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Abstract 

 We explored the role of lipid accumulation products and visceral adiposity on the 

association between red meat consumption and markers of insulin resistance (IR) and inflammation 

in US adults. Data on red meat consumption, and health outcome measurements were extracted 

from the 2005-2010 US National Health and Nutrition Examination Surveys. Overall 16,621 

participants were included in the analysis (mean age = 47.1 years, 48.3% men). Analysis of co-

variance and “conceptus causal mediation” models were applied, while accounting for survey 

design. In adjusted models, a lower red meat consumption was significantly associated with a cardio-

protective profile of IR and inflammation. Body mass index (BMI) had significant mediation effects 

on the associations between red meat consumption and C-reactive protein (CRP), Apolipoprotein-B, 

fasting glucose (FBG), insulin, homeostatic model assessment (HOMA) IR and  β-cell function, 

glycated haemoglobin (HbA1c), triglyceride to high density lipoprotein (TG:HDL) ratio and 

triglyceride-glucose (TyG) index (all p < 0.05). Both waist circumference and anthropometrically 

predicted visceral adipose tissue (apVAT) mediated the association between red meat consumption 

with CRP, FBG, HbA1c, TG: HDL ratio and TyG index (all p < 0.05). Our findings suggest that adiposity, 

particularly the accumulation of abdominal fat, accounts for a significant proportion of the 

associations between red meat consumption IR and inflammation.  

 

Keywords: Meat Intake, Inflammation, Glucose Haemostasis, Insulin Resistance, Adiposity. 

Introduction 

Red meat consumption has been associated with a pro-inflammatory status, which in turn 

has been related to a higher risk for type 2 diabetes (1), metabolic syndrome (2) and coronary heart 

disease (2). The Multi-Ethnic Cohort Study and Nurses’ Health Study reported that a high red meat 

consumption was linked to approximately 40% greater risk of type 2 diabetes over a follow-up time 

of 14 and 4 years, respectively (3, 4). However, findings are not consistent across studies as a non-

significant association was also found between risk of type 2 diabetes and red meat intake, 

especially for unprocessed red meat and diabetes risk(5, 6).  
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Despite the conflicting literature surrounding red meat consumption and risk of type 2 

diabetes, there is evidence to suggest that increased red meat consumption is associated with 

increased whole-body and central adiposity (7). These findings may contribute to explaining the 

significant association between red meat consumption and type 2 diabetes as central adiposity is a 

more sensitive predictor of type 2 diabetes and other obesity-related chronic diseases compared to 

BMI (8). 

The role of visceral fat as a causal factor connecting obesity and weight gain to the 

pathogenesis of insulin resistance and atherosclerosis is established (9). Waist circumference has 

been proposed as a rapid and simple measurement for the assessment of abdominal adiposity but, 

like body mass index (BMI), is not able to discriminate between subcutaneous and visceral 

abdominal fat depots (10). Hence, additional simple and integrated indexes have been recently 

proposed by combining physical (i.e., waist circumference, BMI, thigh circumference, age) and 

biochemical measures [(i.e., triglycerides, blood glucose or high density lipoproteins (HDL)]. The lipid 

accumulation product (LAP) index is a marker of central fat accumulation, derived from the 

measurements of waist circumference and circulating triglycerides (11), which has been proposed as 

a predictor of insulin resistance (IR), metabolic syndrome (MetS), type 2 diabetes mellitus and 

cardiovascular diseases (12, 13). The visceral adiposity index (VAI) is another indicator of adipose 

tissue distribution which has been used in the stratification of adult obesity phenotypes (14) and to 

improve the prediction of cardio-metabolic risk (15). 

Regression analysis is frequently used to evaluate the association between dietary factors 

and disease risk but it may be characterised by a limited capacity to identify putative biological 

mechanisms which could possibly explain the association between red meat intake and risk of high 

inflammation and impaired glucose control  (16). Mediation analysis is a more sensitive statistical 

approach that can be used to explore and quantify the extent to which the relationship between an 

exposure and an outcome of interest occurs through the effect of a third variable (16, 17). The 

traditional approach to mediation analysis tends to produce a bias when the interaction between 

exposure and mediator is undefined (18, 19). In addition, unbiased valid estimates of direct and 

indirect effects can be obtained with the use of the counterfactual framework in causal mediation 

analysis (18, 19).  It is unclear to what extent the adjustment for adiposity, modifies or attenuates 

the association between meat consumption and cardio-protective parameters. Mediation analysis 

could clarify the role of adiposity underlying the relation between meat consumption and cardio-

protective factors. 
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Previous studies have investigated the association between red meat intake with biomarkers 

of inflammation and glucose/insulin metabolism with mixed results (20-23); however, none of these 

studies has attempted to identify which intermediate factors connect the exposure to red meat with 

the selected health outcomes. The present analysis aims to specifically investigate the link between 

red meat intake with CRP and glucose/insulin haemostasis and identify adiposity factors that may 

mediate these associations. These factors include markers of adiposity [WC, BMI, visceral adipose 

tissue (VAT)], lipid accumulation products (LAP) and visceral adiposity index (VAI) in a representative 

population of US adults by using National Health and Nutrition Examination Survey (NHANES) 

database.  We hypothesized that a higher red meat intake would be associated with unfavourable 

concentrations of inflammatory and glucose/insulin haemostasis biomarkers among adults and that 

these associations would be partly or fully mediated by adiposity markers.  

 

Methods 

Population characteristics  

The NHANES programme is implemented by the US National Center for Health Statistics (NCHS)  

(24). NHANES uses a complex, multistage and stratified sampling design to select a representative 

sample of the civilian and non-institutionalized resident population of the US. The NCHS Research 

Ethics Review Board approved the NHANES protocol and consent was obtained from all participants 

(24). The current study was based on analysis of data collected from 2005 to 2010. Data collection 

on demographics occurs through in-home administered questionnaires, while anthropometric and 

biochemistry data are collected by trained personnel using mobile exam centers (MEC). More 

detailed information is available elsewhere (24, 25).  

For the assessment of height and weight during the physical examination, participants were 

dressed in underwear, disposable paper gowns and foam slippers. A digital scale (‘Mettler Toledo, 

Panther’) was used to measure weight to the nearest 100 g, a fixed stadiometer was used to 

measure height to the nearest millimetre. Body mass index (BMI) was calculated as weight in 

kilograms divided by the square of height in metres. Waist circumference (WC) was measured at the 

iliac crest to the nearest millimetre (25). 

A blood specimen was drawn from the participant’s antecubital vein by a trained phlebotomist. 

Glycated haemoglobin (HbA1c) was measured using a Tosoh A1C 2.2 Plus Glycohemoglobin 

Analyzer. Fasting blood glucose (FBG) was measured by a hexokinase method using a Roche/Hitachi 

911 Analyzer and Roche Modular P Chemistry Analyzer. Insulin was measured using an ELISA 

immunoassay (Merocodia, Uppsala, Sweden) (26). Other laboratory-test details are available in the 

NHANES Laboratory/ Medical Technologists Procedures Manual (27). Apolipoprotein-B was 
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measured by radial immunodiffusion (RID) (25).  Details on the measurement of C-reactive protein 

(CRP) concentrations are available elsewhere (25). Homeostatic model assessment of insulin 

resistance (HOMA-IR), β-cell function (HOMA-B) and insulin sensitivity (HOMA-IS) were calculated as 

follows: HOMA-IR = [FBG (nmol/L) * insulin (mU/mL)/22.5], and HOMA-B=[20 × insulin (μU/ml)]/ 

[FBG (mmol/l) − 3·5] (28). The triglyceride-glucose (TyG) index was calculated as the ln[triglyceride 

(TG,mg/dl) × FBG (mg/dl)/2](29). Visceral adipose tissue (apVAT) was predicted with sex-specific 

validated equations that included age, BMI, and circumferences of the waist and thigh (30). The 

equation for men was: 6 *WC – 4.41 * proximal thigh circumference + 1.19 * age – 213.65; and the 

equation for women was: 2.15 * WC – 3.63 * proximal thigh + 1.46 * age + 6:22 * BMI -92.713 (30). 

VAI was calculated using sex-specific formulas: males [WC/39.68 + (1.88 ×BMI)] × (TGs/1.03) × 

(1.31/high density lipoprotein (HDL)); females: [WC/36.58 + (1.89 × BMI)] × (TGs/0.81) × (1.52/HDL), 

where both TGs and HDL levels are expressed in mmol/L (15). LAP was calculated as [WC–65] × [TG] 

in men, and [WC–58] × [TG] in women (11). Smoking status was self-reported and participants 

classified as current smoker or not. Metabolic equivalent of task (MET) is used to measure the 

intensity level of physical activity and indicated the rate of energy consumption for a specific activity. 

A MET is defined as 1 kcal/kg/hour that is roughly equal to the energy cost of being at rest. Physical 

activity was categorized into three intensity levels upon MET score: light, moderate and vigorous 

(31). Subjects with diabetes were excluded from the study. 

Red meat consumption 

Dietary intake was assessed via a 24-hour recall obtained by a trained interviewer during the 

MEC visit, with the use of a computer-assisted dietary interview system with standardized probes, 

i.e. the United States Department of Agriculture Automated Multiple-Pass Method (AMPM) (32, 33). 

Briefly, the type and quantity of all foods and beverages consumed in a single 24-hour period before 

the dietary interview (from midnight to midnight) were collected with the use of the AMPM. AMPM 

is designed to enhance complete and accurate data collection while reducing respondent burden 

(33, 34). Detailed descriptions of the dietary interview methods are provided in the NHANES Dietary 

Interviewer’s Training Manual (35). The MyPyramid Equivalents Database for USDA Survey Food 

Codes was used to calculate red meat consumption (35). In the current study red meat intake was 

calculated as the sum of beef, pork, lamb, veal and game consumption and expressed as grams per 

day. 
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Statistical analysis  

Analyses were conducted using the SPSS software (version 22, Chicago, IL, USA) according to 

the guidelines set forth by the center  for  disease and  prevention (CDC) for analysis of complex 

NHANES datasets, accounting for the masked variance and using the proposed weighting 

methodology (36). We used means and standard error mean for continuous measures (analysis of 

variance) and percentages for categorical variables (Chi-square). Analysis of covariance (ANCOVA) 

was used to compute age, race, energy intake, and sex-adjusted means of markers of insulin 

resistance or inflammation across quartiles of meat consumption.  

The counterfactual framework assessed the total, direct, and indirect effects of red meat 

consumption on markers of insulin resistance or inflammation with BMI, WC, apVAT, VAI and LAP as 

a mediator (37, 38) . In this approach, the “total effect” can be decomposed into a “direct effect” 

(not mediated by BMI, WC, apVAT, VAI and LAP, sup Fig1) and an “indirect effect” (mediated by BMI, 

WC, apVAT, VAI and LAP, sup Fig1). The analysis was conducted using the SPSS Macro developed by 

Preacher and Hayes (39). A product-of-coefficients test was used as it has the potential to detect 

significant mediation effects in the absence of a significant intervention effect (37, 38). In brief, the 

macro generates outputs that include the following steps. Firstly, the “total effect” (γ coefficient) of 

the exposure on the outcome variable (i.e., markers of insulin resistance or inflammation) is 

estimated by regressing the markers of  insulin resistance or inflammation (outcomes) on red meat 

consumption (independent variable) while adjusting for the covariates used in the first step, but 

without adjusting for mediators. The “action theory” test is then used to examine the effect of the 

exposure (meat consumption) on the hypothesized mediators (α coefficient, BMI, WC, apVAT, VAI 

and LAP, sup Fig1). The “conceptual theory” test examines the association between changes in the 

hypothesized mediators and changes in outcome variables (i.e., markers of insulin resistance or 

inflammation; β coefficient, sup Fig 1). The program also estimates the direct (γ’ coefficient) and 

indirect (α#β product of coefficients) effects. The proportion of the mediation effect was calculated 

using the following equation [α#β / ( α#β + γ)]. Full or complete mediation is present when the total 

effect (the γ’-path) is significant, the direct effect (the γ’-path) is not significant and α#β is significant, 

whereas partly or incomplete mediation is present when the direct effect (the γ’-path) is also 

significant. Inconsistent mediation is present when neither total nor direct effect is significant and 

α#β is significant(40). All estimates were adjusted for age, sex, race/ethnicity, educational, smoking 

and level of physical activity. 
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Results 

General characteristics 

A total of 16,621 subjects met the criteria for inclusion in the current analyses. Overall 8,607 

(48.3%) participants were men and the mean age was 47.1 years. Non-Hispanic white (69.4%) was 

the largest racial group and other Hispanic (4.5%) the smallest racial group. Furthermore, 56.1% of 

the participants were married, while 56.4% had achieved more than high school education. Mean 

and standard error for BMI, WC, apVAT were 28.7±0.05 kg/m2, 98.2±0.12 cm and 179.2±1.18, 

respectively. Overall, 20.1% were current smokers including 24.7% of men and 15.7% of women. 

Participants engaging in vigorous physical activity represented 5.2% of the participants, and those 

engaging in little/no physical activity represented 24.3%. Age, sex, and race-adjusted mean of 

markers of insulin resistance and inflammation (hs-CRP, apolipoprotein B, FBG, insulin, HOMA-IR, 

HOMA-B and TyG index) significantly increased across quartiles of red meat consumption (all 

p<0.001, Table 1); HbA1c was not associated with red meat consumption (Table  1). 

 

Red meat intake, anthropometry, insulin resistance and inflammation 

Action theory: After covariates adjustment, there was a significant association between red meat 

intake and BMI (β: 0.345, p<0.001), WC (β: 0.912, p<0.001), apVAT (β: 3.27, p <0.001), VAI (β: 0.054, 

p <0.001) and LAP (β: 0.066, p<0.001) (Table 2).  

Total effect: This was calculated by examining the association between red meat intake and markers 

of insulin resistance or inflammation in multivariate models without adjusting for potential 

mediators. Results showed that, with the exception of HbA1c and HOMA-B, all the markers of insulin 

resistance or inflammation were positively and significantly associated with red meat intake (all 

p<0.04, Table 2). 

Conceptual theory: This analysis tested the association between mediators (BMI, WC, apVAT, VAI 

and LAP) and markers of insulin resistance or inflammation; all potential mediators had significant 

and positive associations with markers of insulin resistance or inflammation (all p<0.001, Table 3). 

 

Direct and indirect effects of red meat consumption on insulin resistance and inflammation  

Table 4 shows the “direct effect”, “indirect effect”, proportion of mediation effect, and Sobel 

statistics for testing indirect effects. Both BMI and WC significantly mediated the association 

between markers of insulin resistance and inflammation and red meat intake (all p<0.001); BMI and 

WC showed the greatest effect on FBG (β=0.312, β=0.371, respectively).  apVAT was a significant 

mediator for the association between red meat intake with CRP, FBG, HbA1c and TyG index (all 

p<0.001); similarly FBG was the variable with the strongest association with apVAT (β=0.293). Both 
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VAI and LAP mediated the association between red meat intake and markers of insulin resistance 

and inflammation (all p<0.001); Serum Apolipoprotein (B) was the variable with the strongest 

association with VAI and LAP (β=0.682, β=0.808, respectively). 

 

Discussion: 

In the current study we demonstrated that red meat intake was significantly associated with 

all anthropometric outcomes (BMI, WC, apVAT, VAI and LAP) in fully adjusted models. Red meat 

intake was also significantly associated with markers of insulin resistance, (except for HbA1c and 

HOMA-B), and with inflammation. In addition, mediation analyses suggested that these significant 

associations were partly or fully mediated by central adiposity.  

A systematic review reported a significant link between red meat intake, especially 

processed varieties, with risk of breast cancer (41). Existing observational and intervention studies 

testing the association between red meat consumption wand CRP levels have reported mixed 

results. Findings were significant in some studies (20, 22) (42) which is in line with what was found in 

this study. However other studies have findings contradictory to what our study showed 

demonstrating that while processed meat was positively associated with CRP, red meat consumption 

alone was not (23) and in another study where lean red meat was not associated with levels of CRP 

(43). The cholesterol (44), iron (45) and saturated fatty acid  (44, 46) content of red meat has been 

suggested, to some extent, to explain the association between red meat and adverse health 

outcomes. (47, 48).Previous studies on the effect of meat consumption on glucose/insulin 

homeostasis have been inconsistent, with some finding an association, in line with our study (49-52), 

and other failing to show such an association (21, 22). It has been reported that red meat 

consumption may have  impact on glucose/insulin metabolism though iron-related metabolic 

pathways (53). Iron is a strong pro-oxidant that catalyses several cellular reactions involved in the 

production of reactive oxygen species, and hence increases the level of oxidative stress (54). This can 

cause damage to cellular structures, including pancreatic beta cells, and high body iron stores have 

been shown to be associated with an elevated risk of diabetes (54). Once  iron accumulated in the 

liver, it could interrupt with role of insulin and also constrain the glucose production (55). Increased 

iron accumulation might lead to insulin resistance by constraining glucose uptake in different tissues 

(53). Clinical studies have shown no significant effect of iron supplementation on CRP levels (45).  

Additionally, the effect of red meat on uric acid levels could constitute another pathway linking this 

dietary component with glucose/insulin homeostasis dysregulation (56). It has been reported that 

uric acid could play a role in oxidative stress (57) and inflammatory factors (57), which are both 

linked to the progress of unfavourable glucose/Insulin homeostasis (56, 57). Further, an experiment 
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in animal models reported that fructose-induced hyperuricemia plays a pathogenic role in 

developments of cardio-metabolic risk factors (58). 

A prolonged intake of saturated fatty acids is correlated metabolic syndrome and is known 

to contribute to weight gain and inflammation if consumed in excess (59, 60). In particular saturated 

fatty acids are known to contribute to increases in influence white adipose tissue increasing 

inflammatory response (61-63). Hence, we hypothesised that a high energy diet which contains 

excess red meat consumption and is high in saturated fatty acids may be associated with weight gain 

and thus increased adiposity and subsequently contribute to developing unfavourable 

glucose/insulin homeostasis enhancing low grade inflammation which is strongly linked to the 

pathogenesis of CVD and other non-communicable disease. The role of dietary factors, such as 

excess refined sugar or saturated fat intake, on triggering low grade chronic inflammatory response 

has received further scientific support recently, reiterating the link with age- related chronic 

conditions. These inflammatory responses are thought to interact with the ageing process and, if 

persisted could play a key role in the pathogenic mechanisms leading to the onset of chronic 

metabolic and cardiovascular diseases (64).  

The main strength of the present study is the investigation of the mediation effects using 

various  markers  of  adiposity  including  not  only  BMI and WC, which are  the  markers  of  general 

and abdominal obesity, but  also  apVAT, VAI and  LAP. Moreover we have used a randomly  

selected, large  and representative sample and  our  results  can  be  extrapolated  to  the  general  

population.  Lastly, the analyses included extensive adjustment for potential confounders which 

reduces the chance of the residual confounders.   

The study has limitations. The study is cross sectional and focused on adults only. Cohort studies 

may better address the causal relation between red meat intake and relevant health outcomes, but 

may not be feasible because of the nature of the exposure and ethical issues. Consumption reported 

associations do not necessarily mean causation. Consumption of red meat in different life stages 

(childhood, adolescents adulthood and during ageing) has been previously shown to affect risk 

estimates (65).  Furthermore, different patterns of exposure over time could also affect the results. 

Cooking methods and variations in animal farming and meat preparation, can alter the quality as 

well as the health effects of red meats (66, 67). This introducing additional residual confounding into 

the analyses (68-70).  This information was not available and therefore could not be controlled. The 

mediating effect of WC may be affected by BMI, or vice versa, because of the high colinearity 

between these two variables. This issue could be resolved by adding BMI and WC simultaneously to 

the mediation model (45). However, this approach was not possible in our analyses because of the 

complex survey design of the present study. Hence, in an attempt to overcome this limitation, we 
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have  added  other validated adiposity  factors to the models such as  apVAT, LAP and VAI, which 

provides an independent evaluation of the mediating role of central adiposity between red meat 

intake and markers of diabetes risk. Lastly, although BMI and WC are regularly applied to determine 

adiposity, these indicators are still imprecise and can lead to bias in determining obesity. For 

instance, BMI, is usually limited compared to direct measures of obesity due  to the fact that it does 

not consider age, sex, bone structure, fat distribution or muscle mass into (71). However, we also 

used other markers of adiposity (apVAT and LAP) which are sensitive to the age, and sex. 

 

Conclusion: 

Our study finding suggests that high red meat consumption could negatively affect 

glucose/insulin homeostasis and inflammatory profile, via mechanisms involving central fat 

accumulation. Future research is warranted to explore the effect of reducing red meat intake on 

glucose/insulin homeostasis, which in turn could inform dietary strategies to reduce the risk of 

T2DM.  

 

 

 

Availability of data and material: all the data are from public access database. 
 

Abbreviations: 
Red meat consumption (RMC) 

insulin resistance (IR) 

Homeostatic model assessment (HOMA) 

C-reactive protein (CRP) 

Body mass index (BMI) 

anthropometrically predicted visceral adipose tissue (apVAT) 

triglyceride-glucose (TyG) 

fasting glucose (FBG) 

high density lipoprotein (TG:HDL) 

glycated haemoglobin (HbA1c) 

lipid accumulation product (LAP) 

metabolic syndrome (MetS) 

high density lipoproteins (HDL) 
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visceral adiposity index (VAI) 

National Center for Health Statistics (NCHS) 

mobile exam centers (MEC) 

National Health and Nutrition Examination Survey (NHANES) 

Metabolic equivalent of task (MET) 

Agriculture Automated Multiple-Pass Method (AMPM) 

center  for  disease and  prevention (CDC) 

Analysis of covariance (ANCOVA) 
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Supplementary Figure legend: 

 

Supplementary FIGURE 1. Mediation model for the association between red meat consumption and 

Insulin/Glucose Haemostasis and inflammation; with body mass index (BMI), waist circumference (WC) and 

anthropometrically-predicted visceral adipose tissue (apVAT), visceral adipose tissue (VAI) and Lipid 

accumulation product (LAP) as mediators. Path α represents the regression coefficient for the association of 

red meat consumption with BMI, WC, apVAT, VAI and LAP ”action theory”. Path β represents the regression 

coefficient for the association of BMI, WC, apVAT, VAI and LAP with Insulin/Glucose Haemostasis and 

inflammation “conceptual theory”. The product of regression coefficients α and β represents the mediated 

effect (indirect effect) of BMI, WC, apVAT, VAI and LAP (α#β). Path γ’ represents the direct effect of red meat 

consumption with Insulin/Glucose Haemostasis and inflammation, after adjustment for BMI, WC , apVAT, VAI 

and LAP “direct effect”. Path γ represents the simple total effect of red meat consumption on Insulin/Glucose 

Haemostasis and inflammation, without ad ustment for BMI, WC, apVAT, VAI and LAP “total effect”. 
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Table 1. Age-, sex-, and race-adjusted mean of markers of insulin resistance and inflammation across 
quartiles of red meat consumption 
 

Variables Quartiles of red meat consumption  

p –

value a 

 

 

1 2 3 4 

N,  4153 4158 4166 4144 

Median (25th–75th percentiles)  

Meat Consumption (g/day) 

5.5 (2.2-

7.8) 

11.1 (9.8-

19.7) 

32.4(27.6-

41.9) 

58.4 (46.3-

66.9) 

Serum Hs-CRP (mg/dl) 0.29±0.01 0.36±0.01 0.39±0.03 0.48±0.01 <0.001 

Serum Apolipoprotein (B) 
(mg/dL) 

91.3±0.86 93.9±0.82 96.4±0.98 97.1±1.04 <0.001 

Fasting blood glucose (mg/dl) 97.4±0.65 97.6±0.82 100.2±0.49 102.3±0.76 <0.001 

Plasma Insulin (µU/mL) 1.86±0.01 1.93±0.02 2.06±0.01 2.19±0.01 <0.001 

HOMA-IR 0.69±0.03 0.89±0.01 1.06±0.01 1.18±0.01 <0.001 

HOMA-B 4.29±0.01 4.41±0.01 4.62±0.02 4.79±0.01 <0.001 

HbA1c (%) 5.44±0.02 5.49±0.01 5.34±0.01 5.28±0.02 0.28 

TyG index 8.46±0.01 8.59±0.01 8.71±0.03 8.89±0.01 <0.001 

HOMA-IR, Homeostatic model assessment of insulin resistance ; HOMA-B, Homeostatic model 

assessment of β-cell function; TyG index, triglyceride-glucose index; hsCRP; high sensitivity C-reactive 

protein; HbA1c haemoglobin A1c. Values expressed as estimated mean and standard error. 

a  p-values for linear trend across quartiles of hs-CRP. Variables were compared across quartiles of 

red meat consumption using analysis of covariance (ANCOVA) test. 
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Table 2. Estimates of regression coefficients (95% CIs) for the association between red meat 

consumption (g/day), BMI, WC, apVAT, VAI and LAP (action theory), and markers of insulin 

resistance and inflammation (total effect) among US adults in NHANES 

Mediator Estimate 95% CI P 

BMI 0.34 (0.21-0.48) <0.001 

WC 0.91 (0.59-1.24) <0.001 

apVAT 3.27 (0.95-5.42) <0.001 

LAP 0.06 (0.04-0.08) <0.001 

VAI 0.05 (0.03-0.07) <0.001 

Outcome  

Serum Hs-CRP (mg/dl) 0.03 (0.02 - 0.07) 0.01 

Serum Apolipoprotein (B) 

(mg/dL) 

                     0.96 (0.45-1.12) 0.01 

Fasting blood glucose 

(mg/dl) 

0.69 (0.33-1.01) 0.04 

Plasma Insulin (uU/mL) 0.03 (0.02 - 0.06) <0.001 

HOMA_IR 0.04 (0.02 - 0.07) <0.001 

HOMA_B 0.01 (-0.005- 0.04) 0.14 

HbA1c (%) 0.01 (-0.003- 0.04) 0.12 

TyG index 0.04 (0.03-0.06) <0.001 

Abbreviations: BMI: body  mass  index, WC, waist  circumference, apVAT, Anthropometrically-

predicted visceral adipose tissue , HOMA_IR, Homeostatic model assessment of insulin resistance  ; 

HOMA_B, Homeostatic model assessment of β-cell function HOMA_S; Homeostatic model 

assessment of insulin sensitivity, TyG index, triglyceride-glucose index Hs-CRP; high  senility C-reactive 

protein, HbA1c Glycated haemoglobin.  All estimates were adjusted for age, sex, race/ethnicity, 

education, smoking and level of physical activity. Estimates for mediator and outcomes correspond to 

the regression coefficients α and £, respectively, in Figure 1.  
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Table 3. Estimates of regression coefficients (95% CIs) for the association between BMI, WC, apVAT, 

VAI and LAP with markers of insulin resistance and inflammation (conceptual theory) among US 

adults  

 

Outcom
es 

BMI WC apVAT VAI LAP 

Est
im
at
e 

95% 
CI 

P Es
ti
m
at
e 

95% 
CI 

P Est
im
ate 

95% 
CI 

P Est
im
ate 

95% 
CI 

P Est
im
at
e 

95% 
CI 

P 

Serum 
Hs-CRP 
(mg/dl) 

0.0
8 

0.08
0-
0.08
5 

<0.
00
1 

0.
03 

0.03
6-
0.03
8 

<0.
00
1 

0.0
09 

0.00
89-
0.00
96 

<0.
00
1 

0.4
0 

0.38
-
0.42 

<0.
00
1 

0.
56 

0.52
-
0.56 

<0.
00
1 

Serum 
Apolipo
protein 
(B) 
(mg/dL) 

0.5
4 

0.46
0-
0.63
0 

<0.
00
1 

0.
29 

0.26
0-
0.33
0 

<0.
00
1 

0.0
9 

0.07
3-
0.10
2 

<0.
00
1 

14.
23 

13.9
5-
15.2
6 

<0.
00
1 

13
.6
2 

12.5
2-
14.6
3 

<0.
00
1 

Fasting 
blood 
glucose 
(mg/dl) 

0.7
7 

0.69
0-
0.88
0 

<0.
00
1 

0.
36 

0.32
0-
0.40
0 

<0.
00
1 

0.0
7 

0.06
4-
0.09
5 

<0.
00
1 

8.2
5 

7.62
-
9.12 

<0.
00
1 

7.
42 

6.39
-
8.54 

<0.
00
1 

Plasma 
Insulin(u
U/mL) 

0.0
5 

0.05
4-
0.05
9 

<0.
00
1 

0.
02 

0.02
4-
0.02
6 

<0.
00
1 

0.0
06 

0.00
5-
0.00
7 

<0.
00
1 

0.4
0 

0.38
-
0.42 

<0.
00
1 

0.
44 

0.43
-
0.46 

<0.
00
1 

HOMA_I
R 

0.0
6 

0.06
1-
0.06
5 

<0.
00
1 

0.
02 

0.02
8-
0.03
0 

<0.
00
1 

0.0
07 

0.00
6-
0.00
8 

<0.
00
1 

0.4
7 

0.44
-
0.49 

<0.
00
1 

0.
51 

0.49
-
0.52 

<0.
00
1 

HOMA_
B 

0.0
3 

0.03
4-
0.03
9 

<0.
00
1 

0.
01 

0.01
6-
0.01
8 

<0.
00
1 

0.0
04 

0.00
3-
0.00
5 

<0.
00
1 

0.2
3 

0.21
-
0.25 

<0.
00
1 

0.
28 

0.26
-
0.30 

<0.
00
1 

HbA1c 
(%) 

0.0
2 

0.02
3-
0.02
7 

<0.
00
1 

0.
01 

0.01
0-
0.01
2 

<0.
00
1 

0.0
02 

0.00
1-
0.00
3 

<0.
00
1 

0.2
1 

0.19
-
0.23 

<0.
00
1 

0.
20 

0.19
-
0.22 

<0.
00
1 

TyG 
index 

0.0
2 

0.02
7-
0.03
1 

<0.
00
1 

0.
01 

0.01
3-
0.01
5 

<0.
00
1 

0.0
04 

0.00
3-
0.00
5 

<0.
00
1 

0.7
7 

0.72
-
0.80 

<0.
00
1 

0.
64 

0.63
-
0.66 

<0.
00
1 

Abbreviations: BMI: body  mass  index, WC, waist  circumference, apVAT, Anthropometrically-

predicted visceral adipose tissue , HOMA_IR, Homeostatic model assessment of insulin resistance; 

HOMA_B, Homeostatic model assessment of β-cell function HOMA_S; Homeostatic model 

assessment of insulin sensitivity, TyG index, triglyceride-glucose index, Hs-CRP; high  senility C-

reactive protein.  All estimates were adjusted for age, sex, race/ethnicity, educational, smoking and 

level of physical activity. Regression coefficient β is shown in Figure 1. 
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Table 4. Direct and indirect effects of red meat consumption on markers of insulin resistance and 

inflammation with BMI, WC,  apVAT, VAI and LAP as mediators among US adults  

Mediator and 
outcomes 

Direct effect (£,) Indirect effect (α#β)3 Proportion 
of 
mediation, 
% 

Estima
te 

P Estimate Sobel test 
statistic BMI 

Serum Hs-CRP 
(mg/dl) 

0.004 0.692 0.029 <0.001 82.1% 

Serum 
Apolipoprotein 
(B) (mg/dL) 

0.888 0.023 0.201 <0.001 21.1% 

Fasting blood 
glucose (mg/dl) 

0.382 0.312 0.312 <0.001 27.2% 

Plasma Insulin 
(uU/mL) 

0.016 0.079 0.022 <0.001 66.9% 

HOMA_IR 0.020 0.032 0.025 <0.001 58.1% 

HOMA_B 0.002 0.795 0.013 <0.001 12.3% 

HbA1c (%) 0.055 0.623 0.009 <0.001 26.1% 

TyG index 0.039 <0.001 0.010 <0.001 5.3% 

WC  

Serum Hs-CRP 
(mg/dl) 

0.008 0.865 0.034 <0.001 69.1% 

Serum 
Apolipoprotein 
(B) (mg/dL) 

0.695 0.046 0.266 <0.001 22.3% 

Fasting blood 
glucose (mg/dl) 

0.203 0.562 0.371 <0.001 23.1% 

Plasma Insulin 
(uU/mL) 

0.014 0.112 0.024 <0.001 52.1% 

HOMA_IR 0.019 0.043 0.028 <0.001 46.5% 

HOMA_B 0.001 0.956 0.015 <0.001 4.23% 

HbA1c (%) 0.001 0.846 0.011 <0.001 20.4% 

TyG index 0.033 <0.001 0.013 <0.001 34.5% 

apVAT  

Serum Hs-CRP 
(mg/dl) 

-0.023 0.336 0.030 <0.001 95.1% 

Serum 
Apolipoprotein 
(B) (mg/dL) 

-0.022 0.762 0.212 0.166 72.1% 

Fasting blood 
glucose (mg/dl) 

0.112 0.623 0.293 <0.001 16.3% 

Plasma Insulin 
(uU/mL) 

0.031 0.042 0.016 0.166 40.6% 

HOMA_IR 0.030 0.109 0.019 0.143 36.1% 

HOMA_B 0.022 0.245 0.011 0.145 33.1% 

HbA1c (%) 0.003 0.831 0.009 <0.001 13.1% 

TyG index 0.020 0.032 0.013 <0.001 20.1% 
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VAI 

Serum Hs-CRP 
(mg/dl) 

0.016 0.205 0.021 <0.001 6.2% 

Serum 
Apolipoprotein 
(B) (mg/dL) 

0.215 0.563 0.682 <0.001 43.1% 

Fasting blood 
glucose (mg/dl) 

0.105 0.777 0.452 <0.001 4.1% 

Plasma Insulin 
(uU/mL) 

0.021 0.039 0.018 <0.001 3.7% 

HOMA_IR 0.021 0.019 0.022 <0.001 3.4% 

HOMA_B 0.007 0.653 0.011 <0.001 6.2% 

HbA1c (%) 0.001 0.635 0.11 <0.001 2.9% 

TyG index 0.005 0.038 0.042 <0.001 19.7% 

LAP  

Serum Hs-CRP 
(mg/dl) 

0.003 0.865 0.036 <0.001 16.2% 

Serum 
Apolipoprotein 
(B) (mg/dL) 

0.101 0.723 0.808 <0.001 16.2% 

Fasting blood 
glucose (mg/dl) 

0.033 0.986 0.542 <0.001 8.2% 

Plasma Insulin 
(uU/mL) 

0.011 0.214 0.027 <0.001 18.6% 

HOMA_IR 0.016 0.123 0.031 <0.001 14.8% 

HOMA_B 0.001 0.865 0.017 <0.001 31.2% 

HbA1c (%) -0.011 0.911 0.014 <0.001 6.3% 

TyG index 0.004 0.320 0.043 <0.001 6.32% 

Abbreviations: BMI: body  mass  index, WC, waist  circumference, apVAT, Anthropometrically-

predicted visceral adipose tissue , HOMA_IR, Homeostatic model assessment of insulin resistance  ; 

HOMA_B, Homeostatic model assessment of β-cell function HOMA_S; Homeostatic model 

assessment of insulin sensitivity, TyG index, triglyceride-glucose index Hs-CRP; high  senility C-reactive 

protein.  All estimates were adjusted for age, sex, race/ethnicity, educational, smoking and level of 

physical activity. Regression coefficients α, β, and £, are shown in Figure 1. 
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