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Abstract. The term ’studentization’ is commonly used to describe a scale
parameter dependent quantity U by a scale estimate S such that the resulting
ratio, U/S, has a distribution that is free of from the nuisance unknown scale
parameter. External studentization refers to a ratio in which the nominator
and denominator are independent, while internal studentization refers to a ra-
tio in which they are dependent. The advantage of the internal studentization
is that typically one can use a single common scale estimator, while in the ex-
ternal studentization every single residual is scaled by different scale estimator
to gain the independence. For normal regression errors the joint distribution of
and arbitrary (linearly independent) subset of internally studentized residuals
is well known. However, in some application a linear combination of inter-
nally studentized residuals may be useful. The boundedness of an arbitrary
linear combination these residuals is well documented, but the distribution of
a linear combination seems not have been derived in literature. This paper
contributes the existing literature by deriving the joint distribution of a gen-
eral linear transformation of internally studentized residuals. The distribution
of a univariate linear combination and joint distributions of all major versions
of commonly utilized internally studentized residuals are obtained as special
cases. The paper shows that the joint distribution of all linear combinations
(including an arbitrary linearly independent subset of residuals) belong to the
same family of distributions. Some test statistics for inference purposes are
also derived.

Key words: Linear combination of residuals; normed residuals; distribution of
residuals; bounds for linear combination of studentized residuals; t-statistic for
studentized residuals; F -statistic for studentized residuals; regression diagnos-
tics
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1. Introduction

Consider the usual regression model with n observations

y = Xβ + u, (1)
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where X is an n×p′ nonstochastic matrix of rank p ≤ p′ < n, y is an n-vector of

observable responses, β is a p′-vector of slope parameters, and u ∼ N(0, σ2I) is

an n-vector of unobservable homoscedastic independent normally distributed

errors with (unkown) variance parameter σ2 and I is an n×n identity matrix.

The least squares residuals are given by

û = Qy

= Qu, (2)

where

Q = I−X(X′X)−X′ (3)

is an n×n idempotent matrix with rank n− p in which the prime denotes the

matrix transposition and (X′X)− is a generalized inverse of X′X. The error

sum of squares u′u can be estimated by the residual sum of squares

S2 = û′û = u′Qu. (4)

By equation (2) the least squares residuals are linear combinations of normal

random variables, which implies that û follows a (singular) normal distribu-

tion, such that

û ∼ N
(
0, σ2Q

)
. (5)

Studentization is a common term used to describe division of a scale parameter

dependent statistic, say U , by a scale estimate S such that the distribution

of the resulting ratio U/S is free from the nuisance scale parameters [see e.g.

Margolin (1977)]. Typically U and S are derived from the same data, in which

case the ratio U/S is called internally studentized if U and S are dependent

and externally studentized if they are independent [see, Cook and Weisberg

(1982, p.18)].
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In least squares regression, the internally studentized residuals are defined as

ri =
ûi

s
√
qii
, (6)

where ûi is the ith component of the vector û, s =
√
û′û/(n− p), and qii is

the ith diagonal element of the matrix Q. Although ri is the familiar ratio of a

normally distributed random variable and a square root of a scaled Chi-square

random variable, the end result is not a t-distributed random variable. The

reason is that the nominator and the denominator are not independent due to

the fact that û2i ≤ û
′û for all i = 1, . . . , n. Furthermore, because qii ≥ 1 + 1/n

[Cook and Weisberg (1982, p. 12)], it follows that unlike a t-distributed random

variable that can assume all real values, r2i ≤ n− p.

Stefansky (1972), Ellenberg (1973), and Dı́az-Garćıa and Gutiérrez-Jáimez

(2007) derived the joint distribution of an arbitrary (nonsingular) subset of the

internally studentized residuals defined in (6). Beckman and Trussel (1974)

derive the distribution for a t-statistic for a single ri. The present paper derives

the joint distribution of an arbitrary non-singular linear transformation of

internally studentized residuals.

2. The Main Result

Definition 1 Let M be an m× n matrix. We call

rM =
1

s
Mû (7)

a studentized linear transformation of least squares residuals û, where s =√
û′û/(n− p). Furthermore, we call the transformation nonsingular if the

matrix MQM′ is positive definite, in which case m ≤ n− p.

All the major classes of residuals defined in literature can be obtained as
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special cases of (7). For example, consider in addition to the internally stu-

dentized residuals defined in equation (6), also the following alternatives [see,

e.g., Chatterjee and Hadi (1988) and Lloynes (1979)]:

Normalized residuals:

ûi/
√
û′û. (8)

Standardized residuals:

ûi/s. (9)

Abrahamse-Koerts residuals (normalized):

B′û/
√
û′û, (10)

where B is an n × n matrix defined in Abrahamse and Koerts (1971),

satisfying û′BB′û = û′û.

Consider an arbitrary linearly independent subset Im = {i1, i2, . . . , im} ⊂

{1, . . . n}, m ≤ n − p of the above classes of residuals. It is easily seen

that each of these is a special case of the linear transformation defined in

equation (7). For the purpose, define MI as a m × n matrix in which each

row j = 1, . . . ,m is a 1 × n vector with element ij = 1 and zeros elsewhere,

ij ∈ Im. Furthermore, let D−1/2 denote an n×n diagonal matrix with elements

(q11)
−1/2, . . . , (qnn)−1/2. Then a set, Im, of internally studentized residuals, de-

fined in equation (6), is obtained by defining in equation (7), M = MID
−1/2,

a set of normalized residuals, defined in equation (8), is obtained by defining

M = (n − p)−1/2MI , a set of standardized residuals, defined in equation (9),

is obtained by defining M = MI , and a set of Abrahamse-Koerts residuals are

obtained, defined in equation (10), by defining M = (n− p)−1/2MIB
′.

The following lemma is useful.
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Lemma 1 Let M be a non-singular transformation as given in Definition 1,

then

VM = û′û− û′M′(MQM′)−Mû (11)

is distributed as σ2χ2(n− p− q), where q = rank(MQ) and

UM = û′M′(MQM′)−Mû (12)

is distributed as σ2χ2(q).

Proof. By equation (2), û = Qu, where Q is an indempotent matrix with

tr Q = n− p. Thus VM in (11) can be written as

VM = u′
(
Q−QM′(MQM′)−MQ

)
u. (13)

Because u ∼ N(0, σ2I), VM is σ2χ2(n − p − q) distributed if and only if the

matrix, Q−QM′(MQM′)−MQ, in the quadratic form in (13) is idempotent

of rank n−p−q. Direct multiplication of the matrix Q−QM′(MQM′)−MQ

by itself shows that it is idempotent (the only trick is to show that the matrix

QM′(MQM′)−MQM′(MQM′)−MQ equals QM′(MQM′)−MQ, which can

be easily shown by taking the difference of these matrices and multiplying by

itself to find out that the product is zero). The rank of an idempotent matrix

is the same as its trace, which in this case is

tr
(
Q−QM′(MQM′)−MQ

)
= tr Q− tr

(
QM′(MQM)−MQ

)
= n− p− tr

(
(MQM′)−MQM′)

= n− p− q,

because (MQM′)−MQM′ is idempotent with trace equalling the rank of the

matrix. Thus, the proof that VM ∼ σ2χ2(n− p− q) is complete.

In the same manner, writing UM = u′QM′(MQM′)−MQu, we find immedi-

ately that QM′(MQM′)−MQ is idempotent and tr (QM′(MQM′)−MQ) =
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tr ((MQM′)−(MQM′)) = q, which together with u ∼ N(0, σ2I) imply that

UM ∼ σ2χ2(q), completing the proof.

Corollary 1 The studentized residuals defined in equation (7) are bounded

such that

r′M (MQM′)
−
rM ≤ n− p. (14)

Proof. Let s2 = û′û/(n − p). Then by Lemma 1 and by the definition of

rM in equation (7), 0 ≤ VM = û′û − û′M′(MQM′)−Mû = (n − p)s2 −

s2r′M (MQM′)
−
rM , from which the result follows immediately, completing

the proof.

Lemma 2 Under the assumptions of Lemma 1, VM and Mû are independent.

Proof. Because Mû = MQu is a normal random vector and VM is the

quadratic form of the normal random vector

uM =
(
Q−QM′(MQM′)−MQ

)
u, (15)

a sufficient condition for the independence of Mû and VM is that MQu and

uM , defined in equation(15), are uncorrelated. This is the case if the defin-

ing matrices, MQ and Q−QM′(MQM′)−MQ, of these random vectors are

orthogonal. Now

MQ
(
Q−QM′(MQM′)−MQ

)
= MQ−MQM′(MQM′)−MQ = P.

It is straightforward to show that PP′ = 0, which implies that P = 0, from

which the orthogonality and hence uncorrelation follow, completing the proof

of the lemma.
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Lemma 2 implies immediately:

Corollary 2 Under the assumptions of Lemma 2 the chi-square random vari-

ables VM and UM , defined in equations (11) and (12), respectively, are inde-

pendent.

With these results we can derive the main result of this paper.

Theorem 1 Under the assumptions of the linear regression model in (1), the

joint distribution of the nonsingular studentized linear transform of residuals,

defined in equation (7) when m < n− p, is

frM (r) =
Γ [(n− p)/2] |MQM′|−1/2

(π(n− p))m/2 Γ [(n− p−m)/2]
(16)

×

(
1− r

′ (MQM′)
−1
r

n− p

) 1
2
(n−p−m)−1

, r′ (MQM′)
−1
r ≤ n− p,

where Γ(·) is the Gamma function.

Proof. Under the nonsingularity assumption MQM′ is positive definite, the

inverse (MQM′)−1 exists and that r = m, i.e., the rank of the matrix is m.

The bounds, r′ (MQM′)
−1
r ≤ n−p, follow from Corollary 1. The rest can be

proceeded analogously to Ellenberg (1973). That is, due to the χ2-distribution

result of VM in Lemma 1, normality of uM = Mû, and independence of VM

and uM by Lemma 2, their joint density is the product of their appropriate

densities, resulting to

fuM ,VM (x, v) =
1

π
m
2 (2σ2)

1
2
(n−p)|MQM′| 12 Γ[(n− p−m)/2]

v
1
2
(n−p−m)−1

× exp

{
− 1

2σ2

[
x′(MQM′)−1x+ v

]}
. (17)

7



Define next the transformations

r = x/
√
y/(n− p)

y = x′(MQM′)−1x+ v

The Jacobian of this transformation is(
y

n− p

) 1
2
m

. (18)

Using these, the joint density of rM and S2 = û′û becomes

frM ,S2(r, y) =

(
y

n− p

)m
2

fuM ,VM

(
r
√
y/(n− p), y − x′(MQM′)−1x

)
=

|MQM′|− 1
2

(π(n− p))
m
2 Γ[(n− p−m)/2]

×
(

1− r
′(MQM′)−1r

n− p

) 1
2
(n−p−m)−1

× 1

2(n−p)/2σ2

( y
σ2

) 1
2
(n−p)−1

e−
y

2σ2 .

Introducing a further transformation z = y/σ2 with Jacobian σ2 and integrat-

ing with respect to z yields finally the marginal density of rM given in (16),

which completes the proof of the theorem.

Theorem 1 gives the joint distribution of the studentized nonsingular trans-

formation, rM , when m < n− p. The next theorem gives the distribution for

a nonsingular studentized transformation with m = n− p.

Theorem 2 Under the assumption of Theorem 1, when m = n− p,

rM
d
=
√
n− p M̃U (19)

where U is uniformly distributed (n− p)× 1 random vector on the unit sphere

Sn−p = {x ∈ Rn−p : x′x = 1}, d
= means that the random variables have
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the same distribution, and M̃ = MHm is an m × m matrix in which Hm

are the m = n − p columns of the eigenvectors of Q that correspond the unit

eigenvalues, such that M̃M̃′ = MQM′.

Proof: A proof is given in Pynnönen (2010b).

3. Applications

In particular, selecting m = 1 such that M becomes a row vector vector,

Theorem 1 implies that the density function of the distribution of an arbitrary

(nonsingular) linear combination rm = m′û, where m is an n × 1 vector of

real numbers satisfying m′Qm > 0, is

frm(r) =
Γ[(n− p)/2](m′Qm)−1/2

Γ[(n− p− 1)/2]Γ[1/2]
√
n− p

(
1− r2

(n− p)m′Qm

) 1
2
(n−p−1)−1

(20)

for |r| ≤
√

(n− p)m′Qm. Thus, r2m/[(n− p)m′Qm] follows a Beta distribu-

tion with parameters 1/2 and (n− p− 1)/2. Setting the ith component in m

equal to 1 and all others equal to zero gives the density function for a single

internally studentized residual ti = ûi/s, where s =
√
ûû/(n− p),

fti(r) =
Γ[(n− p)/2](qii)

−1/2

Γ[(n− p− 1)/2]Γ[1/2]
√
n− p

(
1− r2

(n− p)qii

) 1
2
(n−p−1)−1

, (21)

|r| ≤
√

(n− p)qii, where qii is the ith diagonal element of Q.

Again, r2i /[(n − p)qii] follows a Beta distribution with parameters 1/2 and

(n−p−1)/2. Thus, the distributions of single internally studentized residuals

and their arbitrary linear combinations belong to the same family of distribu-

tions such that through simple transformations they are identically distributed

as the Beta distribution with parameters 1/2 and (n−p−1)/2. This obviously

facilitates inference based on individual residuals or their linear combinations.
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Moreover, as is shown below, the situation can be further facilitated by intro-

ducing a transformation that leads to a common t-distribution.

Individual residuals are typically used as diagnostic tools for model checking

and testing for outliers and influential observations [see, Cook and Weisberg

(1982)]. A potential field of applications of using linear combinations of in-

ternally studentized residuals is for example in testing for various seasonal

patterns in the residuals of a time series regression. Typically seasonal ef-

fects are tested using appropriate dummy-variables, which can be shown to be

equivalent of using a statistic based on an externally studentized sum of resid-

uals. Perhaps a more concrete application, where the distribution results of

this paper give additional insight is in the field of event studies in financial eco-

nomics [an excellent review is in Campbell, Lo, and MacKinlay (1997, Ch. 4)].

The traditional parametric approach is based on external studentized residu-

als. However, a non-parametric approach based on Wilcoxon-type rank sums,

suggested by Corrado (1989) for testing single period returns, and extended

in Campbell and Wasley (1993) for testing cumulative multi-day rank sums,

is gaining increasingly popularity. The used test statistics are obviously of the

type of internally studentized residuals where the nominator and denominator

are not independent. Thus, the distribution theory developed in this paper

can be readily utilized in examination of the distributional properties of the

test statistics in these cases.

Regarding externally studentized residuals in which the ratio of residual and

the estimator of standard deviation are independent, we find that

tm = rm

(
n− p− 1

n− p− r2m

) 1
2

=
m′û/

√
m′Qm√

1
n−p−1Vm

, (22)

where rm = m′û/s
√
qm, qm = m′Qm, and Vm = û′û− (m′û)2/(m′Qm), is
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a t-distributed random variable with n− p− 1 degrees of freedom by virtue of

Lemma 1, Lemma 2, and m′û/
√
m′Qm ∼ N(0, σ2) . Again, a special case

of this is a single residual, in which case the right-most expression of (22) can

be written as

ti =
ûi

s(i)
√
qii

(23)

where

s2(i) =
(n− p)s2 − û2i /qii

n− p− 1
(24)

is the residual means square from a sample with the ith observation removed

from the regression [Beckman and Trussell (1974)]. By equation (22), the

relationship between the externally studentized residual, ti, and the internally

studentized residual, ri, given in equation (6), is

ti = ri

(
n− p− 1

n− p− r2i

) 1
2

(25)

[c.f. Cook and Weisberg (1980, p. 20)]. The end result is that an arbitrary

(nonsingular) linear function of internally studentized residuals can be trans-

formed to a t-statistic with n − p − 1 degrees of freedom. Thus, utilizing the

simple transformation in (22), rather than relying on the Beta distribution the

familiar t-distribution can be used instead in the related statistical inference.

Finally, we note that for the multivariate applications Lemma 1 and Corol-

lary 2 imply that

t2M =
û′M′(MQM′)−1Mû/m

û′ (I−M′(MQM′)−1M) û/(n− p−m)
(26)

follows the F -distribution with m and n− p−m degrees of freedom. This is a

generalization of the test statistic for testing multiple outlying cases in Cook

Weisberg (1982, p. 30).

A multivariate analog to tm, defined in (22), can be forumlated in terms of

r2M =
û′M′(MQM′)−1Mû

s
, (27)
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such that we can rewrite (26) as

t2M =
r2M(n− p−m)

m(n− p− r2M)
. (28)

4. Conclusions

This paper derives the joint distribution of a general linear transformation of

internally studentized least squares residuals from a linear regression. Other

types of scaled residuals, commonly used in practical applications, can be easily

obtained as special cases by defining the linear transformation appropriately.

The distributions of arbitrary subsets as well as marginal distributions of single

residuals are obtained as special cases from the general distribution by defining

the linear transformation in a suitable manner. The paper discusses also some

potential applications in which the results can be readily applied.
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