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RESEARCH ARTICLE Open Access

Mining biosynthetic gene clusters in
Virgibacillus genomes
Ghofran Othoum1,2, Salim Bougouffa1, Ameerah Bokhari3, Feras F. Lafi4,1, Takashi Gojobori1,3, Heribert Hirt3,
Ivan Mijakovic5,6, Vladimir B. Bajic1 and Magbubah Essack1*

Abstract

Background: Biosynthetic gene clusters produce a wide range of metabolites with activities that are of interest to
the pharmaceutical industry. Specific interest is shown towards those metabolites that exhibit antimicrobial
activities against multidrug-resistant bacteria that have become a global health threat. Genera of the phylum
Firmicutes are frequently identified as sources of such metabolites, but the biosynthetic potential of its Virgibacillus
genus is not known. Here, we used comparative genomic analysis to determine whether Virgibacillus strains isolated
from the Red Sea mangrove mud in Rabigh Harbor Lagoon, Saudi Arabia, may be an attractive source of such
novel antimicrobial agents.

Results: A comparative genomics analysis based on Virgibacillus dokdonensis Bac330, Virgibacillus sp. Bac332 and
Virgibacillus halodenitrificans Bac324 (isolated from the Red Sea) and six other previously reported Virgibacillus strains
was performed. Orthology analysis was used to determine the core genomes as well as the accessory genome of
the nine Virgibacillus strains. The analysis shows that the Red Sea strain Virgibacillus sp. Bac332 has the highest
number of unique genes and genomic islands compared to other genomes included in this study. Focusing on
biosynthetic gene clusters, we show how marine isolates, including those from the Red Sea, are more enriched
with nonribosomal peptides compared to the other Virgibacillus species. We also found that most nonribosomal
peptide synthases identified in the Virgibacillus strains are part of genomic regions that are potentially horizontally
transferred.

Conclusions: The Red Sea Virgibacillus strains have a large number of biosynthetic genes in clusters that are not
assigned to known products, indicating significant potential for the discovery of novel bioactive compounds. Also,
having more modular synthetase units suggests that these strains are good candidates for experimental
characterization of previously identified bioactive compounds as well. Future efforts will be directed towards
establishing the properties of the potentially novel compounds encoded by the Red Sea specific trans-AT PKS/NRPS
cluster and the type III PKS/NRPS cluster.

Keywords: Virgibacillus, Antimicrobial, Biosynthetic gene clusters, Genome-mining, Nonribosomal peptides,
Polyketides, Bacteriocins, Lanthipeptides, Bioinformatics

Background
Biosynthetic gene clusters (BGCs), made up of multi-en-
zymatic, multi-domain megasynthases, are often of inter-
est in genome-mining. For instance, the most well
studied modular clusters, nonribosomal peptide

synthetases (NRPSs) and Polyketide Synthases (PKSs)
are often associated with the synthesis of antitumor,
antimicrobial, antifungal, and immunosuppressive prod-
ucts [1, 2]. Another BGC class is the ribosomally synthe-
sized and posttranslationally modified peptides (RiPPs)
[3] which include the extensively studied bacteriocins
and lanthipeptides [3], both of which have known prod-
ucts with a wide spectrum of antimicrobial activity. In
fact, lanthipeptides were initially termed lantibiotics be-
cause the first identified clusters exhibited antibiotic ac-
tivity. But, as more and more clusters without antibiotic
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activity were discovered, the more generic term lanthi-
peptide came into use. A well-described example of
anon-antibiotic lanthipeptide is SapB identified in Strep-
tomyces coelicolor [4]. Nonetheless, other RiPPs also ex-
hibit antimicrobial activity including thiopeptides,
bottromycins, lipolanthines, etc.
Because of this knowledge and the increase in available

sequenced genomes, methods have been developed to allow
mining of sequenced genomes for these BGCs [5–11].
However, there are no studies that provide insights into
genomic features in strains belonging to the Virgibacillus
genus of the Firmicutes phylum. This is surprising owing to
the fact that: 1/ the rod-shaped, endospore-forming species
in this genus are both gram-stain variable and gram-stain
positive, 2/ these strains exhibit an ability to adapt to
diverse environments such as marine sediment [12], faeces
[13] and fermented food [14, 15], 3/ these strains exhibit
enzymatic and antimicrobial potential of interest to indus-
try [15–20], and 4/ there is a large number of sequenced
Virgibacillus genomes (31 at the time of conducting our
study, with six complete genomes assembled).
We previously reported [20] that V. dokdonensis Bac330

and Virgibacillus sp. Bac332 exhibited antimicrobial activity
against both Staphylococcus aureus (ATCC25923) and
Pseudomonas syringae (dc3000), respectively, while V. halo-
denitrificans Bac324 displayed no such activity. These
strains were isolated from Red Sea locations which are
shown through metagenomic analysis [21] to harbor a rich
repertoire of NRPS and PKS sequences. The nature of the
environment (high salinity and temperature) can be a
contributing factor to the horizontal transfer of mobile gen-
etic elements contributing to strengthening the biosynthetic
potential of its microbiome. Here, we identify features in
these three Virgibacillus strains isolated from the Red Sea,
which provide insights into strains’ biosynthetic potential
encoded by their genomes. Based on the comparison with
other strains from the same genus, we show specific genetic
characteristics unique to the marine Virgibacillus strains,
including Red Sea strains.

Results and discussion
Features of the genomes of the Red Sea Virgibacillus
strains
Raw sequences of the three Virgibacillus genomes- V. dok-
donensis Bac330 (CP033048), Virgibacillus sp. Bac332
(CP033046-CP033047), and V. halodenitrificans Bac324
(CP033049- CP033050)- showed that on average there are
133,749.6667 reads per genome (141,676, 148,002, 111,571
reads for V. dokdonensis Bac330, Virgibacillus sp. Bac332,
and V. halodenitrificans Bac324, respectively). The read
mean length was 7952 bp (253x genome coverage) for V.
dokdonensis Bac330, 8939 bp (290x genome coverage) for
Virgibacillus sp. Bac332 and 11,324 bp (311x genome
coverage) for V. halodenitrificans Bac324. Assemblies of the

reads showed that two of the strains have plasmids (Virgi-
bacillus sp. Bac332 and V. halodenitrificans Bac324), while
V. dokdonensis Bac330 only has one circular chromosome
without plasmid. V. dokdonensis Bac330’s circular chromo-
some was 4,456,326 bp in length with 4163 predicted open
reading frames (ORFs) (52.3% on the forward strand, and
47.7% on the reverse complement strand). V. halodenitrifi-
cans Bac324 circular chromosome was 4,063,118 bp in
length with 4284 predicted ORFs (46.9% on the forward
strand and 53.1% on the reverse complement one) and its
plasmid was 312,876 bp in length. Virgibacillus sp. Bac332
circular chromosome was 4,561,556 bp in length with 4424
predicted ORFs (46.1% on the forward strand and 53.9% on
the reverse complement one) and its plasmid was 65,691 bp
in length. The total number of tRNAs was almost the same
in the three genomes (63,64,64 tRNAs), while the number
of rRNAs was 18 for both Virgibacillus sp. Bac332 and V.
dokdonensis Bac330 but was 24 for V. halodenitrificans
Bac324 (Table 1, Fig. 1).
For phylogenetic placement of the three Red Sea strains,

a phylogenetic tree was generated using 606 single-copy
genes (Fig. 2). We included a total of 31 complete and
incomplete Virgibacillus genomes for a higher resolution
in the placement. We also used Paenibacillus polymyxa as
the outgroup.
The resulting tree (Fig. 2) shows the phylogenetic

proximity Bac330, Bac324, and Bac332 to Virgibacillus
strains as indicated by the 16S rRNA analysis reported
in a previous study [20].
To identify the unique functional groups in the three

complete Virgibacillus genomes from the Red Sea, we inves-
tigated the accessory genome of these isolates and searched
for orthologous families that have genes exclusively present
in any genome of the three Red Sea Virgibacillus strains and
are consistently absent from the six complete publicly avail-
able Virgibacillus genomes. The analysis showed that
amongst the 11,135 gene families that constitute the pan-
genome of the analyzed strains, there are 958 unique genes
in Virgibacillus sp. Bac332. There are 665 unique genes in
V. halodenitrificans Bac324 and 619 in V. dokdonensis
Bac330 (See Table 1). The number of unique genes in the
non-Red Sea Virgibacillus strains is 255 in V. halodenitrifi-
cans PDB-F2, 761 in V. necropolis LMG 19488, 435 in V.
dokdonensis 21D, 504 in Virgibacillus sp. sk37, 927 in Virgi-
bacillus sp. 6R and 648 in V. phasianinus LM2416. Thus,
Virgibacillus sp. Bac332 has the highest number of unique
genes among the nine genomes.
Since horizontal gene transfer is considered central to

microbes’ ability to adapt to an ecological niche, we also
predicted the genomic islands (GIs) in the analyzed
genomes to increase our understanding as to how the
three Virgibacillus strains have potentially acquired gen-
omic elements adding to their biosynthetic capacity.
Interestingly, the chromosomal sequence of Virgibacillus
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sp. Bac332 has the highest number of GIs with a total of
434,257 bp of DNA (21 GIs harboring 559 genes), equiva-
lent to 9% of the genome size. GI prediction also identified
210,858 bp of the chromosomal sequence in the genome
of V. halodenitrificans Bac324 (13 GIs harboring 293
genes) and 309,859 bp in V. dokdonensis Bac330 (19 GIs
harboring 303 genes) amounting to 5.19 and 6.9% of the
genomes, respectively. On average, there is 178,642 bp of
DNA sequence in GI predicted regions in any of the
publicly available chromosomal sequences of the six non-
Red Sea Virgibacillus strains, where V. necropolis LMG
19488 has the lowest number of GIs (6 GIs) extending

over 96,572 bp of DNA and harboring 95 genes. On the
other hand, the genomes of the Red Sea isolates have on
average 318,325 bp of GI sequence per genome (Fig. 3).
These analyses show that despite the large size of the

core genome (1654 ORFs accounting for 40% of the aver-
age number of ORFs), one Red Sea strain has a large num-
ber of unique genes that are not orthologous to any other
gene in the studied Virgibacillus genomes, at least using
the imposed identity threshold (see the Materials and
Methods). Moreover, the strikingly high GI content in the
genomes of Virgibacillus sp. Bac332 and V. dokdonensis
Bac330, along with the high number of biosynthetic genes

Table 1 Summary of the genomes and annotation of nine Virgibacillus strains

Strain Isolation site Number
of ORFs

Genome
size (Mb)

GC% Number of
scaffolds

Genomic
Islands %

# of
rRNAs

# of
tRNAs

# of
unique
genes

Virgibacillus sp. SK37 (Genbank accession
number: CP007161)

Fish sauce mash 3795 3.84 37.59 4 4.9 21 53 504

Virgibacillus halodenitrificans PDB-F2
(Genbank accession number: CP017962)

Solid waste landfill 3820 3.92 37.43 2 2.8 24 62 255

Virgibacillus phasianinus LM2416
(Genbank accession number: CP022315)

Host Lophura swinhoei 3966 4.07 39.50 1 4.1 21 64 648

Virgibacillus necropolis LMG 19488
(Genbank accession number: CP022437)

Mural paintings 4135 4.34 37.30 1 2.2 22 62 761

Virgibacillus dok0064onensis 21D
(Genbank accession number: CP018622)

Marine 3939 4.26 36.60 1 5.4 18 63 435

Virgibacillus sp. 6R (Genbank accession
number: CP017762)

Coal bed 4313 4.75 37.30 1 5.9 18 65 927

Virgibacillus halodenitrificans Bac324
(Genbank accession number: CP033049)

Mangrove mud/
Rabigh Harbour
Lagoon

4284 4.06 37.2 2 5.19 24 62 665

Virgibacillus sp. Bac332 (Genbank
accession number: CP033046)

mangrove mud 4424 4.56 36.7 2 9.32 18 63 958

Virgibacillus dokdonensis Bac330
(Genbank accession number: CP033048)

Mangrove mud 4163 4.46 36.8 1 6.9 18 64 619

Fig. 1 Circular plots of (a) Bac330 and (b) Bac324 and (c) Bac332 genomes, showing the overlap of biosynthetic genes and genomic islands. The
tracks show the following features starting from the outermost track; 1st track (pink): genes on the positive strand; 2nd track (blue): genes on the
negative strand; 3rd track (yellow): biosynthetic gene clusters; 4th track (red): horizontally transferred genes; 5th track (cyan): genes in prophage
regions; 6th track: GC-plot where purple and green correspond to below and above average GC content, respectively; 7th track: GC-skew where
purple and green correspond to below and above average GC-skew, respectively
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and unique genes, collectively hint toward the presence of
unique functional genomic features in marine Virgibacil-
lus strains compared to other genomes used in this study.
Although we could not collectively discriminate strains
based on environment type only, we have shown increased
uniqueness in the genomic features of one of the Red Sea
strains, Virgibacillus sp. Bac332.

Exploring the biosynthetic potential of the Red Sea
Virgibacillus strains
To identify unique biosynthetic elements in the Red Sea
strains that might indicate specific functions as a result
of environmental adaptation, we had to confirm that the
biosynthetic features identified in marine isolates, in-
cluding ones from the Red Sea, are not present in closely

Fig. 2 Maximum-likelihood phylogenetic tree of 32 genomes constructed using 606 single-copy genes. Paenibacillus polymyxa was used as the
outgroup. The tree shows the phylogenetic proximity of the Red Sea Virgibacillus strains in the Virgibacillus group

Fig. 3 Boxplot of genomic island content and number of genes in genomic islands falling in the public Virgibacillus strains (white) and Red Sea
Virgibacillus (grey) using both the size of the DNA regions in which predicted GIs fall as well as the number of predicted genes
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related species. To do so, we included the six complete
Virgibacillus species along with the three Red Sea strains
for the evaluation (Table 1).
On average, each of the analyzed genomes comprises

24 putative biosynthetic gene clusters (BGCs) that were
predicted by antiSMASH or ClusterFinder. The clusters
predicted to fall in known classes of BGCs are mainly
encoding for proteins related to the following biosyn-
thetic classes: terpene, type III PKS, ectoine, NRPS,
trans-acyltransferase PKS/NRPS, siderophore, lanthipep-
tide, bacteriocin, and type III PKS/NRPS (Fig. 4). Of
interest to this study are two classes of secondary metab-
olites known for their use in different applications of
pharmaceutical and industrial interest: 1/ modular clus-
ters encompassing mainly NRPSs and modular PKS, and
2/ ribosomally synthesized peptides, namely bacteriocins
and lanthipeptides.

Gene cluster families in Virgibacillus strains
A total of 215 BGCs (173 putative clusters and 42 in
known BGC classes) with 3631 genes were classified into
35 groups (also referred to as gene cluster families
GCFs) using scoring similarity networks as implemented
in BiG-SCAPE [22] .
Interestingly, only three gene cluster families were

assigned to clusters that produce known products or

have a similar pathway using threshold similarity of 60%
(these include paeninodin, locillomycin, and ectoine).
Most notably, there is at least one terpene, type III PKS,
and ectoine cluster in all of the genomes. Only one bac-
teriocin encoding BGC is identified in Virgibacillus sp.
6R, while lipopeptides were only identified in Virgibacil-
lus sp. 6R and V. dokdonensis 21D. Siderophores were
identified in V. phasianinus LM2416 and V. necropolis
LMG 19488 only. The diversity of the distribution of
BGC types across the Virgibacillus genomes, in spite of
phylogenetic proximity, is an indication of the acquisi-
tion of genomic elements that enable biosynthetic routes
of various products at different isolation sites. To inves-
tigate the emergence of environment-specific clusters,
we looked at gene cluster families that are not shared by
strains of the same species but shared between strains
from different phylogenetic groups in the tree. In total,
out of 35 gene cluster families, 10 are shared between at
least one of the three Red Sea isolates and V. dokdonen-
sis strain 21D; the only other marine isolate in the
analysis (Additional file 1: Figure S1). Specifically, 6 of
these clusters are exclusively shared between V. dokdonen-
sis strain 21D and V. dokdonensis Bac330 or Virgibacillus
sp. Bac332. Interestingly, other strains that have repeated
patterns of shared clusters are either strains of the same
species or strains falling in the same phylogenetic group.

Fig. 4 Distribution of genes in biosynthetic gene clusters in nine Virgibacillus genomes. Strains are color-coded as per the legend. The distribution
clearly shows that genomes with the highest number of genes in BGCs are in the Virgibacillus Red Sea isolates
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Additionally, Bac332 shares one cluster with V. halodeni-
trificans Bac324 and V. halodenitrificans PDB-F2, despite
falling in different groups. Unfortunately, since none of
these clusters have assigned products, we could not elab-
orate on the putative functions of these clusters.

Modular clusters and ribosomally synthesized and
posttranslationally modified peptides (RiPPs)
In order to identify any exclusive modular clusters in the
genomes of the marine isolates, we categorized the clus-
ters based on gene homology and product type and
assessed their distributions in the genomes. We found
that out of a total of eight NRPSs and modular PKSs
collectively identified in the nine Virgibacillus genomes,
six are in the Red Sea Virgibacillus strains (two in V.
dokdonensis Bac330, three in Virgibacillus sp. Bac332
and one in V. halodenitrificans Bac324) (Additional file 2:
Table S1). The other two modular clusters are in Virgi-
bacillus sp. 6R and in V. dokdonensis 21D. Only one of
the clusters maps to known BGCs using a 60% similarity
threshold (a hybrid trans-AT PKS/NRPS cluster in
Bac332 with 64% similarity to Locillomycin). One NRPS
cluster shares a number of structural features in four
strains (Bac330, Bac324, 6R, and 21D), albeit with some
variations hindering their assignment as the same clus-
ter. Specifically, Bac324 and 6R have clusters in the same
GCF with the highest similarity, while the cluster in 6R
is the most variant with a single KS domain, and a cis-
acting AT domain. The clusters in Bac324 and 6R have
a combination of shared condensation (c) domains, ade-
nylation (A) domains, as well as acylotransferase (AT)
domains (that are putatively acting in trans due to their
organization in the cluster as standalone domains). The
presence of PKS domains such as ketosynthase (KS),
ketoreductase (KR) in Bac330, 6R and 21D indicates that
these could be a hybrid PKS/NRPS clusters. It is note-
worthy that none of the hybrid PKS/NRPS clusters or
NRPS ones in Virgibacillus sp. Bac332 share the same
modular structure as other modular clusters in other
Virgibacillus strains.
One uniquely structured cluster that has both PKS and

NRPS domains is identified in the Red Sea Virgibacillus
sp. Bac332. The cluster is characterized by the presence of
four NRPS synthases composed of Adenylation (A), con-
densation (C) Epimerization (E), peptidyl carrier protein
(PCP) domains and a thioesterase (T) domain. It also has
one modular PKS synthase with a ketosynthase (KS) do-
main, a CoA ligase (CAL) domain and a trans-AT binding
site (Fig. 5). There are also two single-domain peptides in
the cluster: one with a 4′-phosphopantetheinyl transferase
and one with another thioesterase. The cluster has a 64%
similarity to the BGC encoding locillomycin. This product
was previously reported in Bacillus subtilis 916 to be
encoded by an unusual synthase that does not follow the

collinearity rule of assembly-line clusters [23]. Despite the
high similarity, we noted that the cluster in Virgibacillus
sp. Bac332 has five additional NRPS modules, making it
larger than the one in B. subtilis 916 (86 Kb in Virgibacil-
lus sp. Bac332 and 38 Kb in Bacillus subtilis 916). We also
noted that out of the five mega-synthases that make up
the trans-AT PKS/NRPS cluster, four mapped to all of the
known modular proteins in the locillomycin BGC (LocA,
LocB, LocC, and LocD). The fact that the fifth 12,990 bp
mega-synthase does not have an ortholog in the locillomy-
cin cluster indicates putative novelty of the synthesized
product.
There is also a large, uniquely-structured, hybrid Type

III PKS/NRPS cluster in V. dokdonensis Bac330, and
Virgibacillus dokdonensis 21D. The cluster is composed
of 81 genes extending over 91 Kb of DNA. Specifically,
there are three modular NRPS genes and three single-
domain proteins as part of the type III PKS component
of the cluster. This component has a 14% similarity to
the cereulide BGC. However, none of the genes overlap-
ping to the cereulide cluster are modular core NRPS
ones (the genes mapping to the cereulide cluster are
genes with an alpha/beta hydrolase domain and a gene
encoding an ABC-2 type transport system binding pro-
tein). There are two bacteriocin and two class II lanthi-
peptide clusters in the analyzed genomes but none were
identified in the Red Sea Virgibacillus species). The bac-
teriocin cluster has a glutamine synthetase, a merR family
transcriptional regulator glutamine synthetase repressor,
and one bacteriocin biosynthetic gene.
Taken together, when estimating the biosynthetic

potential of these strains, we find that only a few of the
identified clusters in the analyzed strains could be
assigned to known products despite a total of 215 BGCs
identified in the considered Virgibacillus genomes.
Specifically, ~ 79% of the clusters per genome are puta-
tive and do not fall in known classes of BGCs. This is
an indication that the biosynthetic potential of Virgiba-
cillus species should be explored in much more details;
there is an increasing number of publicly available
genomes. Nonetheless, our results suggest that Virgiba-
cillus sp. Bac332 has the highest number of modular
genes falling in two NRPS clusters and a hybrid trans-
AT PKS/NRPS cluster. Moreover, no bacteriocins or
lanthipeptides were identified in the Red Sea isolates.
The prevalence of modular clusters and low frequency
of RiPPs in the Red Sea isolates could be part of an
array of phenotypes required to adapt to the specific
ecological conditions of the Red Sea. Moreover, the
specific locations from which these strains were col-
lected are in the Rabigh Harbor Lagoon, a substantial
part of which has been converted into a harbor serving
the Petro Rabigh petrochemical and refining complex
and is therefore expected to be contaminated.
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We specifically utilized the antiSMASH ClusterBlast
module, as it allows us to assess the homology of the
genes in the cluster to all genomes deposited in NCBI,
either complete or draft. In Additional file 2: Table S1,
we report the species with the top hits for these clusters.
The fact that only a few of the top hits for the clusters
in the Red Sea strains are Virgibacillus species supports
our conclusions about the potential uniqueness of these
clusters within the Virgibacillus genus. That is, most of
the NRPS clusters (four out of six clusters) in the Red
Sea strains have no match to any of the Virgibacillus ge-
nomes (complete or draft), but rather match some other
distant Bacillus genomes, most of which are from saline
environments. Moreover, one of the clusters in BAC332
had only 7% percent of its genes similar to a cluster in
Bacillus nakamurai strain NRRL B-41091, indicating in-
deed that this is a unique cluster. Other clusters in the
Red Sea strain have more than 60% identity to clusters
in Bacillus megaterium MSP20.1 and Tumebacillus sp.
AR23208. Modular clusters from the remaining Virgiba-
cillus genomes (6R and 21D) were similar to clusters in
Marininema mesophilum strain DSM 45610 and Virgi-
bacillus dokdonensis strain Marseille-P2545, respectively.
It is fair to summarize from the above analysis that at
least one cluster in Bac332, is acquired by the strain as
part of an environmental adaptation mechanism. This
conclusion does not negate or conflict with the fact that
other marine species from other environments might ac-
quire similarly-structured clusters.
To further support the notion that Red Sea specific

genes may be truly unique, we further performed hom-
ology analysis of modular genes (i.e., genes with NRPS
or PKS domains) in the 6 clusters against MarCat from
the MAR databases [24] (with Evalue:<1e-5; percent
identity> 35%; and bitscore > 50, see Additional file 3:

Table S2). Almost all of the modular genes have a hit
greater than 30%, albeit one cluster often has different
hits in different metagenome samples. This cannot be
interpreted as an incomplete cluster as we can poten-
tially attribute it to the incomplete nature of sequenced
metagenomes. However, since overall, there is at least
one significant hit in one metagenome per cluster, it is
fair to attribute the uniqueness of the biosynthetic genes
in the Red Sea genomes to marine environments in
general.

Biosynthetic gene clusters in genomic islands
The majority of the NRPS clusters in the Red Sea Virgi-
bacillus genomes were found to fall in predicted GIs.
Specifically, the NRPS identified in Bac332 is falling in a
GI extending from 3,307,119 to 3,365,396 bp; while the
NRPS cluster identified in Bac324 falls within the plas-
mid sequence identified in that genome. The NRPS clus-
ter in V. dokdonensis Bac330 was found to overlap with
a GI extending from 2,774,299 to 2,829,247 bp.
The fact that the majority of the identified NRPS

clusters in the Red Sea isolates are part of GI regions
motivated further investigation of the GIs in other Vir-
gibacillus strains that have NRPS genes. Interestingly,
we identified that the NRPS clusters in Virgibacillus sp.
6R (isolated from a Coal Bed) and Virgibacillus pan-
tothenticus 21D (isolated from a marine environment)
indeed are part of GIs that cover the region extending
from1,078,422 to 1,129,3882 bp and from 2,579,235 to
2,619,409 bp, respectively. It is also noted that in most
of the BGCs, there seems to be an overlap between the
regions surrounding predicted BGC and GIs, which
might indicate the acquisition of specialized genes
necessary for the cluster, most of which are either
transport elements or uncharacterized genes.

Fig. 5 Structure of the hybrid PKS/NRPS cluster present in Bac332. Biosynthetic genes are identified with blue arrows. Domains abbreviations and
color codes are shown in the legend
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Conclusions
Despite the availability of a total of 30 publicly available
Virgibacillus genomes (at the time of the study), the
biosynthetic potential of these strains has not been suffi-
ciently explored. Species from marine environments,
such as the Red Sea [25], were shown to harbor a num-
ber of promising clusters for the biosynthesis of modular
antimicrobial clusters with unique structural properties.
Here, we are analyzing Virgibacillus strains isolated from
the Red Sea, along with publicly available Virgibacillus
genomes, for their biosynthetic capabilities, leveraging
the availability of complete genomes of the Red Sea
isolates. To do so, we first computed the core and pan-
genome of nine Virgibacillus strains including the Red
Sea ones. Our analysis shows that most of modular
NRPS clusters in the analyzed genomes of Virgibacillus
strains are part of horizontally transferred genomic
regions in genomic islands. We also show that two of
the Red Sea isolates (V. dokdonensis Bac330 and Virgiba-
cillus sp. Bac332) collectively have more modular genes
compared to all the analyzed genomes, indicating the
possibility of the emergence of specific biosynthetic
genomic elements in the genomes of these isolates in
response to environmental selection in unique marine
environments. Future efforts will be directed towards
unveiling the biotechnological advantages of these iso-
lates and in this process establishing the properties of
the compounds encoded by the Red Sea specific trans-
AT PKS/NRPS cluster and other NRPS clusters in
Bac332. This would serve to highlight the novelty of the
bioactive compounds, in terms of both function and
structure, compared to other known compounds.

Methods
DNA extraction, sequencing, assembly, and annotation
A detailed description of sampling, isolation, and purifica-
tion of the strains is available in [20]. Strains Bac330, Bac324
and Bac332 were isolated from mangrove mud samples
collected from the Rabigh Harbor Lagoon in Saudi Arabia
(39°0′35.762′′E, 22°45′5.582′′ N). Genome sequencing was
performed at the Core Laboratory sequencing facility at
KAUST using the PacBio RS II sequencing platform (Pacific
Biosciences, USA) and assembled using PacBio’s SMRT
Analysis pipeline v2.3.0. using default parameters. Prodigal
[26] was used as the gene prediction method and genome
annotation was completed using the Automatic Annotation
of Microbial Genomes pipeline (AAMG) [27] with default
parameters. A detailed description of sequencing, assembly,
and annotation are available in [25].

Comparative analysis of genomic features, genomic
islands and biosynthetic genes
The core and pan-genomes were computed using GET_
HOMOLOGUES v1.3 with the MCL option (−t 0 for

core genome and -t all for pan-genome). We used a
similarity threshold of 70%, alignment length coverage of
75% and e value of 1e-6. The number of core, shared
and unique genes were visualized in an Upset fig. [28] as
implemented in Intervene [29]. Prediction of GIs was
completed using IslandViewer v4 [30, 31]. Circular
visualization of the genomes and annotated features were
plotted using DNAPlotter [32]. The phylogenetic tree was
constructed using OrthoFinder v2.2.1 [33] utilizing gene
trees for each orthogroup, with default settings, and
visualized in iTOL [34]. Biosynthetic gene clusters were
predicted using antiSMASH v3.0 [35] and cluster genes
were mapped back to the MIBiG database in order to
assign products to known clusters, with manual inspection
of the focality of these alignments to core biosynthetic
genes, as opposed to other accessory ones. Additionally,
the ClusterFinder algorithm was also used to identify
putatively novel clusters [36], Big-SCAPE [22] was used to
group the cluster into families and Cytoscape v3.6.1 was
used to visualize the resultant network of cluster families.

Additional files

Additional file 1: Figure S1. Network visualization of 35 gene cluster
families in Virgibacillus, showing that few groups are found in the
majority of Virgibacillus genomes and none are found in all nine
genomes (DOCX 100 kb)

Additional file 2: Table S1. Features of modular clusters identified in
Virgibacillus genomes (DOCX 16 kb)

Additional file 3: Table S2. Homology analysis of the modular genes
in six clusters identified in Red Sea Virgibacillus strains to marine
metagenomes. (DOCX 13 kb)
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