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Theoretical Limits on Cooperative Positioning in
Mixed Traffic

Erik Steinmetz, Ragne Emardson, Fredrik Brännström, and Henk Wymeersch

Abstract—A promising solution to meet the demands on
accurate positioning and real time situational awareness in future
intelligent transportation systems (ITS) is cooperative position-
ing, where vehicles share sensor information over the wireless
channel. However, the sensing and communication technologies
required for this will be gradually introduced into the market,
and it is therefore important to understand what performance
we can expect from cooperative positioning systems as we
transition to a more modern vehicle fleet. In this paper, we study
what effects a gradual market penetration has on cooperative
positioning applications, through a Fisher information analysis.
Simulation results indicate that solely introducing a small frac-
tion of automated vehicles with high-end sensors significantly
improves the positioning quality, but is not enough to meet
the stringent demands posed by safety critical ITS applications.
Furthermore, we find that retrofitting vehicles with low-cost
satellite navigation receivers and communication have marginal
impact when the positioning requirements are stringent, and that
longitudinal road position can be estimated more accurately than
lateral.

I. INTRODUCTION

IN future intelligent transportation systems (ITS), vehicles
are envisioned to be automated and safely navigate our

streets [1]. A key factor for this to become a reality is
accurate self-positioning and real-time situational awareness.
To this end, vehicles will be equipped with the latest sensors
(such as global navigation satellite systems (GNSS) receivers,
radars, lidars, stereo-cameras etc.) for positioning of both
the ego vehicle with respect to a high-definition (HD) map,
and sensing of other objects in the dynamically changing
environment [2], [3]. On top of this, vehicles are expected
to be connected to each other and the cloud [4]–[6]. This
allows for cooperation between vehicles, both when it comes
to coordination and control as in [7], [8] and for cooperative
positioning and mapping of the environment [9]–[14] to im-
prove position accuracy and extend the situational awareness
beyond the field of view (FOV) of traditional on-board sensors.
In particular, wireless communication makes it possible to
build a local dynamic map (LDM), either in each vehicle
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or centrally in the cloud, containing both static HD map
information as well as information about where other dynamic
objects such as vehicles and pedestrians are positioned. This
information can then be used to increase the situational
awareness for human drivers, or as input to automated driving
systems. However, the requirements on the map might vary
depending on the underlying use case/application. Typical
positioning requirements range from tens of centimeters (e.g.,
for cooperative automated driving) to meter level accuracies
for less safety-critical applications [15]–[17]. Commonly the
requirement specified for a particular use case/application is
fixed independent of the relative location between vehicles,
though there might be different accuracy requirements for the
longitudinal and lateral road position [3].

Market penetration of the technologies required for this
type of cooperative applications will however be gradual.
According to [18] about 50% of the vehicles in the European
fleet of passenger cars are over ten years old, and approx-
imately 5% of new vehicles are introduced each year. Out
of these, only a small fraction will be automated, and global
market uptake projections [19], [20] forecast that it will take
until 2035 before 25% of the new vehicles that reach the
market are either automated or partially automated. On the
other hand, many of the main automotive original equipment
manufacturers (OEMs), such as Volkswagen Group, Toyota,
General Motors, and Daimler Trucks have already announced
that they are rolling out connected cars within the near future
[21], and we will most likely see a faster market penetration
when it comes to connectivity [22]. Nonetheless, this means
that for a transition period the vehicles on our road will
have greatly varying sensing and communication capabilities,
ranging from state-of-the-art sensing and communication to no
sensing and communication capabilities at all. From a system
perspective, it is therefore important to understand how the
penetration rate of modern vehicles with extensive sensing
capabilities affects the possibility to build up a shared LDM,
and under which circumstances it is possible to meet the
accuracy requirements posed by different ITS applications.

The aim of this paper is to study the effect a gradual market
penetration will have on cooperative positioning. In particular,
we will focus on the application of building up an LDM in
which both the ego vehicle and other cooperative and non-
cooperative vehicles are positioned, and investigate how the
penetration rate of vehicles with extensive sensing capabilities
affects the possibility to build such a map.



2

A. Related Work

Though none or very few commercial applications of co-
operative positioning exist yet, the topic has been extensively
researched [9]–[14], [23]–[32]. We can group existing works
into two categories depending on if communication-based or
noncommunication-based sensing techniques are used to gen-
erate the measurements between agents (in our case vehicles).

Communication-based sensing includes various types of ra-
dio communication technologies, such as ultra-wide bandwidth
(UWB), 4G LTE, 802.11p, and 5G communication. Coopera-
tive positioning with UWB ranging has been consider in [23],
[24], while [25], [26] considers 802.11p-based range and range
rate measurements. So far, communication-based sensing has
gained very little traction in the automotive sector, mainly
because of the relatively poor accuracy in the measurements
from 802.11p and 4G LTE based ranging, and the requirement
of additional infrastructure as in the case of UWB. Note
that with the introduction of 5G this might change, as 5G
is expected to provide both high speed connectivity as well as
accurate ranging and new types of measurements such as angle
of arrival (AoD) and angle of departure (AoD) measurements
[27].

Noncommunication-based sensing includes technologies
that perceive objects in the environment, but don’t explicitly
communicate with these objects. Examples are radars, lidars,
stereo-cameras, HD-video, ultrasonic sensors. As many of
these sensors already are extensively used within the automa-
tive industry it is natural to utilize this information in cooper-
ative positioning algorithms. In addition, this type of sensors
can also provide information about non-cooperative agents
or objects. Cooperative positioning where vehicles share data
from noncommunication-based sensors has been considered
in [10]–[14]. Out of these, [10]–[12] consider radar-based
sensor fusion, while [13] uses a camera-based solution for
plausibility of cooperative awareness messages (CAMs), and
[14] considers a combination of camera and lidar information.
Another interesting aspect of this problem is whether or not
the information received over the wireless channel is used to
improve the position estimate of the own vehicle [9], or if
the primary purpose is to provide a lifted-seat or see-through
functionality [14].

For both communication-based and noncommunication-
based sensing, fundamental insights can be gleaned from
theoretical performance limits. The literature is rich when
it comes to performance limits for cooperative positioning
systems in the communication-based sensing category [28]–
[31] and only a few, e.g., [30], [31] specifically targets the
vehicular setting. Thus, there is a need to better quantify the
performance of cooperative position in vehicular networks
with noncommunication-based sensors. Furthermore, to the
best of our knowledge no previous works have analyzed how
the composition of the vehicle fleet and the gradual penetration
of vehicles with high-end sensors impacts the positioning
quality, and the possibility to meet accuracy requirements
posed by different ITS applications. However, a recent work
[32] highlights that it is important to gain an understanding
of how penetration rates impacts performance, and presents a

stochastic geometry model for evaluation of sensor coverage
and redundancy in a collaborative sensing scenario.

B. Contributions

In this paper, we aim to understand how the sensing
capability in a given vehicle fleet affects the possibility to
build a shared LDM. We provide a detailed description of
how to construct the Fisher information matrix (FIM) for an
arbitrary sized and configured vehicle fleet. Based on the FIM
we compute what is called the position error bound (PEB),
which provides a lower bound on the theoretically achievable
estimation accuracy for each vehicle’s position. Moreover, we
apply the notion of equivalent Fisher information (EFI) to
provide a geometric interpretation of how different types of
observations (such as GNSS, compass and radar) contribute to
reducing the positioning uncertainty. Our main contributions
are:

• A framework and method based on Fisher information
analysis and Cramér-Rao bounds to determine the fun-
damental limits for cooperative positioning in a scenario,
where vehicles share information from on-board GNSS,
compass, and radar sensors to build up a joint LDM in
an attempt to increase the knowledge of both their own
and other’s position.

• A novel analysis where we show how the composition of
the vehicle fleet, and thus the penetration rate of vehicles
with extensive sensing capability, affects the possibility
to build an LDM that meets the positioning requirements
posed by different ITS applications.

While the analysis in the paper is generally applicable, we
focus on a multi-lane freeway scenario, with four types of
vehicles ranging from legacy vehicles with neither sensing nor
communication capability to automated vehicles with high-
end sensors and communication capability. Also, note that the
bounds presented in this paper give an indication of what mea-
surement uncertainties can be expect from future cooperative
vehicular positioning systems.

C. Notation

In this paper, matrices are denoted by uppercase bold letters,
e.g., X, (column) vectors are denoted by lowercase bold
letters, e.g., x. Vectors can be stacked as x = [x1; x2; x3], and
the stack of vectors [x1; . . . ; xN ] is denoted [xi]i∈{1...N}. The
transpose of a matrix X is denoted by XT, [X]i,j represents
block (i, j) of a matrix,where the size depends on the context.
Ik is the k×k identity matrix and 0k,l is the k× l zero matrix.
Furthermore, 1{x∈X} denotes the indicator function which is
one if x ∈ X and zero otherwise. Finally, ∇x denotes the
gradient of x.

II. SYSTEM MODEL

In this section, we describe the scenario and the sensor
models consider in this paper, and formulate the problem that
we will focus on.
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A. Scenario

We consider a heterogeneous traffic scenario with a set
V = {1 . . . N} of N vehicles with varying sensing and
communication capabilities, as well as a central fusion server
(e.g., a road side unit or dedicated vehicle). We model vehicles
as point objects and denote the unknown state of vehicle i ∈ V
as xi, comprising the absolute position pi ∈ R2 in a global
frame of reference, the heading ψi ∈ R and the type Ti, where
the latter relates to sensing and communication abilities of the
vehicle. In reality, vehicles can be equipped with a multitude
of sensors and communication technologies. For simplicity, we
focus on four distinct types Ti ∈ {A,M,R,L}:

A: Automated vehicles: Equipped with 360° radar,
compass, high-accuracy GNSS module, and a com-
munication radio.

M: Modern vehicles: Equipped with forward looking
radar, compass, low-cost GNSS module, and a com-
munication radio.

R: Retrofitted vehicles: Equipped with low-cost GNSS
module and a communication radio.

L: Legacy vehicles: Neither sensing nor communication
capabilities.

and let ρ =
[
ρA ρM ρR ρL

]
represent the fraction of

automated, modern, retrofitted and legacy vehicles in the
system.1 Moreover, we denote the set of automated, modern,
retrofitted, and legacy vehicles by VA, VM , VR and VL,
respectively. The set of adjacent vehicles, i.e., vehicles that
can be observed by a vehicle i using its radar, is denoted
Ai. Note that for legacy and retrofitted vehicles Ai = ∅. For
notational convenience, we also denote the set of vehicles that
have a GNSS module on board as VG = VA ∪ VM ∪ VR.

B. Sensor Models

While our analysis holds for any observation model, the
three types of observations we will consider are the following:

1) GNSS: Observations made by vehicle i ∈ VG of its own
position using the GNSS module are modeled as [12]

yG
ii = fG

ii (xi,xi) + nG
ii = pi + nG

ii , (1)

where nG
ii ∼ N (0,Σii) and Σii = σ2

G,iI2.
2) Compass: Observations made by vehicle i ∈ VA∪VM of

its own heading using the compass sensor are modeled
as [12]

yC
ii = fC

ii (xi,xi) + nC
ii = ψi + nC

ii (2)

where nC
ii ∼ N

(
0, σ2

C,i

)
.

3) Radar: The sensor FOV is determined by an opening
angle θFOV and a maximum detection range rmax. Ob-
servations are, similar to [11], [12], modeled as relative
positions in the ego vehicle coordinate frame, i.e.,

yR
ij = fR

ij (xi,xj) + nR
ij = R(ψi)(pj − pi) + nR

ij , (3)

1Note that the even thought the fourth type is called legacy vehicle it could
be used to include also other non-cooperative agents such as pedestrians.

where nR
ij ∼ N (0,Σij) and

R(ψi) =

[
cos(ψi) sin(ψi)
− sin(ψi) cos(ψi)

]
(4)

is the rotation matrix between the global coordinate
frame and the ego vehicle coordinate frame. Since radars
typically make mutually independent measurements in
range (r) and bearing (α) the noise components when
transformed from a polar to a cartesian coordinate frame
are not mutually independent. We approximate the co-
variance of the radar measurements in the cartesian ego
vehicle frame as

Σij = RT(αij)Σ
P∗

ij R(αij) (5)

where ΣP∗

ij = diag([σ2
r,i‚ (rijσα,i)

2]) is an approxima-
tion of the covariance in a cartesian coordinate system
{P∗} aligned with the radial and angular axis of the orig-
inal polar coordinate system. Furthermore, σr,i and σα,i
are the standard deviations of the mutually independent
noise components of the range and bearing measurements
in the original polar coordinate system, and rij and
αij are the range and bearing between vehicle i and j,
respectively.

C. Problem Statement
We define the LDM as the estimated locations of all (or a

subset) of the vehicles at the fusion center. To gain insights on
how the penetration rates of the different vehicle types ρ =[
ρA ρM ρR ρL

]
affects the quality of the LDM, we will

derive lower bounds on the position accuracies as a function
of those penetration rates and assess under which conditions
a target accuracy denoted Pt can be attained.

Limitations: The analysis and bounds derived in this paper
are valid for point targets, and assumes perfect data associ-
ation, i.e., that each measurement is perfectly associated to
a target. Also, we do not implement any model for sensor
blockage, i.e., that vehicles might be occluded behind other
vehicles. Furthermore, the bounds presented here are snapshot
bounds, i.e., they do not take into account prior information,
but are based on the measurements available at a certain time
instance. Posterior CRLBs could be considered, but has the
drawback that they require assumptions about specific vehicle
trajectories and dynamic models [31]. Note that ideal data
association and not accounting for blocking effects might lead
to overly optimistic bounds, while not accounting for prior
information might lead to overly conservative bounds if com-
paring to a tracking algorithm. In regards to the assumption of
point targets, modeling of extended targets [33] require more
advanced sensor models with a more complex relation to the
individual vehicle positions. Finally, the simulation results are
limited to fixed target accuracies Pt, that do not depend on
the relative distance between vehicles.

III. PRELIMINARIES

A. FIM and CRLB
The Cramér-Rao lower bound (CRLB) expresses a bound on

the variance of unbiased estimators for deterministic but un-
known parameters and can be used to obtain insights about the
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quality of estimation algorithms. The CRLB on the covariance
of an unbiased estimator θ̂ of a parameter θ = [θ1; . . . ;θK ]
can be expressed as

J−1(θ) � E
{

(θ − θ̂)(θ − θ̂)
T
}
, (6)

where J(θ) = −Ey

{
∇T

θ∇θ log p(y|θ)
}

is the Fisher infor-
mation matrix (FIM), derived from the likelihood p(y|θ). For
the case of Gaussian observations y ∼ N (f(θ),Σ), the FIM
is given by

J(θ) = ∇T
θ f(θ)Σ−1∇θf(θ). (7)

B. EFIM

The equivalent Fisher information matrix (EFIM) is a tool
to extract the information required to compute the CRLB for
a subset of the parameter vector θ. More precisely, given a
parameter vector θ = [θ1;θ2] with corresponding FIM

J(θ) =

[
A B
BT C

]
(8)

where θ1∈Rm , θ2∈Rn ,A ∈ Rm×m, B ∈ Rm×n and C ∈
Rn×n the EFIM is defined as [28]

Je(θ1) = A−BC−1BT. (9)

Note that the EFIM retains all the information regarding the
parameter vector θ1 in the sense that J−1

e (θ1) =
[
J−1(θ)

]
1,1

,

in which
[
·
]
1,1

extracts the m×m block pertaining to θ1.

C. PEB

Given the collection of measurements y available at the
fusion center and the associated FIM, the position error
bound (PEB) of vehicle i is defined as

P(pi) =

{√
tr
{
J−1

e (pi)
}

i ∈ JP

+∞ i /∈ JP

(10)

where JP is the set of vehicles for which the position is iden-
tifiable (see Section IV-B) in a Fisher information sense.

IV. ANALYSIS OF THE FIM

A. General Expression

We write the vector of unknown parameters as

θ =
[
p; ψ

]
, (11)

where p is the vector of positions p = [p1; p2; . . . ; pN ] and
ψ is the vector of vehicle headings ψ = [ψ1; . . . ;ψN ] The
measurements available to estimate these parameters depends
on the network topology, which in turn depends on the specific
vehicle types and on who can observe who. We can express the
vector of measurements available to the central fusion server
as

y =
[ [

yG
ii

]
i∈VG ;

[
yC
ii

]
i∈VA∪VM ;

[
yR
ij

]
i∈VA∪VM,j∈Ai

]
.

(12)
Note that radar measurements between a vehicle i and j only
are included if j ∈ Ai. Based on this, we can then write the

joint likelihood of all the measurements available to the central
fusion server as

p(y|θ) = N (f(θ),Σ) (13)

where f(θ) is a vector of the mean functions and Σ is a
block diagonal matrix with the measurement uncertainties
corresponding to each measurement. Based on this we then
find that the FIM J(θ), given by (7), is 3N × 3N matrix
structured as in Proposition 1.

Proposition 1. Given the scenario and sensor models outlined
in Section II we can express the FIM as

J(θ) =

[
A B
BT C

]
(14)

where A is a 2N × 2N matrix, consisting of 2 × 2 blocks,
where block (i, j)[

A
]
i,j

= (15){
1{i∈VG}Σ

−1
ii +

∑
j′∈Ai Sij′ +

∑
j′:i∈Aj′ Sj′i

−1{j∈Ai}Sij − 1{i∈Aj}Sji

i = j

i 6= j

B is a 2N×N matrix, consisting of 2×1 blocks, where block
(i, j)

[
B
]
i,j

=

 −
∑
j′∈Ai

1
rij′σ

2
α,i

RT
(
π
2

)
uij′

1{i∈Aj}
1

rjiσ2
α,j

RT
(
π
2

)
uji

i = j

i 6= j
(16)

and C is a N ×Ndiagonal matrix with elements (i, j) of the
form

[
C
]
i,j

=

{
1{i∈VA∪VM}

1
σ2
C,i

+
∑
j∈Ai

1
σ2
α,i
,

0

i = j

i 6= j
(17)

in which Sij = RT(ψi)Σ
−1
ij R(ψi), and uij =[

cos(βij) sin(βij)
]T

is the unit vector pointing in the di-
rection βij = ψi + αij .

Proof: See Appendix A.
The matrix A in Proposition 1 correspond to the Fisher

information that the observations carry about the positions p
when the headings ψ are known. The diagonal blocks of A
consist of three positive definite terms: the information from
the GNSS observation, the information from radar observa-
tions that vehicle i makes of other vehicles j ∈ Ai, and the
information from radar observations by other vehicles that
observe vehicle i. The first term is directly the inverse of
the GNSS observation covariance Σii, while Sij in the radar
terms can be interpreted as the inverse of the radar obser-
vation covariance Σij represented in the global coordinate
frame. The off-diagonal blocks (i, j), i 6= j are negative
definite and correspond to the reduction of information of
the radar observations due to the measuring or measured
vehicle’s unknown position (note that in the absence of GNSS
observations, the matrix A is singular, so that the positions
would not be identifiable). The matrix C is a diagonal matrix
with diagonal entries comprising the information from the
compass and from the radar signals that vehicle takes with
respect to its neighbors. The off-diagonal elements are zero
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since the heading of a vehicle observed by a radar does not
affect the radar measurement, i.e., when vehicle i observes
vehicle j with the radar the measurement yij does not depend
on ψj . Finally, B describes the information coupling between
positions and headings, which occurs due to the fact that
the information about the positions from a radar observation
depends on the unknown heading of the observing vehicle, and
similarly that the information radars bring about the heading
of the observing vehicle depend on the unknown positions of
both observing and observed vehicle.

B. Identifiable Vehicles

The measurement vector y might not contain sufficient in-
formation to identify all the unknown parameters in θ, leading
to non-invertible FIM. By removing unidentifiable vehicles,
the FIM can be rendered full-rank. To this end we introduce
the two sets JP and JH , which are sets containing the indices
of the identifiable positions and headings, respectively. The
procedure for generating the sets is highly dependent on the
specific scenario and sensing models. In Algorithm 1 we
illustrate how to compute the sets JP and JH for the specific
scenario and sensing models outlined in Section II.

Algorithm 1 Computation of JP and JH

1: JP = ∅, JH = ∅
2: for i = 1 : N do
3: if i ∈ VA ∪ VM then JH = JH ∪ {i}
4: if i ∈ VG then JP = JP ∪ {i}
5: if ∃j ∈ VA ∪ VM : i ∈ Aj then JP = JP ∪ {i}
6: end for

We note that for this particular setup a sufficient requirement
for the heading to be identifiable is that i ∈ VA ∪ VM (step
3), i.e., that the vehicle has a compass. Furthermore, we see
that the position is identifiable either if the vehicle has a
GNSS module (step 4) or if it is observed by another vehicle’s
radar (step 5). Note that without the compass sensor the
procedure becomes more involved. For instance the heading
of the vehicle is only identifiable through a radar observation
against a vehicle with identifiable position.

Given the sets JP and JH, we can then construct an
invertible FIM by removing unidentifiable parameters from
θ. Removing a parameter from θ is equivalent to removing
the corresponding rows and columns from the FIM. However,
simply removing unidentifiable parameters is equivalent to
assuming that these parameters are known, thus we also
have to remove measurements that involve these parameters
when building up the FIM. The procedure for building up an
invertible FIM based on the two sets JP and JH is summarized
in Algorithm 2.

Based on the invertible FIM and the resulting CRLB, it is
then straight forward to compute the PEB for the vehicles with
identifiable position using (10). For the remaining vehicles,
i.e., the vehicles with unidentifiable positions, we simply set
the PEB to infinity to represent the fact that we don’t have
enough information to estimate their position.

Algorithm 2 Build invertible FIM based on JP and JH

1: for i = 1 : N do
2: if i /∈ JH then remove ψi and yR

ij ,∀j ∈ Ai
3: if i /∈ JP then remove pi, yR

ij ,∀j ∈ Ai and yR
ji∀j :

i ∈ Aj
4: end for
5: Compute FIM for reduced vectors θ and y according to

the procedure in Section IV-A

C. Gain of Cooperation

While the general expression of the FIM provides a mean
to asses the PEB numerically, it does not shed insight into the
nature of cooperation. Thus, to illustrate the benefits of co-
operation, and to get a better understanding what information
we gain from the different types of observations we will here
illustrate a two vehicle example. To start with we consider
two vehicles that observe each other using their respective
radars. i.e., the two vehcles are either of type modern or
automated and in each others FOV. Moreover, we assume
that the two vehicles have similar quality radar sensors and
compass sensors, which allows us to drop the index i on
σC, σα and σr. Given the sensor models in Section II-B, the
resulting FIM can then be expressed as in (14) with matrices

A =

[
Σ−1

11 + S12 + S21 −S12 − S21

−S21 − S12 Σ−1
22 + S12 + S21

]
(18)

B =

[
1

r12σ2
α
RT

(
π
2

)
u12 − 1

r21σ2
α,1

RT
(
π
2

)
u21

− 1
r112σ

2
α
RT

(
π
2

)
u12

1
r21σ2

α
RT

(
π
2

)
u21

]
(19)

C =

[
1
σ2
C

+ 1
σ2
α

0

0 1
σ2
C

+ 1
σ2
α

]
(20)

The information that the observations carry about the position
vector p = [p1; p2] as well as the individual positions pi for
i = 1, 2 can then be analyzed with help of the notion of EFI.

For ease of notation and interpretation we introduce the
ranging direction matrix (RDM) [28]

Jr(β) = uuT, (21)

where u = [cos(β); sin(β)], Furthermore, we let γ = ( 1
σ2
C

+
1
σ2
α

)−1. The EFIM Je(p) for the position vector p = [p1; p2]
can then be determined as follows.

Proposition 2. For the scenario with two modern or auto-
mated vehicles in each-other’s FOV, the EFIM for the position
vector p can be expressed as

Je(p) =

[
Σ−1

11 + H −H
−H Σ−1

22 + H

]
, (22)

where H = S12 + S21 − γE, and

E =
2

r2σ4
α

Jr(β
′ +

π

2
), (23)

in which r = r12 = r21, and β′ is either β12 or β21.

Proof: See Appendix B.
We observe that in (22), the diagonal elements corresponds

to the information about p1 (resp. p2) given that p2 (resp. p1)
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Figure 1. Illustration of 1-sigma ellipses representing the CRLBs J−1
e (p1)

and J−1
e (p2) for a two vehicle scenario with a modern vehicle with position

p1 and a retrofitted vehicle with position p2. First we see the uncertainty in
the positions given that we only take into account the GNSS measurements
(solid blue). Then we see how the uncertainty changes when incorporating
the radar (σα = 0.3 and σr = 0.12) as well as the compass (σC = 1) from
the modern vehicle (solid red). We also see how the uncertainty about the
retrofitted vehicle decreases in the direction β′ + π/2 when decreasing the
uncertainty in the modern vehicles compass to σC = 0.2° (dashed green), and
how the uncertainty about the retrofitted vehicle is increased in the direction
β′ if we in addition increase the range uncertainty of the radar to σr = 12
(dashed magenta). Note that parameter values used here might differ from
Section V.

is known. We note that each diagonal element contains in-
formation from the own GNSS measurement plus H, which
correspond to the information from the cooperation with the
other vehicle. Further analyzing the structure of the matrix
H, we see that the cooperation with the other vehicle adds
information S12 + S21, but due to the uncertainty in the
headings of the vehicles this information is reduced by the
matrix γE. In particular, we see from the structure of E
that uncertainties in the angles translates to a reduction of
information in the direction β′ + π

2 , which is in the direction
perpendicular to the direction between the two nodes.

Further applying the notion of EFI, we can compute the
EFIM for the position of vehicle i = 1. The resulting
expression is presented in Proposition 3

Proposition 3. For the two vehicle example with an EFIM for
the complete position vector p as in (22), the EFIM for the
position of vehicle i = 1 can be expressed as

Je(p1) = σ−2
G,1I2 + κ1λ

H
1 Jr(β

′
) + κ2λ

H
2 Jr(β

′
+
π

2
) (24)

where κn = 1−λHn /(λHn +1/σ2
G,2), λH1 = 2

σ2
r

, λH2 = 2
r2 ( 1

σ2
α
−

γ
σ4
α

) , and β′ is either β12 = or β21.

Proof: See Appendix C.
We observe that information is gained in two directions β′

and β′+π/2, where β′ correspond to the direction towards p2.
The amount of information that we gain in the two directions
are κ1λ

H
1 and κ2λ

H
2 . Furthermore, we see that as the GNSS

observation variance σ2
G,2 tends to zero, κn tends to one, and

that while σ2
G,2 tends to infinity, κn tends to zero. In other

words, λH1 and λH2 correspond to the information gain given
that p2 is known, while κn can be seen as a dampening factor
due to uncertainties in the other vehicle’s position. We also
see that when κn = 1, the information gain in the direction
towards the other vehicle is inversely proportional to σ2

r , while
the information gain in the perpendicular direction depends
on both σ2

α and σ2
C, as well as the distance between the two

vehicles.

Remark 4. If one of the vehicle is not in the FOV of the other,
or if the the type of one of the vehicles is changed to retrofitted
a slight modification of Proposition 3 is required. In this case
the eigenvalues λH1 and λH2 are reduced by 50% as only one
radar observation is available. Changing the type of the first
vehicle to a legacy vehicle, i.e., no GNSS observation requires
both the 50% reduction of the eigenvalues as well as a removal
of the first term in (24). Finally, changing the second vehicle
into a legacy vehicle the EFIM Je(p1) is simply 1

σ2
G,1

I2, which
can be seen by letting the GNSS observation variance of the
second vehicle tend to infinity.

To give further intuition behind Proposition 3 and how
different type of observations affects the EFIMs of the indi-
vidual vehicles, Fig. 1 visualizes 1-sigma ellipses representing
the CRLBs J−1

e (p1) and J−1
e (p2) for a case with a modern

and a retrofitted vehicle. To get a more illustrative example,
we have set the accuracy of their respective GNSS modules
to σG,1 = 2 m and σG,2 = 4 m. In other words, based
on GNSS only, we are more uncertain about the retrofitted
vehicles position. This can be seen by comparing the size of
the blue ellipses, which correspond to the CRLBs based on
solely GNSS measurements. Incorporating radar and compass
measurements (with σr = 0.12 m , σα = 0.3° and σC = 1°),
we obtain the red ellipses. From these we see that adding
radar and compass marginally decreases the uncertainty about
the modern vehicles position, but significantly decreases the
uncertainty about the retrofitted vehicles position, especially in
the direction towards the other vehicle (i.e., along the direction
β′). That the uncertainty is decreased most for the retrofitted
vehicle is reasonable, as the relative radar measurement allows
for information transfer from the modern vehicle with good
GNSS to the retrofitted vehicle with bad GNSS. Because of
the comparatively low range uncertainty it is also intuitive that
the uncertainty is reduced most in the direction towards the
other vehicle. Note that even thought the uncertainty is reduced
mostly in the direction β′, we also see a slight reduction in
the perpendicular direction (i.e., β’+π/2). As visualized by
the green ellipses, the reduction in the perpendicular direction
becomes more pronounced if decreasing the standard deviation
of the compass sensor to σC = 0.2°, i.e., if we better know
the direction of the modern vehicle with radar we can transfer
more information in the direction β′ + π/2. Finally, if we
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Figure 2. Illustration of one network realization showing node deployment, type assignment and sensor coverage for the radars in the modern vehicles. The
fraction of vehicles used for the multinomial sampling are in this example set to ρ = [0, 0.25, 0.4, 0.35].

in addition to decreasing the compass standard deviation also
increase the range uncertainty of the radar to σr = 12, we
obtain the magenta colored ellipses. As can be seen, this results
in a increased uncertainty in the direction β′, compared to the
case with low range uncertainty.

V. NUMERICAL RESULTS

A. Simulation Setup

We consider a multi-lane freeway of length L = 2 km,
which has two lanes in each direction. The width of the lanes
dlane = 4 m, and when it comes to the lateral placement of
vehicles within a lane, we assume that vehicles are placed
exactly along the centerline of each lane. For the longitudinal
placement of vehicles, experimental studies have shown that
for free flow traffic the distribution of time headways (i.e.
the time between successive vehicles) is well approximated
by a log normal distribution [34]–[36]. Thus we generate
the longitudinal positions of the vehicles in each lane by
drawing time headway samples from a log-normal distribution
with parameters µ′ and σ′. The specific values of µ′ and σ′

are shown in Table I, and are chosen to match one of the
cases from the multi-lane freeway study in [34]. The time
headways are converted to headway distances by assuming a
velocity of v = 100 km/h. After deploying vehicles in each
lane we assign a type Ti to each vehicle. This is done by
drawing independent samples from a multinomial distribution
with parameter ρ =

[
ρA ρM ρR ρL

]
. For the sensor

parameters we set the uncertainty of the high-accuracy and
low-cost receivers to σhigh

G = 0.05 m and σlow
G = 2 m,

respectively [10], [37]. The uncertainty of the compass sensor

is set to σC = 1°. Furthermore, we assume that the radars in
the automated vehicles have a maximum detection range of
rmax = 160 m and opening angle θA

FOV = 360°, while the
radars in the modern vehicles are assumed to be front looking
radars with the same maximum detection range but an opening
angle θM

FOV = 12°. The range and bearing uncertainty of both
radar types are set to σr = 0.12 m σα = 0.3°. Note that
the values for the front looking radar approximately match
the specification of a typical medium range radar [38]. One
realization of the generated network can be seen in Fig. 2,
which in addition to the node deployment and type assignment
also visualizes the sensor coverage for the radar sensors. Note
that in regards to the radar observations, we assume that
vehicles can observe all other vehicles within the sensor FOV,
including both oncoming traffic and traffic traveling in the
same direction. Finally, to minimize the impact of edge effects
we place a replica of the generated network before and after
the 2 km long freeway stretch that we want to analyze. Based
on the generated network we then compute the adjacency sets
and measurement covariances required to set up the complete
network FIM and compute the CRLB and corresponding PEB
for each vehicles position.

B. Results and Discussion

The impact of the gradual market penetration, and the
possibility to build up a common shared map in the multi-lane
freeway scenario introduced in Section V-A is here evaluated
by running a set of Monte Carlo simulations. For each param-
eter setting we draw 1600 realizations of the network, and in
particular we focus on how the fraction of vehicles that can
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Figure 3. Fraction of vehicles with a PEB below or equal to Pt =1 m as a function of the fraction of modern, retrofitted and legacy vehicles in the system
when (a) the fraction automated vehicles ρA = 0 , and (b) the fraction of automated vehicles is ρA = 0.05. The black stars represents the grid points for
which simulations have been run.

Table I
SIMULATION PARAMETERS

Parameters Values

Length of road segment (km) L = 2
Width of lane (m) dlane = 4
Time headway mean (m) µ′ = 0.886
Time headway std. (m) σ′ = 0.954
Speed (km/h) v = 100

GNSS position unc. high-accuracy (m) σhigh
G = 0.05

GNSS position unc. low-cost (m) σlow
G = 2

Compass heading unc. (deg) σC = 1
Radar opening angle automated veh. (deg) θAFOV = 360
Radar opening angle modern veh. (deg) θMFOV = 12
Radar max range (m) rmax = 160
Radar range unc. (m) σr = 0.12
Radar bearing unc. (deg) σα = 0.3

meet a certain target accuracy depends on the composition
of the vehicle fleet ρ =

[
ρA ρM ρR ρL

]
. Some of the

questions that we will try to answer are: How sensitive are
the results to the chosen target accuracy? What is the impact
of adding a small fraction of automated vehicles to the system,
and is this sufficient to reach the accuracies required for safety
critical ITS applications? What is the effect of relatively simple
and cheap measures such as retrofitting vehicles with low-
cost GNSS and communication? Is there a difference between
longitudinal and lateral estimation accuracy?

1) Impact of Penetration Rates and Different Requirements:
To answer these question, we start by visualizing how the
fraction of vehicles that can meet a fixed target accuracy
of Pt = 1 m depends on ρ =

[
ρA ρM ρR ρL

]
. While

Fig. 3a shows the case when there are no automated vehicles
in the system, Fig. 3b shows results for a case where we have
introduced 5% automated vehicles in the system. From Fig. 3,
which provides a good overview of how the composition of
the vehicle fleet affects the results, we see that increasing the

density of modern vehicles ρM in the system generally leads
to an increase in the fraction of vehicles that can achieve the
target accuracy. Furthermore, we see that when there are only
legacy vehicles without sensing capability in the network (i.e.
ρL = 1), the target can not be met for any vehicles. We also
see that converting legacy vehicles into retrofitted vehicles, in
most cases intuitively allows us to meet the target accuracy for
a larger fraction of vehicles. However, note that when there are
solely retrofitted vehicles in the system (i.e., ρR = 1) the target
accuracy can not be met for any of the vehicles in the system,
this is because the accuracy of the low-cost GNSS module is
not sufficient to achieve a target accuracy of 1 m. Furthermore,
we clearly see the benefit of introducing a small fraction of
automated vehicles with high-end sensors, as this generally
leads to a significant increase in the fraction of vehicles for
which the target accuracy can be met.

To better quantify the effect of adding a small fraction
of automated vehicles, and to analyze the impact of differ-
ent positioning requirements, Fig. 4 shows the fraction of
vehicles that can meet the requirement as a function of the
fraction of modern vehicles ρM for different target accuracies
Pt ∈ {0.5 m, 1 m, 3 m}. For visualization purposes, we have
here fixed the fraction of retrofitted vehicles to ρR = 0. As
expected, we observe that the number of vehicles that can
meet the target decreases with a decreased target accuracy. We
also more clearly see that introducing 5% automated vehicles,
leads to a significant increase in the fraction of vehicles for
which we can meet the target. However, as can be seen, this
alone is not sufficient if we want to get down to the tens of
centimeters required for safety critical applications. At least
not given the current sensor configurations, and under the
assumption that we would like to position all the vehicles
in the system with this accuracy. Furthermore, we see that in
contrast to the immediate benefits of adding a small fraction of
automated vehicles, we have a delayed and accelerating effect



9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ A
=
0.
05
, P

t=
3

ρA
=
0.
05
, P

t=
1

ρA=
0.05

, Pt=0.5

ρ A
=
0,
P t
=
3

ρ A
=
0,
P t
=
1

ρA=0, Pt=0.5

fraction of modern vehicles, ρM

fr
ac

tio
n

w
ith

PE
B

≤
P
t

without automated with automated

Figure 4. Fraction of vehicles with PEB≤ Pt ∈ {0.5m, 1m, 3m} as a
function of the fraction of modern vehicles ρM in the system. The fraction
of retrofitted vehicles is set to ρR = 0. Blue curves correspond to the case
without automated vehicles (i.e, ρA = 0) and red curves to the case with
automated vehicles (i.e., ρA = 0.05).

of adding more modern vehicles to the system for the case
without automated vehicles. For instance, when Pt = 1 the
benefit of having 20% modern vehicles in the system is almost
negligible, but after this the fraction of vehicles for which the
target can be met rapidly increases as we increase ρM. To
gain a better understanding about the sensitivity to different
positioning requirements Fig. 5 shows empirical CDFs of
the PEB. Each CDF correspond to a particular ρ, and for
visualization purposes we have chosen to fix the fraction of
retrofitted vehicles to ρR = 0.2. To start with, we observe
that the CDFs are steeper for low PEBs and then flatten
out. We also note that there are a few steps on the CDFs.
These steps occur because of (i) some vehicles can only be
positioned based on information from their on-board GNSS
receivers; (ii) certain types of vehicle configurations are more
common and reoccur in combination with that σr is assumed
to be independent of the distance between two vehicles. This
means that the results are more sensitive to a change in target
accuracy when the target accuracy is low, i.e. when the CDFs
are steep, or when the selected target accuracy is close to one
of the steps.

2) Effect of Retrofitting Vehicles: To analyze what effects
the relatively simple solution of retrofitting vehicles with a
low-cost GNSS and communication, Fig. 6 shows the fraction
of vehicles that meet the target as a function of the fraction
of retrofitted vehicles ρR. From this figure we see that only
when we have loose position requirements (such as Pt = 3 m),
which can be meet by the low-cost GNSS module alone, the
benefit of this relatively simple measure is clear. However, as
can be seen from the flat or relatively flat curves corresponding
to Pt ∈ {0.5 m, 1 m}, there is from a mapping perspective
none or marginal benefit of introducing more retrofitted vehi-
cles if the positioning requirements on the LDM are stringent.
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Figure 5. Empirical CDFs of the PEB for ρA ∈ {0, 0.05},
ρM ∈ {0, 0.3, 0.6}, ρR = 0.2, and ρL = 1− ρA − ρM − ρR. Blue
curves correspond to the case without automated vehicles (i.e, ρA = 0) and
red curves to the case with automated vehicles (i.e., ρA = 0.05).

3) Longitudinal vs Lateral Error: Finally, we distinguish
between lateral and longitudinal road position. Fig. 7 shows
the fraction of vehicles that can meet the target accuracy for the
individual components as a function of the fraction of modern
vehicles pM. For visualization purposes, we have as before set
the fraction of retrofitted vehicles to pR = 0. From this figure
we see that in general a larger fraction of the vehicles manages
to meet the requirement in the longitudinal component com-
pared to the lateral, even though the difference in the fraction
of vehicles that can meet the requirement seems to be larger for
more stringent positioning requirements. Nonetheless, given
the current sensor configuration, it is clear that longitudinal
road position can be estimated more accurately in a multi-
lane highway scenario.

VI. CONCLUSIONS

Accurate positioning and real–time situational awareness
are key enablers in future ITS. In this paper, we present
a framework and methodology, based on Fisher information
analysis and Cramér-Rao bounds, that can be used to analyze
how the sensing capability in a given vehicle fleet affects the
possibility to build up a shared LDM in which both cooperative
and non-cooperative vehicles are positioned. We have used
this, to study how the composition of the vehicle fleet, and
its sensing capability, affects the quality of the LDM in terms
of the PEB of the involved vehicles. More specifically, we
have quantified the information gain from different type of
observations (such as GNSS, compass and radar), and showed
how the fraction of vehicles that can meet a certain target
accuracy depends on the sensing capability in the network.
While the framework and methodology is general and can
be applied to any network of vehicles, we present simulation
results for a multi-lane freeway scenario with mixed traffic,



10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρA=
0.0

5, P
t=

3

ρA=0.05, Pt=1

ρA=0.05, Pt=0.5

ρA
=
0,
P t
=
3

ρA=0, Pt ∈ {0.5, 1}

fraction of retrofitted vehicles, ρR

fr
ac

tio
n

w
ith

PE
B
≤
P
t

without automated with automated

Figure 6. Fraction of vehicles with PEB≤ Pt ∈ {0.5m, 1m, 3m} as a
function of the fraction of retrofitted vehicles ρR in the system. The fraction
of modern vehicles is set to ρM = 0. Blue curves correspond to the case
without automated vehicles (i.e, ρA = 0) and red curves to the case with
automated vehicles (i.e., ρA = 0.05).

consisting of four vehicle types ranging from legacy vehicles
with neither sensing nor communication, to automated vehicles
with high-end sensors and communication capability. The in-
sights that we can obtain from these simulations, are that solely
introducing a small fraction of automated vehicles significantly
improves the positioning quality in the network. However,
it might not be sufficient if we want to achieve a target
accuracy corresponding to the tens of centimeters required for
safety critical ITS applications (such as cooperative automated
driving). Furthermore, we find that simple measures such as
retrofitting vehicles with low-cost GNSS and communication
have marginal impact when the positioning requirements on
the LDM are stringent, and that longitudinal road position
can be estimated more accurately than lateral in a multi-lane
highway scenario, given the considered sensor configuration.

Possible avenues for future research include: (i) incor-
poration of realistic model for sensor blockage, such that
measurements against vehicles that in reality are occluded
behind other vehicles can be excluded from the analysis; (ii)
extension to dynamic scenarios with tracking, as any realistic
implementation of a cooperative positioning algorithm most
likely would rely on tracking; (iii) incorporation of advanced
sensor models and extended objects to model the fact that
vehicles in reality are not point objects, and can give rise
to more than one measurement per vehicle if high resolution
sensors are used.

APPENDIX A
PROOF OF PROPOSITION 1

For a vector of unknown parameters θ = [θ1; . . . ;θK ] and a
joint Gaussian measurement likelihood (as in (2)) with mean
function of the form f(θ) = [f1; . . . ; fM ] and corresponding
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Figure 7. Fraction of vehicles with with longitudinal error bound (Lon
EB) and lateral error bound (Lat EB) that meets the target accuracy Pt ∈
{0.5m, 1m, 3m} as a function of the fraction of modern vehicles ρM. The
fraction of retrofitted vehicles is set to ρR = 0. Blue curves correspond to
the case with no automated vehicles (i.e, ρA = 0) and red curves to the case
with automated vehicles (i.e., ρA = 0.05). Solid, dashed and dotted lines
correspond to target accuracies of Pt = 3 m, Pt = 1 m and Pt = 0.5 m,
respectively.

block diagonal covariance Σ, a general block in J(θ) can be
expressed as

[
J(θ)

]
i,j

=
∂Tf(θ)

∂θi
Σ−1 ∂f(θ)

∂θj
(25)

=

M∑
n=1

∂Tfn
∂θi

Σ−1
n

∂fn
∂θj

(26)

where Σn denotes the covariance corresponding to mean
function fn. We observe that information is additive, and that
a particular measurement only contributes when both of the
partial derivatives are non zero. It should be understood that
the exact dimension of the block

[
J(θ)

]
i,j

depends on the
size of θi as well as θj . For the specific setting considered
here, θi’s are either two dimensional positions pi or one
dimensional headings ψi. The way θ is composed in (11),
further allows us to structure the FIM as in (14), where
the matrix A is a 2N × 2N matrix consisting of blocks[
J(θ)

]
i,j

for θi,θj ∈ {p1, . . . ,pN} , B is a 2N ×N matrix
consisting of blocks

[
J(θ)

]
ij

for θi ∈ {p1 . . .pN} and θj ∈
{ψ1 . . . ψN}, and C is a N ×N matrix consisting of blocks[
J(θ)

]
ij

for θi,θj ∈ {ψ1 . . . ψN}. Given the sensor models
in Section II-B, the non-zero partial derivatives required to
evaluate the different blocks are



11

∂fG
ii (xi,xi)

∂pi
=
∂pi
∂pi

= I2 (27)

∂fC
ii (xi,xi)

∂ψi
=
∂ψi
∂ψi

= 1 (28)

∂fR
ij (xi,xj)

∂pi
=
∂R(ψi)(pj − pi)

∂pi
= −R(ψi) (29)

∂fR
ij (xi,xj)

∂pj
=
∂R(ψi)(pj − pi)

∂pj
= R(ψi) (30)

∂fR
ij (xi,xj)

∂ψi
=
∂R(ψi)(pj − pi)

∂ψi
= µij (31)

where we for ease of notation have introduced µij = R(ψi +
π/2)(pj − pi).

Based on this we can now express a general 2× 2 block in
A as

[A]i,j =

M∑
n=1

∂Tfn
∂pi

Σ−1
n

∂fn
∂pj

. (32)

where inserting the exact exact form of the mean functions
and evaluating the partial derivatives results in diagonal and
off-diagonal blocks

[A]i,i = 1{i∈VG}Σ
−1
ii +

∑
j∈Ai

RT(ψi)Σ
−1
ij R(ψi)

+
∑
j:i∈Aj

RT(ψj)Σ
−1
ji R(ψj) (33)

and

[A]i,j = −1{j∈Ai}R
T(ψi)Σ

−1
ij R(ψi) (34)

− 1{i∈Aj}R
T(ψj)Σ

−1
ji R(ψj).

Introducing Sij = RT(ψi)Σ
−1
ij R(ψi) leads to (15).

Similarly, for the matrix B we can write the 2 × 1 blocks
as

[B]i,j =
M∑
n=1

∂Tfn
∂pi

Σ−1
n

∂fn
∂ψj

. (35)

Again, inserting the exact form of the mean functions and eval-
uating the partial derivatives gives diagonal and off-diagonal
blocks

[B]i,i = −
∑
j∈Ai

RT(ψi)Σ
−1
ij µij (36)

and

[B]i,j = 1{i∈Aj}R
T(ψj)Σ

−1
ji µji. (37)

As can be seen, the diagonal and off diagonal blocks contains
terms of the form

Tij = RT(ψi)Σ
−1
ij µij (38)

= RT(ψi)Σ
−1
ij R(ψi + π/2)(pj − pi). (39)

The vector (pj − pi) can be written as rijuij , with
uij = [cos(βij); sin(βij)] in which βij = ψi+αij . Using this

in combination with the expression for the radar covariance in
(5), we can write

Tij = rijR
T(ψi)R

T(αij)
(
ΣP∗
ij

)−1
v (40)

where v = R(αij)R(ψi)R(π2 )uij . As the vector v = [0;−1]
for all αij and ψij , we can further express these terms as

Tij = rijR
T(βij)

(
ΣP∗
ij

)−1
[

0
−1

]
(41)

= rijR
T(βij)

[
1
σ2
r,i

0

0 1
(rijσα,i)2

] [
0
−1

]
(42)

=
1

rijσ2
α,i

RT
(π

2

)
uij (43)

Plugging the final result for Tij back into (36)-(37) leads to
(16).

Finally for the matrix C we can write the elements as

[C]i,j =

M∑
n=1

∂Tfn
∂ψi

Σ−1
n

∂fn
∂ψj

. (44)

As before inserting the exact mean functions and evaluating
the partial derivatives we see that the only non-zero elements
are the diagonal elements, which can be written as

[C]i,i = 1{i∈VA∪VM}
1

σ2
C,i

+
∑
j∈Ai

µT
ijΣ
−1
ij µij (45)

Again using that the vector (pj − pi) = rijuij , we can for a
radar covariance of the form in (5) finally write

[C]i,i

= 1{i∈VA∪VM}
1

σ2
C,i

+
∑
j∈Ai

r2
ijv

T
(
ΣP∗

ij

)−1

v (46)

= 1{i∈VA∪VM}
1

σ2
C,i

+
∑
j∈Ai

1

σ2
α,i

, (47)

which by combined with the zero valued off-diagonals leads
to (17)

APPENDIX B
PROOF OF PROPOSITION 2

Based on the matrices in (18)-(20), we can express the EFIM
for the position vector p as

Je(p) = A−BC−1BT (48)

= A− γBBT (49)

where γ = ( 1
σ2
C

+ 1
σ2
α

)−1. We can then write BBT as

BBT =

[
E −E
−E E

]
. (50)

with

E =
1

r2
12σ

4
α

RT
(π

2

)
u12u

T
12R

(π
2

)
(51)

+
1

r2
21σ

4
α

RT
(π

2

)
u21u

T
21R

(π
2

)
(52)

=
1

r2σ4
α

(
Jr(β12 +

π

2
) + Jr(β21 +

π

2
)
)
, (53)
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where the latter step uses the definition of the RDM in (21),
and the fact that r12 = r21 = r. As Jr(β12+ π

2 ) = Jr(β21+ π
2 ),

we can further condense this to

E =
2

r2σ4
α

(
Jr(β

′ +
π

2
)
)

(54)

where β′ = β12 or β′ = β21. For ease of notation, we then
finally introduce H = S12 + S21− γE, and write Je(p) as in
(22).

APPENDIX C
PROOF OF PROPOSITION 3

Starting from (22), we can express

Je(p1) (55)

= [Je(p)]1:2,1:2 − [Je(p)]1:2,3:4 [Je(p)]
−1
3:4,3:4 [Je(p)]3:4,3:4

(56)

= Σ−1
11 + H−H

(
Σ−1

22 + H
)−1

H. (57)

The matrix H can be decomposed as H =
∑2
n=1 λ

H
n unuT

n ,
where λHn and un are eigenvalues and eigenvectors, respec-
tively. Given that Σ22 = σ2

G,2I2 it is straightforward to show
that the matrix

(
Σ−1

22 + H
)−1

has the same eigenvectors as
the matrix H, so that

(
Σ−1

22 + H
)−1

=
∑2
n=1 λ

U
n unuT

n with
eigenvalues λUn = 1/(λHn + 1/σ2

G,2). Based on this we can
then write the EFIM for position p1 as

Je(p1)

= Σ−1
11 +

2∑
n=1

λHn unuT
n

−
2∑

n=1

λHn unuT
n

2∑
n=1

λUn unuT
n

2∑
n=1

λHn unuT
n (58)

(a)
= Σ−1

11 +

2∑
n=1

λHn unuT
n −

2∑
n=1

(λHn )2λUn unuT
n (59)

= Σ−1
11 +

2∑
n=1

λHn (1− λHn λUn )unuT
n . (60)

where (a) uses that the different eigenvectors are orthogonal
(i.e., uT

nuT
m = 0 for n 6= m). Then, inserting the expression

for λUn from above, and using that Σ11 = σ2
G,1I2 we obtain

Je(p1) =
1

σ2
G,1

I2 +

2∑
n=1

κnλ
H
n unuT

n (61)

where κn = (1− λHn /(λHn + 1/σ2
G,2)).

What remains now is to analyze the eigenvalues and eigen-
vectors of the matrix H = S12 + S21 − γE. Using the
expression for the radar covariance in (5), we can write

Sij = RT(ψi)

RT(αij)

[
σ2
r 0

0 (rijσα)2

]
︸ ︷︷ ︸

ΣP∗
ij

R(αi)


−1

R(ψij).

(62)

As the inner matrix ΣP∗
ij has eigenvalues σ2

r and (rijσα)2

with corresponding eigenvectors [1; 0] and [0; 1] it is
then straight forward to show that the matrix Sij has
eigenvalues λ

Sij
1 = 1/σ2

r and λ
Sij
2 = 1

(rijσα)2 , with

corresponding eigenvectors u
Sij
1 = [cos(βij); sin(βij)] and

u
Sij
2 = [cos(βij + π

2 ); sin(βij + π
2 )] in which βij = ψi +

αij . Using this in combination with (23) and the fact that
uS12
n (uS12

n )T = uS21
n (uS21

n )T we can then express H as

H=

2∑
n=1

λS12
n unun

T +

2∑
n=1

λS21
n unun

T − 2γ

r2σ4
α

u2u2
T (63)

where u1 = [cos(β′); sin(β′)], u2 = [cos(β′ + π/2); sin(β′ +
π/2)], and β′ is either β12 or β21. Inserting the eigenvalues
for the matrices S12 and S21, and using that r12 = r21 = r
we then obtain

H=
2

σ2
r︸︷︷︸

λH
1

u1u1
T +

2

r2
(

1

σ2
α

− γ

σ4
α

)︸ ︷︷ ︸
λH
2

u2u2
T. (64)

Plugging this back in to (61) and writing it in terms of RDMs
leads to (24)
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