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SYMBOLS, ABBREVIATIONS AND TERMS 

Greek symbols 

α, β Combustion parameters 

ΔT Temperature change 

ε Permittivity of the material 

η Efficiency 

ρ Density of the material 

ω Rotational velocity 

Other symbols 

A Area of the capacitor plates 

cp Specific heat of storage material 

C Capacitance 

Ctot Total capacitance 

d distance between capacitor plates 

dV Total voltage change 

E Stored energy 

F Combustion air flow 

F2 Leak air flow 

g Gravitational constant 

h Height 

I Current 

J Moment of inertia 

L Inductance 
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m Mass 

NOx Nitrogen oxides 

O2 Oxygen 

PN Rated power 

q Stored charge 

Qb Target steam flow 

Qt Amount of heat 

Qw Water flow rate 

r Radius 

Rtot Total resistance 

S Burning grate speed 

UC Voltage between capacitor plates 

UL Voltage across the coil 

V Volume of water 

 

Abbreviations 

AC Air conditioning 

APC Air pollution control 

BESS Battery energy storage system 

BFB Bubbling fluidized bed 

BGS British Geological Survey 

CAES Compressed air energy storage 

C&I Capital and investment 

CFB Circulating fluidized bed 
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CG Centralized generation 

CHP Combined heat and power 

COE Cost of electricity 

CPP Critical peak pricing 

DC Direct current 

DG Distributed generation 

DLC Direct load control 

DR Demand response 

DSM Demand side management 

EIA Energy Information Administration 

EE Energy efficiency 

EES Electrical energy storage 

ERC Energy Regulatory Commission 

FBC Fluidized bed combustion 

FES Flywheel energy storage 

GC Grate combustion 

HFO Heavy fuel oil 

HOMER Hybrid optimization of multiple electric renewables, a simulation 

software 

IPP Independent power producer 

KNBS Kenya National Bureau of Statistics 

KPLC Kenya Power and Lightning Company 

Li-ion Lithium-ion 

LNG Liquefied natural gas 

MSW Municipal solid waste 
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NaS Sodium-sulphur 

Ni-MH Nickel-metal hydride 

NPC Net present cost 

NREL National Renewable Energy Laboratory 

O&M Operating and maintenance 

PHS Pumped hydroelectric storage 

RES Renewable energy source 

RTP Real time pricing 

SCES Super capacitors energy storage 

SMES Superconducting magnetic energy storage 

TES Thermal energy storage 

TESS Thermal energy storage system 

TOU Time of use 

UPS Uninterruptible power supply 

Terms 

Annual generation capacity Maximum output of a power plant during 

a year. 

Annual production Actual production of a power plant during 

a year. 
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ABSTRACT 

Standard of living rises and amount of waste generated increases in developing countries. 

Population and need for energy also grows, creating opportunities for exploit modular 

waste incineration power plants which are small incinerators and can be located near pop-

ulated areas. The modular incineration power plant enables an appropriately sized incin-

eration plant by combining incinerator units. Waste incinerated can regionally be col-

lected and generated energy can be recycled back to same region. 

The object of the thesis is to study balancing of power generation of waste incineration 

plant and to find out the capital costs and operating and maintenance (O&M) costs of the 

plant. The aim is also to determine factors affecting balance between electricity genera-

tion and consumption in general. Pilot city of the project is Nairobi, the capital of Kenya, 

and the purpose is to create a model that can also be applied to other developing countries. 

The study is carried out based on the information from the pilot city and other related 

material. The literature review at the beginning of this thesis examines common incinera-

tion power plant techniques and more specifically the grate incineration technique and 

project implementation used in the project. The empirical study analyses factors affecting 

balance between electricity generation and consumption in Nairobi. Cost modelling is 

based on the Homer optimization program, which uses generation capacity of waste in-

cineration power plants and adapts consumption to generation. 

As the results of the thesis were obtained methods used to control the production of the 

waste incineration power plant and a cost model for the capital costs of the study as well 

as operating and maintenance costs. The cost model is created based on other similar 

projects and is indicative and changes according to the project implementation. In addi-

tion, the result was a study factors contributing to the balance between electricity gener-

ation and consumption in Nairobi. The review covered existing energy generation in 

Kenya, demand side management methods and energy storage technologies. 

KEYWORDS: Modular waste incineration power plant, distributed power generation, 

balancing power generation and consumption, energy storage systems, 

Homer 
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TIIVISTELMÄ 

Kehitysmaiden elintaso nousee ja niin myös samalla syntyvän jätteen määräkin kasvaa. 

Väestö ja energian tarve kasvavat myös, mikä luo mahdollisuuksia hyödyntää modulaa-

risia jätteenpolttolaitoksia, jotka ovat pieniä polttolaitoksia ja voidaan sijoittaa lähelle 

asutusta. Modulaarinen polttolaitos mahdollistaa sopivan kokoisen polttolaitoksen yhdis-

tämällä polttolaitosyksiköt. Poltettava jäte voidaan kerätä lähiympäristöstä ja tuotettu 

energia voidaan kierrättää takaisin samalle alueelle. 

Diplomityön tavoitteena on tutkia jätteenpolttolaitoksen sähköntuotannon tasapainotta-

mista ja selvittää laitoksen pääomakustannukset sekä käyttö- ja ylläpitokustannukset. Ta-

voitteena on myös määrittää yleisesti sähkön tuotannon ja kulutuksen väliseen tasapai-

noon vaikuttavat tekijät. Projektin pilottikaupunki on Kenian pääkaupunki Nairobi, ja tar-

koituksena on luoda malli, jota voidaan soveltaa myös muihin kehitysmaihin. Tutkimus 

toteutetaan pilottikaupungista saatujen tietojen ja muun siihen liittyvän aineiston perus-

teella. Työn alun kirjallisuuskatsauksessa tarkastellaan yleisiä polttolaitostekniikoita sekä 

tarkemmin projektissa käytettyä arinapolttotekniikkaa ja projektin toteutusta. Empiiri-

sessä tutkimuksessa analysoidaan tekijöitä, jotka vaikuttavat sähköntuotannon ja kulutuk-

sen väliseen tasapainoon Nairobissa. Kustannusten mallintaminen perustuu Homer opti-

mointiohjelmaan, jossa energian tuotantokapasiteettina käytetään jätteenpolttolaitosten 

tuotantokapasiteettia ja kulutus sovitetaan tuotantoon. 

Työn tuloksina saatiin selvitys jätteenpolttolaitoksen tuotannon ohjauksessa käytettävistä 

menetelmistä sekä kustannusmalli tutkimusprojektin pääomakustannuksista sekä käyttö- 

ja ylläpitokustannuksista. Kustannusmalli on luotu muiden vastaavien projektien pohjalta 

ja se on suuntaa antava sekä muuttuu projektin toteutuksen mukaan. Lisäksi tuloksena 

saatiin selvitys Nairobin sähköntuotannon ja kulutuksen välistä tasapainoa edesauttavista 

tekijöistä. Tarkasteluun otettiin Kenian olemassa oleva energian tuotanto, kysynnän hal-

lintamenetelmät sekä energian varastoiminen eri tekniikoin. 

AVAINSANAT: Modulaarinen jätteenpolttolaitos, hajautettu sähkön tuotanto, sähkön 

tuotannon ja kulutuksen välinen tasapaino, energian varastointijärjes-

telmät, Homer 
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1 INTRODUCTION 

1.1 Background of the thesis 

Energy demand is increasing also in developing countries while amount of population 

grow. New sources of energy are also needed to replace fossil fuels. Preferably, existing 

local resources can be utilized. Population growth increase also amount of waste gener-

ated. These issues can be solved with waste incineration power plant. Waste can be in-

cinerated at the incineration power plant and the plant generates energy accordingly. 

Topic of this thesis has been obtained from Woima Finland oy. It is small consulting 

company that includes waste incineration power plants as one sector. This thesis is part 

of a project in Nairobi, the capital of Kenya. This project is intended to be a pilot project 

to carry out similar projects in other cities in developing countries. The project creates an 

operating model that can be utilized with small changes to other cities. 

Waste incineration power plant provides opportunity to create a new energy generation 

model in which generated waste can be converted into energy. The model becomes de-

centralized when waste incinerators are smaller and more densely located. In the decen-

tralized model, waste and energy transfer distances are shorter when incinerated waste 

can be collected near the incinerator and generated energy can be returned back to this 

region. This energy generation model solves both energy generation and waste manage-

ment in that area. 

1.2 Objectives of the thesis 

An objective of this thesis is to examine control of waste incineration power plant when 

producing energy in different forms. The purpose is also to clarify capital as well as op-

erating and maintenance (O&M) costs of incineration power plant and to build a simpli-

fied cost model using Homer optimization program. Homer is the software designed to 
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be used for micropower optimization and it contains three usage features: simulation, 

optimization and sensitivity analysis. The cost model created for simulation and optimi-

zation provides guidelines for costs and can be used in other waste incineration power 

plant projects. (Homer Energy 2018b.) 

This study surveys also factors affecting balance between power generation and con-

sumption. This is being explored by mapping current forms of energy generation in Kenya 

and factors influencing energy demand. Different forms of energy storage for electrical 

and thermal energy are also explored. 

The objectives of the thesis can be presented in the following way: 

1. Investigate power generation control of waste incineration power plant. 

2. Solve capital and O&M costs of waste incineration power plant. 

3. Build a simplified cost model using Homer optimization program. 

4. Examine factors affecting balance between power generation and consumption. 

1.3 Scope and structure of the thesis 

The thesis is part of a larger project on decentralized waste management and power gen-

eration optimization. This thesis focuses on power generation and optimization. Due to 

this waste management and logistics are neglected in this work. 

The structure of the thesis is divided into a literature review and an empirical study. In 

addition to these sections, there is an introduction as well as conclusions and a summary. 

This structure is illustrated in Figure 1. 
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Modular waste incineration power plant

• Waste incineration technologies

• Technology used in study

• Capacity of used waste incineration 

power plant

Factors affecting the balance between 

power generation and consumption in 

Nairobi

• Potential of existing energy 

generation in Kenya

• Demand side management

• Energy storage technologies

Designing a distributed waste 

incineration power plant

• Implementation plan

• Main requirements

• Power generation capacity

• Costs of power generation

Simulation and optimization of power 

generation

• Development of simulation model

• Simulations and optimizations in 

two operational modes

Analysis and next steps

• Evaluation of the realization in 

fulfilling the objectives

• Expanding the developed model

Introduction

Conclusions and summary

 

Figure 1. Structure of this thesis. 
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The literature review follows the introduction and introduces waste incineration power 

plant technology used in the study. The conditions of technical operation of the incinera-

tion plant are also surveyed. Chapter 2 also provides general overviews of incineration 

technologies and a modular waste incineration power plant used in study. Chapter 3 ex-

plores implementation of distributed power generation using waste incineration power 

plants, from implementation plan to control of generation in waste incineration power 

plants, namely a case study for capital Nairobi in Kenya. 

The empirical study begins in Chapter 4, which inspects options for balancing power 

generation and consumption in Nairobi and Chapter 5 examines utilization of the Homer 

micropower optimization model in simulations of cost model. Chapter 6 analyses solu-

tions found in the study to control of power generation of waste incineration power plant 

and considers development steps, such as applying a waste incineration solution to other 

similar cities in developing countries. Finally, conclusions and summary illustrate the 

main research findings. 

The following are assumptions and restrictions done in this thesis: 

• Examination of power generation and consumption is limited to generation capac-

ity of waste incineration power plants, except for Chapter 4. 

• Waste incinerators supply energy only to the Nairobi area. 

• Simulation model has to be adapted to the program and then other energy gener-

ation is excluded in simulations of Chapter 5 and used loads are adapted to gen-

eration. 

• Steam generation is left out in simulations of Chapter 5. 

• Waste management and logistics are left out. 
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2 MODULAR WASTE INCINERATION POWER PLANT 

This chapter introduces features of a distributed power system and techniques which are 

used incineration power plants. In addition, the incineration power plant used in the study 

and its capacity are examined in more detail. Distributed power system means a genera-

tion structure where distributed generation (DG) sources can supply power directly to 

distribution network and to customers (Farret & Simões 2006: 10). Typically, DG uses 

several small generators instead of a few large generators. In addition, DG is usually as-

sociated with microgrids and smart grids, and these are an integral part of a distributed 

power generation system. Renewable energy and energy storage technologies are also 

commonly used in distributed power generation systems. 

Distributed waste incineration power plant is a modular incineration power plant, which 

consists of modules. This allows its size to be selected according to customer needs and 

placed in a relatively small area. Alternative to distributed waste incineration power plant 

system is centralized generation (CG), where power generation is concentrated in large 

power plants. This leads to a weakness in the CG model, as the CG model requires in-

vestments in distribution and transmission networks. Electricity must also be distributed 

from electricity producing plants to final consumers, which increases power losses in 

electricity distribution network. For these reasons, DG is a better option to implement 

waste incineration power plants. (Mojumdar, Himel & Kayes 2015: 2; Gharehpetian & 

Agah 2017: 370.) 

Technologies used in DG can be divided into three groups: fuel-based technologies, tech-

nologies based on renewable energy and energy storage-based technologies. The fuel-

based technologies are relatively new types of distributed generation technologies, in-

cluding the distributed waste incineration power plant used in the study. Figure 2 shows 

a typical distributed power generation system including typical features of DG. (Ghare-

hpetian & Agah 2017: 6–9.) 
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Figure 2. Distributed power system model having two microgrids (Liserre 2008: 15). 

Figure 2 illustrates typical features of the distributed power system: 

• Power generating units are relatively small and power system utilizes energy stor-

age technologies. 

• Energy sources are near consumers to reduce transmission and distribution losses 

and to meet customer needs. 

• System utilizes renewable as well as combined heat and power energy sources. 

2.1 Waste incineration technologies 

Generating energy by waste incinerator is based on energy from waste when it is inciner-

ated at a waste incineration power plant. Municipal solid waste (MSW) is usually used as 

a fuel for waste incineration but there are several types of waste incineration technologies. 

The two most commonly used waste incineration technologies are grate combustion (GC) 

and fluidized bed combustion (FBC). Of these, grate combustion is more commonly used 
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technology and is used in small and medium size incineration plants. Fluidized bed com-

bustion is a newer technology and is well suited for more environmentally combustion. 

(Poltto ja palaminen 2002: 466, 490.) 

2.1.1 Grate technology 

Waste incineration using grate technology follows similar steps as combustion by other 

combustion methods. In grate combustion technology we can separate three to four main 

stages: 

• removal of moisture 

• pyrolysis and volatile combustion 

• residual char combustion. 

Depending on viewpoints, the fourth stage of combustion can still be combustion of gases. 

Moisture is removed because of heat radiation in a furnace. When moisture has left waste, 

it follows pyrolysis, where most of burning occurs. During the pyrolysis phase are gener-

ated gases and tares that burn very well in flames if there is enough oxygen. After the 

pyrolysis phase, combustible fuel remains carbon which burns from surface at proper 

temperature without flame if there is enough oxygen. Typically, this combustion phase is 

slow and requires relatively more grate surface than pyrolysis. Burn releases gases that 

burn in the fourth stage at the top in the furnace. Basic structure of a furnace made with 

grate technology is shown in Figure 3. (Poltto ja palaminen 2002: 466–468; Vesanto 

2006: 30–31.) 
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Figure 3. Basic structure of a grate furnace designed for waste incineration (Modified 

from: Vesanto 2006: 31). 

Figure 3 demonstrates principle of the grate furnace. Figure shows waste feed system 

through which waste is transferred to the furnace. In the furnace are different combustion 

zones where waste is burned at different stages. Figure also shows air inlets and air dis-

tribution system needed for combustion, flue gas flow as well as separation of bottom ash 

from waste. 

2.1.2 Fluidized bed technology 

In FBC, waste is incinerated in a fluidized bed of glowing sand and ash. Fuel moves and 

mixes continuously on a floor and gas and heat transfer is very efficient. Burning involves 

the same steps as the grate technology, in other words the removal of moisture, pyrolysis 

and residual char combustion. The FBC technology is considerably newer compared to 

grate technology but has now been in industrial use for more than 30 years. Advantage of 

FBC is that the technology is particularly suitable for low-grade fuels. In addition, FBC 
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allows use of cheap desulphurization and technology does not require much pre-treatment 

of fuel. 

The FBC can be divided into two different main applications: bubbling fluidized bed 

(BFB) and circulating fluidized bed (CFB). The BFB technology is the first version of 

these and it is specially designed for combusting inferior quality fuels such as waste and 

sludge. The BFB technology is also well suited for small industrial applications. Later 

developed CFB technology is derived from the BFB technology but is more advanced in 

sulphur removal, efficiency and scale compared to BFB technology. (Koornneef, 

Junginger & Faaij 2006: 20–21.) 

In the BFB technology, sand or mineral crushes are used as base material of a bed, and 

remainder of a material is fuel ash. In waste incineration, proportion of ashes may be quite 

high. Incinerated waste is fed into a furnace by means of a feed system, preventing mixing 

of gas streams. Most of combustion air is fed to the bed through bottom of the furnace as 

a primary air. Rest of required air is fed over the bed as a secondary air. Coarse ash and 

non-combustible material involved in waste are removed from bottom of furnace, but fine 

ash and powered bed material pass through flue gas out of furnace and separate from flue 

gas in the boiler and flue gas cleaning. 

In the BFB technology, flue gases are derived from furnace into a pre-cooling chamber 

where flue gases are cooled and separated from vaporized metals and inorganic materials. 

Shape and size of furnace is selected so that flue gas flow leaving the furnace is low and 

the bed material particles do not originate according to exhaust gas flow. Basic structure 

of the furnace with BFB technology is shown in Figure 4. (Vesanto 2006: 31–33.) 
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Figure 4. Basic structure of a combustion plant with BFB technology (Modified from: 

Vesanto 2006: 32). 

Figure 4 indicates main parts in combustion plant with BFB technology. It shows waste 

drop horn, through which waste is fed into furnace. Figure shows also that flue gases are 

led through top of the furnace to radiation cooling chamber and further to large flue gas 

ducts. 

The CFB technology is based on the BFB technology, so furnace operating principles are 

very similar. In a combustion plant with CFB technology, flow rate of flue gases is con-

siderably higher, causing a bed material to pass a significant amount from the furnace 

with flue gas. The bed material is separated from the flue gases in a cyclone and returned 

to the furnace. Flue gases are passed from the cyclone to a boiler through the pre-cooling 

chamber, as well as in BFB technology. 

Because mixing of fuel is more intensive in circulating fluidized bed, combustion is very 

efficient, and volume required by furnace is smaller compared to the BFB technology. 

For that reason, the CFB technology is used in larger combustion plants. Because of 

higher-pressure losses, the CFB technology own energy consumption is higher than that 

in the BFB technology combustion plant. The CFB technology is more suited to oxidizing 
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fuels and waste due to its good material and heat transfer. Basic structure of a furnace 

with the CFB technology is shown in Figure 5. (Koornneef et al. 2006: 20–21; Vesanto 

2006: 31–33; Spliethoff 2010: 221–222.) 

 

Figure 5. Basic structure of a combustion plant with CFB technology (Modified from: 

Vesanto 2006: 33). 

Figure 5 presents structure of a combustion plant with CFB technology. Main difference 

with a combustion plant with BFB technology is cyclone, which through non-combustible 

material re-enters combustion cycle in CFB technology. This combustion plant includes 

also accordingly circulating fluidized bed, radiation cooling chamber and ash processing 

system as shown in Figure 5. 

2.2 Technology of used waste incineration power plants 

Waste incineration power plant is modular in this study, in other words the incineration 

power plant consists of modular incineration lines and the entire incineration power plant 

may have one to four incineration lines. The used waste incineration power plant has been 
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implemented using the grate combustion technology. The waste incineration power plant 

used in the study includes five functional blocks: 

1. waste incineration 

2. heat radiation and cooling 

3. waste heat recovery 

4. air pollution control 

5. power generation. 

Each modular incineration line contains the required technology for operation. Figure 6 

shows a principle of the used waste incineration power plant, where you can see different 

blocks of the incineration plant except for power generation. These blocks of incineration 

plant are discussed in more detail in Sections 2.2.1–2.2.5. (Poltto ja palaminen 2002: 466–

467, Woima 2018a.) 

 

Figure 6. Operation principle of the modular waste incineration plant (Modified from: 

Woima 2018a). 
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2.2.1 Waste incineration 

The first phase in the technology is waste incineration. Since the technology used in in-

cineration is a grate technology, incinerated waste passes through the spinning phases at 

this phase. In practice, incinerated waste moves forward on a reciprocating grate and 

passes through the drying, pyrolysis and char combustion. After the incineration, a resi-

due will form a bottom ash that eventually falls into a cooling pool. The incineration takes 

place completely with a primary air supplied to a grate. At the same time, the primary air 

also acts as a cooling material to the grate, which reduces a need for maintenance work. 

Cooled bottom ash dropped into the cooling pool is carried to an ash treatment system. In 

the treatment system, excess water is removed and returned to the cooling pool. The bot-

tom ash can be used for infrastructure construction or cement production. Alternatively, 

it can also be sealed to a landfill. (Woima 2018a.) 

2.2.2 Heat radiation and cooling 

After the waste incineration, follows a phase of heat radiation and cooling. Because of 

the waste incineration, there are gasified fractions that move to an adiabatic combustion 

chamber where they are burnt. To ensure complete combustion of the gases, the second-

ary and tertiary air are fed into the adiabatic combustion chamber. From the combustion 

chamber, gases flow into the radiation or cooling duct where steam as well as water in 

membrane wall piping absorbs heat of flue gas. 

The flue gas contains toxic compounds, such as furans and dioxins, which are removed 

from the gas by combustion. A sufficiently long radiation duct after the combustion cham-

ber ensures that these toxic compounds are fully burnt. The radiation duct also cools the 

flue gas transferred to a waste heat recovery boiler to avoid temperature corrosion. 

(Woima 2018a.) 
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2.2.3 Waste heat recovery 

Waste heat recovery is carried out by recovery boiler. The recovery boiler is designed to 

collect remaining heat in the flue gas by convection. This requires the recovery boiler 

contained in superheater, evaporator, economizer and air preheater. The superheater and 

evaporator are needed to convert vapour formed in the radiation duct walls to the super-

heated saturated vapour. Purpose of the economizer is to preheat water flowing into a 

steam drum from a water tank. The air preheater is needed in turn to heat the primary, 

secondary and tertiary air to improve an efficiency of combustion. 

The waste heat recovery efficiency is affected by fly ash in flue gas. Fly ash accumulates 

on the heat recovery boiler wall and piping over time and this reduces an efficiency of 

heat transfer. Therefore, soot must be removed regularly to maintain the process effi-

ciently. (Woima 2018a.) 

2.2.4 Air pollution control 

Control of air pollution is based on a dry air pollution control (APC) system in the waste 

incineration power plant. The APC-system includes a reactor where flue gases are first 

directed. In a reactor, to flue gases are added impurity-binding chemicals, such as hy-

drated lime, potassium hydroxide and activated carbon. The reaction products are re-

moved from the process into flue-gas stream mixed with dust. Dust is separated by a 

textile filter, which also acts as a chemically active purifier in the process. The process is 

dry, as the final product produces dry ash residue and does not produce effluent from the 

cleaning of flue gases which should be cleaned. 

Bottom and fly ashes generated in the process are sufficiently clean and can be used, for 

instance, in road construction. Ash produced in the APC-system contains a relatively 

large proportion of heavy metals and other toxic substances and therefore needs to be 

dealt with in a separate process. Amount of bottom and fly ashes are together about  

15 % and APC ash is about 3 % of the total amount of incinerated waste. (Westenergy 

2013, Woima 2018a.) 
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2.2.5 Power generation 

Power generation is done by the steam turbine and generator. Saturated and superheated 

steam (400 °C, 40 bar) is supplied to the steam turbine. The steam rotates the turbine 

whose rotating energy is passed through a gearbox to the generator. The generator ulti-

mately turns rotational energy into electricity. The used steam is conducted to the con-

densing system where steam is converted back to water. 

The power plant can be used to produce steam, electricity, heat or potable water, but 

output may also be a combination of the above. This enables the generation of energy in 

form that is needed. By utilizing this feature, power output can be balanced and generated 

in required form. (Woima 2018a.) 

2.3 Capacity of the used waste incineration power plant 

In a distributed waste incineration power plant is used modular waste incineration lines 

which allow combustion capacity to be matched to waste generated. Incineration capacity 

of one modular incineration line is 150–175 tons of waste per day. This amount of waste 

corresponds to an area with a population of about 200 000. Waste incineration power 

plant can generate steam, electricity or both electricity and heat. One modular incineration 

line is sufficient to generate steam of 17 tons. Electricity generation capacity is 3.4 MW 

(gross) and 2.7 MW (net). In combined heat and power (CHP) generation, the incineration 

line can generate 2 MW of electricity and 10 MW of thermal energy. Waste incineration 

power plant can contain one to four incineration lines. Waste incineration power plant 

with several incineration lines can incinerate more waste and generate more energy. 

(Woima 2018b, 2018c.) 

It introduces that both waste incineration capacity and production capacity change pro-

portionally to each other. Energy produced can be better utilized if energy can be pro-

duced as CHP and part of energy can be utilized as heat. In this case, electricity generation 
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capacity is 2 MW, while it is only slightly larger, 2.7 MW in electricity generation. In 

addition to generating 2 MW of electricity, 10 MW of thermal energy can be produced. 

Table 1 shows a capacity of a waste incineration power plant with different number of 

incineration lines. It introduces that both waste incineration capacity and production ca-

pacity change proportionally to each other. Energy produced can be better utilized if en-

ergy can be produced as CHP and part of energy can be utilized as heat. In this case, 

electricity generation capacity is 2 MW, while it is only slightly larger, 2.7 MW in elec-

tricity generation. In addition to generating 2 MW of electricity, 10 MW of thermal en-

ergy can be produced. 

Table 1. Variations in incineration and power generation capacity of the waste incin-

eration power plant used in the study. (Woima 2018b, 2018c.) 

Variation type 
Number of incineration lines 

1 2 3 4 

Waste incineration daily capacity 

(tons)  150–175  300–350  450–525  600–700 

Options for daily power generation 

capacity:      

• steam (tons/h)        17           34           51           68   

• electricity (net) (MW)          2.7             5.4             8.1           10.8    

• combination of     

o electricity (MW) and          2             4             6             8    

o thermal energy (MW)        10           20           30          40    
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3 DESIGNING A DISTRIBUTED WASTE INCINERATION POWER 

PLANT: STUDY CASE NAIROBI 

Waste incineration power plant is distributed when there are several incineration power 

plant units and they are smaller. Size and number of incinerators can be decided on a 

project-by-project basis and this project involves six distributed incineration power plant 

units in Nairobi County. When designing the distributed power plant for Nairobi, in the 

study is considered that the used technology has already been developed and technology 

includes waste incinerator, residue systems, air pollution control systems and power gen-

eration system. In addition to technology, logistics factors are left out of this study. The 

design and implementation of the distributed incineration plant will therefore be the ob-

ject of planning. 

3.1 Implementation plan 

When starting a distributed waste incineration project, project plan with project-related 

tasks is created. The project plan considers issues related to a construction of a waste 

incineration, waste management and recovery of power from waste incineration. Project 

design and implementation consists of the following steps: 

• project location, size and population analysis 

• waste management plans 

• selection of waste incineration technology 

• feasibility analysis 

• project area design and layout 

• technology required by the waste incineration power plant including solutions for 

waste incineration and flue gas cleaning 

• construction of waste incineration power plants 

• utilization of power output. (Rogoff & Screve 2011: 125–127; Pöyry 2018). 
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This study will include the above implementation phases, with the exception of waste 

management and logistics issues. When the waste incineration technology used has been 

selected and the related technology is presented in Chapter 2, the design of the project 

area is mapped. 

The project focuses on the Nairobi County, located around the capital of Kenya. Size of 

the area is about 695 km2 and population in the area is about 3.1 million (KNBS 2017: 

17). In the Nairobi County produced waste about 2 500 tons per day in 2017. Based on 

the size and population of the region, in the Nairobi County are invested six distributed 

modular waste incinerators. In that case, the costs of transportation of waste and the man-

agement of waste will remain reasonable. Figure 7 shows population location in the Nai-

robi County. Population density is highest in the middle region and lower in peripheral 

areas. 

 

Figure 7. Population density in Nairobi County (Gora 2018). 
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Depending on the density of the regional population, suitable locations for waste incin-

eration power plants are selected. The waste incineration power plants are placed evenly 

around the densely populated area so that the logistical costs associated with waste man-

agement remain as small as possible. In a suitable area, a free land area must be found for 

the waste incineration power plant where the incineration power plant can be located. 

Selected locations for waste incineration power plants are shown in Figure 8. 

 

Figure 8. The locations of waste-to-energy power plants used in the study. 

Required incineration capacity of each incineration power plant is determined by popu-

lation around the incineration power plant and defined waste collection area. For each 

waste incineration power plant, an appropriate collection area is defined based on logis-

tics. Capacity requirement of each incineration plant depends on amount of waste gener-

ated in the collection area. Amount of average available waste fuel in each waste incin-

eration power plant based on amount of waste is shown in Table 2. 
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Table 2. Average available daily waste fuel of waste incineration power plants used 

in the study by region. 

Waste incineration 

power plant 

Average available daily 

waste fuel (tons) 

Number of needed 

incineration lines 

Power plant 1                                   463                                     3    

Power plant 2                                   928                                     6    

Power plant 3                                   333                                     2    

Power plant 4                                   473                                     3    

Power plant 5                                   439                                     3    

Power plant 6                                   280                                     2    

Total                               2 916                                  19    

Table 2 shows that waste fuel for each incineration power plant is about 300 to 500 tons 

per day apart from incineration plant 2, for which incinerated waste will be over 900 tons 

per day. The number of needed incineration lines shown in the table is calculated based 

on available waste fuel. 

After the project area design is done, utilization of power output generated by incineration 

plant is next reviewed. Each waste incineration power plant can generate steam, electric-

ity or electricity and heat. Energy can be generated as steam if there is a steam-utilizing 

industry near the incineration power plant. If there is no steam-utilizing industry near the 

incineration power plant, energy from the incineration can be generated as needed, either 

as electricity or combined with generation of electricity and heat. Also, power could be 

stored for example in fuels for transportation. (Rogoff & Screve 2011: 126–127).  
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3.2 Main requirements 

The distributed waste incineration power plant requires sufficient space and some mainte-

nance to stay in operation. Furthermore, operation has to ensure availability of waste fuel, 

electricity and water as well as delivery of flue gas cleaning chemicals. Also, ash pro-

duced by waste incineration has to also be recycled forward. (Rogoff & Screve 2011: 

128.) 

The power plant with four modular incineration lines requires less than 10 000 m2 of land 

and the land requirement for power plant with pre-sorting system is about 13 000 m2 of 

land. The land area should be located at least 50 m away from the nearest settlement due 

to the noise and smells caused by power plant. An ideal place for the power plant would 

be 20 000 m2 plot near existing industry. The roads and power grid have been built for 

industrial use and the utilizers for energy fractions are near the power plant. 

The operation of a waste incineration power plant requires a sufficient amount of availa-

ble incinerated waste. The used waste fuel is received by collecting wastes from nearby 

area. The collection area is usually around the incineration power plant and size of area 

is affected by amount of waste generated in the area. The waste incineration power plant 

needs waste fuel as a steady flow, so a small waste storage site disposed near the incin-

eration power plant is necessary. 

The distributed waste incineration power plant needs electricity for some functions. 

Power plant generates 3.4 MW (gross) and 2.7 MW (net) electricity, so the own electricity 

consumption of the power plant corresponds to about 0.7 MW power. The power plant 

does not need external electricity because power plant can take the necessary electricity 

from electricity it generates, except for power plant start-up and shut-down. Waste incin-

erator to be considered for starting and shutting the power plant includes a generous diesel 

generator set. This diesel generator set can be used to operate belts and air blowers. 

(Woima 2018b.) 
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The waste incineration power plant requires a source of water for needs to be operation. 

Water is required in two subsequent stages after waste incineration. At following stage 

after waste incineration, water is needed to recover heat in flue gas. In this stage water 

need is about 0.5 m3/h. Water or water vapour acts as a heat conductor that transfers heat 

to a recovery boiler. Also, in the waste heat recovery stage, water acts as a heat exchanger. 

Water is transferred from a radiation channel to the heat recovery boiler by convection. 

This stage requires more water, about 800 m3/h. The process is open, so water used in the 

process returns back to nature. However, the process requires a rather large source of 

water, such as a river, lake or sea. (Rogoff & Screve 2011: 128; Woima 2018b.) 

When cleaning flue gases, chemicals are used to bind contaminants from air. In case of 

waste incineration, this process is needed as chemicals for urea, lime and activated car-

bon. Urea is used to neutralize nitrogen oxides (NOx) in flue gases. After removal of NOx, 

the remaining hazardous compounds are bound by flue gases using lime and activated 

carbon to a textile filter. (Westenergy 2018.) 

For ensuring operation of waste incineration power plant process control and monitoring 

system is needed. The system must be able to monitor the various functions of the waste 

incineration power plant, such as waste input and incineration processes. The system 

makes it possible to detect potential problems quickly, so that operation of the incinera-

tion power plant is as effective as possible. (Rogoff & Screve 2011: 128.) 

3.3 Power generation capacity 

Power generation capacity of waste incineration power plant is determined by number of 

waste incineration lines in the waste incineration power plant. According to Table 1, the 

waste incineration power plant can generate a specific amount of energy depending on its 

size. Accordingly, Table 3 illustrates daily power generation capacity of each power plant 

in alternative forms of energy in relation to the rated power. 
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Table 3. Alternative daily power generation capacity of each waste incineration 

power plant in relation to the rated power (Woima 2018c). 

Waste 

incineration 

power plant 

Capacity 

(%) 

Steam 

(tons/h) 

Electricity 

(net) (MW) 

Combination of electricity and 

thermal energy (CHP) 

generation 

Electricity 

(net) (MW) 

Thermal energy 

(net) (MW) 

Power plant 1        15.8           51                 8.1               6                       30    

Power plant 2        31.6         102               16.2             12                       60    

Power plant 3        10.5           34                 5.4               4                      20    

Power plant 4        15.8           51                 8.1               6                       30    

Power plant 5        15.8           51                 8.1               6                       30    

Power plant 6        10.5           34                 5.4               4                       20    

Total     100         323               51.3                38                    190    

Table 3 shows that power plants 3 and 6 are the smallest and both cover 10.5 % of power 

generation capacity. Power plants 1, 4 and 5 are slightly larger and each capacity is 

15.8 % of the total capacity. The largest of the power plants is power plant 2 with a double 

capacity compared to the power plants 1, 4 and 5. The capacity of incineration power 

plant is estimated by density of population in area because power generation capacity is 

determined by waste generated. Waste is generated according to population of the area. 

Output power of the waste incineration power plant can be controlled either through waste 

incineration or power generation. The waste incineration can be controlled by a combus-

tion control system comprising a waste feed system, a grate system and a combustion air 

system. In the power generation system, a form which power is generated, can be con-

trolled. 

With a waste feed system, magnitude of a waste stream supplied to the incineration plant 

can be controlled. Greater waste stream generally results in a higher output power, but 
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size of waste stream also affects quality of incineration. Problem is that waste is a non-

homogeneous fuel and its incineration time varies. In a furnace, incineration takes place 

at different stages and the furnace has at same time non-combustible, partly incinerated 

and residual char incinerated waste. For this reason, it is important that the waste feed 

system feeds in a proper amount of waste to the furnace. If there is too much waste in the 

furnace, waste does not burn fully in a previous stage before moving to a next incineration 

stage. The system maintains proper waste feed rate for waste incineration. In addition, 

auxiliary fuel can be used in the system to advance incineration if necessary. (Yufei, Yan, 

Zhongli & Keming 2008: 342–343; Vakkilainen 2017: 261–262.) 

In the grate system, incineration can be controlled by the grate speed and waste layer 

thickness in the grate. In the grate incineration, speed of the grate regulates combustion 

of waste with the grate. The grate incineration involves four incineration stages, so com-

bustion control also regulates other stages of incineration in the same ratio. Burning 

speeds is determined by a target steam flow according to: 

𝑆 = 𝛼 ∙
𝑄b

120
+ 𝛽 , (1) 

where Qb is target steam flow as well as α and β are parameters whose values are adjusted 

during commissioning. Waste layer thickness affects a stability of an incineration. The 

incineration is stable when waste layer is not too thick but not too thin either. In a well-

thick layer of waste, the drying of the waste and volatilization of combustion will proba-

bly be successful. The waste layer thickness should be adjusted according to heating value 

of waste. (Yufei et al. 2008: 343.) 

Waste incineration can be controlled by a combustion air system in addition to the grate 

system. The combustion air system generally contains two to three different air inlets. 

Primary air is supplied to the furnace near the grate and is used to control combustion air 

ratio of the furnace. It is heated before feeding the furnace and the heated primary air 

removes moisture from waste and at same time, it cools also the grate. The heated primary 

air improves incineration, as incineration is enhanced by high-temperature primary air. 

(Yufei et al. 2008: 343–344.) 
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The secondary and possible tertiary air of the combustion air system are fed into the upper 

combustion chamber. The secondary air ensures complete incineration of waste above the 

grate. The possible tertiary air is used to incinerate gases generated during the incineration 

process. Combustion air flow F required for incineration can be calculated according to: 

𝐹 = 𝛼 ∙ 𝑄b ∙
21

21−𝑂2
+ 𝛽 − 𝐹2 , (2) 

where Qb is target steam flow, O2 is oxygen content, F2 is leak air flow and α, β are 

parameters whose values are adjusted during commissioning. 

 

Figure 9. Combustion control system (Yufei et al. 2008: 342). 

Figure 9 shows the principles of combustion control system. The target steam flow rate 

determines both grate speed and air flow. The grate speed is affected by deviation between 

the target steam flow rate and actual steam rate. In addition, waste layer thickness affects 

grate speed. The air flow is influenced by excess air ration in addition to the target steam 

flow rate. By air balance calculation, the air flow is divided into primary air and secondary 

air. The secondary air calculation is further made according to a boiler temperature. If the 

boiler temperature is high, the secondary air is used to control the boiler temperature. 

Otherwise, the secondary air controls the oxygen content. (Yufei et al. 2008: 344.) 
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An output of the waste incineration power plant is steam that can be used to power gen-

eration in different forms of energy. Generated energy can be directly utilized as steam, 

for example in industrial processes as process steam. This implies that a steam industrial 

power plant is located relatively close to a waste incineration power plant, as steam can 

be economically transferred only a few hundred meters. 

Alternatively, steam can also be used for either heat or electricity generation or combined 

heat and power generation using a turbine generator set. Thermal energy can be recovered 

from hot steam coming to a turbine generator set by heat exchanger. Thermal energy can 

be moved several kilometres and can be used as heat energy for residential and industrial 

purposes in some industrial activities. Electricity is generated by directing hot steam to 

the turbine generator set. Hot steam rotates the turbine and the turbine further rotates the 

generating generator. Electricity is the most versatile of these forms of energy generation 

and is needed for many functions. The electricity generated by the waste incineration 

power plant can be supplied to an electricity grid and passed on to consumers. 

The output of the waste incineration power plant can also be a combination of the above 

energy forms. If there is a process steam using industry near the waste incineration power 

plant, some of the energy can be generated as steam for industrial needs. The rest of en-

ergy can be used to electricity generation and also to thermal energy generation for house 

heating if necessary. (Woima 2018b.) 

3.4 Costs of power generation 

Cost of electricity (COE) generated at a waste incineration power plant is determined by 

two different cost items: capital and investment (C&I) costs of incinerator and operation 

and maintenance (O&M) costs of incinerator. Depending on a point of view, cost of fuel 

could also be included in the cost of electricity. However, this study focuses on the cost 

of electricity from point of view of electricity generation and therefore the cost of fuel is 

excluded from the scope. (Koornneef et al. 2006: 39.) 
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3.4.1 Capital and investment costs 

The C&I costs include costs related to construction of a waste incineration power plant. 

The construction cost includes different functions of the power plant and Table 4 shows 

a breakdown of the costs of each system. 

Table 4. Main cost components of the waste incineration power plant (Maisiri, van 

Dyke, de Kock & Krueger 2015). 

Waste incineration power plant 

segment 

 

Main parts of segment 

Building • civil works 

Thermal processing equipment • incineration unit 

• waste heat recovery system 

• water supply and treatment system 

Air pollution control system • flue gas treatment 

• ash processing 

Power generation system • turbine 

• generator 

Other  

Building includes costs related to construction of incineration power plant, such as the 

grounding of the incineration power plant area and incinerator building. The building cost 

share is about 25 % of capital costs. Thermal process equipment is the largest capital cost 

of the incineration power plant and accounts for about 40 %. The thermal process equip-

ment includes the incinerator and waste incineration systems. However, the flue gas and 

ash treatment processes are differentiated here and are part of air pollution control system. 

Its share is about 15 % of the capital cost. The reminder of the capital cost of the incin-

eration power plant consists of a power generation system including the turbine and gen-

erator and other smaller cost components. They both account for about 10 %. 
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Table 5 shows a relative distribution of the cost of the waste incineration power plant to 

various functions as well as estimated costs of the functions for a waste power plant con-

taining one furnace line. 

Table 5. Relative distribution of the cost and the estimated C&I costs of the waste in-

cineration energy power plant with one furnace line (Maisiri et al. 2015). 

Waste incineration power plant 

segment Cost share (%) Estimated C&I costs (M€) 

Building                   25                                            3.8    

Thermal processing 

equipment                   40                                            6    

Air pollution control system                   15                                            2.3    

Power generation system                   10                                            1.5    

Other                   10                                            1.5    

Total                 100                                         15    

Table 5 shows that most of the investment costs of the power plant are made up of thermal 

processing equipment, estimated 6 M€. This equipment includes, for example, the incin-

eration unit. The other large share of investment cost constitutes air pollution control sys-

tem which is about 2.3 M€. Most of this is the flue gas treatment. Several different com-

ponents have to be cleaned from flue gases and this will increase the steps and the asso-

ciated costs of flue gas cleaning.  

Implementing a waste incineration power plant unit, C&I costs comprise also other im-

plementation costs in addition to the power plant. Amount of these costs varies relatively 

on a case-by-case basis. These costs include at least the following costs: 

• land required by the waste incineration power plant 

• infrastructure 

• waste handling machinery 

• permission and implementation. (Schneider, Lončar & Bogdan 2010.)  
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3.4.2 Operation and maintenance costs 

Operation and maintenance (O&M) costs include the costs associated with operating and 

maintaining the waste incineration power plant. The O&M costs are recurring, and their 

annual variation is relatively small. The following costs are typical for operation and 

maintenance: 

• labour 

• chemicals (urea, lime, activated carbon) 

• equipment regular maintenance 

• site and building maintenance 

• periodic air emission testing 

• ash disposal 

• bag filter residue 

• emission fees 

• insurance 

• financial expenses. (Schneider et al. 2010.) 
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4 FACTORS AFFECTING THE BALANCE BETWEEN POWER GEN-

ERATION AND CONSUMPTION IN NAIROBI 

As stated in Section 3.1, population of Nairobi is about 3.1 million, in other words Nairobi 

is the densely populated area and energy consumption is relatively high. Because of lim-

ited capacity of the waste incineration power plants to generate energy, other energy 

sources are also needed to cover consumption in Nairobi. This chapter reviews aspects 

influencing balance between power generation and consumption. 

4.1 Potential of existing energy generation in Kenya 

In Nairobi, in the Embakasi area is located thermal power plant which is a gas turbine 

plant. Total effective capacity of the turbine is only 54 MW, which is not enough for 

consumption and this turbine will also be phased out in 2022 and 2024. Because there is 

no other energy generation in Nairobi, generation options have to be sought also in other 

regions of Kenya. (ERC 2016a: 70, 170.) 

Kenya exploits many sources of energy for generating energy and currently uses both 

renewable and fossil energy sources. Efforts are being made to increase use of renewable 

energy sources (RES) while trying to abandon use of fossil energy sources. Nowadays, 

Kenya uses the following energy sources for energy production: 

• hydropower 

• fuel oil 

• geothermal 

• gas 

• wind 

• cogeneration 

• biomass 

• solar. 



 41 

The total installed capacity of Kenya power generation is 2351 MW and relative distri-

bution of the energy sources based on capacity is shown in Figure 10. Hydropower, fuel 

oil and geothermal energy comprise most of the Kenya energy generation capacity and 

cover about 95 % of installed capacity of Kenya. RES, hydropower and geothermal en-

ergy play an important role in energy generation, but wind power, solar energy and bio-

mass still comprise very small part of generation capacity. (KPLC 2018: 205–207.) 

 

Figure 10. Relative distribution of energy sources in Kenya based on installed genera-

tion capacity at 30.6.2018. (KPLC 2018: 205–207.) 

Produced energy in Kenya during the year 2018 was 10702 GWh, of which 171 GWh 

was imported. From the produced energy, system losses are 2244 GWh, which means that 

the generated net energy without the imported energy is 8287 GWh. System losses com-

prise then about 21 % of produced energy. Reducing the system losses can be increased 

the net energy generation. The produced energy for each energy source is shown in Figure 

11. Compared to installed generation capacity, geothermal energy has now the highest 

energy generation when hydropower and fuel oil follow geothermal energy. (KPLC 2018: 

208.) 
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Figure 11. Purchased energy during 1.7.2017–30.6.2018 (KPLC 2018: 205–207.) 

Kenya energy generation has two power generation companies that generate almost all 

generated energy. The bigger one is KenGen, which is leading electricity generating com-

pany in Kenya and accounts for about 70 % of power generation. The other is Independent 

Power Producers (IPPs), which generates almost rest of electricity. In addition to these, 

there is little offgrid capacity in power generation and electricity imports. Because 

KenGen is the only major power generation company, its own power plants are being 

evaluated. Figure 12 shows the power plants owned by KenGen. Figure presents also the 

gas turbine based thermal power plant located in the Embakasi area of Nairobi and it 

shows also other power plants near the Nairobi. Wind power, geothermal energy and hy-

dropower appear near the Nairobi County. (KPLC 2018: 205–207.) 
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Figure 12. Power plants owned by KenGen (KenGen 2018). 

Fuel oil covers a large part of energy generation in Kenya, but its share will decrease in 

future. Other fossil fuels, such as natural gas, are also still in use and there is a plan to 

replace them. According to the common goals set by the world, Kenia aims to abandon 

use of fossil fuels and to increase use of RES (ERC 2010). Kenya is already generating 

most of its energy with hydropower and geothermal energy, but fuel oil and other fossil 

fuels in use will be replaced by renewable energy. In addition, energy consumption is 

projected to increase significantly, which is why more energy needs to be generated. Fig-

ure 13 shows future scenario for energy generation and consumption. According to the 

scenario, electricity consumption and generation will increase almost fourfold from now 

to 2035. (ERC 2016a: 200–202.) 
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Figure 13. Reference expansion scenario – electricity generation versus electricity con-

sumption (ERC 2016a: 204). 

Hydropower is renewable energy and has played a major role in Kenya energy generation, 

but it will not grow considerably in future due to the problems caused by drought. The 

government of Kenya has decided to reduce dependence on hydropower due to drought. 

Kenya is located in the equator and has hot sunshine. Climate inside Kenya varies due to 

high altitude differences. Areas closer to sea surface are warm around a clock, causing 

drought. In higher areas, such as Nairobi, climate is more variable and there are also 

cooler periods. There are two rainy seasons in Kenya, from November to December and 

from March to May. (ERC 2016a: 69; Embassy of Finland 2016.) 

Geothermal energy has also notable share in Kenya energy generation sector and Kenya 

is the largest producer of geothermal energy in Africa. Kenya will further continue to 

invest strongly in geothermal energy in future. According to Figure 13, the share of geo-

thermal energy in energy generation will continue to be about half of the generated en-

ergy. (ERC 2016a: 69, 110.) 

Regarding the fossil fuels, heavy fuel oil (HFO) and natural gas are not possible options 

for future energy generation, and they will be phased out by degrees. Use of HFO has 

negative environmental impacts and it is desirable to find a substitute, more environmen-
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tally friendly alternative to HFO for power plants. Natural gas is an environmentally bet-

ter option to HFO, but because of its early stage of exploration, it is not a potential energy 

source for power generation. If enough natural gas is available, it could replace other 

fossil fuels in long term. However, liquefied natural gas (LNG) is considered an alterna-

tive source of energy, as there are huge resources of natural gas in Kenya. LNG enables 

diversification of fuels used in power generation and it has also environmental advantage 

relative to more harmful fossil fuels. (ERC 2016a: 101–103.) 

Potential alternatives to renewable energy in Kenya contain wind energy, biomass and 

solar energy. At present, a contribution of wind power is very small but will grow in 

future. Problem with wind power generated energy is still wind fluctuation which influ-

ences amount of energy generation. Increasing use of biomass for energy generation can 

be potential alternative of renewable energy but it depends strongly on development in an 

agricultural sector. In the next few years, use of biomass is unlikely to increase remarka-

bly in energy generation. (ERC 2016a: 114–117.) 

Compared to wind energy and biomass, solar energy has a much greater potential in 

Kenya thanks to its geographical location. The total potential of solar energy in Kenya is 

several thousand times relative to the expected electricity demand in Kenya. Climate in 

Kenya is fairly stable and is located in the equator, which means that the solar energy 

generation does not change much during a year. Nevertheless, a share of solar energy in 

power generation will grow very slowly. (ERC 2016a: 118.) 

For other energy sources, nuclear power can be considered as a possible alternative to 

energy generation. It is not renewable energy, but it is cleaner than energy generated by 

fossil fuels. Increasing the nuclear power requires relatively high investment costs, which 

makes it possible to increase it only in long term. (ERC 2016a: 121, 150.) 
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4.2 Demand side management 

With higher power consumption, current power generation may not be sufficient to cover 

consumption. In that case, power generation can be balanced through power consumption. 

This can be used to help demand side management (DSM) and related techniques. The 

DSM means for example transferring electricity consumption from high load hours to low 

load hours. It can be used to reduce power consumption and to control loads. The DSM 

is mostly used the following techniques: 

a) peak clipping 

b) valley filling 

c) strategic conservation 

d) strategic load growth 

e) load shifting 

f) flexible load shape. 

The effects of the above techniques are illustrated graphically in Figure 14. Peak clipping 

refers to load cutting during peak demand. Size and duration of the peak can be influenced 

by direct load control and consumer equipment. Valley filling aims to increase energy 

consumption during off-peak hours. As a tool, pricing is used when price of energy is 

cheaper during off-peak hours. Strategic conservation reduces seasonal energy consump-

tion by exploiting consumption efficiency and energy waste. The opposite effect is 

achieved by a strategic load growth that directs seasonal energy consumption. Objective 

of the strategic load growth is achieved by using intelligent systems, energy efficient 

equipment and more competitive energy sources. Fifth technique of the DSM is a load 

shifting that shifts a part of demand from peak load period to off-peak load period. The 

latest technique is flexible load shape, which is an action and integrated planning between 

the licensee and consumer. (Macedo, Galo, de Almeida & de C. Lima 2014: 2–3; Gaur, 

Mehta, Khanna & Kaur 2017: 1.) 
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Figure 14. Graphic presentation of DSM techniques where loads are shown as a func-

tion of time. (Macedo et al. 2014: 3). 

These DSM techniques can be utilized to manage demand flexibility in two different pro-

gram packages: energy efficiency programs and demand response programs. The energy 

efficiency programs aim to reduce consumption by increasing energy efficiency, while 

the demand side programs affect consumption through incentives and pricing. Review on 

these two programs is next presented in Sections 4.2.1 and 4.2.2. (Paterakis, Erdinç & 

Catalão 2017: 3–4.) 

4.2.1 Energy efficiency programs for DSM 

At its simplest, energy efficiency (EE) means that using less energy to achieve same en-

ergy level (BGS 2019). It is a cost-effective way to meet growing energy needs. When 
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energy consumption is increasing, only option is not to increase energy generation. En-

ergy can be freed up by increasing the EE. 

Figure 15 shows graphically effects of the EE program and it can be typical electricity 

load of facility. Figure indicates that with EE, load can be reduced over an entire con-

sumption cycle. The EE programs can be further divided into two categories based on 

consumer behaviour. These are residential EE as well as commercial and industrial EE. 

The residential EE focuses on EE in housing and offers advice related to it. The commer-

cial and industrial EE focuses correspondingly on EE of production and services. Because 

Nairobi is densely populated and there is little industrial activity, it is more profitable to 

focus on the residential EE. (McLean-Conner 2009: 71, 83.) 

 

Figure 15. Effects of energy efficiency. The vertical axis represents the load in kilo-

watts and the horizontal axis the time of day in hours. (Energy Advantage 

2017.) 

Energy saving potentials of the residential EE include air conditioning (AC) system, en-

tertainment, lightning, refrigeration and sanitary water. The biggest saving potentials of 

these are in lightning, refrigeration and sanitary water. On the commercial EE side, the 

biggest saving potentials are in office blocks, hotel and accommodation rooms as well as 

hospitals. These three subsectors construct more than 90 % of the commercial EE saving 

potentials. The industrial sector is very wide and its EE saving potentials consists of every 
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industry. Additionally, the industry in the Nairobi County is very small, so the potential 

of the EE in the industry sector is not now useful. (ERC 2016b: 35, 46-47, 53.) 

4.2.2 Demand response programs for DSM 

Demand response (DR) means voluntary demand reduction and is used to control energy 

consumption outside consumption peaks. The DR can be divided into two main programs: 

incentive-based DR programs and price-based DR programs. Depending on an aspect, 

the incentive-based programs can be further divided into six different sections and price-

based programs into three different sections as shown in Figure 16. 

Demand 
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programs
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programs
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DR programs
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control 
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Real-time 
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Figure 16. Classification of DR programs (Albadi & El-Saadany 2007; Jordehi 2019). 



 50 

The incentive-based DR programs control direct energy consumption and energy-using 

loads. Two useable methods of the program in this study are direct load control (DLC) 

and interruptible load. The DLC is one of the most common methods of the incentive-

based DR programs. It aims to control small consumers, such as residential and small 

commercial, energy use. The DLC can be implemented in practice, for example, by 

switching devices on or off. This is done for devices whose short-term interruption does 

not have a major impact. The effect of interruptible load is based on incentives for switch-

ing off certain loads. This technique is suitable for commercial and industrial use for me-

dium and large consumers.  (McLean-Conner 2009: 102; Mahin, Sakib, Zaman, Chow-

dhury & Shanto 2017; Paterakis et al. 2017.) 

The price-based DR programs guide use of energy through pricing. These can be divided 

into three different programs: time of use (TOU), critical peak pricing (CPP) and real-

time pricing (RTP). The TOU program utilizes variable electricity prices within a day. 

The day is typically divided into three time periods which are peak interval, mid-peak 

interval and off-peak interval. The price of electricity is the highest during the peak inter-

val and the cheapest during the off-peak interval. The CPP is a variation of the TOU 

pricing and TOU prices are in use excepting certain peak load times when prices are sig-

nificant high. The RTP is comparatively new program type which offers a real-time op-

tion for pricing. In this program, a customer pays for electricity according to a current 

price and pricing is implemented on a daily or hourly basis. (McLean-Conner 2009: 105–

106; Paterakis et al. 2017; Jordehi 2019.) 

Figure 17 represents Kenya indicative load curves within a day per region. Figure shows 

that the curves follow similar pattern regardless of a region. At night time, consumption 

is lower when consumptions in the commercial and industrial sectors are low. Then, prin-

cipally air conditioning and other essential appliances consume electricity. Daytime, con-

sumption of commercial and industrial activities increases consumption of electricity. In 

evening, commercial and industrial consumption will fall, but residential consumption 

will increase after office hours. Utilizing DR programs, a time-independent load in the 

Nairobi area could be transferred from evening to night. This would reduce the peak load 

and transfer load to a lower consumption period. 
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Figure 17. Load curves in regions of Kenya on 18.11.2014. The horizontal axis of fig-

ure presents hours of day and the vertical axis shows area load in mega-

watts. (ERC 2016a: 62.) 

4.3 Energy storage technologies 

Power generation cannot always be balanced by control of generation and demand side 

management. Capacities of waste incineration power plants are relatively constant, but 

power demand varies during a day. Generated energy must then be stored for later use if 

necessary. Waste incineration power plant can generate electricity, heat and steam. Sev-

eral technologies can be used to storing electricity, and heat can be stored with a thermal 

energy storage. Following sections are reviews of storage techniques suitable for storing 

electricity and thermal energy. 

4.3.1 Electrical energy storages 

Electrical energy storage (EES) is used when electricity consumption and generation are 

not in balance and electricity needs to be stored. Using the EES is achieved several tech-

nical and financial benefits the most important of which are listed following: 

P
o
w

er
 (

M
W

) 



 52 

• grid voltage support 

• grid frequency support 

• transient stability 

• load levelling or peak shaving 

• spinning reserve 

• reliability 

• ride through support 

• unbalanced load compensation 

• increasing penetration of RE sources 

• cost reduction 

• avoiding additional cost in generation 

• avoiding additional cost in distribution. (Shawkat 2013: 87–89.) 

Electrical energy can best be stored mechanically, electrochemically and electrically. 

These technologies include many options for storing electricity. Mechanical energy stor-

ages have higher storage capacity and discharge time, so they are better suited for high 

capacity storage applications compared to electromechanical and electrical energy stor-

ages. Due to shorter response time, the electromechanical and electrical energy storages 

are better suited to uninterruptible power supply (UPS) applications. Table 6 introduces 

commonly used technologies and summarizes technical characteristics of these catego-

ries. (Ibrahim, Ilinca & Perron 2007: 23–24; Palizban & Kauhaniemi 2016: 3–5.) 
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Table 6. Technical characteristics of electrical energy storage (EES) systems (Modi-

fied from: Shawkat 2013: 86; Zakeri & Syri 2014: 592; Palizban & Kauha-

niemi 2016: 255). 

EES technology 
Capacity 
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Power 

(MW) 
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S
 small ≤ 5000 ≤ 500 sec ~ min 

6 ~ 24 h ≤ 70 ≤ 85 
large ≤ 14000 ≤ 1400 sec ~ min 

C
A

E
S

 

under-

ground 

small ≤ 1100 ≤ 135 ≤ 15 min ≤ 8 h 

≤ 40 ≤ 85 large ≤ 2700 ≤ 135 ≤ 15 min ≤ 20 h 

above ground ≤ 250 ≤ 50 ≤ 15 min ≤ 5 h 

FES ≤ 10 ≤ 20 ≤ 10 ms ≤ 1 h ≤ 20 ≤ 85 

E
le
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ro

ch
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al

 

Lead-acid 0.25 ~ 50 ≤ 100 

m
il

li
se

co
n
d

 ≤ 4 h ≤ 20 ≤ 85 

Lithium-ion 0.25 ~ 25 ≤ 100 ≤ 1 h ≤ 15 ≤ 90 

NaS ≤ 300 ≤ 50 ≤ 6 h ≤ 15 ≤ 80 

E
le

ct
ri

ca
l 

SCES ≤ 0.3 ≤ 0,3 ≤ 10 ms ≤ 1 h ≤ 20 ≤ 95 

SMES 1 ~ 3 ≤ 10 ≤ 10 ms ≤ 1 min ≤ 40 ≤ 95 

Pumped hydroelectric storage (PHS) stores energy into potential energy of water by 

pumping from a lower reservoir to an upper reservoir. When stored energy is to be used 

from energy storage, water is released from the upper water reservoir through the turbine 

back to the lower reservoir. Power capacity of PHS (PPHS) can be calculated by means of 

water flow rate (Qw) and fall height (h) when generating efficiency is known: 

𝑃PHS = 𝜂𝜌𝑔𝑄wℎ, (3) 
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where η is generation efficiency, ρ is water density, g is gravitational constant, Qw is water 

flow rate and h is height of fall. Storage capacity of PHS (SPHS) can still be calculated 

when draining and filling water volume is known by 

𝑆PHS =
𝜂𝜌𝑔𝑉ℎ

3.6∙109
, (4) 

where V is volume of water daily draining and filling. (Shawkat 2013: 83.) 

Compressed air energy storage (CAES) is a large-scale EES technology and stores energy 

using compressed air. It consists of a drive motor which used for driving the compressor, 

high-pressure and low-pressure turbines as well as generator. The CAES can be imple-

mented with either a diabatic or an advanced adiabatic storage system, and of these, the 

diabatic system is more commonly used commercially. The large-scale energy storage 

can be accomplished by an underground CAES, but a small-scale energy storage can also 

be accomplished by an above ground CAES. The above ground CAES has generally a 

higher cost compared to the underground CAES, but project implementation is easier. 

(Shawkat 2013: 81; Zakeri & Syri 2014: 9–10.) 

Flywheel energy storage (FES) stores energy in form of mechanical kinetic energy. The 

flywheel is commonly used for storing energy in power systems. Energy (E) stored in the 

flywheel depends on a moment of inertia (J) of a rotor and a square of a rotational velocity 

(ω) of the flywheel: 

𝐸 =
1

2
𝐽𝜔2, (5) 

where the moment of inertia (J) can be calculated as follows: 

𝐽 =
𝑟2𝑚ℎ

2
, (6) 

where r is radius, m is mass and h is length or height. (Shawkat 2013: 81.) 
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Battery energy storage system (BESS) is an example of the EES where energy is stored 

electrochemically. The BESS is one of the most cost-effective existing electrochemical 

energy storage technologies. Batteries are charged by internal chemical reaction when 

potential is applied to a terminal. They are respectively discharged by inverse chemical 

reaction. There are several different technologies for batteries, for example lead-acid, 

nickel-metal hydride (Ni-MH) and lithium-ion (Li-ion) batteries. (Shawkat 2013: 79–80.) 

Super capacitors energy storage (SCES) operation is based on use of capacitors. Stored 

charge (q) in a super capacitor can be calculated 

𝑞 = 𝐶𝑈C, (7) 

where C is capacitance and UC is voltage between capacitor plates. Capacitance (C) is 

defined 

𝐶 =
𝜀𝐴

𝑑
, (8) 

where A is area of capacitor plates, d is distance between capacitor plates and ε is permit-

tivity of dielectric. Energy stored in the capacitor plates (E) is obtained 

𝐸 =
1

2
𝐶𝑈C

2. (9) 

Total voltage change of capacitor (dV/dt) when charging or discharging capacitor can be 

calculated as follows: 

d𝑉

d𝑡
=

𝑖

𝐶tot
+

𝑖∙𝑅tot

d𝑡
, (10) 

where i is circuit current, Ctot is total capacitance and Rtot is equivalent series total re-

sistance. (Ter-Gazarian 2011: 151–152; Shawkat 2013: 80–81.) 
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Superconducting magnetic energy storage (SMES) is based on a magnetic field generated 

by an electric current and it exploits direct current (DC) field to generate magnetic field 

where energy is storage. Energy stored in the SMES system can be calculated 

𝐸 =
1

2
𝐿𝐼2, (11) 

where L is inductance of a coil and I is DC current flowing through the coil. The stored 

energy is used to calculate a rated power P 

𝑃 =
d𝐸

d𝑡
= 𝐿𝐼

d𝐼

d𝑡
= 𝑈L𝐼, (12) 

where UL is a voltage generated across the coil. (Shawkat 2013: 80.) 

When choosing a type of energy storage system (ESS), energy storage costs are a key 

factor. These costs vary considerably between storage technologies. Summary of the costs 

of the various ESS is shown in Table 7. It shows that power-related costs in large-scale 

EES forms such as the PHS and CAES are high as they have high investment costs. How-

ever, their storage capacity is high, resulting in low energy-related costs. The biggest en-

ergy related costs are with FES and SCES. Power capacity costs vary depending on ca-

pacity, and for the large-scale EES, cost is generally lower and for small-scale EES, cost 

is higher. (Connolly 2010: 65–69; EIA 2018.) 
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Table 7. Cost of various ESS (Modified from: Shawkat 2013: 91). 

Storage 

technology 

Power-related cost 

($/kW) 

Energy-related cost 

($/kWh) 

Power capacity cost 

($/kW) 

PHS              600–2 000                          0–20                         5–100  

CAES                 425–480                          3–10                           2–50  

FES                         350                 500–25 000                300–25 000  

Lead-acid                 200–580                    175–250                       50–400  

Lithium-ion                             -                 900–1 300                  600–2 500  

NaS                 259–810                            245                       300–500  

SCES                         300            20 000–82 000                  300–2 000  

SMES                         300                           2 000               1 000–10 000  

 

4.3.2 Thermal energy storages 

Thermal energy storage (TES) stores energy as heat for later use. It can counterbalance a 

mismatch between thermal energy generation and consumption and can achieve the fol-

lowing benefits: 

• increase generation capacity 

• enable better operation of cogeneration plants 

• shift energy purchases to low-cost periods 

• increase system reliability 

• integration with other functions. (Dincer & Rosen 2011: 89–90.) 

Storage of thermal energy is based on the appropriate thermophysical properties of TES 

materials. These include a favourable melting point for a thermal application, high latent 

heat, high specific heat and high thermal conductivity. Based on these features, there are 
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generally three different types of TES in use: sensible heat storage, latent heat storage and 

thermochemical energy storage. (Alva, Lin & Fang 2017.) 

The sensible heat storage is based on changing a temperature of a storage medium. 

Amount of energy supplied to the TES is proportional to a difference between the final 

and initial temperatures, a mass of the storage medium and its thermal capacity. The stor-

age material in the sensible heat storage can be water, air, oil, rock beds, bricks, sand or 

soil. Choice of material is influenced by different properties such as density, specific heat, 

thermal conductivity, diffusivity, vapour pressure, chemical stability as well as compati-

bility with container material. Amount of heat stored in the sensible heat storage can be 

calculated 

𝑄t = 𝑚𝑐𝑝∆𝑇 = 𝜌𝑐𝑝𝑉∆𝑇 , (13) 

where ρ is a density of material, cp is specific heat of storage material, V is a volume of 

storage material and ΔT is a temperature change in heat storage. (Dincer & Rosen 2011: 

109–110; Capeza 2015: 3–4.) 

The latent heat storage is based on a phase change in a storage material in which thermal 

energy is stored. In this storage system is usually utilized solid-liquid phase change. After 

melting a material, heat is transferred to the material and large amounts of heat storing at 

constant temperature. The stored heat is released when the material solidifies again. The 

storage materials used in the latent heat storage are, for example, water, paraffin, salt 

hydrates and salt. Heat stored in a latent heat storage is calculated 

𝑄 = 𝑚𝐿 , (14) 

where m is a mass of a storage material and L is a specific latent heat. (Capeza 2015: 4–

6; Alva et al. 2017.) 

Thermochemical energy storage uses chemical reactions with high energy to store energy. 

In storage process can be used a reversible reaction because products of the reaction 
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should be able to be stored and retrieved when the reverse reaction occurs. Thermochem-

ical energy storage can be divided between chemical reactions and sorption systems. 

Chemical reactions are used materials with high energy storage density and reversibility 

and finding appropriate materials is challenging. The most commonly used reactions are 

for instance carbonation reaction, ammonia decomposition and metal oxidation reactions. 

The sorption systems can be further divided to closed and open storage systems. In the 

closed storage system, a heat exchanger is used for heat transfer. Heat must be transported 

to an absorber while it is extracted from a condenser. In the open storage system, air is 

used to transport water vapor and heat between the adsorbent and system. Two reverse 

processes in system transfer heat to storage. The desorption process desorbs water from 

adsorbent by means of hot air, which results in the system cooling and saturating. The 

adsorption process adsorbs water vapor and releases heat when humidified cold air enters 

the adsorbent. (Capeza 2015: 7–8.) 

Table 8 compares these three TES systems. In terms of capacity, the thermochemical 

energy storage is the best solution for large-scale thermal energy storage. The sensible 

heat storage has though a higher power range compared to the latent heat storage and the 

thermochemical energy storage. The cost of the thermochemical energy storage can be 

significantly higher than the other two options. 

Table 8. Comparison of TES (Modified from: Sarbu 2017). 

TES System 

Capacity 

(kWh) 

Power 

(MW) 

Efficiency 

(%) 

Storage 

period 

Cost 

($/kWh) 

Sensible heat storage      10–50 0.001–10      50–90 

days or 

months   0.1–10 

Latent heat storage      50–150 0.001–1      75–90 

hours or 

months   10–50 

Thermochemical energy 

storage    120–250   0.01–1      75–100 

hours or 

days     8–100 
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5 SIMULATION AND OPTIMIZATION OF POWER GENERATION 

One of the main objectives of this thesis is to create a cost calculation model which can 

also be exploited in later projects. The cost calculation model is combined with simulation 

and optimization using Homer micropower optimization model. This chapter views a de-

velopment of a simulation model as well as simulation and optimizations in two modes. 

Optimization in this work is based on the Homer optimization program and optimization 

means looking for the best simulations result based on defined criteria. 

Homer optimization program is software originally developed at the National Renewable 

Energy Laboratory (NREL) and enhanced subsequently by Homer Energy. Homer is the 

software designed to be used for micropower optimization and optimization tool can be 

used in both electric power and thermal energy modelling. Several renewable and non-

renewable energy sources can be used in simulations. Renewable energy sources espe-

cially solar photovoltaic and wind turbines well suited for use with Homer software. In 

addition, a model has a choice of different energy storages. 

Homer has three important features to use: simulation, optimization and sensitivity anal-

ysis. The simulation is a necessary feature for optimization and sensitivity analyses. Sim-

ulation creates for any combination of components which meet the criteria. In practice, 

this means that if the simulation model contains an energy storage, the simulation will be 

performed with and without energy storage model, if possible. 

Optimization phase follows simulation. In Homer, optimization means sorting and filter-

ing systems obtained in simulation phase according to defined criteria. The criterion used 

for optimization can often be a total cost of a system used in the simulation over its life 

cycle, but it may also be another factor if desired. The last step is sensitivity analysis, 

which is not a mandatory step. At this stage, effects of uncontrolled variables on the sys-

tem can be modelled, for instance, effect of wind speed on a system containing a wind 

turbine. (Homer Energy 2018a.) 
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Subject of this thesis is related to the distributed waste incineration power plant and sim-

ulation program is used for cost simulation and optimization. In Section 5.1 is first created 

a simulation model for both electricity generation and combined heat and power (CHP) 

generation. Next, simulations are performed which result in a cost calculation that in-

cludes, for example, system life cycle costs and annual operating costs. 

5.1 Development of simulation model 

As stated at the introduction used program is a micropower size optimization tool and 

model is limited to waste incineration power plants and other energy generation in Nai-

robi is ignored. In this case, the loads to be used are also proportional to the energy gen-

erated by the waste incineration power plants. The waste incineration power plants gen-

erate electricity or thermal energy if needed, so they can be modelled using conventional 

diesel engines. Also waste fuel is described in simulations with regular diesel fuel, so 

price of waste fuel is therefore the price of diesel fuel. Simulation model has key compo-

nents only and thus it includes generators describing waste incineration power plants, an 

electric load, an electrical energy storage (EES) and its converter. In addition, the CHP 

generation optimization model includes a thermal load controller, a thermal load and a 

boiler. The distributed electricity and CHP generation optimization models are shown in 

Figure 18. (Homer Energy 2018b.) 
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(a)         (b) 

Figure 18. Models for distributed electricity generation (a) and CHP generation (b) 

used in simulations and optimizations. 

Capital, replacement and O&M costs are included for generators, electrical energy stor-

ages and converters in the models. At the beginning of a new project, program uses the 

capital costs for these components. However, each component has a lifetime, after which 

the component is replaced by a new one and then a replacement cost is applied. The pro-

ject lifetime created by Homer is defined as 50 years, close to maximum lifetime of this 

type of waste incineration power plant. Lifetime of the components of the model is as 

follows: 

• 30 years for waste incineration power plant 

• 10 years for electrical energy storage 

• 20 years for converter. 

Simulations are typically for a time period of one year, 8760 hours. These waste incin-

eration power plants require annual maintenance, which takes about one month per year. 
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Annual maintenance can be placed at any time of the year, but in the simulations, mainte-

nance is set to December. Hence, simulation time is from January to end of November in 

other words 334 days or 8016 hours. 

Table 9 shows generation capacities of six power plants which are used in modelling. The 

generation capacities are introduced for both mode 1 where power is generated as elec-

tricity and for mode 2 where power is generated as CHP. In Table 9, for CHP generation, 

electricity generation capacity and thermal energy capacity have been calculated sepa-

rately and finally their combined capacity has been added up. Annual generation capacity 

describes how much incineration power plant can generate energy in megawatts per year. 

This takes into account an annual maintenance, in other words in Table 9 the annual gen-

eration capacities are in practice 11 months generation capacity. 

Table 9. Annual generation capacity of waste incineration power plants for electricity 

and CHP generation in relation to the rated power. 

Power plant 

Mode 1: 

Electricity 

generation 

(MW) 

Mode 2: 

CHP generation 
Total CHP 

generation (MW) 
Electricity 

(MW) 

Thermal 

energy 

(MW) 

Power plant 1            2 705.4         2 004              10 020                      12 024    

Power plant 2            5 410.8         4 008              20 040                      24 048   

Power plant 3            1 803.6         1 336                6 680                        8 016    

Power plant 4            2 705.4         2 004              10 020                      12 024    

Power plant 5            2 705.4         2 004              10 020                      12 024    

Power plant 6            1 803.6         1 336                6 680                        8 016    

Table 10 presents costs of generators used in the model. Capital costs are cost of building 

a power plant and depend on size of the power plant. The age of power plant is expected 

to be 30 years, after which a part of the power plant has to be renewed and the replacement 
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costs of the plant apply. Operation and maintenance (O&M) costs in the table are per year 

and recurring annually. 

Table 10. Costs of waste incineration power plants used in modelling. 

Waste incineration 

power plant 

Capital costs 

(M$) 

Replacement costs 

(M$) 

O&M costs 

(M$/year) 

Power plant 1               51.48                           46.33                    1.7    

Power plant 2             102.96                           92.66                    2.3    

Power plant 3               34.32                           30.89                    1.7    

Power plant 4               51.48                           46.33                    1.7    

Power plant 5               51.48                           46.33                    1.7    

Power plant 6               34.32                           30.89                    1.7    

Size of an electric load, which is used in the model, is dimensioned according to the total 

power generated by the power plants. According to Table 3, daily electricity generation 

of the power plants totals 51.3 MW, which is an average of approximately 2.14 MW per 

hour. In the CHP generation, daily electricity generation is 38 MW, which is average 

about 1.58 MW per hour. A load in the pilot city consists mainly of load in residential 

area, where load at night time is lower and in evening is higher than the average value. 

Daily load profile of the electric load used in mode 1 is shown in Figure 19. 
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Figure 19. Typical working day profile of the electric load used in mode 1. 

Figure 19 illustrates consumption of electricity in normal everyday life. Electricity con-

sumption is expected to be lower at night but will increase in morning as commercial and 

industrial electricity consumption increase. In afternoon, electricity consumption will in-

crease further as electricity is consumed in leisure time at home. 

Daily electric load profile in mode 2 is similar compared to mode 1 but load is smaller 

because part of energy is generated as thermal energy. Also, in this consumption pattern 

is used ordinary everyday life. The electric load profile for mode 2 is shown in Figure 20. 

 

Figure 20. Typical working day profile of the electric load used in mode 2. 
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Shape of the graph in Figure 20 is similar to that of Figure 19, but the load is smaller 

because in mode 2, part of energy is produced as thermal energy. Depending on electricity 

consumed, the shape of the graphs may vary depending on season or day of a week. If 

electricity is needed for heating, it will be needed more during cool season, which runs 

from June to September in Kenya, and less during warm season, which is between Feb-

ruary and April. Because of low industry in Nairobi, electricity is consumed more for 

residential use than for industrial use. Based on this, weekends are likely to consume more 

electricity than weekdays when people are at work. (Expert Africa 2017.) 

Consumption of thermal energy is supposed to be somewhat smoother, but consumption 

at day time is slightly higher compared to night time. Thermal energy may be needed to 

heat houses, whereby need for thermal energy is higher during the above-mentioned cool 

season and correspondingly lower during warm season. Daily profile of the thermal en-

ergy load in mode 2 is shown in the Figure 21. 

 

Figure 21. Daily profile of the thermal load used in the simulations in mode 2. 

Since power output of the waste incineration power plants is steady, but energy consump-

tion varies according to time, energy has to be stored for a moment. As an electrical en-

ergy storage model is used a lithium-ion battery, which is connected to the DC power 
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network. The battery is connected to the power plants through a converter. The CHP gen-

eration optimization model includes a thermal load controller as well as a boiler. When 

enough electricity is supplied to the electric load, the thermal load controller directs the 

rest of energy to the thermal load. The boiler acts as a compensator for the thermal load, 

if necessary. Table 11 specifies the costs of the electric storage and converter. The thermal 

load controller is not included in the optimization, so its parameters need not be defined. 

The only boiler parameter is efficiency and it is set to be 85 %. 

Table 11. Costs for components in the model. 

Component Capital cost ($) Replacement cost ($) O&M cost ($/year) 

Lithium-ion battery 

1 MWh               700 000                           560 000                                10    

Converter 

1 000 kW                      800                                  750                                10    

5.2 Simulations and optimizations in two operational modes 

As results of simulations are obtained sensitivity analysis and optimization results. Sen-

sitivity analysis issues simulation results with different sensitivity variables. In this study, 

nominal discount rate and waste fuel price described as waste fuel price are used as sen-

sitivity variables. Waste fuel price depends on many factors, and in order to simplify a 

simulation, waste fuel price is basically a constant value of 1, which includes only the 

price of fuel itself and not a transport. 

In simulations, effect of the waste fuel price on the results of the simulations is investi-

gated, whereby the price of fuel serves as a parameter of the simulation. There are three 

values for this variable when using in addition to a standard price of 1 $/kg, a half price, 

0,5 $/kg, and a double price, 2 $/kg. The second variable in simulations is a nominal 

discount rate, for which values of 3 %, 6 % and 12 % are chosen. 
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The simulations are divided into two modes according to energy form generated. In mode 

1 simulation are considered when energy is generated as electricity only and in mode 2 

according to CHP generation. The results of simulations provide both sensitivity cases 

and optimization results with the selected parameter values. 

5.2.1 Mode 1: Distributed waste incineration power plant electricity generation 

Mode 1 uses only electricity generation and its simulation results are shown in Table 12. 

Table 12. Costs of mode 1 with two parameters: nominal discount rate and waste fuel 

price. 

Simulation 

run Parameters Cost 

Simulation 

run 

Nominal 

discount 

rate (%) 

Waste 

fuel 

price 

($/kg) 

NPC 

(M$) 

Cost of 

energy 

($/kWh) 

Operating 

cost 

(M$/yr) 

Initial 

capital 

costs 

(M$) 

                  1             12           0.5       1 210 618          8 508       145 733             375    

                  2               3           0.5       3 750 152          8 506       145 737             375    

                  3               6           0.5       2 297 442          8 507       145 736             375    

                  4             12           1       2 420 742        17 013       291 453             375    

                  5               3           1       7 499 470        17 011       291 456             375    

                  6               6           1       4 594 246        17 012       291 455             375    

                  7             12           2       4 840 990        34 022       582 891             375    

                  8               3           2     14 998 110        34 020       582 894             375    

                  9               6           2       9 187 854        34 021       582 893             375    

Table 12 shows the costs of distributed electricity generation with different sensitivity 

values. In the first column of the costs is net present cost (NPC), which is present value 

of installation and operating costs of the system components over the lifetime of the pro-

ject. Therefore, NPC in this study means system life cycle cost. The next column shows 
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the cost of electricity (COE) which is net present value of the unit-cost of electricity over 

the lifetime of the system. In addition, the costs include the annual operating costs and 

investment costs for system. 

By comparing costs, is noticed that the nominal discount rate is affecting the most on 

NPC. With the lower nominal discount rate is received the higher NPC. This is also re-

flected in Figure 22 in Appendix 1, where total life cycle cost is depicted as a surface plot 

of change in nominal discount rate and waste fuel price. The waste fuel price affects costs 

associated with regular operations, in other words, the COE and operating cost. As waste 

fuel price increases, the COE and operating costs rise in a same proportion. Surface plot 

of the total operating cost with change in nominal discount rate and waste fuel price is 

shown in Appendix 1, Figure 23. Figure shows that change in nominal discount rate has 

a little effect on the total operating costs and change in operating costs is caused by change 

in waste fuel price. 

The energy production of each power plant in study case 1 is demonstrated in Table 13. 

Production volumes are in line with the generation capacities shown in Table 3, as the 

operating time of all power plants is same. 

Table 13. Annual energy production of waste incineration of the six power plants 

(PP1–PP6) in mode 1. 

  PP 1 PP 2 PP 3 PP 4 PP 5 PP 6 

Annual production 

(TWh)    5.42     10.84       3.61       5.42       5.42       3.61    

Once the simulation is complete, the program performs optimization by looking for the 

best option in the simulations. In this study, optimization is performed based on system 

NPC, in other words life cycle cost. The optimization results for mode 1 are shown in 

Table 14. 
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Table 14. Optimization results for mode 1. 

Parameters Cost 

Nominal 

Discount 

Rate (%) 

Waste 

Fuel Price 

($/kg) NPC (M$) COE ($) 

Operating 

cost (M$/yr) 

Initial capital 

(M$) 

            12                0.5         1 210 618           8 508          145 733                 375    

The lowest life cycle cost is achieved when fuel price is possible lowest, 0.5 $/kg and 

nominal discount rate is the maximum possible, 12 %. 

5.2.2 Mode 2: Distributed waste incineration power plant CHP generation 

Mode 2 uses combined heat and power generation and its simulation results are shown in 

Table 15. 
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Table 15. Costs of mode 2 with two parameters: nominal discount rate and waste fuel 

price. 

Simulation 

run Parameters Cost 

Simulation 

run 

Nominal 

discount 

rate (%) 

Waste 

fuel 

price 

($/kg) 

NPC 

(M$) 

Cost of 

energy 

($/kWh) 

Operating 

cost 

(M$/yr) 

Initial 

capital 

costs 

(M$) 

                  1              12           0.5        1 210 548       11 485       145 725          375    

                  2                3           0.5        3 749 936       11 483       145 729          375    

                  3                6           0.5        2 297 310       11 483       145 727          375    

                  4              12           1        2 420 603       22 965       291 436          375   

                  5                3           1        7 499 039       22 963       291 439          375    

                  6                6            1        4 593 982       22 964       291 438          375    

                  7              12            2        4 840 711       45 926       582 857          375    

                  8                3            2      14 997 240       45 924       582 861          375    

                  9                6            2        9 187 324       45 924       582 860          375    

Table 15 presents the costs of distributed CHP generation with different sensitivity val-

ues. In this case, the cost of the system is near same as in case 1 except for the COE. It is 

higher because part of energy is used for thermal energy generation. The corresponding 

surface plot of total life cycle cost as in case 1 is shown in Appendix 2, Figure 24 and 

surface plot of total operating cost is shown in Figure 25. 

The difference between simulation modes 1 and 2 is better reflected in production vol-

umes. Table 16 demonstrates energy production of each power plant in mode 2. Com-

pared to these production volumes in production volumes shown in Table 13, it seen that, 

energy production in case 2 is more than four times higher than in case 1. 
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Table 16. Annual energy production of waste incineration of the six power plants 

(PP1–PP6) in mode 2. 

  PP 1 PP 2 PP 3 PP 4 PP 5 PP 6 

Annual production 

(TWh)  24.10  48.19  16.06   24.10  24.10  16.06 

The results of mode 2 optimization obtained from the simulations are shown in Table 17. 

Table 17. Optimization results for mode 2. 

Sensitivity Cost 

Nominal 

Discount 

Rate (%) 

Waste 

Fuel Price 

($/kg) NPC (M$) COE ($) 

Operating 

cost 

(M$/yr) 

Initial capital 

(M$) 

          12              0.5      1 210 548         11 485       145 725                 375  

The results of mode 2 optimization can be deduced from the results of mode 1 optimiza-

tion because the simulated modes are similar, and same values are used as simulation 

parameters. The lowest life cycle cost in mode 2 is also achieved with the waste fuel price 

of 0.5 $/kg and nominal discount rate of 12 %. 
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6 ANALYSIS AND NEXT STEPS 

This chapter analyzes the objectives set for the thesis in the introduction and assesses how 

well the objectives are achieved. The model created in this thesis also considers improve-

ments to make the simulation model more reasonable. 

6.1 Evaluation of the realization in fulfilling the objectives 

The object of the study is to investigate the power generation capacity and costs of the 

waste incineration power plant. The power generation capacity of the modular waste in-

cinerator unit is known, so the capacity of the total waste incineration power plant can be 

calculated based on these. The cost calculation is based on previous studies of waste in-

cineration power plants. The costs in these studies varied significantly, for example, de-

pending on the size and structure of the waste incineration power plant. The final cost 

calculation is made based on several scientific studies and evaluating the most realistic 

costs. 

Calculated costs are utilized in modelling by simulating the capital and O&M costs of the 

pilot waste incineration power plant based on them. The results of the simulations are 

consistent with theoretical values. Actual costs of the pioneer project are though difficult 

to estimate accurately before the pilot project is implemented. In addition, costs vary by 

region and cost of such a project varies between developing countries and, for instance, 

Finland. 

The study is also supposed to be a pilot study that could be used in addition to this project 

in other similar projects. Implementation of waste incineration power plant project vary 

compared to each other, but this thesis also provides some guidance for other waste in-

cineration power plant projects. Based on the realized projects the capital and O&M costs 

can later be specified. 
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6.2 Expanding the developed model 

The simulation model used in the study is simplified to facilitate the implementation of 

simulation. In the model used only main components for simulation were placed, such as 

generators, loads and energy storages. With this simplified model essential facts for the 

thesis can be simulated, such as cost calculation of waste incineration power plants. 

In the model were only generators described waste incinerators as power sources. In prac-

tice, waste incineration power plants are likely to generate energy alongside other energy 

sources and the generated electricity is supplied to the grid. However, energy generation 

of the waste incineration power plants is steady, so its operation does not change signifi-

cantly from thesis perspective if the incinerators were grid-connected. In addition, design 

of the used program limited the implementation of the study because program was de-

signed for micropower generation modelling. For this reason, the simulation model has 

to be adapted to the constrains of the program. 

In addition to the model generators, the loads to be used had to be adapted to the power 

generated by the generators. In a real project site, the load is determined by load in a 

destination city and an actual power generated by the waste incinerators. The load models 

used were designed to keep the load at a suitable size for the production of waste incin-

eration power plants and also to follow the typical load model shown in Figure 17. 

The waste incineration power plant under investigation may generate steam, electricity 

or combined electricity and thermal energy. The power plant may also generate these 

forms of energy in a suitable proportion. In the modelling steam was left out of the sim-

ulations and electricity and CHP generation were simulated separately. O&M costs of 

incineration power plants resulting from simulations will change if various energy forms 

were produced simultaneously. The cost simulations are indicative, so the results will not 

change significantly with the output of the power plant. In practice, generating different 

forms of energy at same time would require a control system which would monitor con-

sumption of those forms of energy and control output of the incineration power plant 

accordingly. 
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7 CONCLUSIONS 

The consequences of the study resulted in methods that can influence the balance of 

power generation of the waste incinerator and the cost calculations provided by the Homer 

Micropower Optimization Model based on the cost of the input components. Capital, re-

placement and O&M costs for components as well as lifetime and other necessary inputs 

were entered to the program. Based on these, program resulted in total net present costs, 

capital costs, O&M costs and costs of electricity using two parameters, nominal discount 

rates and waste fuel prices. Other results provided by program were, for instance, infor-

mation, documents and data presentation reports with various simulation time and the 

energy generated by each waste incineration power plant. 

Factors affecting the balance between electricity generation and consumption were inves-

tigated comprehensively and solutions were found for these in terms of generation, con-

sumption and energy storage. Energy generation solutions focused on other potential en-

ergy sources in Nairobi. As regards consumption, demand side management, where you 

can find a number to the appropriate solutions, such as energy efficiency were investi-

gated. Since energy generation and consumption are never fully balanced, alternative en-

ergy storage solutions are explored. 

With a nominal discount rate of 12 % and a fuel price of 0.5 $/kg, capital cost was about 

375 M$, total net present cost about 1 210 000 M$ and operating cost about 

145 700 M$/yr in both electricity generation and CHP generation modes. Cost of elec-

tricity differed between the modes and in mode 1 they were about 8 500 $/kWh and in 

mode 2 about 11 500 $/kWh. The program considers only the generated electricity in cost 

of electricity and not the total energy generation. In the CHP generation model is pro-

duced less electricity than in the electricity generation model, but in the CHP generation 

model, some of energy is used for thermal energy generation. 

According to the generation capacities shown in Section 3.3 in Table 3, electricity gener-

ation capacity in the electricity generation model is about 35 % higher than in CHP gen-

eration model. However, the output total in capacity of the CHP model is more than four 
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times that of the electricity generation model. If the generated thermal energy can be uti-

lized, it is more profitable to generate combined heat and power. 

Directly to the topic related other studies were found a few. There were a few scientific 

articles dealing with pilot cities of same type of incinerators around the world. The size 

and cost of power plants varied greatly in these articles and the most of them were related 

to electricity generation only. However, the articles contained calculations of capital and 

O&M costs, and by comparing the information received from the articles reasonable re-

sults were delightfully obtained. 
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8 SUMMARY 

This thesis studies generation of distributed waste incineration power plants using mod-

elling and simulation costs of the waste incineration power plant are calculated. The ob-

jective of the study is to review alternatives to control of power generation of a modular 

waste incineration power plant and created a cost calculation model that includes the cap-

ital and O&M costs of the incinerator unit. The objective is also to investigate balance 

between energy generation and consumption using other energy sources, demand side 

management and energy storages. The focus is on developing countries and a proper city 

of the pilot project is Nairobi, the capital of Kenya. The research results can later be ap-

plied to similar projects in developing countries. 

In the theoretical part of the research are presented the technology and structure of the 

waste incineration power plant. The thesis introduces the most commonly used waste 

incineration technologies, after which the technology used in the project is examined in 

more detail. Subsequently also the project implementation aspects and requirements for 

the project implementation are examined. 

The empirical part of the thesis investigates methods. This section examines the factors 

affecting balance between energy generation and consumption. This is utilized other po-

tential energy sources in Nairobi, demand side management (DSM) and different energy 

storage technologies. In addition, a waste incineration power plant cost calculation model 

is created using a pilot project in Nairobi and the Homer micropower optimization model. 

In final Chapter 6, the results of the simulation and the achievement of the objectives are 

examined. One of the aims of the thesis was to develop an indicative cost calculation 

which is compiled based on several scientific articles. Alternatives to expanding the sim-

ulation model and their impact on the results of the simulation are also contemplated, as 

simulation has been implemented in this study by simplifying multiple factors. 
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As the results of this thesis are received different methods to control production of waste 

incineration power plant. In addition, as the result is found project cost calculation in-

cluding capital costs and operating and maintenance costs, using a developed cost model. 

In addition to the waste incineration power plant is examined the balance between elec-

tricity generation and consumption, regarding current energy production in Kenya as well 

as demand side management and energy storage methods. 

The study topic is extensive and focuses on distributed generation planning and cost cal-

culation. These main goals are achieved, and the study provided a good basis for possible 

further research. Electricity generated by distributed waste incineration power plants in-

creases electricity generation capacity significantly and electricity generated must be able 

to be transferred to the grid. The distribution capacity of the electricity grid should be 

checked and possibly a new replacement grid should be planned. This is one area of the 

project that still needs further research. The design projects for this type of waste incin-

eration power plant are all unique depending on size of the area and number of inhabitants 

and always require their own research.  
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APPENDICE 

Appendix 1. Costs variation in the distributed electricity generation model. 

 

Figure 22. Life cycle cost of distributed electricity generation model. 
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Figure 23. Total operating costs of distributed electricity generation model. 
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Appendix 2. Costs variation in the distributed model using CHP generation. 

 

Figure 24. Life cycle cost of distributed CHP generation model. 



 88 

 

Figure 25. Total operating costs of distributed CHP generation model. 


