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ABSTRACT 
Many reinforced concrete bridges in Europe and around the world are damaged by reinforcement 
corrosion and the annual maintenance costs are enormous. It is therefore important to develop 
reliable methods to assess the structural capacity of corroded reinforced concrete structures and 
avoid unnecessary maintenance costs. Although there are advanced models for determining the 
load carrying capacity of structures, it is not obvious how they should be used to verify the 
performance of existing structures. To confidently assess the bond of corroded reinforcement in 
concrete, for example, the calculation model must give a sufficient safety margin. When 
designing new structures, semi-probabilistic approaches (such as the partial safety factor method) 
are adopted to achieve the target reliabilities specified in structural design codes. This paper uses 
probabilistic methods to develop partial factors for application in an existing bond model, to 
assess the safety of corroded reinforced concrete structures. The response of the bond model was 
studied using Monte Carlo (MC) simulations for several design cases, with probability 
distributions fitted to the results. Partial factors were then derived, based on these distributions. 
Furthermore, an MC-based simulation technique called “importance sampling” was used to study 
the reliability of several deterministic bond assessments conducted using these partial factors. 
The results show that deterministic assessments which use the proposed partial factors lead to a 
safety level at least equal to the target value. The results presented in this paper will support the 
assessment of reinforced concrete structures with anchorage problems and give a reasonable 
approximation of the anchorage capacity with sufficient safety margin. When generalised to 
cover other failure modes and structural configurations, this will enable better utilisation of 
damaged structures and lead to major environmental and economical savings for society. 

 

1. INTRODUCTION 
Corroded reinforcement is the main cause of deterioration in reinforced concrete (RC) bridges 
today [1]. A report from the European research project BRIME, shows that one third of the 
bridges in the included countries suffer from corrosion damage [2]. The world cost of 
maintenance and repair of corrosion-damaged infrastructure is estimated at approximately $100 
billion per year [3]. Reliable methods of assessing structural capacity are of fundamental 



2 
 

importance if we are to meet future demands on bridge stock, sustainably and without 
unnecessary strengthening and reconstruction. 

In sound RC, the reinforcement is protected by a passivating layer due to the alkalinity of the 
pore solutions. However, RC structures are exposed to the environment during their service life 
and the passivating layer can be broken down by such processes as carbonation of the concrete 
surrounding the reinforcement bars, or ingress of chloride ions into the pore solutions. Once the 
passivation is broken, the corrosion process can propagate [4]. The time to corrosion propagation 
depends on many factors, including the material and geometrical properties of the structure and 
the harshness of the surrounding environment. As the reinforcement bars corrode, there is also an 
increase in volume since the corrosion products occupy a greater volume than the steel they have 
consumed. Internal pressure builds up at the bond interface, which is equilibrated by tensile hoop 
stresses in the concrete. This can initially lead to increased bond strength. When the tensile 
stresses grow sufficiently large to crack the concrete, the confinement and thus also the bond 
strength is markedly reduced, as longitudinal cracks develop [5, 6]. 

The behaviour after the concrete cover is cracked depends on the amount of transverse 
reinforcement. A low stirrup content means a rapid decrease in the bond capacity with further 
corrosion, while for a high stirrup content it can be somewhat increased [7, 8, 9]. Corrosion 
influences RC structures in many ways on the sectional and structural levels. For an overview of 
the influence of corrosion on the structural behaviour, the reader is referred to [10]. This paper 
deals with the effect of corrosion on the anchorage capacity, to demonstrate the use of 
probabilistic assessment. It also highlights issues concerning the refinement of numerical models 
without proper considerations of safety aspects. 

Bond in general and bond of corroded reinforcement in particular have been studied in several 
research projects, see [11, 12, 13, 14] for example. A simple assessment model for bond of 
corroded reinforcement has been developed [15] to make the results accessible and relevant to 
society. It is called ARC2010, with professional engineers as its intended users. The model solves 
the differential equation describing the force equilibrium between the reinforcement steel stress 
and the bond stress over a certain embedment length. An overview of the model is presented in 
Section 2.2. 

For the model to be used in assessments of existing structures, it must be accompanied by a 
sufficient safety margin. This margin must be determined rationally and according to the 
reliability levels accepted by the engineering community. The main objective of this paper is to 
derive partial factors for the ARC2010 model, i.e. the assessment of corroded reinforcement, for 
use with the semi-probabilistic safety concept in Eurocode [16]. For the case of uncorroded 
reinforcement, cf. Mancini et al. work on reliability-based bond evaluation of tensed lapped 
joints or anchorages [17]. The availability to engineers of a calculation model which leads to an 
appropriate safety level will allow better assessment of corrosion-damaged RC structures. This, 
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in turn, leads to major cost savings for society, because more of the inherent potential of existing 
infrastructure can be used and expensive strengthening and reconstruction can be avoided.  

The paper consists of four main blocks, with the structure presented in Figure 1. 

 

Figure 1: Flow chart describing the structure of the paper. 

2. PROBABILISTIC BOND MODEL FOR CAPACITY OF CORRODED 
REBARS 

2.1 General 
In reality, all engineering models are associated with some level of uncertainty. In the context of 
structural models, it should be realised that the material and geometrical properties plus the 
calculation model itself are uncertain. The key difference between a deterministic analysis and a 
probabilistic analysis is that the input parameters (the basic variables) are not treated 
deterministic, but as random variables following some distributions. The basic variables comprise 
not only distributions of physical, geometrical and material quantities, but also parameters 
characterising the model itself [18]. 
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The Joint Committee of Structural Safety (JCSS) [18] differentiates three main types of 
uncertainties: 

 Intrinsic physical uncertainty. 

 Parameter uncertainty. 

 Model uncertainty. 

Intrinsic physical uncertainty refers to the natural randomness of the property (the variability of 
concrete compressive strength, for example). The parameter uncertainty represents the statistical 
uncertainty related to the probabilistic description of the stochastic variables. A better 
understanding of the parameter distribution reduces this uncertainty (an increased number of data 
points used for inference, for example). The modelling uncertainty reflects the fact that the model 
gives an imperfect representation of the real structural behaviour, due to such factors as 
idealisations in the model, or lack of knowledge. 

This section gives a brief presentation of the mechanical model, followed by the associated model 
uncertainty and, lastly, the physical and geometrical uncertainties. 

2.2 Mechanical model for anchorage capacity 
The ARC2010 model for calculating the anchorage capacity of corroded reinforcement bars is 
described in detail in [15]. The essence of the model is presented, because it is necessary to 
understand the calibration of partial factors presented later. The model is based on solving the 
equilibrium conditions along a reinforcement bar: 

∙ 𝜋 ∙ 𝜙 ∙ 𝜏 0 (1) 

where 𝜙  is the reinforcement diameter, 𝜎  is the stress in the reinforcement and 𝜏  is the local 
bond stress. The reinforcement bar within the embedment length is assumed to be in the elastic 
range. Therefore, 𝜎 𝐸 ∙ 𝜀  and 𝜀 𝑑𝑢 𝑑𝑥⁄  where 𝐸  is the elastic modulus, 𝜀  is the steel 
strain and 𝑢 is the displacement of the reinforcement bar. If the deformation of the concrete is 
neglected, the slip 𝑠 equals the displacement of the reinforcement bar. If a bar with embedment 
length 𝑙  and prescribed displacement 𝑢  is considered, the boundary conditions at the free and 

loaded end are, respectively: 

𝜎 0 0, 𝑢 𝑙 𝑢  (2) 

The differential equation can be solved numerically to obtain the steel stress and deformation 
along the bar, as well as the pull-out force and average bond stress over the embedment length. 

The local bond stress 𝜏  is defined by the local bond stress-slip relation, which for the uncorroded 
case is obtained from fib Model Code 2010 [19]. For corroded cases, the local bond stress-slip 
relation proposed in [15] is used instead. It is based on the fib Model Code 2010, but includes 
three modified and additional elements to account for the effect of corrosion: 
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 Introduction of equivalent slip to account for bond degradation due to corrosion. 

 Reduced confinement due to corrosion-induced cracking of the concrete cover.  
 Modification of residual bond stress in case of low stirrup content, to avoid overly 

conservative results. 

The reduction in capacity due to corrosion is accounted for by shifting the local bond-slip curve. 
In other words, an equivalent slip is added to the slip between steel and concrete. This can be 
expressed as: 

𝑠 𝑠 𝑠  (3) 

where 𝑠  is the effective slip, 𝑠 is the mechanical slip and 𝑠  is the equivalent slip to account 

for the effect of corrosion. The minimum of the uncorroded local bond-slip curve and the shifted 
uncorroded curve forms the corroded curve. The concept of equivalent slip is presented in Figure 
2. 

 

Figure 2: Illustration of the equivalent slip, 𝑠 , 𝑠 , , to account for the effect of corrosion in 
a local bond stress-slip curve, where splitting strength governs the maximum bond stress. 

The equivalent slips for cases with and without stirrups were calibrated against a large database 
of bond tests in [15], resulting in: 

𝑠 , 2.9 ∙ 𝑤  (4) 

𝑠 , 13.6 ∙ 𝑤  (5) 
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where 𝑤  is the corrosion weight loss in decimals and 𝑠 ,  is the equivalent slip in mm. 

The corrosion domains for the model are 0-15% and 0-20% for cases without and with stirrups 
respectively. These are based on the validation of the model presented in [15]. 

The second modification to the original local bond stress-slip relation consists of reducing the 
confining effect of the concrete cover, when it is estimated to be cracked due to corrosion. The 
corrosion level causing cracking is estimated by an empirical expression, see [15]. The third 
modification in the local bond stress-slip relation for corroded reinforcement is a modification of 
the residual strength in case of low stirrup content. This is zero in fib Model Code 2010, which is 
considered too conservative so some remaining capacity is accounted for instead. For all details 
on the modifications and additions, the reader is referred to [15]. 

2.3 Model uncertainty 
The resistance model uncertainty for uncorroded cases was assumed based on the 
recommendations of JCSS [18]. As information concerning anchorage failure is not given, a 
lognormal distribution with a mean value of 1 and a coefficient of variation (V) of 0.2 was 
chosen as a reference value for the uncorroded case. V corresponds to the average between 
moment and shear failure. Note that the model uncertainty is dependent on the specific 
mechanical model used, and the domain of the input parameters c.f. [17, 20]. 

The bond capacities of specimens with corroded reinforcement typically show a large scatter. It is 
therefore of interest to quantify the resistance model uncertainty specifically for the ARC2010 
model for corroded cases, since the uncertainty is believed to have significant impact on the 
probabilistic analyses. The resistance model uncertainty for corroded reinforcement was 
estimated by comparison to a database of more than 200 bond tests used to calibrate the model 
[15]. An approach similar to that of Engen et al. [20] was used, in which the modelling 
uncertainty was expressed as: 

𝜃 , 𝑅 𝑅⁄  (6) 

where 𝑅 , is the resistance measured in the experiment and 𝑅 ,  is the resistance predicted by 

the ARC model. Two statistical distributions, normal and lognormal, were investigated for 
description of the modelling uncertainty 𝜃 . A graphical examination, plus Lilliefors’ test of 
normality [21] was used in the evaluation with the results are shown in Table 1. The acceptance 
criterion for the p-value was set to 0.05.  

Table 1: Summary of results from Lilliefors test of normality. 

 No stirrups Stirrups 
p-value Conclusion p-value Conclusion 

𝜃~Normal  <0.001<0.05 Reject 0.004<0.05 Reject 
𝜃~Lognormal    0.243>0.05 Do not reject 0.197>0.05 Do not reject 
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It was concluded that a lognormal distribution represents the modelling uncertainty better than 
the normal distribution. The parameters for the distributions were estimated using Bayesian 
inference on the sample vector ln𝜃 . A non-informative prior was used [22], since no previous 
information on the distribution was available. The resulting parameters are presented in Table 2, 
plus the final basic variables needed in the model. 

 

Table 2: Basic variables related for the probabilistic model, where 𝜂  and 𝛼  are parameters of 
the bond model elaborated on in [15]. 

Parameter X Dist. µX σX V Ref. 
Resistance model uncertainty, 
uncorroded [-] 

𝜃 ,  Logn. 1 0.20 0.20 [18] 

Resistance model uncertainty, 
corroded without stirrups [-] 

𝜃 ,  Logn. 1.14 
 

0.58  0.51  - 

Resistance model uncertainty, 
corroded with stirrups [-] 

𝜃 ,  Logn. 0.86 

 
0.38  
 

0.45  
 

- 

Bond conditions [-] η2 Det. 1 - [15] 
Shape of ascending branch [-] αs  Det. 0.4 - [15] 

It should be noted that for the corroded cases, the mean values of the resistance model 
uncertainty, 𝜃 , , differ from unity. This is because the model was originally calibrated against 

relative equivalent slip and not the absolute value of the bond strength. Consequently, the model 
makes a systematic error in predicting absolute strength. This is compensated for by 𝜃 , . It 

should further be noted that the modelling uncertainty also includes uncertainties related to the 
experimental tests in the database, e.g. measurements of bond strength, corrosion level and 
compressive strength etc. 

2.4 Geometric and physical uncertainty 
For the basic variables relating to the geometrical parameters, the distribution types and V were 
primarily obtained from JCSS probabilistic model code [18]. However, information about the 
distribution of some parameters was obtained elsewhere and others were assumed. For some 
geometrical parameters, the standard deviation was given rather than a V (for the spacing 
between stirrups, for example). This is because the deviation of the placement is not considered 
dependent on the mean spacing, as it would be if the same V were used for different spacing. A 
Gamma distribution was used to describe the concrete covers according to [23]. It was assumed 
that the spacing between the bars also followed this distribution. A uniform distribution was used 
for the clear spacing between the ribs of the reinforcement bars. The limits for the distribution 
were assumed, based on the provisions of standard SS-EN 10080 [24] plus in-house 
measurements. The standard deviation of the embedment length was assumed, rather than 
assigning a V. No information was found in the literature regarding the distribution of the 
average corrosion level. Furthermore, quantification of this parameter is not trivial and should 
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probably be linked to some test method and the length of the anchorage region (elaborated upon 
in Section 5).  A lognormal distribution was assumed in this study, since the corrosion levels are 
typically small but never negative. 

Table 3 presents the basic variables relating to the geometry used in the probabilistic analyses. 
Several different mean values for the basic variables are used in the calibration in Section 3. They 
are therefore presented separately in Table 6 and Table 7 and not included here. 

 

Table 3: Basic variables related to the geometry for probabilistic analyses. 

Parameter X Dist. σX V Ref. 
Beam height [mm] h Norm. 4+0.006µX - [18] 
Beam width [mm] w Norm. 4+0.006µX - [18] 
Main bar diameter [mm] ϕm Norm. - 0.01 [18] 
Stirrup diameter [mm] ϕs Norm. - 0.01 [18] 
Stirrup spacing [mm] st Norm. 10  - Assumption 
x-dir cover [mm] cx Gam. 10 - [18, 23] 
y-dir cover [mm] cy Gam. 10 - [18, 23] 
Clear bar spacing [mm] cs Gam. 10 - Assumption 
Clear rib spacing [mm] cclear Uni. Interval: [0.3-0.6] ϕm Assumption 
Anchorage Embedment 
length [mm] 

lb Norm. 10 - Assumption 

Corrosion level [%] wcorr Logn. - 0.2 Assumption 
 

The basic material variables were obtained from JCSS [18]. A typical value applicable to 
different strength classes was used for the concrete cylinder strength. The V may seem slightly 
high compared to the results reported by, say, [25], but may be realistic in the case of a 
deteriorated structure. Furthermore, a sensitivity study by one of the authors [15] showed only a 
minor influence of Young’s modulus on the anchorage capacity. A deterministic representation is 
therefore used for this variable. All the parameters that were considered appear in Table 4. 

Table 4: Basic variables related to the materials for probabilistic analyses. 

Parameter X Dist. σX V Ref. 
Concrete cylinder 
strength [MPa] 

fcm Logn. - 0.17 [18] 

Steel strength [MPa]  fy Logn. 30 MPa σX /(fyk+2σX) [18] 
Young’s modulus steel 
[GPa] 

Es Det. - - Assumption 
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3. CALIBRATION OF PARTIAL FACTORS 

3.1 General 
In conventional ultimate limit state (ULS) design of concrete structures, according to the 
provisions in Eurocode [26, 27], the safety is verified using the partial factor method. The design 
is safe if the following condition is fulfilled: 

𝐸 𝑅  (7) 

where 𝐸  is the design value for the load effect and 𝑅  is the design value of the resistance. The 
following expression can be used for the design value of the resistance, in cases where the design 
values of the basic variables are not explicitly treated: 

𝑅   (8) 

where Rk is the characteristic value of the resistance and 𝛾  is a partial factor including the 
modelling uncertainty and uncertainties in material properties. In this section, partial factors for 
the bond model for corroded reinforcement are calibrated so that the resulting design resistance 
has sufficient safety margin.  

3.2 Target reliability level 
Structures must meet the requirements imposed during their service life with an appropriate level 
of reliability [18]. In the context of reliability assessments, the term target reliability can be used 
to express the minimum acceptable safety margin for a structure. JCSS has made 
recommendations for target reliability, depending on the consequences of failure and relative cost 
of safety measures. These are based on cost-benefit analyses of simple but representative 
example structures. Table 5 presents the recommendations related to the ultimate limit state. 

Table 5: Target reliabilities considering a one-year reference period recommended by JCSS 
[18]. 

Relative cost of 
safety measure 

Consequences of failure 
Minor Moderate Large 

Large β =3.1 β =3.3 β =3.7 
Normal β =3.7 β =4.2 β =4.4 
Small β =4.2 β =4.4 β =4.7 

 

For existing structures (the main application area for the calculation model), the relative cost of 
safety measures is typically large. Moreover, major consequences may be expected in case of 
failure for bridges and other important infrastructure. This gives a target reliability index of 𝛽
3.7 for a one-year reference period. The one-year reference period has been selected to assess the 
reliability of a deteriorating structure in the final year of its working life [28]. Following the 
methods suggested in [28], this target reliability index could correspond to a bridge in 
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Consequence Class 2 with a span ≤ 25 m or a building in Consequence Class 2 with a collapsed 
area ≤ 250 m2. 

3.3 Method for calibration of partial factors 
To find partial factors for the ARC model, the design resistance (corresponding to the target 
reliability) should be determined. This can be done if a distribution function for the resistance is 
available (the anchorage capacity, for example). The anchorage capacity may be written: 

𝑅 𝜃  𝑅 𝒙  (9) 

where 𝒙 is a vector collecting the basic variables for the model. A nominal value for the 
resistance can be expressed as: 

𝑅 𝜇 𝑅 𝑓 , 𝑓 , 𝒙  (10) 

where 𝑓  and 𝑓  are the characteristic concrete and streel strength and 𝒙  contains the 

nominal values of the other basic variables. The design value of the resistance 𝑅  can be found 
from the resistance distribution according to: 

𝑃 𝑅 𝑅 Φ 𝛼 𝛽  (11) 

where Φ is the standard normal cumulative distribution function (CDF), 𝛼  is a so-called 
sensitivity factor of the resistance (generally taken as 0.8) and 𝛽  is the target reliability. The 
partial factors can be calculated as the ratio between the nominal and design resistance: 

𝛾
, ,𝒙

 (12) 

Consequently, the design resistance can be found using the partial factor according to: 

𝑅
, ,𝒙

, 𝛾  (13,14) 

The distribution functions for the resistance 𝑅 (which make up the basis for calculating the partial 
factors), are obtained by fitting probabilistic distributions to results from numerical simulations. 
It is important to consider many different representative design cases for the simulations, as the 
partial factors only will be valid for the ranges of basic variables used for calibration. Several 
parameters were therefore varied in the analyses. These were selected based on a sensitivity study 
in a recent paper by the authors [29]. For the non-deterministic parameters, the levels refer to the 
mean value of the distributions and are presented in Table 6. The standard deviations of the 
parameters were obtained according to Table 2-Table 4. For the design case without stirrups, the 
basic variables related to the stirrups were simply excluded from the simulations. 

Table 6: Parameter levels for the basic variables for the design cases. 

Parameter X Dist. Lower Upper Intermediate σX V 
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level 
µX 

level 
µX 

level(s) 

Main bar 
diameter [mm] 

ϕm Norm. 16  25 - 0.16 mm 
0.25 mm 

0.01 

Stirrup spacing 
[mm] 

st Norm. 100 260 - 10 mm 0.10 
0.04 

Concrete 
strength [MPa] 

fcm Logn. 38 58 - 6.35 MPa 
9.67 MPa 

0.17 

Effectiveness of 
stirrups [-] 

km Det. 0 12 -  

Number of bars 
anchored [-] 

nb Det. 1 5 -  

Embedment 
length [mm] 

lb Norm. 100 350 250 10 mm 0.1 
0.03 
0.04 

Corrosion level 
[%] 

wcorr Logn. 0 20 5,10,15 0% 
4% 
1% 
2% 
3% 

0.20 

 

Combining all parameter levels leads to a total of 480 design cases with stirrups. A similar 
combination, excluding the basic variables related to transverse reinforcement (such as stirrup 
spacing and effectiveness of stirrups), leads to 120 design cases. 

The basic variables that were not changed between the design cases are summarised in Table 7 
below. The clear rib spacing presented in Table 3 was used for all design cases, as well as the 
modelling uncertainties in Table 2. 

Table 7: Common basic variables for all design cases. 

Parameter X Dist. µX σX V 
Steel strength [MPa] fy Logn. 560 30 0.05 
Young’s modulus steel [GPa] Es Det. 200 - 
Stirrup diameter [mm] ϕs Norm. 10 0.1 0.01 
x-dir cover [mm] cx Gam. 40 10 0.25 
y-dir cover [mm] cy Gam. 40 10 0.25 
Clear bar spacing [mm] cs Gam. 55 10 0.18 

Monte Carlo (MC) simulations [30] were carried out using the chosen distributions to simulate 
the anchorage capacity of one bar in the cross-section belonging to the different design cases 
studied. The simulations were executed in MATLAB release 2016a [31] using the software 
framework UQlab [32]. The number of simulations was 10,000 for each design case, giving a 
total number of 6,000,000 simulations. Latin hypercube sampling [33] was used to increase 
efficiency of the simulations. 
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A verification was performed to see if the results from the simulations could be represented with 
lognormal distributions analogously to Section 2.3. Of the 480 design cases with stirrups, the 
Lilliefors’ test (p-value acceptance criterion <0.05) rejected a lognormal distribution for 85 of 
them. For the cases without stirrups, a lognormal distribution was rejected for 50. 

For the rejected cases, visual comparison and the Lilliefors’ test were used to investigate whether 
a normal distribution could be a better representation for these cases. The conclusion of the 
analysis was that the lognormal distribution was the best of the common distributions to represent 
the data. The lognormal distribution is therefore used for all cases and is considered a reasonable 
approximation. 

3.4. Resulting partial factors 
The anchorage capacity can be represented by a lognormal distribution, as shown in Section 3.3, 
which makes the design resistance readily available as per Equation 11. The nominal capacity is 
obtained from a deterministic analysis using characteristic values for the concrete and steel 
strength and nominal values for the other basic variables. The partial factor 𝛾  is calculated using 
Equation 14. 

Three probability density functions (pdf) for the resistance corresponding to three different 
embedment lengths are plotted in Figure 3, together the calculated with nominal and design 
values. All other parameters for the presented case are at their lower levels in Table 6. The 5%-
fractile characteristic values are also indicated. The figure clearly shows the difference between 
the nominal value of the resistance (calculated using the characteristic material strengths and 
nominal values of the rest of the basic variables) and the lower 5%-fractile characteristic value of 
the resistance. The spread of the probability distributions may appear to differ among the 
embedment lengths shown in Figure 3. However, V, the design-to-nominal value ratio and the 
characteristic-to-nominal value ratio is similar for all three embedment lengths (0.2, 0.5 and 0.7 
respectively).   
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Figure 3: Example of probability distributions for three different embedment lengths, with 
nominal and design values indicated. The 5%-fractile characteristic values are also indicated. 

Comparative plots have been constructed to study the influence of the basic variables on the 
partial factors. For each basic variable, the partial factors are divided into two groups depending 
on the parameter level (lower and upper). These are, in turn, divided into five groups based on the 
corrosion level. The most interesting plots are presented in Figure 4 and Figure 5, where the 
partial factors are shown as a circles distributed along the horizontal axes (thus the x-axis refers 
to the various realisations of the simulations). Note that a difference between the partial factors of 
the two levels indicates that the basic variable has an influence on 𝛾 . A general trend is that 
higher corrosion level leads to larger 𝛾 . In Figure 4 the upper and lower plots differ for 
corrosion between levels 15% and 20%. This means that the reinforcement bar diameter (the 
studied basic variable) has an influence on 𝛾 , which is increased for some of the cases with 
smaller diameter. Figure 5 shows the marked influence of the number of bars anchored in the 
cross-section. All partial factors deviating from the linear trend have corrosion levels of 15% or 
20% and belong to the upper parameter level, i.e. nb = 5. 
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Figure 4: Comparison of partial factors for the two reinforcement bar diameters considered, for 
cases with stirrups. 

 

Figure 5: Comparison of partial factors for the two numbers of bars considered, anchored in the 
cross-section for cases with stirrups. 
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The other basic variables presented in Table 6 were studied in plots similar to Figure 4 and Figure 
5. For corrosion levels of 15% or 20%, markedly larger values for γ  are apparent than for lower 
corrosion levels. The common factor in these cases is that they all have 𝜙 16 mm and 𝑛
5. However, not all design cases with these parameter levels show this difference. The cases 
which also have the greater spacing between the stirrups (𝑠 260 mm) are the ones which show 
the highest partial factors. Moreover, the shorter embedment length of 100 mm generally gives a 
slightly higher partial factor than 250 or 350 mm embedment length, for all cases. Furthermore, 
only minor effects from the concrete strength and stirrup efficiency factor were observed.  

The derived partial factors for the cases with stirrups are presented in Table 8. For corrosion 
levels 0% 5% and 10% these values were chosen near the maximum for the different design 
cases, however rounded to the nearest 0.1. For corrosion levels 15% and 20% the results were 
first split in two groups based on the levels of 𝑛 , thereafter the same method was applied. 

Table 8: Derived partial factors 𝛾  for cases with stirrups. 

Corrosion level 𝛾  
0% 1.9 
5% 4.7 
10% 4.9 
15% 5.2-6.4* 
20% 5.2-7.6* 

* Intermediate cases can be interpolated in cases where 𝑛  is 1-5. 

Similar plots were constructed for the partial factors belonging to cases without stirrups and the 
trends were common to all cases. Figure 6 shows the influence of concrete compressive strength, 
which is noticeable for 5% and 10% corrosion, but minor for the other levels. 
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Figure 6: Comparison of partial factors for the two concrete strengths considered, for cases 
without stirrups. 

For two cases with 5% and 10% corrosion a lognormal distribution did not represent the 
resistance well and led to very high partial factors (approx. 20). Furthermore, the reduction in 
partial factors at the highest corrosion levels can be explained by the bond capacity depending 
mostly on the residual branch of the bond slip curve, see Figure 2. This, in turn, is solely 
dependent on the concrete strength and bar diameter. So, despite the corrosion level being 
greater, its influence on the variability of the bond capacity is less. 

Due to the high degree of uncertainty associated with corrosion levels of 5 and 10% for cases 
without stirrups, a choice was made not to differentiate between different corrosion levels. The 
partial factors are derived for an uncorroded case and a corroded case, where the corroded case 
corresponds to 15% corrosion. This is the maximum corrosion level validated for cases without 
stirrups in [15]. Note that this corrosion level should also be used when calculating the nominal 
value of the resistance. The partial factors for the cases without stirrups were derived similarly to 
those with stirrups and are presented in Table 9. 

Table 9: Derived partial factors 𝛾  for cases without stirrups. 

Corrosion level 𝛾  
Uncorroded 2.0 
Corroded 3.4 
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4. VERIFICATION OF PARTIAL FACTORS 
This section presents the method of verifying previously determined partial factors. The 
procedure for deterministic evaluation of anchorage capacity using partial factors is demonstrated 
and there then follows a reliability analysis of the results. 

4.1. Deterministic assessment of anchorages and set-up of reliability analyses 
The reliability is studied for cases where the design loads were established using the partial 
factors summarised in Table 8 and Table 9, for cases with and without stirrups. The end region of 
a simply supported beam is considered for the reliability analyses. The cross-section of the beam 
in the end region is shown in Figure 7. The geometrical, material and model parameters are 
summarised in Table 10-Table 12, while the general input parameters for the ARC model itself 
were previously presented in Table 2. Some parameters are assigned multiple values (to generate 
multiple cases); these are the embedment length, number of bars anchored in the cross-section 
and corrosion level. This results in 20 different cases with stirrups (for consideration in the 
verification) and four without. 

  
a)  b) 
Figure 7: a) side view of beam with the studied cross section and embedment length indicated 
(not to scale) adopted from [34]. b) cross-section of the beam in the end anchorage region with 
width and concrete cover indicated. 

 

Table 10: Geometry parameters for beam anchorage assessment and reliability analysis. 

Geometry parameters 
Parameter X Dist. µX [mm] σX [mm] V [-] 
Beam height h Norm. 400 6.4  0.02 
Beam width w Norm. 400 6.4  0.02 
Main bar dia. ϕm Norm. 20 0.2 0.01 
Stirrup dia. ϕs Norm. 10 0.1 0.01 
Stirrup spacing st Norm. 260 10 0.04 
x-dir cover cx Gam. 40 10 0.25 
y-dir cover cy Gam. 40 10 0.25 
Clear bar spacing cs Gam. 55 10 0.18 
Clear rib spacing cclear Uni. 0.45ϕm 1.7 0.19 
Embedment 
length 

lb Norm. 200, 400 10 0.05, 0.03 
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Table 11: Material and load parameters for beam anchorage assessment and reliability analysis. 

Material parameters 
Parameter X Dist. µX [MPa] σX [MPa] V [-] 
Concrete strength fcm Logn. 38 6.35 0.17 
Steel strength fy Logn. 560 30 0.05 
Steel E-modulus Es Det. 200,000 - 
 

Table 12: Model parameters for beam assessment and reliability analysis. 

Model parameters 
Parameter X Dist. µX [-] σX V [-] Ref. 
Model uncertainty for the 
permanent load 

𝜃 ,  Normal 1 0.07 0.07 [28] 

Model uncertainty for the 
variable load 

𝜃 ,   Normal 1 0.11 0.11 [28] 

Permanent load g Norm. - - 0.10 [28] 
Variable load q Gum. 

(max) 
- - 0.25 [28] 

Number of anchored bars  nb Det. 1, 5 - 
Stirrup legs crossed by cracks nt Det. 1 - 
Effectiveness of stirrups km Det. 12/0 for 

corner/interior 
bar 

- 

 

First, the deterministic capacities for each case were calculated using the characteristic material 
strengths and nominal values for the other basic variables. In cases with a single bar it was 
assumed to be in the centre of the cross-section, and effectiveness factor of the stirrups (km = 0). 
For the cases with all five bars anchored in the cross-section, the anchorage force was averaged 
between the four outer bars (𝑘 12) and the interior bar (𝑘 0). For the cases without 
stirrups, it is only necessary to consider one anchored bar, as anchoring five bars in the cross-
section gives the same capacity per bar. Furthermore, as only the cross-section is studied and not 
the entire structure, the influence of transverse support pressure on the local bond-slip 
relationship is conservatively neglected. The anchored forces were then divided by the pertinent 
partial factor from Table 8 and Table 9, to obtain the design value of the resistance. 

For the reliability analyses, the design load was set as equal to the design resistance for each case: 
𝐹 𝐸 . The permanent and imposed variable load portions of the total load were calculated 
based on the design loads. The factor 𝜒 is used to describe the relation between the characteristic 
levels of the permanent and imposed variable load, where 𝜒 𝑞 𝑔 𝑞⁄ . Using the Adjusted 
Partial Factor Method suggested in [28] and the selected one-year target reliability index from 
Section 3.2, the load partial factors 𝛾 1.35 and 𝛾 0.90 were obtained for the permanent 
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and imposed variable loads respectively. Based on [35] a 5-year basic reference period was 
assumed for the variable load. Note that according to [28], 𝑞  is the intensity of the imposed 
variable load with a 5% exceedance probability over a reference period of 50 years, resulting in 
𝛾 1.0 since 𝛾  takes into account both the reduced target reliability index and the shorter 

reference period. The characteristic loads can then be determined according to: 

  𝑞
. .

,     𝑔 𝑞 1  (15) 

In the reliability analyses presented here, 𝜒 0.5 and the characteristic load levels are taken as 
50%-fractile for the permanent load and 95%-fractile for the variable load. The loads are 
modelled according to Table 12. The parameters for the one-year distribution of the variable load 
corresponding to 𝑞  for each case can be derived using the expressions describing the Gumbel 
distribution. 

4.2. Reliability verification of anchorages assessed using partial factors 
The reliability analyses were performed in MATLAB release 2016a [31] using the software 
framework UQlab [32]. The reliability was quantified using a first order reliability method 
(FORM) [36] analysis with subsequent importance sampling simulations [32]. The convergence 
criterion was established by setting the target V for 𝛽 to 0.05.  

The verified cases, applied partial factors, design resistances, plus the resulting reliability indices 
and their confidence intervals (CI) are presented in Table 13 and Table 14, for cases with and 
without stirrups respectively. The results in reliability indices are also plotted against the 
corrosion level in Figure 8. 

Table 13: Summary of verified cases with stirrups. 

Case 𝑛  𝑙  (µX [mm]) 𝑤  (µX) 𝛾 ,  [-] F ,  [kN] β β 95% CI 

1 1 200 0% 1.9 52.3 4.6 4.61-4.65 
2 1 200 5% 4.7 16.7 4.3 4.27-4.31 
3 1 200 10% 4.9 13.6 4.3 4.27-4.31 
4 1 200 15% 5.2 11.0 4.1 4.11-4.15 
5 1 200 20% 5.2 9.0 4.0 3.93-3.98 
6 1 400 0% 1.9 102.5 4.7 4.66-4.70 
7 1 400 5% 4.7 32.5 4.3 4.28-4.32 
8 1 400 10% 4.9 26.9 4.3 4.27-4.31 
9 1 400 15% 5.2 21.4 4.1 4.09-4.14 
10 1 400 20% 5.2 17.5 4.0 3.97-4.02 
11 5 200 0% 1.9 53.5 4.6 4.61-4.65 
12 5 200 5% 4.7 16.8 4.2 4.22-4.26 
13 5 200 10% 4.7 13.3 4.2 4.18-4.23 
14 5 200 15% 6.4 8.3 3.9 3.92-3.97   
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15 5 200 20% 7.6 5.4 4.0 3.98-4.03 
16 5 400 0% 1.9 105.0 4.7 4.67-4.71 
17 5 400 5% 4.7 32.5 4.3 4.27-4.31 
18 5 400 10% 4.7 26.0 4.2 4.16-4.20 
19 5 400 15% 6.4 16.2 4.0 3.94-3.99 
20 5 400 20% 7.6 10.7 4.0 3.99-4.03 
 

Table 14: Summary of verified cases without stirrups. 

Case 
𝑙  (µX 

[mm]) 
𝑤  
(µX) 

𝛾 ,  
[-] 

F ,  
[kN] 

β β 95% CI 

1 200 0% 2.0 37.1 4.6 4.53-4.61 
2 200 15% 3.4 3.9 3.9 3.89-3.98 
3 400 0% 2.0 57.7 3.9 3.90-4.00 
4 400 15% 3.4 7.7 3.9 3.89-3.98 

 

 

Figure 8: Reliability indices obtained from the verification for cases with and without stirrups, 
plotted against the corrosion level. The target reliability is indicated with a line.  

It can be seen that reliability indices greater than the target are achieved for all cases, with or 
without stirrups. For uncorroded cases and lesser corrosion levels, the reliability indices are well 
above target level. However, the margin is lower for the greatest corrosion levels. Furthermore, 
the derived partial factors were compared to Eurocode provisions for an uncorroded case. For the 
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beam presented in [29], the ARC2010 model together with the derived partial factor gives a 
slightly shorter required anchorage length compared to Eurocode. 

The influence of the basic variables on reliability is shown in Figure 9, using squared sensitivity 
factors 𝛼  obtained from FORM analyses. The uncorroded case is presented along with three 
different corrosion levels of 5%, 10% and 15%. Small sensitivity factors (<0.02) have been added 
together and appear as “Other”. For uncorroded cases, it is apparent that the most influential basic 
variables are the modelling uncertainty and variable load. When corrosion is increased to 5%, the 
resistance model uncertainty contributes the largest 𝛼 , as the model uncertainty is markedly 
increased compared to the uncorroded case (see Table 2). With increasing corrosion level, the 
corrosion level gains a greater sensitivity factor. The influence of 𝑐  is also increased with 
increasing corrosion. This is expected, considering its part in the mechanical model. 

 

Figure 9: Graphical illustration of representative FORM sensitivity factors for cases with 
stirrups. 

For uncorroded cases without stirrups, the resistance model uncertainty contributes around 50%, 
and the remaining part is mainly due to variable load. For corroded cases, the model uncertainty 
makes up over 90 % of the total sensitivity, with the rest being mainly live load. 
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5. DISCUSSION 

Figure 8 shows that the reliability indices are reduced as the corrosion level increases. For 
uncorroded cases, the reliability is well above target, while for 20% corrosion it is slightly above. 
The sensitivity factor for the resistance 𝛼  was taken as 0.8 in the calibration of the partial factors 
according to standard practice, corresponding to a squared value of 0.64 in Figure 9. This value 
corresponds fairly well to the results for uncorroded cases, but it is less than the actual sensitivity 
of the resistance parameters for cases with corrosion. This may be the reason for the reduction in 
reliability index with increasing corrosion level as, according to Equation 11, a greater actual 
sensitivity for the resistance parameters would yield a higher partial factor. 

The chosen partial factors for the loads may also influence the results and may be the reason for 
the difference between the target and actual reliability indices for uncorroded cases. In particular, 
the factor for self-weight was set at a large value in line with Eurocode recommendations. The 
characteristic load levels in the verification procedure are derived based on the design loads in 
Equation 15 and high partial factors lead to low characteristic values. As the partial factors in 
Eurocode are only valid for a specific situation (and might not be representative of the present 
case), the characteristic load levels considered in the reliability analysis might be a bit low. This 
is reflected in the higher reliability index. However, the influence of the loads is reduced with 
increasing corrosion level and the effect is less pronounced. 

It is clear from the sensitivities presented in Figure 9 that the resistance model uncertainty has a 
major influence in the probabilistic model and therefore also on the derived partial factors. The 
modelling uncertainty derived in Section 2.3 is large, but not markedly different from that 
associated with other models presented in [28]. To reduce the overall uncertainty of anchorage 
capacity predictions for corroded reinforcement (and thereby the values of the partial factors 
required to ensure sufficient safety), it would largely beneficial to reduce the modelling 
uncertainty. Further research into this is therefore proposed.  

The results presented in Figure 9 also highlight the importance of the corrosion level in the 
reliability analyses. At the same time, accurate estimation of the corrosion level is difficult to 
obtain from non-destructive testing on existing structures. It is possible to quantify based on 
measurements of crack widths [37], but the results in the literature are scattered. An 
understanding can also be formed if the corrosion rate is monitored using, say, an electrochemical 
technique [38], with additional assumptions regarding the onset time of corrosion and previous 
corrosion rate. One approach to obtaining a more realistic representation of the uncertainty in the 
corrosion level for in-situ structures would be to link it to the assessment method. This is because 
different methods are likely to show differing accuracy in quantification. However, it should be 
kept in mind that the corrosion level is likely to vary over the length of the reinforcement bars 
and, depending on the embedment length being considered, the average value would differ. It is 
therefore no small matter to find a reasonable probability distribution for the corrosion level and 
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dedicated work towards this goal, and towards bond models that make use of this information, is 
proposed as an avenue for further work. 

It should be emphasised that the partial factors derived in the paper are based on several 
assumptions and applicable to a specific problem, namely the anchorage failure of corroded 
reinforcement only. The user of the ARC2010 model must be aware of its limitations and accept 
responsibility of the resulting decisions. However, the procedure presented here for deriving the 
partial factors is a general one. It may be followed in order to derive partial factors based on other 
assumptions and on other mechanical models. 

6 CONCLUSIONS 
The main conclusions that can be drawn based on the results presented are: 

 Partial factors leading to a target safety level can be derived for anchorage capacity of 
corroded reinforcement bars. 

 The partial factors lead to a reliability index exceeding the target for all situations for the 
case studied and verify the safety level. 

 Modelling uncertainty is highly influential on anchorage capacity of reinforcement, 
especially in the case of corrosion. 

 Further research is needed, to quantify reasonable levels for the sensitivity factors of the 
basic variables in deteriorated concrete structures. 
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