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Abstract

We report on the first demonstration of machine-learning-assisted detection, identification and localisation of optical-layer attacks
integrated into network management system and verified on real-life experimental attack traces from a network operator testbed.

1 Introduction and Relevance

The introduction of machine learning (ML) algorithms repre-
sents a key enabler for autonomous monitoring, management
and control of optical networks [1], allowing to fully exploit
the telemetry capabilities of coherent devices [2]. The use
of ML can reduce the monitoring overhead and enhance the
accuracy of estimation methods in optical networks [3]. Var-
ious approaches [1, 3, 4] and demonstrators [5–9] showcased
the advantages and the integration of ML algorithms in opti-
cal network monitoring, control and management. However,
apart from few preliminary studies [10, 11], issues related to
physical-layer security remain largely unaddressed.

Security assurance in optical networks, as critical commu-
nication infrastructure, is becoming increasingly relevant in
the face of growing threats aimed at service disruption [12].
Encompassing and cognitive security management requires
development and integration of a set of tailored techniques.
Firstly, continuous optical performance monitoring (OPM) is
needed. State-of-the-art coherent transceivers enable the col-
lection of a broad range of optical parameters without the need
for costly specialized equipment. The OPM data collected for
different channels in the network then needs to be analyzed
in order to perform attack detection and identification (ADI),
i.e., to interpret whether individual channels are affected by an
attack, and what type of attack it is. Finally, the location of
the breach source should be identified as a prerequisite for its
neutralisation and service recovery.

This demo showcases the integration of an ML-based ADI
and an attack localisation module into an automated network
management system capable of continuously monitoring the
network, and experimentally demonstrates the system effec-
tiveness for different real-life physical-layer attack techniques
in an operator’s multi-vendor testbed. The demo enables the
audience to interact with the various modules in the holistic

monitoring loop, selecting among several possible configura-
tions. By integrating the modules via standard communica-
tion interfaces, the capabilities, limitations and challenges of
implementing such functionalities are demonstrated.

2 Demo Architecture and Presentation

The monitoring platform showcased in the demo is composed
of three main modules, as illustrated in Fig. 1. The moni-
toring and visualisation server (MVS) plays a central role,
being responsible for receiving the OPM reports from the
devices located at the network nodes (i.e., coherent receivers),
storing the OPM data in a database, communicating with
the machine-learning-based attack detection and identifica-
tion module (ML-ADIM) and the attack localisation module
(ALM), triggering alarms, and visualizing the network status.

Fig. 2 describes the communication between the modules for
one monitoring cycle, i.e., from the querying of OPM data to

Monitoring platform

Monitoring and 
visualisation 
server (MVS) Attack localisation module 

(ALM)

ML ADI module
(ML-ADIM)

Fig. 1: Architecture of the monitoring platform.
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Fig. 2: Communication diagram between the modules composing the demo.

the security status interpretation and visualisation. The MVS
periodically polls the optical receivers using simple network
management protocol (SNMP), which report back the OPM
data for storing in a database and further processing. When
OPM data is received from the transponders, the MVS calls
the ML-ADIM, which performs detection and identification
of attacks affecting individual optical channels. To prioritize
between accuracy and complexity performance, the ML-ADIM
can be executed in three modes: (i) supervised learning (SL)
only; (ii) unsupervised learning (UL) only; and (iii) supervised
and unsupervised learning.

SL algorithms, on the one hand, provide efficient and pre-
cise ADI [13], but are not suitable for previously unseen attacks
[14]. A pre-trained model is able to identify the type and inten-
sity of an attack by evaluating only the current OPM data
obtained from the optical devices, without requiring any his-
torical data, which contributes to a low complexity of the
algorithm. The identification of the attack type can assist the
ALM, which can leverage the identified attack to enhance
localisation. However, when the network experiences a new
type of attack, this technique is not useful since the model
was not trained for that type, possibly leading to harmful false
results. UL models, on the other hand, are able to detect attacks
not seen previously, but cannot identify the particular type of
attack [14]. By leveraging on anomaly detection algorithms,
it is possible to identify attacks based on the principle that
their presence, in the beginning, is extremely rare, i.e., most
OPM samples are attack-free. As a result, UL models enable
early detection of new types of attacks without prior knowledge
of the attack signature. However, many UL algorithms tra-
verse the entire dataset (or a big portion of it), which increases
complexity [15, 16].

The MVS combines the diagnostic information of individual
channels received from the ML-ADIM with general informa-
tion such as the network topology graph and resource alloca-
tion, and forwards it to the ALM for network-wise attack local-
isation to identify the source of the attack, i.e., the breached link
and/or the harmful connection. The ALM deduces the possible
source of the attack depending on the information provided,
as well as the specific characteristics of the attack, if avail-
able. Finally, the monitoring platform’s graphical user interface
(GUI) provides a visual representation of the network security

status, representing the channels affected by an attack as well
as its likely source. Both ML-ADIM and ALM expose their
functionalities through representational state transfer (REST),
which enables their use by any network monitoring, control
and management software. They are developed in the form of
containers, facilitating their deployment in the form of virtual
network functions (VNFs), which can be used for scalability.
The modules are implemented as stateless, i.e., do not store the
data, but rely on the MVS to supply it.

During the demo live presentation, the attendees can inter-
act with the platform by selecting the type and the location
of an attack to be launched, the type of ML algorithm used
by ML-ADIM (UL/SL), and the working mode of the ALM
(link/connection localisation). The SL mode of the ML-ADIM
uses a pre-trained artificial neural network (ANN) hosted by
TensorFlow Serving. The UL mode uses the Scikit-Learn
implementation of the density-based spatial clustering of appli-
cations with noise (DBSCAN). The experimental data from
the coherent transceivers in the testbed for the described attack
techniques of different intensities are collected beforehand and
replayed in real time. For a selected attack scenario and the
ML-ADIM+ALM modes, the configuration, the effects, and
the security assessment result are visualised using the GUI
based on StableNet [17].

3 Use case

The multi-vendor testbed used to collect the data for the demo
is based upon a commercial optical transport network with 6
ROADM nodes and 11 links. The optical signals under test
are two 200 Gbit/s polarisation multiplexed 16QAM signals
generated by coherent transponders and reported through their
monitoring interface. Three physical-layer attack techniques
are implemented: (i) in-band jamming (IBJ), where the intru-
sion signal is a continuous wave (CW) low power signal with
frequency within the bandwidth of the signal under test; (ii)
out-of-band jamming (OBJ), where the intrusion signal is a
CW signal with a frequency outside the bandwidth of the sig-
nal under test, and (iii) polarisation scrambling (PS), where a
polarisation state modulator is activated to cause transmission
errors when the induced polarisation variation is faster than the
receiver’s polarisation recovery algorithm.
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Fig. 3: Monitoring out-of-band jamming (OBJ) and polarisation scrambling (PS) attacks in unsupervised (top) and supervised
learning mode (bottom).

Detection and localisation of attacks using the developed
platform is illustrated with a simplified example in Fig. 3 for
different connection routing, attack types (OBJ and PS) and
working modes of the ML-ADIM (UL/SL) and ALM mod-
ules (link/connection localisation). The top part shows the case
where UL is applied, i.e., the ML-ADIM module reports only
the degradation of a subset of connections. As the cause of
the degradation is unknown to the module, no attack type
information is provided. The information from ML-ADIM is
represented in ALM using binary words called attack syn-
dromes [18], where the status of each degraded connection
is denoted by 1, while 0 denotes regular, unaffected status
at the receiver. Attack syndromes are pre-constructed for dif-
ferent sources of attacks and, if unique, can unambiguously
identify the breach source depending on the subset of affected
connections. The attack syndromes are constructed during ini-
tialisation according to the two ALM working modes, stored
in the MVS, and used for lookup of the reported syndrome.
The top left table of Fig. 3 shows localisation of the harmful
connection. If we assume that connection C1 carries the harm-
ful signal (e.g., of excessive power, which could be caused by
tampering with the power levels), it will degrade C2 in their
shared fibre link (B-F). If connection C3 were not present in
the network, the attack syndromes of C1 and C2 as potential
attack sources would be equal (denoted with a red frame), and
unambiguous attack localisation would not be possible. Thus,
C3 serves as the tie-breaker enabling correct attribution of the
attack source to connection C1 (denoted with a green frame).
The top right table illustrates localisation of the breached link
for representative links and the two attack techniques. The link-
wise unique attack syndromes allow for the breached link to be
deduced from the subset of degraded connections.

The bottom part of Fig. 3 shows the SL mode where
ML-ADIM reports more detailed information about the attack

method that caused degradation of each connection. This diag-
nostic tool provides a better insight into the performance of an
individual channel, and is able to identify a harmful connection
based on pertinent OPM parameters (e.g., excessive power),
which makes its localisation a less challenging task than in the
UL mode. For this reason, we only focus on the localisation
of the breached link. The corresponding table with attack syn-
dromes contains the type of the attack identified by ML-ADIM
for each connection. In this example, we assume that connec-
tions C1, C2 and C3 are established in the network, and an OBJ
signal is inserted on link A-B, B-F, or F-E. While the syndrome
of link F-E as the insertion point is unique, the syndromes of A-
B and B-F are identical because the same subset of connections
is affected. Therefore, an attack monitoring probe T is needed
to resolve the ambiguity and enable precise breach localisation.

4 Final Remarks

The demo showcases a holistic security monitoring frame-
work capable of detecting physical-layer attacks, identifying
the type of known attacks, and localizing their source at the
network level. By demonstrating the effectiveness of the sys-
tem’s implementation based on standard, open interfaces in an
operator’s testbed, we outlined the main challenges and capa-
bilities of integrated data analytics for physical-layer network
security diagnostics.
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