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Abstract

This study deals with the problem of pricing European currency options in
discrete time setting, whose prices follow the fractional Black Scholes model
with transaction costs. Both the pricing formula and the fractional partial dif-
ferential equation for European call currency options are obtained by applying
the delta-hedging strategy. Some Greeks and the estimator of volatility are
also provided. The empirical studies and the simulation findings show that the
fractional Black Scholes with transaction costs is a satisfactory model.
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1 Introduction

A currency option is a contract that gives the holder the right to buy or sell

1 Department of Mathematics and Statistics, University of Vaasa, P.O. Box 700, FIN-65101
Vaasa, Finland. E-mail: foad.shokrollahi@uva.fi.

Article Info: Received : January 31, 2017. Revised : March 1, 2017.
Published online : April 1, 2017.



2 Fractional delta hedging strategy...

a certain amount of foreign currency at a fixed exchange rate (exercise price) upon

exercise of the option. There are two types of currency options: American options are

options that can be exercised at any time before they expire, while European options

can be exercised only during a specified period immediately before expiration.

Option pricing was introduced by Black-Scholes [1] in 1973. Duan and Wei [11]

indicated that option pricing by Black-Scholes model which is based on Brownian

motion cannot illustrate clearly two phenomena from stock markets: first asymmet-

ric leptokurtic features and second the volatility smile. In a work by Garman and

Kohlhagen (G−K) [13] was extended the Black-Scholes model in order to make val-

uation European currency options, having two fundamental features: (1) estimating

the market volatility of an underlying asset generally as a function of price and time

without direct reference to the specific investor characteristics such as expected yield,

risk aversion measures, or utility functions; (2) self replicating strategy or hedging.

However, some researchers (see [8]) presented some evidence of the mispriced cur-

rency options by the G − K model. The significant causes of why this model is

not suitable for stock markets are that the currencies are different from the stocks in

main respects and geometric Brownian motion cannot resolve the conduct of currency

return, see [12]. Since then, in order to overcome these problems, many systems for

pricing currency options were proposed by using amendments of the G − K model

[26, 28, 2]. Moreover, the empirical studies also demonstrated that the distributions

of the logarithmic returns in the asset market generally reveal excess kurtosis. It

can be said that the properties of financial return series are nonnormal, noninde-

pendent, and nonlinear, self-similar, with heavy tails, in both autocorrelations and

cross-correlations, and volatility clustering [15, 4, 10, 24]. Since fractional Brownian

motion (FBM) has two important properties called self-similarity and long-range

dependence, it has the ability to capture the typical tail behavior of stock prices or

indexes [36, 35, 29, 31, 30].

In classical finance theory, absence of arbitrage is one of the most unifying con-

cepts. However, behavioral finance and econophysics as well as empirical studies

sometime propose models for asset price that are not consistent with this basic as-

sumption. A case is the fractional Black-Scholes (FBS) model, which displays the

long-range dependence observed in empirical data [23, 21, 22]. The FBS model is

a generalization of the Black-Scholes model, which is based on replacing the stan-

dard Brownian motion by a FBM in the Black-Scholes model. Since FBM is not

a semimartingale [18], it has been shown that the FBS model admits arbitrage in a

complete and frictionless market [7, 25, 27, 35, 33]. The purpose of this paper is to
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resolve this contradiction between classical Black-Scholes-Merton theory and practice

through both giving up the arbitrage argument used by Black and Scholes to price

currency options and examining option replication in the presence of proportional

transaction costs in a discrete time setting. Moreover, we show that the time scal-

ing and long-range dependence in return series exactly have an impact on currency

options pricing whether proportional transaction costs are considered or not.

Leland [16] was the first who examined option replication in the presence of trans-

action costs in a discrete time setting. From the point of view of Leland [16], in a

model where transaction costs are incurred at every time the stock or the bond is

traded, the arbitrage-free argument used by Black and Scholes [23] no longer applies.

The problem is that due to the infinite variation of the geometric Brownian motion,

perfect replication incurs an infinite amount of transaction costs. Hence, he suggested

a delta hedge strategy incorporating transaction costs based on revision at a discrete

number of times. Transaction costs lead to the failure of the no arbitrage principle

and the continuous time trade in general: instead of no arbitrage, the principle of

hedge pricing - according to which the price of an option is defined as the minimum

level of initial wealth needed to hedge the option - comes to the fore.

The rest of this work is as follows: some propositions and definitions are presented

in Section 2. We propose a new framework for pricing call currency options in discrete

time setting by applying delta-hedging strategy and FBS with transaction costs, in

Section 3. Furthermore, the impact of time-step δt and Hurst parameter H on

our pricing model are discussed, in Section 3. Section 4 deals with the simulation

studies for our pricing formula, estimation of the volatility, and the Hurst parameter

H for currency call option data from China Merchants Bank (CMB). Moreover,

the comparison of our FBS model with transaction costs and traditional models is

undertaken in this Section. Section 5 is assigned to conclusion.

2 Preliminaries

In this section, we present some essential assumptions and definitions that we will

need for the rest of the paper. A FBM , BH(t) with Hurst parameter H ∈ (0, 1)

under the probability space (Ω, F, P ), is a continuous Gaussian process with the

following properties:

(i) BH(0) = 0
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(ii) E[BH(t)] = 0 for all t ≥ 0,

(iii) Cov[BH(t)BH(s)] = 1
2

[
t2H + s2H − |t− s|2H

]
for all s, t ≥ 0,

If H = 1
2
, then the corresponding FBM is the usual standard Brownian motion.

It can be easily seen that E(BH(t) − BH(s))2 = |t − s|2H . Furthermore, BH(t) has

stationary increments and is H -self-similar. More details about the FBM can be

found in the paper [17].

If H > 1
2
, the process (BH(t), t ≥ 0) exhibits a long-range dependence, that is, if

r(n) = E[BH(1)(B(n+1)−BH(n))], then
∑∞

n=1 r(n) = ∞ . As mentioned in [6], long-

range dependence is widespread in economics and finance and has remained a topic

of active research [20, 5, 3]. Long-range dependence seems also an important feature

that explains the well-documented evidence of volatility persistence and momentum

effects [17, 3]. Hereafter we shall only consider the case H ∈ (1
2
, 1), which is most

frequently encountered in the real financial data.

The groundwork of modeling the effects of transaction costs was done by Leland

[16]. He adopted the hedging strategy of rehedging at every time-step, δt . That is,

every δt the portfolio is rebalanced, whether or not this is optimal in any sense. In the

following proportional transaction cost currency options pricing model, we follow the

other usual assumptions in the Black-scholes model but with the following exceptions:

(i) The portfolio is reviewed in each finite, constant and small interval δt .

(ii) Transaction costs are proportional to the value of the dealing in the financial

assets. Assume that U contributions are purchased (U > 0) or sold (U < 0)

at the value St , hence the trading costs are defined as α
2
|U |St in both cases

of purchasing and selling. Furthermore, trading occurs just at interval. In the

FBS model, the trading of stocks or the bonds has transaction costs in any

interval of times, the no-arbitrage strategy utilized just by Black and Scholes.

Infinite variation is considered as an obstacle in the geometric FBM , and in

the unlimited value of dealing costs due to total replication.

(iii) The expected interest of the hedge portfolio is similar to that from an option.

This is the similar assessment strategy used prior on discrete hedging for absence

of transaction costs.

(iv) In non modern markets, traders are supposed to be rational, and try to increase

their utility. However, if their trade activities are supposed to be rational, the
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decision made by the traders are explained by the two important factors. The

first one refers to traders reaction to the previous stock and bond prices based

on the common standardized behavior markets. The second factor is related to

the ways in which traders follow previous decisions made by the other traders.

Delta-hedging strategy is one of the important components in pricing options

and is utilized on the trading floor. According to the assumptions presented by

Tversky and Kahneman. Following Tversky and Kahneman’s [34] view of the

availability heuristic, traders are supposed to pursue, anchor, and imitate the

delta hedging Black-Scholes policy to price an option.

3 A pricing model for currency option in discrete

time setting

Without using the arbitrage argument, in this section we derive the pricing formula

for a European currency options with transaction costs in discrete time setting. The

FBS equation is obtained and the sensitivity indicators are also analyzed in the latter

part of this section.

For our object, a FBS currency market is considered with two investment possi-

bilities:

(i) A money market account:

dFt = rdFtdt, F0 = 1, 0 ≤ t ≤ T, (3.1)

where rd shows the domestic interest rate.

(ii) A stock by the following price:

St = S0 exp{µt+ σB̂H(t)}, S0 = S > 0, 0 ≤ t ≤ T, (3.2)

where H > 1
2

is Hurst parameter.

By using the change of variable BH(t) =
µ+rf−rd

σ
t + B̂H(t), thus under the risk-

neutral measure obtained:

St = S0 exp{(rd − rf )t+ σBH(t)}, S0 = S > 0, 0 ≤ t ≤ T (3.3)
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where rf denotes foreign interest rate.

Let C(t, St) be the price of a European currency option at time t with a strike

price K that matures at time T . Then we present the pricing formula for currency

call option by the following theorem.

Theorem 3.1. C = C(t, St) is the value of the European call currency option on the

stock St satisfied (3.3) and the trading takes place discretely with rebalancing intervals

of length δt. Then C satisfies the partial differential equation

∂C

∂t
+ (rd − rf )St

∂C

∂St

+
1

2
σ̂2S2

t

∂2C

∂S2
t

− rdC = 0, (3.4)

and the value of the call currency option with exercise price K and expiration date

T is given by

C = C(t, St) = Ste
−rf (T−t)φ(d1)−Ke−rd(T−t)φ(d2). (3.5)

where

d1 =
ln

(
St

K

)
+ (rd − rf )(T − t) + σ̂

2
(T − t)

σ̂
√
T − t

, d2 = d1 − σ̂
√
T − t, (3.6)

σ̂ = σ
[
(δt)2H−1 + Le(H)

] 1
2

(3.7)

Le(H) = α
σ(δt)1−H

√
2
π

is the fractional Leland number [16] and φ(.) is the cumulative

normal density function. Moreover, using the put-call parity, we can easily obtain the

valuation model for a put currency option, which is provided by the following

P = P (t, St) = Ke−rd(T−t)φ(−d2)− Ste
−rf (T−t)φ(−d1). (3.8)

Corollary 3.1. Furthermore, if H = 1
2
, α = 0, from Equation (3.4) we have the

celebrated Black-Scholes equation

∂C

∂t
+ (rd − rf )St

∂C

∂St

+
1

2
σ2S2

t

∂2C

∂S2
t

− rdC = 0. (3.9)

Greeks summarize how option prices change with respect to underlying variables

and are critically important in asset pricing and risk management. It can be used to
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rebalance the portfolio to achieve desired exposure to a certain risk. More importantly,

knowing the Greek, a particular exposure can be hedged from adverse changes in the

market using appropriate amount of the other related financial instruments. Unlike

option prices, which can be observed in the market, Greeks can not be observed and

have to be calculated given a model assumption. Typically, the Greeks are computed

using a partial differentiation of the price formula [14, 9, 19, 32].

Theorem 3.2. The Greeks are given by

∆ =
∂C

∂St

= e−rf (T−t)Φ(d1), (3.10)

∇ =
∂C

∂K
= −e−rd(T−t)Φ(d2), (3.11)

ρrd
=
∂C

∂rd

= K(T − t)e−rd(T−t)Φ(d2), (3.12)

ρrf
=
∂C

∂rf

= St(T − t)e−rf (T−t)Φ(d1), (3.13)

Θ =
∂C

∂t
= Strfe

−rf (T−t)Φ(d1)−Krde
−rd(T−t)Φ(d2)

− Ste
−rf (T−t) σ̂

2
√
T − t

Φ′(d1), (3.14)

Γ =
∂2C

∂S2
t

= e−rf (T−t) Φ′(d1)

Stσ̂
√
T − t

, (3.15)

ϑσ̂ =
∂C

∂σ̂
= Ste

−rf (T−t)
√
T − tΦ′(d1). (3.16)

It is clear that our pricing model depends on the Hurst, time-step, and transaction

costs parameters. Hence we present the influence of these parameters in the following

theorem and Figure 1.
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Theorem 3.3. The impact of Hurst parameter H , time-step δt and transaction costs

α are as follows

∂C

∂H
=

2(δt)2H−1 ln(δt) + α
σ

√
2
π
(δt)H−1 ln(δt)

× Stσ
2e−rf (T−t)2σ̂

√
T − tΦ′(d1), (3.17)

∂C

∂δt
=

(2H − 1)(δt)2H−2 + α
σ

√
2
π
(H − 1)(δt)H−2

× Stσ
2e−rf (T−t)2σ̂

√
T − tΦ′(d1), (3.18)

∂C

∂α
=
Ste

−rf (T−t)σ
√

2
π
(δt)H−1

2σ̂

√
T − tΦ′(d1). (3.19)

From Figure 1 and Theorem 3.3, we can see that these parameters play a significant

role on the FBS model with transaction costs in discrete time setting.

Figure 1: Impact of parameters on the FBS model with transaction costs.
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4 Empirical Studies

In this section, we use the real call currency options values from the CMB to

assess our pricing formula. By applying the R/S method, we estimate the Hurst

parameter for EUR/USD and we achieve to H = 0.6103. Moreover, the estimation

of volatility is obtained by considering to the historical volatility as follows

Li = ln
(qi+1

qi

)
, (4.1)

σ =

√∑
(Li − L)2

N − 1
, L =

1

N

∑
Li, (4.2)

where qi shows the daily value of exchange rate.

These data are extracted from the Website of CMB between 01/04/2012 and

01/07/2012 (three months) with these parameters:K = 1.235, σ = 0.1051, rd =

0.0456, rf = 0.0371, T = 90
365

= 0.2465, t = 0.1, δt = 0.01, α = 0.01. We use the MAT-

LAB for obtaining results by the FBS , mixed fractional Brownian motion (MFBM)

models, and the FBS model with transaction costs (hereafter TFBS ). The values

calculated by different models, are indicated in Table 1, where PActual shows the price

of call currency options from CMB , PFBS denotes the values calculated by the FBS

model and the PMFBM computed the values by the MFBM model and the PTFBS

is the value computed by the TFBS model. With reference to Table 1, it seems

that the values of FBS , MFBM , and TFBS models are fluctuated by the actual

price from CMB , because the CMB option values are calculated by the BS model.

Moreover, our results are in line with the actual price than the results obtained from

the other models. In addition, values from the TFBS demonstrate that whenever

the time-step δt increases, the price of call currency options will decrease. It can be

said that, if we reduce the revised interval time, the pricing by our model becomes

close to the actual price. This behavior is similar to the BS model. These properties

reveal that our TFBS can get the unusual behavior from financial market and our

currency pricing model seems a satisfactory model.
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Table 1: Results by different pricing models

PFBS PMFBM PTFBS PActual

0.0289 0.0389 0.0285 0.0268

0.0341 0.0455 0.0337 0.0321

0.0404 0.0540 0.0400 0.0372

0.0594 0.0825 0.0590 0.0571

0.0644 0.0905 0.0640 0.0625

0.0779 0.1126 0.0775 0.0758

0.0859 0.1259 0.0855 0.0836

0.0929 0.1357 0.0925 0.0908

0.1023 0.1531 0.1019 0.1005

0.1119 0.1688 0.1115 0.1094

... ... ... ...

To more analyze our pricing model, we compare the prices, which are calculated

by the G−K , FBS and TFBS models for both out-of-the-money and in-the-money

cases. These parameters are chosen as follows: St = 1.512, σ = 0.11, rd = 0.0321, rf =

0.0252, t = 0.1, δt = 0.01, α = 0.1, H = 0.6 and with time maturity T ∈ [0.11, 0.5],

strike price K ∈ [1.2, 1.49] for in-the-money case and K ∈ [1.52, 1.8] for out-of-the-

money case. Figures 2 and 3 show the differences between the theoretical price by

the G−K model, FBS model and our TFBS model for in-the-money and out-of-

the-money cases, respectively. Figures 2 and 3 show that the TFBS model is better

fitted with the G −K model contrary to the FBS model. As a result, our TFBS

model seems reasonable.

5 Conclusion

Currency options are common underlying assets that are significant derivatives in

financial market. Pricing them plays an important role both in practice and theory.

The present study discussed an extension European call and put currency options

pricing model with transaction costs without applying the arbitrage strategy. We

have displayed that the time-step δt and Hurst parameter H are one of the significant

components, in pricing currency options with transaction costs. The estimation of

volatility and Hurst parameter H are also presented. Our findings showed that, since
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Figure 2: Relative difference among the G−K , FBS and TFBS for in-the-money

case

Figure 3: Relative difference among the G − K , FBS and TFBS for out-of-the-

money case

TFBS model is well-developed mathematical model of huge dependence stochastic

process, this model would consider as a reasonable model for pricing currency options.
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Appendix

Proof of Theorem 3.1: Suppose in the replicating portfolio we have ψ(t) unit

of financial asset and ϕ(t) unit of the riskless bond. Then, the value of the portfolio

at time t is

Pt = ψ(t)St + ϕ(t)Ft. (5.1)

Now the movement in St and Pt is considered under discrete time interval δt . The

movement in the value of the financial asset after time interval δt is

δSt = St((rd − rf )δt+ σδBH(t) +
1

2
[(rd − rf )δt+ σδBH(t)]2

+
1

6
eθ[(rd−rf )δt+σδBH(t)][(rd − rf )δt+ σδBH(t)]3), (5.2)

here θ = θ(t, w), w ∈ Ω, and 0 < θ < 1. Since BH(t) is continuous, from [6] we

obtain

(δt)δBH(t) = O
(
(δt)1+H

√
log(δt)−1

)
, (5.3)

eθ[(rd−rf )δt+σδBH(t)][(rd − rf )δt+ σδBH(t)]3

= O((δt)3) +O
(
(δt)2+H

√
log(δt)−1

)
+O((δt)1+2H log(δt)−1) +O

(
(δt)3H(log(δt)−1)

3
2

)
= O

(
δt)3H(log(δt)−1)

3
2

)
, (5.4)

and (δt)3H(log(δt)−1)
3
2

(δt)1+H(log(δt)−1)
1
2
→ 0 as δt→ 0.

Then we have

δSt = (rd − rf )Stδt+ σStδBH(t) +
St

2
σ2(δBH(t))2

+ O
(
(δt)1+H(log(δt)−1)

1
2

)
, (5.5)

and the movement of the portfolio is

δPt = ψ(t)
(
δSt + rfStδt

)
+ ϕ(t)δFt −

α

2
|δX1(t)|St, (5.6)

where δFt is the movement of the money market account, δψ(t) is the movement of

the number of units of asset held in the portfolio. According to the supposition (i)

and [16], transaction cost of rehedging over rehedging interval are same to α
2
|δψ(t)|St .
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The time interval and the asset change are both small, according to Taylor’s formulae

and mentioned suppositions we have

δFt = rdFtδt+O((δt)2), (5.7)

δC(t, St) =
(∂C(t, St)

∂t
+ (rd − rf )

∂C(t, St)

∂St

)
δt+ σSt

∂C(t, St)

∂St

δBH(t)

+
σ2

2
S2

t

∂2C(t, St)

∂S2
t

(δBH(t))2 +
σ2

2
St
∂C(t, St)

∂St

(δBH(t))2

+O
(
(δt)1+H(log(δt)−1)

1
2

)
, (5.8)

and

δψ(t, St) =
(∂ψ(t)

∂t
+ (rd − rf )

∂ψ(t)

∂St

)
δt+ σSt

∂ψ(t)

∂St

δBH(t)

+
σ2

2
S2

t

∂2ψ(t)

∂S2
t

(δBH(t))2 +
σ2

2
St
∂ψ(t)

∂St

(δBH(t))2

+O
(
(δt)1+H(log(δt)−1)

1
2

)
. (5.9)

From Equation (5.9) we obtain

|δψ(t, St)| = σSt

∣∣∣∂ψ(t)

∂St

∣∣∣|δBH(t)|+O(δt). (5.10)

By Equations (5.6), (5.7), (5.10), and ψ = ∂C(t,St)
∂St

is obtained

δPt = rdϕ(t)Ftδt+ ψ(t)(δSt + rfStδt)−
ασ

2
S2

t

∣∣∣∂ψ(t)

∂St

∣∣∣|δBH(t)|+O(δt)

=
∂C(t, St)

∂St

(
(rd − rf )Stδt+ σStδBH(t) + σ2St

2
(δBH(t))2 + rfStδt

)
+ rd

(
C(t, St)− St

∂C(t, St)

∂St

)
δt− ασ

2
S2

t

∣∣∣∂2C(t, St)

∂S2
t

∣∣∣|δBH(t)| (5.11)

+ O(δt).

Suppose C = C(t, St) be replicated by the portfolio Pt . The value of currency option

needs to same with the value of the replicating portfolio Pt to decrease (but not to

eschew) arbitrage opportunities and be the stable with economic balance. Then

C(t, St) = ψ(t)St + ϕ(t)Ft. (5.12)

Now we suppose that trading happen at t and t + δt , but not in between which

shows the current asset price St and the number of bonds by delta-hedging strategy
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held stables on the rebalancing interval [t, t + δt). Then, based on the suppositions

(iii) and (iv), and Equations (5.8), (5.11), (5.12) we can get

E[δPt − δC] = E
[(
rdC(t, St)− (rd − rf )St

∂C(t, St)

∂St

t

− ∂C(t, St)

∂t

)
δ − σ2

2
S2

t

∂2C(t, St)

∂S2
t

(δBH(t))2t

− ασ

2
S2

t

∣∣∣∂2C(t, St)

∂S2
t

∣∣∣|δBH(t)|+O(δt)
]

=
[
rdC(t, St)− (rd − rf )St

∂C(t, St)

∂St

− ∂C(t, St)

∂t
− σ2

2
S2

t (δt)
2H−1∂

2C(t, St)

∂S2
t

]
δt

− ασ

2
S2

t

∣∣∣∂2C(t, St)

∂S2
t

∣∣∣√ 2

π
(δt)H +O(δt) = 0, (5.13)

that mean self-financing delta-hedging strategy in discrete time setting. Then[
rdC −

(∂C
∂t

+ (rd − rf )St
∂C

∂St

+
σ2

2
S2

t (δt)
2H−1∂

2C

∂S2
t

+
ασ

2
S2

t

√
2

π
(δt)H−1

∣∣∣∂2C

∂S2
t

∣∣∣)]
δt+O(δt) = 0. (5.14)

Therefore, we suppose that

rdC =
∂C

∂t
+ (rd − rf )St

∂C

∂St

+
σ2

2
S2

t (δt)
2H−1∂

2C

∂S2
t

+
ασ

2
S2

t

√
2

π
(δt)H−1

∣∣∣∂2C

∂S2
t

∣∣∣, (5.15)

(see [16]). Assume Le(H) = α
σ(δt)1−H

√
2
π
, which is denotes fractional Leland function.

From the Equation (5.15) we obtain

∂C

∂t
+ (rd − rf )St

∂C

∂St

+
σ2

2
S2

t (δt)
2H−1∂

2C

∂S2
t

+
ασ

2
S2

t

√
2

π

∣∣∣∂2C

∂S2
t

∣∣∣Le(H)− rdC = 0. (5.16)

If H = 1
2
, from Equation (5.16) we have

∂C

∂t
+ (rd − rf )St

∂C

∂St

+
σ2

2
S2

t

∂2C

∂S2
t

+
ασ

2
S2

t

√
2

π

∣∣∣∂2C

∂S2
t

∣∣∣Le(1
2
)− rdC = 0, (5.17)
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that is denotes the Leland equation, and Le(1
2
) is called the Leland number. Where

∂2C
∂S2

t
is ever positive for the ordinary European call option without transaction costs,

if the same conduct of ∂2C
∂S2

t
is postulated here, therefore

Γ is involved in transaction term. Equation (5.16) may rewrited in the form that

same the Black-Scholes equation [1].

∂C

∂t
+ (rd − rf )St

∂C

∂St

+
σ̂2

2
S2

t

∂2C

∂S2
t

− rdC = 0, (5.18)

where the improved volatility as follows

σ̂ = σ
[
(δt)2H−1 + Le(H)

] 1
2
. (5.19)

Then, from Equations (5.18) and (5.19) we can get

C = C(t, St) = e−rf (T−t)φ(d1)−Ke−rd(T−t)φ(d2), (5.20)

where

d1 =
ln(St

K
) +

(
rd − rf + σ̂2

2

)
(T − t)

σ̂
√
T − t

, d2 = d1 − σ̂
√
T − t, (5.21)

and φ(.) is the cumulative normal distribution.

Further, if H = 1
2
, and α = 0, by (5.17) we have

∂C

∂t
+ (rd − rf )St

∂C

∂St

+
σ2

2
S2

t

∂2C

∂S2
t

− rdC = 0, (5.22)

which is the Black-Scholes equation [1].

Proof of Theorem 3.2: First, we derive a general formula . Let y be one of the

influence factors. Thus we have

∂C

∂y
=

∂Ste
−(rf )(T−t)

∂y
Φ(d1) + Ste

−rf (T−t)∂Φ(d1)

∂y

− ∂Ke−rd(T−t)

∂y
Φ(d2)−Ke−rd(T−t)∂Φ(d2)

∂y
. (5.23)
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But

∂Φ(d2)

∂y
= Φ′(d2)

∂d2

∂y

=
1√
2π
e−

d2
2
2
∂d2

∂y

=
1√
2π

exp
(
− (d1 − σ̂

√
T − t)2

2

)∂d2

∂y

=
1√
2π
e−

d2
1
2 exp

(
d1σ̂

√
T − t)

)
exp

(
− σ̂2(T − t)

2

)∂d2

∂y

=
1√
2π
e−

d2
1
2 exp

(
ln
St

K
+ (rd − rf )(T − t)

)∂d2

∂y

=
1√
2π
e−

d2
1
2
S

K
exp

(
(rd − rf )(T − t)

)∂d2

∂y
. (5.24)

Then we have that

∂C

∂y
=

∂Ste
−(rf )(T−t)

∂y
Φ(d1)−

∂Ke−rd(T−t)

∂y
Φ(d2)

+ Ste
−rf (T−t)Φ′(d1)

∂σ̂
√
T − t)

∂y
. (5.25)

Substituting in (5.25) we get the desired Greeks.

Proof of Theorem 3.3:

∂C

∂H
= Ste

−rf (T−t)Φ′(d1)
∂σ̂

√
T − t)

∂H
Φ′(d1)

= Stσ
2e−rf (T−t)

2(δt)2H−1 ln(δt) + α
σ

√
2
π
(δt)H−1 ln(δt)

2σ̂

×
√
T − tΦ′(d1), (5.26)

and

∂C

∂δt
= Ste

−rf (T−t)Φ′(d1)
∂σ̂

√
T − t)

∂δt
Φ′(d1)

= Stσ
2e−rf (T−t)

(2H − 1)(δt)2H−2 + α
σ

√
2
π
(H − 1)(δt)H−2

2σ̂

×
√
T − tΦ′(d1). (5.27)

∂C

∂α
= Ste

−rf (T−t)Φ′(d1)
∂σ̂

√
T − t)

∂α
Φ′(d1)

=
Ste

−rf (T−t)σ
√

2
π
(δt)H−1

2σ̂

√
T − tΦ′(d1). (5.28)
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