
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Extending the Automated
Reasoning Toolbox

ANN LILLIESTRÖM

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/270107669?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Extending the Automated Reasoning Toolbox
ANN LILLIESTRÖM

ISBN 978-91-7905-205-8

c© 2019 ANN LILLIESTRÖM

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 4672
ISSN 0346-718X
Technical Report 178D
Department of Computer Science and Engineering
Research group: Functional Programming

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31-772 1000

Printed at Chalmers
Göteborg, Sweden 2019

Abstract

Due to the semi-decidable nature of first-order logic, it can be desirable to
address a wider range of problems than the standard ones of satisfiability
and derivability. We extend the automated reasoning toolbox by introducing
three new tools for analysing problems in first-order logic.

Infinox aims to show finite unsatisfiability, i.e. the absence of models
with finite domains, and is a useful complement to finite model-finding.
Infinox can also be used to reason about the relative sizes of model domains
in sorted first-order logic.

Monotonox uses a novel analysis that can identify sorts with extendable
domains, improving on well-known existing translations between sorted
and unsorted logic. This enables reasoning tools for unsorted logic to tackle
problems in sorted logic. Conversely, finite model finders benefit from sort
information which Monotonox can add to unsorted problems.

Equalox, the third tool in our toolbox, can improve the performance of
first-order provers on problems involving transitive relations. The insight
is that first-order provers are poor at applying the transitivity axiom effec-
tively, but that the problem can always be transformed to safely remove the
transitivity axiom.

Finally, we explore the field of computational linguistics as an application
of automated reasoning. The tool Morfar uses a constraint solver to analyse
the morphology of an input language. The result is a novel automatic
method for segmentation and labelling that works well even when there is
very little training data available.

List of publications

This thesis is based on the work contained in the following papers:

Paper 1 Automated Inference of Finite Unsatisfiability. Koen Claessen and
Ann Lillieström. Journal of Automated Reasoning, pages 111–132, Springer,
2011.

Paper 2 Sort it Out with Monotonicity: Translating between Many-Sorted
and Unsorted First-Order Logic. Koen Claessen, Ann Lillieström and Nicholas
Smallbone. In Proceedings of the 23rd International Conference on Automated
Deduction, pages 207–221, Springer, 2011.

Paper 3 Handling Transitive Relations in First-Order Automated Reason-
ing. Koen Claessen and Ann Lillieström. In Proceedings of the 5th Workshop on
Practical Aspects of Automated Reasoning, pages 11–23, Springer, 2016.

Paper 4 Inferring Morphological Rules from Small Examples using 0/1
Linear Programming. Koen Claessen, Ann Lillieström and Nicholas Smallbone.
In Proceedings of the 22nd Nordic Conference on Computational Linguistics, pages
164–174, Linköping University Electronic Press, 2019.

Contents

Introduction 1

Paper 1 Automated Inference of Finite Unsatisfiability 23
1 Introduction . 23
2 Proof Principles for Showing Infinite Domains 26
3 Automating Finite Unsatisfiability 30
4 Results . 36
5 Alternative Methods . 41
6 Future Work . 43
7 Conclusions . 45

Paper 2 Sort It Out with Monotonicity: Translating between
Many-Sorted and Unsorted First-Order Logic 49

1 Introduction . 49
2 Monotonicity Calculus for First-Order Logic 53
3 Monotonox: Sorted to Unsorted Logic and Back Again . . . 60
4 Results . 63
5 Conclusions and Future Work 64

Paper 3 Handling Transitive Relations in First-Order
Automated Reasoning 69

1 Introduction . 69
2 Common properties of binary relations 71
3 Syntactic discovery of common binary relations 73
4 Handling equivalence relations 76
5 Handling total orders . 78
6 Handling transitive relations in general 80
7 Experimental results . 82
8 Discussion and Conclusions 93
9 Future Work . 93

Paper 4 Inferring Morphological Rules from Small
Examples using 0/1 Linear Programming 105

1 Introduction . 105
2 Related Work . 107

3 Morphological segmentation 108
4 Finding morphological rules 114
5 Experimental Results . 115
6 Conclusion and Future Work 120

Bibliography 123

Acknowledgements

I wish to thank my supervisor Koen Claessen for all the fun and inspiring
discussions we have had, but also for his friendship, understanding, and
for believing in me. Thank you for giving me the opportunity to start
working with you and for convincing me to continue. Many thanks to
my co-supervisor Wolfgang Ahrendt, whose support has meant a lot to
me. I also wish to thank Aarne Ranta and the language technology group
for welcoming me into the community and encouraging me to pursue my
interest in natural language. A special thanks to Bengt Nordström who,
during the writing of my bachelor’s thesis many years ago, gave me the
confidence to become a researcher. Thanks to my family, and to all my friends
both inside and outside the department. Among them, I especially want
to mention my officemate and co-author Nick, for combining entertaining
discussions on logic with ridiculous amounts of cake, and for being an
awesome friend. I also want to thank Sara, for always being there for me.
Last but not least, thanks to Jean-Philippe, Irmeli and Miranda for absolutely
everything.

Introduction

A motivating example

An automated reasoner’s toolbox contains two basic kinds of tools: theorem
provers and theorem disprovers. Let us demonstrate their use, and more
importantly, their limitations, by means of an example. Below, we have
formalised some laws that would typically hold for sets, involving the
operations union and set difference (diff).

memberpX, emptyq ðñ false (1)
memberpX, singletonpYqq ðñ X “ Y (2)
memberpX, unionpA, Bqq ðñ memberpX, Aq _memberpX, Bq (3)

memberpX, diffpA, Bqq ðñ memberpX, Aq ^ memberpX, Bq (4)

p@XpmemberpX, Aq ðñ memberpX, Bqqq ùñ A “ B (5)

Suppose that we wish to find out if, given the above laws, reassociating the
operations union and diff yields the same result. We conjecture the following:

unionpA, diffpB, Cqq “ diffpunionpA, Bq, Cq (6)

Let us try an automated theorem prover to see if the conjecture can be
proven from the theory. E [50] is an automated theorem prover, based on the
superposition calculus, which is refutation-complete. In short, this means
that E will eventually find a proof if there is one, unless limited by computer
memory, time constraints or the user’s impatience. When we put E to the
task, it is still working on the problem after several minutes and no answer
is reported back. How should we interpret this? Does it mean that the
conjecture is false (E didn’t find a proof because there isn’t any), or does the
theorem prover just need more time to complete a proof? There is no way to
know, and we may be left with the same question even if we wait for a year,
a lifetime or more.

We can instead try a different angle. Supposing that the conjecture is false,
we could use a model finder to try to find a counter-model. A counter-model
would serve as a counter-proof to the conjecture, showing that the property
does not hold. We run the finite model finder Paradox on the problem, and
after a few minutes it is still busy, but we have the following output:

1

2 Introduction

Paradox, version 4.0, 2010-06-29.
+++ PROBLEM: sets.fof
Reading ’sets.fof’ ... OK
+++ SOLVING: sets.fof
domain size 1
domain size 2
domain size 3
domain size 4
domain size 5
domain size 6
domain size 7
domain size 8
domain size 9
domain size 10
domain size 11

What the above means is that Paradox has ruled out counter-models with
domains of all sizes up to 10, and is currently trying to find a model of size
11. But we are not much wiser than before. Would the conjecture be provable
if we gave E some more time? Would Paradox find a counter-model of more
than 10 elements if we waited a little longer?

Because first-order logic is semi-decidable, theorem provers can be com-
plete for theorems, but theorem disprovers can never be complete for non-
theorems. In practice, this means that there will always be cases where it is
impossible to find out whether or not a conjecture holds. While a theorem
prover may always find a proof when one exists, it may not be able to do so
in a reasonable time. It is situations like these that motivate the development
of tools that can do more than proving and disproving. This thesis is devoted
to extending the toolbox of automated reasoning.

The thesis presents four different tools. The common theme is the in-
vention of new ways to formulate, encode or translate problems in order to
tackle them with formal reasoning tools. The main focus of the first three
tools is reasoning about formulas in first-order logic. The final tool in this
thesis, Morfar, instead shows an application of automated reasoning to a
problem in computational linguistics.

1. Infinox is a tool for first-order logic that can show that a conjecture has
no finite counter-models.

2. Monotonox is a tool that translates sorted first-order logic into un-
sorted, so that unsorted theorem provers can solve sorted problems.

3. Equalox is a tool that improves the performance of first-order theorem
provers on problems involving transitive relations, by transforming
the problem to safely remove the transitivity axiom.

4. Morfar infers the morphological features of a natural language by
encoding the morphology as a constraint problem, to be solved by an
integer linear programming solver.

A motivating example 3

Infinox

Infinox is a tool for first-order logic that specialises in showing finite
(counter-)unsatisfiability, i.e. disproving the existence of finite counter-
models. If Infinox shows that a problem is finitely counter-unsatisfiable, it
means that it is either a theorem (no counter-model exists), or it has only
infinite counter-models. The main purpose of the tool is to serve as a com-
plement to finite model finders. If Infinox classifies a problem as finitely
unsatisfiable, there is no point in searching for a finite model.

When we try Infinox on our example from above, it yields the following
output:

Infinox, version 1.0, 2009-07-20.
+++ PROBLEM: sets.fof
Reading ’sets.fof’ ... OK
+++ SOLVING: sets.fof
InjNotSurj
t: singleton(X)
r: X = Y
+++ RESULT: FinitelyCounterUnsatisfiable

It tells us that any possible counter-models must be infinite, i.e. the problem
is either a theorem or has an infinite counter-model. Although we still don’t
know whether the conjecture is true or not, Infinox has proved that no finite
counter-model exists and thus there is no use in trying Paradox or other
finite model finders. Even if given more time and resources, a finite model
finder is not going to find a counter-proof. In this way, Infinox is a useful
complement to finite model finding. But Infinox has more to tell us. Take a
look again at the following lines of the output:

InjNotSurj
t: singleton(X)
r: X = Y

It says that Infinox has found a function that is injective and not surjective,
namely singleton. (The line “r: X = Y” tells us that it is injective and not
surjective with respect to equality, as other relations are sometimes possible.)
Because the theory implies the existence of a function with these properties,
there cannot be any finite counter-models. We shall explain why:

• Non-surjectivity of singleton means that there exists some element e
such that for any X, singletonpXq ‰ e. In fact, it follows from axioms 1,
2 and 5 that empty is such an element.

singletonpXq ‰ empty (7)

• Injectivity of singleton means that it never maps two distinct elements
to the same element, or equivalently:

singletonpXq “ singletonpYq ùñ X “ Y (8)

4 Introduction

Given the above properties of singleton, we can construct the following
infinite sequence of elements:

singleton0pemptyq, ..., singletonipemptyq, ... (9)

Because singleton is injective, no two elements in the sequence can be equal
to each other, as can be seen by the following argument: Suppose that two
elements were the same. Then,

singletonmpemptyq “ singletonnpemptyq (10)

for two distinct m and n, with m ą n. By repeated application of injectivity,
we get

singletonm´npemptyq “ empty (11)

which can be rewritten as:

singletonpsingletonm´n´1pemptyqq “ empty (12)

which contradicts the non-surjectivity constraint of 7. Thus, if there is a
model of the problem, it must contain all of the elements in the sequence,
and as a consequence be infinite. ˝

Monotonox

Let us again consider the elements of the infinite sequence in 9. Any sin-
gleton set can be a member of another set. It looks like we have mixed
up sets and elements in the definition. Is this what we intended? If our
intention was to model a set theory similar to that of Zermelo-Fraenkel [5],
where elements and sets are indistinguishable, the fact that a counter-model
is necessarily infinite is not surprising, since the sets represent the natural
numbers. But let us assume that we meant for sets and elements to be two
distinct kinds of objects. In this case Infinox has helped us reveal a mistake
in our definition: sets and elements should be of different sorts!

In our example above, we make no distinction between sets and elements,
and any element of the model domain would act both as an element and
as a set. Because elements and sets share the same domain, the number of
elements and the number of sets are necessarily the same. (In our example,
the shared domain has infinite size.)

In many-sorted first-order logic, the domain is partitioned into subdo-
mains that each correspond to a sort. The arguments and return values of
functions and predicates are each given a sort, and all variables come with a
sort.

A motivating example 5

To express our problem in many-sorted first-order logic, we add the
following sort signature to the original problem.

empty : Set (13)
singleton : Element Ñ Set (14)

union : Set Ñ Set Ñ Set (15)
member : Element Ñ Set Ñ Bool (16)

diff : Set Ñ Set Ñ Set (17)

In addition, the quantifiers in each equation must range over the appropriate
sorts only. For example, equation 3 becomes:

@X : Element. @A, B : Set.
memberpX, unionpA, Bqq ðñ memberpX, Aq _memberpX, Bq (18)

E, which supports sorted logic since version 2.0, again gets stuck on the new
sorted problem. Because Paradox solves only problems in unsorted logic, we
cannot use it to try to find a counter-model. But there is a way to get around
this: many-sorted first-order logic can be reduced to unsorted first-order
logic. A standard way to do this is to use sort predicates. This involves
introducing a new unary predicate for every sort, letting any quantification
over a sort be bounded by the predicate associated with the sort. It is also
necessary to add axioms stating the return sort of each function. For example,
using sort predicates, equation 18 translates to:

isElementpXq ^ isSetpAq ^ isSetpBq ùñ
memberpX, unionpA, Bqq ðñ memberpX, Aq _memberpX, Bq (19)

This technique introduces a lot of clutter, which can affect a theorem prover
negatively, and is sometimes unnecessary. Monotonox, the next tool in our
toolbox, can help us overcome this by a novel analysis which improves on
existing well-known translations.

In short, we say that a sort is monotone in a given theory if, for any
model of the theory, the domain of that sort can be made larger without
affecting satisfiability. The result of the translation for monotone sorts turns
out to be much simpler than for non-monotone sorts, as monotone sorts
do not require sort predicates to preserve satisfiability. The monotonicity
analysis exploits the fact that the only way to limit domain size is to use
equality. For example, equality can be used to state that all elements must be
equal to each other and thus that the domain size must be 1. When equality
is not present, we can extend the domain by adding a new element that
behaves identically to an already existing one. Monotone sorts can simply
be removed in the translation, while non-monotone sorts still require special
care. In Chapter 2, we describe the analysis in further detail and explain
how it can be implemented using a SAT solver.

6 Introduction

For now, let us see how Monotonox translates our problem:

memberpX, emptyq ðñ false (20)

isElementpXq ^ isElementpYq ùñ
memberpX, singletonpYqq ðñ X “ Y (21)

memberpX, unionpA, Bqq ðñ memberpX, Aq _memberpX, Bq (22)
memberpX, diffpA, Bqq ðñ memberpX, Aq ^ memberpX, Bq (23)

isSetpAq ^ isSetpBq ùñ
p@XpmemberpX, Aq ðñ memberpX, Bqqq ùñ A “ B (24)

Conjecture:
unionpA, diffpB, Cqq “ diffpunionpA, Bq, Cq (25)

In addition, there are sort axioms which specify the result sorts of each
function:

isSetpunionpX, Yqq (26)
isSetpdiffpX, Yqq (27)

isSetpemptyq (28)
isSetpsingletonpXqq (29)

And axioms that make sure that the sorts are non-empty:

DA.isSetpAq (30)
DX.isElementpXq (31)

Sort predicates are needed for both sorts, which suggests that none of the
sorts were found to be monotone. However, only two of the axioms, 21 and
24, both involving equality, use sort predicates to restrict the range of the
quantifications. (In fact, axiom 24 does not need sort predicates either, as
would be detected by a new addition to the scheme which is discussed as
future work on page 16.) Monotonox can thus reduce the clutter that would
have been present in standard sorted to unsorted translations.

Now we can try Paradox on the new version of the problem:

Paradox, version 4.0, 2010-06-29.
+++ PROBLEM: sorted_sets.fof
Reading ’sorted_sets.fof’ ... OK
+++ SOLVING: sorted_sets.fof
domain size 1
domain size 2
+++ RESULT: CounterSatisfiable

This time, Paradox finds a finite counter-model of size 2, proving the conjec-
ture false. Indeed, a counter-example to the conjecture is given by

A “ a, B “ empty, C “ a

A motivating example 7

which can be verified given the following interpretation:

unionpa, aq “ a diffpa, aq “ empty
unionpa, emptyq “ a diffpa, emptyq “ a
unionpempty, aq “ a diffpempty, aq “ empty

unionpempty, emptyq “ empty diffpempty, emptyq “ empty

singletonpaq “ a memberpa, aq ðñ true
singletonpemptyq “ a memberpa, emptyq ðñ false

memberpempty, aq ðñ true
memberpempty, emptyq ðñ false

isSetpaq ðñ true isElementpaq ðñ true
isSetpemptyq ðñ true isElementpemptyq ðñ false

The counter-example consists of two sets (empty and a) and one element
(a), where a stands for either a set or an element. Because empty is not an ele-
ment, neither of singletonpemptyq, memberpempty, aq or memberpempty, emptyq
exist in the sorted problem, but when sorts are removed, we must include
an interpretation for them to make the model well-defined. As these terms
do not correspond to anything in the sorted problem, their values are in
that regard unimportant. To obtain the sorted model, these terms are simply
removed from the interpretation, and the model domain is separated into
one domain for sets and one for elements.

In the example above, satisfiability is not affected by these “bogus terms”,
because in the interpretation above, every constant of the “wrong” sort
mimics some constant of the “correct” sort. In some cases, e.g. axioms which
contain equality, this does not work, as a mimicking element of the wrong
sort would be exposed. In this case, the axiom must be guarded by a sort
predicate. Chapter 2 describes how to analyse a problem to detect where
sort predicates are needed.

We have seen an example that motivates the development of tools that
can do more than proving and disproving. Infinox complements finite model
finders by disproving the existence of finite models. It can also show the
reason why there is no finite model, which may provide more intuition to
the user. For example, when a finite (counter-)model is expected, Infinox
can reveal mistakes in the problem definition. In our example, by analysing
the injective and non-surjective function that was discovered by Infinox,
we found that we had failed to separate elements and sets. After rewriting
the problem to sorted first-order logic, separating the sorts, we could no
longer apply the same tools as before. Monotonox efficiently translated the
sorted problem back to unsorted logic, using a novel translation algorithm
that introduces sort predicates only in the necessary places. Finally, Paradox
found a counter-example of size 2, proving the conjecture false.

8 Introduction

Equalox

Let us look at a different example in the domain of sets. unionpA, Bq is
defined as the smallest set containing both A and B as subsets (35, 36, 37).
We axiomatise the reflexive, transitive and antisymmetric properties of the
subset relation (32,33,34).

subsetpA, Aq (32)

subsetpA, Bq ^ subsetpB, Cq ùñ subsetpA, Cq (33)

subsetpA, Bq ^ subsetpB, Aq ùñ A “ B (34)
subsetpA, unionpA, Bqq (35)
subsetpB, unionpA, Bqq (36)

subsetpA, Cq ^ subsetpB, Cq ùñ subsetpunionpA, Bq, Cq (37)

Suppose that we wish to find out if, given the above laws, union is associative:

unionpA, unionpB, Cqq “ unionpunionpA, Bq, Cq (38)

This time, let us try the automated theorem prover SPASS [62], which
like E uses the superposition calculus. SPASS does not find a solution given
an execution time of ten minutes. A reason for this may be the transitivity
axiom, which can cause a theorem prover to get lost in a proof due to the
many consequences it generates. For example, resolving the transitivity
axiom (33) with itself yields

subsetpA, Bq ^ subsetpB, Cq ^ subsetpC, Dq ùñ subsetpA, Dq

which in turn yields

subsetpA, Bq ^ subsetpB, Cq ^ subsetpC, Dq ^ subsetpD, Eq ùñ subsetpA, Eq

and so on, producing a never-ending chain of consequences.
SPASS has a built in strategy called chaining [4], which it applies when

transitive axioms are present. Chaining is a family of methods that limit the
use of transitivity-like axioms in proofs by only allowing certain chains of
them to occur in the proof. The chaining calculus applies a special chaining
rule to combine two clauses that both involve a literal with a transitive
relation. For example, given the two clauses subsetpA, Bq and subsetpB, Cq,
chaining applies transitivity to derive the new clause subsetpA, Cq.

For this particular problem, however, chaining does not seem to over-
come the difficulties of transitivity.

Equalox, the third tool in our toolbox, can improve the performance of
first-order provers on problems involving transitive relations. The insight
is that first-order provers are poor at applying the transitivity axiom effec-
tively, but that the problem can always be transformed to safely remove the
transitivity axiom. Equalox implements several such transformations, with

A motivating example 9

more efficient encodings available for special forms of transitivity such as
equivalence relations and total orders.

For our example problem, the available encoding is named “detransifi-
cation”. It can be applied to any theory that involves a transitivity axiom.
The transformation removes the transitivity, but adds for every positive
occurrence of a transitive relation RpX, Yq an implication that says:

RpS, Xq ùñ RpS, Yq

i.e. “for any S, if you could reach X from S, now you can reach Y too”. Thus,
we have specialised the transitivity axiom for every positive occurrence of R.
Negative occurrences of the relation are left unchanged.

Detransification can be seen as performing one resolution step with
each positive occurrence of the transitive relation and the transitivity axiom.
A positive occurrence Rpa, bq of a transitive relation R, resolved with the
transitivity axiom RpX, Yq ^ RpY, Zq ñ RpX, Zq becomes RpX, aq ñ RpX, bq
under the substitution Y := a, Z := b.

This transformation is equisatisfiable to the original theory, and thus if
we find a proof of the transformed problem, it is a proof also of the original
problem.

The transformed version of our example becomes:

subsetpA, Aq (32’)
subsetpA, Bq ^ subsetpB, Aq ùñ A “ B (34’)

subsetpA, unionpA, Bqq ^ @S.subsetpS, Aq ùñ subsetpS, unionpA, Bqq (35’)
subsetpB, unionpA, Bqq ^ @S.subsetpS, Bq ùñ subsetpS, unionpA, Bqq (36’)

subsetpA, Cq ^ subsetpB, Cq ùñ
subsetpunionpA, Bq, Cq ^ @S.subsetpS, unionpA, Bqq ùñ subsetpS, Cq (37’)

The conjecture is left unchanged:

unionpA, unionpB, Cqq “ unionpunionpA, Bq, Cq (38’)

Note that the negative occurrences of subset (occurring to the left of
the implication sign) are left unchanged, while for any positive occurrence
subsetpA, Bq, the resolvent of subsetpA, Bq and the transitivity axiom, i.e.
@S.subsetpS, Aq ^ subsetpS, Bq, must also hold. For reflexivity (32), the trans-
formed clause can be simplified to produce the original clause. The transi-
tivity axiom (33) is removed completely.

Although the problem looks messier to the eye, SPASS is now able to
prove the conjecture in around 10 seconds. The example demonstrates that
even though detransification and chaining have a similar purpose, they
perform differently in practice. The chaining rule is more liberal in that it can
be applied to any two clauses that contain the transitive relation. The effect
of using detransification is similar to that of using the chaining rule, with the

10 Introduction

restriction that one of the input clauses has to be an axiom. Detransification
also removes the transitivity axiom altogether, while preserving soundness
and completeness. By narrowing down the set of valid inferences, it seems
that detransification often makes the problem easier to solve compared to
chaining.

Equalox offers specialised transformations for more specific transitive
relations. For equivalence relations, we can apply a transformation that
makes use of the built-in equality reasoning of many theorem provers. An-
other transformation, which works for total orders, exploits the SMT solvers’
built-in support for real numbers and the ď operator.

In Chapter 3, we describe the transformations in detail and present the
experimental results. Depending on the tool and the nature of the problem,
the transformations sometimes make the problem easier and sometimes
harder to solve. The transformation for total orders significantly improved
the results for the two SMT solvers [6, 18] that we used in our evaluation,
while all of the transformations turned out to be generally worse for E [50].
Our evaluation showed that, after applying the transformations, 5 problems
from the TPTP problem library [56] were solved that had never been solved
automatically before.

Morfar

The tools previously described analyse or transform logical problems. The
final tool in this thesis, Morfar, instead shows an application of automated
reasoning to a problem in computational linguistics.

Morphological segmentation is the task of dividing each word in a given
list into smaller meaning-bearing segments (morphemes), and assigning
each morphological feature of the word to one of those segments.

For example, the input may consist of the following set of Swedish
inflected nouns, together with their standard forms and features:

inflected features standard features
hästarnas Pl; Def; Gen häst Sg; Indef; Nom
fiskar Pl; Indef; Nom fisk Sg; Indef; Nom
kattens Sg; Def; Gen katt Sg; Indef; Nom

The output of the tool may then look as follows, where the stems are marked
in bold:

inflected standard
häst|ar

Pl
|na
Def
| s
Gen

häst| ∅
Sg,Indef,Nom

fisk|ar
Pl
| ∅
Indef, Nom

fisk| ∅
Sg,Indef,Nom

katt|en
Def
| s
Gen
|∅
Sg

katt| ∅
Sg,Indef,Nom

A motivating example 11

In natural language, the set of morphemes associated with a feature is
generally limited. With this idea in mind, from a given input we aim to
reuse as many feature-morpheme pairs as possible. In our example above,
the feature-morpheme pairs (ar, Pl) and (s, Gen) are both used twice.

In a valid segmentation there should be no overlapping segments, and
an optimal segmentation minimises the number of feature-morpheme pairs.
Such criteria can be formally defined and expressed mathematically as a
system of constraints. A solution can then be found using zero-one linear
programming (0/1 LP).

A 0/1 LP problem consists of a set of variables and a set of linear inequal-
ities over those variables. Given such a problem, a 0/1 LP solver finds an
assignment of values to the variables that makes all the inequalities hold,
and where all variables have the value 0 or 1. By defining a variable for each
possible feature-morpheme pair, we can define the necessary constraints
that need to be fulfilled to produce a valid segmentation of each word in the
input. In addition, a 0/1 LP problem also specifies a linear term whose value
should be minimised, called the objective function. In our case, the objective
function aims to minimise the set of feature-morpheme pairs. A 0/1 LP
solver is guaranteed to find the solution that minimises the objective func-
tion. Because of how our problem is constructed, a solution is sure to exist.
The solver that we use is CPLEX [26]. Once CPLEX returns a solution, we
look at which variables were assigned a value of 1. These variables describe
an optimal segmentation of the input and the set of feature-morpheme pairs
used in it.

Refinements We extend the basic algorithm with two novel refinements,
which allow us to describe the morphology of the language more precisely.

Firstly, Morfar introduces constraints which help distinguish between
stems and morphemes, restricting how these can be placed in relation to
each other. For example, the morpheme s marks plural in English, but only
as a suffix of the stem; seashell|s is a valid segmentation, but not s|eashells
or sea|s|hells. By distinguishing between these variants, Morfar can achieve
a more precise segmentation.

Secondly, Morfar detects inflection rules that involve replacing one mor-
pheme with another. For example, in English, a final -y is typically replaced
by -ie- when a word is inflected. Such rules are found by first running the
segmentation algorithm, and then introducing extra features that describe
the parts of the standard form that are changed when the word is inflected.

As an example, assume the input includes the following entries:

inflected features standard features
cars Pl; Nom car Sg; Nom
babies Pl; Nom baby Sg; Nom

The resulting segmentation includes two different morphemes for plural, s
and ies.

12 Introduction

inflected standard
car|s

Pl
| ∅
Nom

car| ∅
Sg, Nom

bab |ies
Pl
| ∅
Nom

bab|y
Sg
| ∅
Nom

We can capture the fact that the ies morpheme is a special case, which occurs
only when the standard form ends in a y. This is done by automatically
adding an extra feature to the input and taking advantage of the machinery
we already have in place. For all entries of the input where the standard
form is distinct from its stem, a new feature is automatically added to the
inflected word that describes the variable part of the standard form. In our
example, the variable part of the standard form baby is the suffix y. The tool
thus introduces a new feature From_Suffix_y to the features of babies, and the
new input becomes:

inflected features standard features
cars Pl; Nom car Sg; Nom
babies Pl; Nom; From_Suffix_y baby Sg; Nom

With these new features added, we use the same algorithm as before to
obtain a new segmentation. The morphemes that are mapped to the new
features are specific to the parts of the standard form that were changed
when inflected.

inflected standard
car|s

Pl
| ∅
Nom

car| ∅
Sg, Nom

bab| ie
From_Suffix_y

|s
Pl
| ∅
Nom

bab|y
Sg
| ∅
Nom

The morpheme pair (From_Suffix_y, ie) can be seen as a function taking
the suffix y in the standard form and changing it into ie. We picture this as
(yÑ ie). The segmentation of babies is thus shown as:

bab(yÑ ie)|s
Pl
| ∅
Nom

The new segmentation captures the -y to -ie- rule of plural nouns in English,
allowing the morpheme pair (Pl, s) to be reused.

We can also find inflection rules that are specific to a part of the stem, by
adding features that specify what characters the stem ends or begins with.
One such example is the doubling of the letter g in the comparative form of
big, pictured as: bi(gÑ gg) | er

Comp
.

Impacts and Future Work 13

Morphological Reinflection Morfar has been adapted to do morphologi-
cal reinflection [14]. Given a lemma and set of morphological features, the
task is to generate a target inflected form. For example, given the source
form release and target features PTCP and PRS, the task is to predict the
target form releasing.

Our approach requires a set of labelled training data, which we segment
to obtain a list of morphemes and their associated features. To predict the
target inflected form of a word, we: 1) find the stem of the word, 2) find a
word in the training data whose features match the target features, and 3)
replace the stem of that word with that of the input word. Our reinflection
algorithm is very simple, but still competes with state-of-the-art systems,
indicating that the underlying morphological analysis provided by our tool
is of good quality.

Impacts and Future Work

This thesis consists of four papers that respectively describe the tools Infi-
nox, Monotonox, Equalox and Morfar. Below is a short summary of some
additional work that has been done after their publication, and some stories
of people who have been in touch about using Infinox and Monotonox in
their work.

Infinox

Since the original version of Infinox was released in 2009, it has been used by
several people in their own research. A few mathematicians have found Infi-
nox through web search while looking for criteria on infinite models, which
suggests that the problems that Infinox attempts to solve are indeed highly
relevant. One of the people who have been in touch is David Stanovsky, a
mathematician studying loop theory. He was originally looking for a tool
that can determine that a problem does not have a model of a certain finite
size. While Paradox turned out to be a better tool for this particular pur-
pose, our discussion generated a nice exchange of ideas. David was at first
disappointed to find that Infinox was unable to show finite unsatisfiability
of some problems from Group Theory known to be finitely unsatisfiable.
However, as it turned out, the problems were solvable by tweaking the
parameters and choosing the right method, namely the one that searches
for serial relations (in other words, a strict partial order with no maximal
elements). David was also pleased that Infinox found an alternative proof
to a problem to which he was only aware of an argument using Lagrange’s
theorem: Infinox was quick to find that a group containing an element of
order 2 and having square roots must be infinite, by pointing out that the
function X Ñ X ˚ X is surjective but not injective.

Another Infinox user is Mark Greer, who came across Infinox while trying
to solve an open problem in Loop Theory as part of his dissertation. Mark

14 Introduction

wants to know if every finite alternative loop has a 2-sided inverse. There is
a known infinite counter-example, but in the finite case, no counter-example
has been found. Infinox was not able to rule out finite counter-models to his
problem, but we could show using Paradox that any possible counter-model
would have to be of size 25 or larger. Mark has only case-by-case arguments
for different parameters k, but no clear overall pattern to complete a proof.
Such situations can motivate the addition of new methods to Infinox, where
one searches for different functions with “infinity properties” at the same
time. Since Mark is looking for different arguments for different values
of k, it may be the case that there are different functions or relations with
different infinity properties for different k. As an example, suppose we have
a problem with two functions f and g, where f is injective and non-surjective
on domains with even size, and g is surjective and non-injective on domains
with odd size. Infinox will not be able to show the infinity properties for
either of the functions on their own, but it could show that either f or g must
have the infinity properties in each case, and hence that any model must be
infinite. Variations on this are of course without limit, and it is hard to know
what extensions of Infinox would be useful in practice. Problems like the
one Mark is trying to solve can serve as a guide in extending Infinox with
new methods that are worthwhile.

Jesse Alama, a researcher in Mathematical Logic and Proof Theory, has
used Infinox in his research while working with the large Mizar Mathemati-
cal Library [36]. In one of his projects, he is interested in making sure that
the models of the problems he is working with are finite. Using Infinox, he
detects cases where this is not the case, so that no time is wasted wondering
whether using a finite model finder would provide a finite model. Jesse
has made a tool called “Tipi”, which aims at providing support in theory
development. He mentions Infinox in his paper [3] as a possible extension
to complement Tipi. Both Infinox and Monotonox could play a role in de-
tecting unintended models, as exemplified in the previous section. His goal
is similar to ours in that he wishes to provide answers to a wider range of
questions than the standard ones of satisfiability and derivability.

Infinox also has some more practical uses. Geoff Sutcliffe, the developer
of the TPTP problem library [56], and organizer of the annual CASC com-
petition for theorem provers and model finders [57], has used Infinox to
evaluate the test problems for the competition, checking what ones do not
have a finite model.

Monotonox

Monotonox and the monotonicity calculus The paper in this thesis, pub-
lished in 2011, develops the theory of monotonicity for sorted first-order
logic. The domain of a monotone sort can always be extended with an extra
element. Monotone sorts result in less clutter when translating to unsorted
logic, as sort information can be erased without affecting satisfiability. In
first-order logic, the only possible source of non-monotonicity is the use

Impacts and Future Work 15

of a variable next to an equality sign. To determine exactly what occur-
rences of equality limit domain size is trickier, and detecting monotonicity
of a sort in general is not decidable. We have introduced two algorithms
approximating the answer, one linear in the size of the problem, and one
improved algorithm solving an NP-complete problem using a SAT solver.
The algorithms have been implemented in our tool Monotonox. Our results
show that the improved algorithm detects many cases of monotonicity, and
that the NP-completeness is not a problem in practice.

Previous work that inspired us The original ideas behind the monotonic-
ity calculus were first implemented in 2003 in a simpler form in the finite
model finder Paradox [12], which performs sort inference in order to sim-
plify the underlying SAT problem. With additional sort information, clauses
can be added to the SAT problem to reduce symmetries related to isomor-
phic interpretations. The analysis was based on the observation that the
domain of a sort can be extended when there are no positive equality literals
involving naked (i.e. not occurring as a subterm) variables of that sort.

Monotonicity for higher-order logic was invented by Blanchette and
Krauss [9] in 2010, and implemented as part of the higher-order model
finder NitPick, to prune the search space in a similar way to how it is done
in Paradox. The differences in the logics makes the problem of inferring
monotonicity considerably different even though it is related to ours. For
example, in higher-order logic, since equality can be encoded using quan-
tification over predicates, it is not true that a formula without equality is
always monotone.

Work inspired by Monotonox In a follow up paper from 2013 [10], the
notion of first-order monotonicity is extended to include polymorphic sorts.
The paper introduces two different main approaches to encoding poly-
morphic symbols in first-order logic. One works by monomorphising the
problem, which is done by heuristically instantiating all sort variables with
ground sorts. Monotonox can then be used to remove the sorts as usual.
Monomorphisation is incomplete as an upper bound has to be set to limit
term depth and the number of additional axioms. The second approach
works by encoding sorts by a term, which is passed as an argument to the
sort predicate. As an example, pplistpAq, Xq restricts the range of the variable
X to lists. Despite incompleteness, the monomorphic method turned out to
be the most successful, which suggests that the clutter introduced by the sort
arguments considerably slows down automated theorem provers. The paper
also makes a major improvement to the monotonicity calculi which consid-
erably reduces the clutter associated with the translation of non-monotone
sorts. The new scheme, which can be applied to both polymorphic and
first order monotonicity, requires guards only in the particular axioms that
make the sort non-monotone. This is based on the observation that when
all “dangerous” axioms are protected, all sorts in the translated problem are

16 Introduction

monotone, so the remaining axioms can be left unchanged. Monotonox has
been updated to use the new improved encoding.

Reger et al. [43] have used ideas from both Infinox and Monotonox to
improve the performance of finite model finders in sorted first order logic.
Their model finder tries different combinations of model sizes for each sort.
They build on our ideas to limit the number of different combinations that
need to be tried. When the problem contains monotone sorts, the number of
combinations can be reduced in two ways. Firstly, all monotone sorts can be
assumed to have the same size. Secondly, when a monotone sort is found
to have no model of size n, then no model with a size smaller than n can
exist. They also use an Infinox-like approach to discover constraints between
the sizes of different sorts. For example, if an injective and non-surjective
function exists from sort A to sort B, then it can be inferred that the size of
B must be bigger than the size of A in any finite model. Their evaluation
shows that these techniques are useful in practice.

An application where Monotonox is used is QuickSpec [53], a tool that
finds algebraic properties of functional programs by testing. To remove
redundant laws, an equational theorem prover for first-order logic is used.
Since the laws that are discovered are for typed programs, Monotonox is
used to soundly remove the types without introducing additional clutter.
Using Monotonox instead of the naive encoding has resulted in more redun-
dant laws being discovered and removed.

Future Work on Monotonox Left as future work is to improve the en-
codings to detect more sorts that can be erased without introducing sort
predicates. To remove a sort safely, monotonicity is an unnecessarily strong
criteria as it suffices that the domain of the sort can be made as big as that of
the biggest sort. When the domain of a sort can be extended without bound,
we do not need sort predicates to restrict the sort’s range. Searching for a
chain of injections between the sorts can help us find the biggest one. (If
there is an injection from a sort A to B, the domain of B must be at least as
big as the domain of A.) Infinox could be adapted to do this analysis. In
our running example, the function singleton is an injection from Element to
Set, which means that Set has the biggest domain and does not need sort
predicates.

Another possible extension of Infinox is to adapt it to sorted problems.
This would allow monotonicity inference of sorts by showing that their
domains must be infinite. Infinity inference for monotonicity is exploited in
the higher-order proof assistant Isabelle, as discussed in [10]. Isabelle has
the advantage of having datatypes registered with their constructors. If a
constructor is recursive or takes infinite arguments, the associated sort is
trivially infinite and thus monotone.

Impacts and Future Work 17

Equalox

Our paper presents 5 transformations that can be applied to theories with
certain transitive relations. A transformed theory is equisatisfiable to the
original theory; a proof of the transformed problem is also a proof of the
original problem.

Detransification works for any transitive relation.

Detransification with reflexivity specialises detransification for relations
that are both transitive and reflexive.

Equalification works on equivalence relations, and makes use of the
built-in equality reasoning of many theorem provers.

Pequalification applies equalification on partial equivalences, i.e. rela-
tions that act as equivalence relations on a subset of the domain.

Ordification works for total orders. It introduces arithmetic operators
and real numbers, and therefore requires the solver to support arithmetic
reasoning.

The purpose of our paper is to investigate how different representations
of transitive relations affect the performance of theorem provers. Overall,
the results vary between each transformation and reasoning tool. For many
of the transformations, there are both problems that become easier and prob-
lems that become harder to solve. For some combinations of transformations
and theorem provers, there is a clear improvement. For example, applying
ordification to problems with total orders improved the results greatly for
the two SMT solvers Z3 and CVC4. We also show that a time-slicing strategy
can be advantageous, where the reasoning tool is run on both the original
and the transformed problem, with a suitably chosen time-limit for each.

For some combinations of transformations and provers (such as detransi-
fication for Vampire, and equalification for Z3), the overall results are clearly
better on the transformed problems, and we would thus recommend these
transformations as preprocessors for these provers. Theorem provers that
already have the time slicing machinery in place would for some transfor-
mations benefit from a time slicing strategy, which given a proportion of the
time each tries to solve both the original and the transformed theory.

These ideas could also be integrated in a theorem prover. If a transitive
relation is detected during proof search, an appropriate transformation could
be applied at that point. Another possibility is to change the chaining rule
that is used in SPASS so that one of the resolvents must be an axiom. By
doing so, we would restrict the valid inferences to achieve the same effect as
detransification.

18 Introduction

Morfar

Morphological segmentation has been extensively studied. The most pop-
ular approaches use statistical methods, but these typically require large
amounts of data. Integer linear programming has not, as far as we know,
been used for morphological segmentation before. By requiring the seg-
mentation to follow strict constraints, we can achieve good results with
less training data. Compared to previous work, our method improves the
precision of the morphological analysis in two ways. Firstly, we can use the
constraint solver to restrict where a given morpheme can appear in a word,
e.g. prefix, infix or suffix. Secondly, by automatically adding new features
to the problem, we can describe more precisely in which situations each
morpheme should be used.

The use of a constraint solver for morphological segmentation has many
benefits. Firstly, we are forced to make the problem well defined and specify
exactly what problem we want to solve. Having done so, the solution that
we obtain is guaranteed to be optimal. In the case that the solution is not
satisfactory, it means that the problem definition was not adequate. The
process of formally describing the problem helps us to better understand it,
which in turn helps us to fine-tune the constraints and add new features to
precisely capture the morphological structure of the language.

Our paper demonstrates that constraint solving is a useful alternative
to machine learning for segmentation and reinflection, particularly for low-
resource languages where one must make the most of a small set of data. We
believe that the use of automated reasoning and integer linear programming
in computational linguistics is an underexplored topic, and hope that our
paper spurs more research in this direction.

Conclusions

This thesis introduces four different tools, which extend the automated
reasoning toolbox in two different ways.

Firstly, Infinox, Monotonox and Equalox all have in common that they
are aimed at complementing and augmenting existing reasoning tools by
solving a wider range of problems than the traditional ones of satisfiability
and derivability. The tools themselves, as well as the ideas behind them,
have inspired new research in automated reasoning and related fields.

Secondly, Morfar extends the scope of applications of automated reason-
ing, demonstrating the benefits of formalising the problem and finding an
exact solution in natural language processing, an area currently dominated
by approximate methods such as neural networks.

Because first-order logic is semi-decidable, there will always be problems
that we cannot solve. We can always improve our tools to solve more
problems, but we can never complete the task and solve them all. In the
same way, the automated reasoning toolbox can always be extended, but
never completed.

Contributions of the Author

Paper I - Automated Inference of Finite Unsatisfiability I came up with
the different methods, extensions and optimisations. I implemented the
tool described in the paper, and did the evaluation. The sections related to
this, and the motivating examples are written by me, while the remaining
parts were written jointly. I presented this work at the CADE conference in
Montreal, Canada in 2009. At the time of writing, the journal and conference
versions of the paper together have a total of 21 citations.

Paper II - Sort it Out with Monotonicity: Translating between Many-
Sorted and Unsorted First-Order Logic The implementation was made
jointly with Nicholas Smallbone. The monotonicity calculi and proofs were
worked out by us together and the paper was written jointly. Nicholas
Smallbone presented the work at the CADE conference in Wrocław, Poland
in 2011. At the time of writing, the paper has 46 citations.

Paper III - Handling Transitive Relations in First-Order Automated Rea-
soning The generalised method and the partial equalification are both my
ideas. I designed and implemented the tool described in the paper, and did
the evaluation. The related sections are written by me, while the remaining
parts were written jointly with my co-author. I presented this work at the
PAAR workshop in Coimbra, Portugal in 2016.

Paper IV - Inferring Morphological Rules from Small Examples using 0/1
Linear Programming I designed and implemented the tool described in
the paper and did the evaluation. The technique to detect stem changes is my
own idea, as well as the semantics for patterns and the ideas for future work.
The problem description, the description of the algorithm and optimisations,
the evaluation and examples are all written by me. The paper was published
in the proceedings of the NoDaLiDa’19 conference in Turku, Finland.

	Introduction
	A motivating example
	Impacts and Future Work
	Conclusions
	Contributions of the Author

	1 Automated Inference of Finite Unsatisfiability
	1 Introduction
	2 Proof Principles for Showing Infinite Domains
	3 Automating Finite Unsatisfiability
	4 Results
	5 Alternative Methods
	6 Future Work
	7 Conclusions

	2 Sort It Out with Monotonicity: Translating between Many-Sorted and Unsorted First-Order Logic
	1 Introduction
	2 Monotonicity Calculus for First-Order Logic
	3 Monotonox: Sorted to Unsorted Logic and Back Again
	4 Results
	5 Conclusions and Future Work

	3 Handling Transitive Relations in First-Order Automated Reasoning
	1 Introduction
	2 Common properties of binary relations
	3 Syntactic discovery of common binary relations
	4 Handling equivalence relations
	5 Handling total orders
	6 Handling transitive relations in general
	7 Experimental results
	8 Discussion and Conclusions
	9 Future Work

	4 Inferring Morphological Rules from Small Examples using 0/1 Linear Programming
	1 Introduction
	2 Related Work
	3 Morphological segmentation
	4 Finding morphological rules
	5 Experimental Results
	6 Conclusion and Future Work

	Bibliography

