
zero-temperature environment, and the qubit in the ground state
of the free system Hamiltonian), in the absence of the Matsubara
terms, the population of the excited state of the two-level system
(see Supplementary Fig. 1), and the population of the a1 mode
predicted by the HEOM from Eq. (18) match closely that of the
RC model with the approximation of the RWA for the RC-
residual bath coupling and a flat-residual-bath approximation
[described by Supplementary Eq. (7)]. In this case, the population
increases to a steady state which can be ascribed to the artificial
nonequilibrium situation induced by neglecting the Matsubara
correlation. In the RC model without Matsubara contributions,
since the state ρ(t) of the qubit and RC mode evolves through the
Lindblad equation shown in Supplementary Eq. (7), the rate of
energy dissipation into the residual environment is given, in
terms of the bare annihilation operator a, by

JðtÞ ¼ γω0 Tr ayaρðtÞ� �
; ð19Þ

i.e., proportional to the average photons in the steady state.
However, we know that this emission is unphysical, as it both
violates detailed balance and energy conservation.

In contrast, the addition of the Matsubara terms to the HEOM,
the addition of the Matsubara modes to the pseudomode model,
and the corresponding removal of the unphysical assumptions in
the RC model, results in dynamics in all three cases which tend
toward a steady state which is close to the ground state of the

0.4

Pseudomode/HEOM (no Matsubara)

Pseudomode/HEOM (fitted Matsubara)

RC (Matsubara)

Detailed balance error formula

0.2

� 1
1 

(t
   

  ∞
)

0.0

0 1 2
�/�0

Fig. 2 Correcting detailed balance by including Matsubara frequencies. The
probability of the qubit to be excited in the steady-state limit ρ11(t→∞)=
〈1|ρ(t→∞)|1〉 as a function of the qubit frequency �ω=ω0. Here, we choose a
weakly coupled broad bath λ= 0.01ω0, γ=ω0, i.e., when the qubit should
have close to zero excitations in the steady state. The black dashed curve is
obtained from the effective inverse temperature βeff in Eq. (7), and it closely
fits the populations of the qubit using both the pseudomode or HEOM
methods without Matsubara corrections (turquoise solid curve). This
nonzero temperature arises precisely because of the the neglect of the
Matsubara terms. The red-dashed-dotted curve shows the results obtained
from including the Matsubara terms in the HEOM and pseudomode
methods (the results are identical), while the blue double-dashed curve is
from the full RC model. We can see that, for the HEOM and pseudomode
results, detailed balance is restored up to a residual error from the fit,
which, however, can become substantial for small qubit splittings (while the
RC model obeys detailed balance by construction). Note that if λ is
increased, the detailed balance condition in terms of the bare qubit
Hamiltonian is not expected to hold in any case, and a more careful error
analysis must performed
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coupled system-RC Hamiltonian. In this case, the HEOM and
pseudomode model match exactly, while the RC model gives a
qualitative agreement. This trend is one of our primary results:
the addition of Matsubara terms to the HEOM (or equivalently
Matsubara modes to the pseudomode model) restores detailed
balance in terms of the coupled system-RC Hamiltonian (up to a
residual error from the fit) and traps photons in an effective
ground state, as confirmed by the RC model. In this case, the state
ρ(t) of the qubit and RC mode evolves through the Lindblad
equation shown in Supplementary Eqs. (1) and (3) characterized
by jump operators between eigenstates. As a consequence, since
the steady state is the ground state, there is no steady-state energy
dissipation [see Supplementary Eq. (4)] into the residual bath.

As γ is increased, cf. Fig. 4, we see a deviation between HEOM
and RC models (see also Supplementary Fig. 1 for a comparison
of system populations, and Supplementary Note 5 for a
discussion of the steady state as a function of coupling strength).
For strong coupling and broad baths, the Matsubara terms
become more relevant, as does the error arising from the fitting
procedure. In Supplementary Note 4, we perform an error
analysis which suggests that the difference between the RC results
and the HEOM results exceed potential errors arising from the fit.
Thus, we primarily ascribe this difference to the breakdown of the
perturbative approximation for the residual bath in the RC
model, which becomes more pronounced as γ is increased.

One might attribute the difference to the fact that the RC
model does not take into account the frequency shift that we see
in Eq. (4). However, phenomenologically solving for the ground
state of the system coupled to an RC mode with renormalized

frequency Ω actually predicts a larger population (shown by the
red dot-dashed line in Fig. 4) than the normal system-RC ground
state due to the decreased frequency of the non-Matsubara
mode25. In addition, the predicted population is also larger than
the full HEOM/pseudomode results, which suggests that, as γ is
increased, the correlations between the system and the pseudo-
modes associated with the Matsubara frequencies become
stronger, and actually reduce the population in the non-
Matsubara pseudomode25. However, without the RC model to
guide us with a physical interpretation in this limit, it becomes
difficult to associate the populations of the Matsubara modes to
real physical modes, collective or otherwise53,73–76. In fact, as
described earlier, since their contribution to the correlation
functions of the bath is negative in the parameter regimes we
consider here, in the pseudomode model their coupling to the
system is non-Hermitian, accentuating their nature as simulacra.

Discussion
We have analyzed the dynamics and steady-state properties of the
zero-temperature spin-boson model in the strong and ultra-
strong coupling regime using three different techniques. We
showed that the Matsubara terms, taken into account with a fit-
ting procedure in the HEOM and pseudomode methods, restore
detailed balance (albeit up to a residual error), even in the ultra-
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Fig. 3 Dynamics of the bath-mode occupation for intermediate coupling and
narrow bath. For the RC method, we define the bath-mode occupation in
terms of the RC mode itself aya

 �
(light-purple dashed curves). For the

HEOM (blue solid curves) and the pseudomode methods (red-dashed
curves), the bath mode is the effective mode associated with the frequency
Ω. The parameters are λ= 0.2ω0, γ= 0.05ω0, ωq= 0, Δ=ω0, T= 0. The
upper panel (a) gives the results of the three models we consider without
Matsubara terms (both direct, and effective in the RC case). For this choice
of parameters, all three models coincide. In the lower panel (b), we show
the three models with Matsubara terms included, and all three tend
towards to a steady-state which corresponds to the ground state of HRC
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Fig. 4 Dynamics of the bath-mode occupation for ultra-strong coupling and
broad bath. Here, we set the parameters λ=ω0, γ=ω0, and again ωq= 0,
Δ=ω0, T= 0. The upper panel (a) gives the results of the three models we
consider without Matsubara terms (both direct, and effective in the RC
case). For this choice of parameters, all the HEOM (blue solid curve) and
pseudomode models (red-dashed curve) coincide, but the RC model (light-
purple dashed curve) shows some deviations because it does not take into
account the renormalized frequency Ω. In the lower panel (b), we show the
three models with Matsubara terms included, and now only the RC model
tends to the ground state of HRC, while the pseudomode and HEOMmodels
coincide and take into account corrections due to strong correlations with
the effective “Matsubara modes” (note that the RC model is not corrected
by just including the renormalized frequency, as shown by the red dot-
dashed line, which shows the ground-state occupation for an RC model
with a phenomenologically altered frequency, i.e., by setting the frequency
of the RC mode to be equal to Ω)
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strong coupling regime. This was validated by a comparison with
the reaction coordinate method, which also indicates that the
Matsubara terms are important for the correct “trapping” of
virtual excitations in the collective ground state.

Simultaneously, we showed that a pseudomode model can
exactly capture the same dynamics as the HEOM, and can take into
account negative contributions to the correlation functions, like the
Matsubara frequencies, via a pseudo-Schrödinger equation.

Our results also elucidate the relationships and differences
between the three methods employed herein, particularly the strong
relationship between the pseudomode treatment and the HEOM.

Future work includes generalizing to arbitrary spectral den-
sities for systems such as superconducting qubits coupled to
transmission lines (with potentially structured environments77),
and photosynthetic complexes4–9. In addition, in the broad-bath
limit, it may be possible to assign direct physical meaning to the
ADOs of the HEOM, and the Matsubara modes of the pseudo-
mode method, by comparison with bosonic-chain mappings of
the environment53,73–76,78, in the same way the RC mapping
guides us in this work. This might allow, for example, inspection
of spatial dependencies of the photon population, as revealed by
other methods32,33. We hope that these insights can help toward
a better understanding of ultra-strong coupling at zero tem-
perature in continuum systems, and emphasize the impact of the
positive frequency nature of many physical environments (and
the resulting appearance of Matsubara frequencies).

Data availability
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during this study.

Code availability
The numerical code used to generate most of the figures in this work is available at
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