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ON SYMMETRIES IN THE THEORY OF SINGULAR

PERTURBATIONS

SEPPO HASSI AND SERGEY KUZHEL

Abstract. For a nonnegative self-adjoint operator A0 acting on a Hilbert
space H singular perturbations of the form A0+V are studied under some ad-
ditional requirements for the associated selfadjoint realizations. Here V takes
values in H

�2(A0), outside the original Hilbert space H, and is typically de-
termined by a collection of certain unbounded functionals. To restrict the
selection of self-adjoint realizations for the formal expression A + V a class
of admissible operators is introduced. Further symmetry requirements are ex-
pressed by using a notion of p(t)-homogeneous operators, a concept which is
de�ned here by means of a one-parameter family of unitary operators U, which
is closed under taking adjoints. A related requirement of �(t)-invariance for
the unbounded functionals appearing in singular perturbations is also stud-
ied. This gives an abstract framework to study singular perturbations with
symmetries and it allows to incorporate physically meaningful restrictions for
the corresponding self-adjoint realizations. The results are applied for the in-
vestigation of singular perturbations of the Schr�odinger operator in L2(R3)
assuming �(t)-invariance with respect to scaling transformations in R3.

1. Introduction

Let A0 be a nonnegative self-adjoint (in general unbounded) operator acting on
a Hilbert space H and let

H2(A0) � H1(A0) � H � H�1(A0) � H�2(A0)

be the standard scale of Hilbert spaces associated with A0. More precisely, this
means that

(1.1) Hk(A0) = D(Ak=2
0 ); k = 1; 2;

equipped with the norm kukk = k(A0 + I)k=2uk. The conjugated spaces H�k(A0)
can be de�ned as the completions of H with respect to the norms

(1.2) kuk�k = k(A0 + I)�k=2uk; u 2 H:
By (1.2), the resolvent operator (A0 + I)�1 can be continuously extended to an

isometric mapping (A0 + I)�1 from H�2(A0) onto H and, hence, the relation

(1.3) <  ; u >= ((A0 + I)u; (A0 + I)�1 ); u 2 H2(A0)
enables one to identify the elements  2 H�2(A0) as continuous linear functionals
on H2(A0).
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Consider the formal expression

(1.4) A0 +

nX
i;j=1

bij <  j ; � >  i; bij 2 C; n 2 N;

where elements  j (1 � j � n) form a linearly independent system in H�2(A0). In
what follows it is supposed that the linear span X of f jgnj=1 satis�es the condition
X \ H = f0g, i.e., elements  j are H-independent. In this case, the perturbation
V =

Pn
i;j=1 bij <  j ; � >  i is said to be singular and the formula

(1.5)
Asym = A0 � D(Asym); D(Asym) = fu 2 D(A0) :<  j ; u >= 0; 1 � j � n g

determines a closed symmetric densely de�ned operator in H.
From the point of view of the theory of singular perturbations, cf. e.g. [4],

[5], [26], each intermediate extension A of Asym, i.e., Asym � A � A�sym, can be
viewed to be singularly perturbed with respect to A0 and, in general, such an A
can be regarded as an operator-realization of the formal expression (1.4) in H. In
this context, the natural question arises whether and how one could establish a
physically meaningful correspondence between the parameters bij of the singular
potential V and the intermediate extensions of Asym.

The investigation of this problem is one of the main aims of the present paper.
In particular, the Albeverio { Kurasov approach [5], [6] is augmented and combined
with the boundary triplets technique [19], [22], [31], cf. Section 2. The approach
used in [5], [6] allows one to involve parameters bij of the singular perturbation in
the description of the corresponding operator realization of (1.4), while boundary
triplets provide a convenient tool for some further investigation of such operators.
This leads to simple descriptions for the associated operator realizations (Theorem
2.3) without the standard assumption of orthonormality of  j or the requirement
of the matrix B = (bij)

n
i;j=1 to be an invertible, see e.g. [5, Theorem 3.1.2].

Recall that in the Albeverio-Kurasov approach a regularization

(1.6) AR := A0 +

nX
i;j=1

bij <  exj ; � >  i;

for (1.4) is constructed such that AR is well de�ned as an operator from D(A�sym)
to H�2(A0). The corresponding operator realization A of (1.4) is then determined
by the formula

(1.7) A = AR � D(A); D(A) = f f 2 D(A�sym) : ARf 2 H g:
A principal point here is the construction of the extended functionals <  exj ; � >
(j = 1; : : : ; n) de�ned on D(A�sym). These functionals are uniquely determined
by the choice of a Hermitian matrix R = (rjp)

n
j;p=1. There are certain natural

requirements for the choice of R induced by the fact that any functional <  ; � >
where  2 X \H�1(A0) admits a natural continuation onto H1(A0)\D(A�sym) (for
further details, see [5] and Section 3 below). In order to preserve these natural
continuations of <  ; � > ( 2 X \ H�1(A0)), the concept of admissible matrices
R for the regularization of (1.4) has been introduced in [6].

In Section 3, the notion of admissible operators for the regularization of (1.4) is
de�ned, which is convenient for applications, and the set of all admissible matrices
is described via admissible operators. Geometric characterizations for the set of
admissible operators are established (see Theorem 3.4, Theorem 3.6) involving a
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connection to the Friedrichs extension AF of Asym. Also it is shown that there
exists a nonnegative admissible operator for the regularization of (1.4) if and only
if the Friedrichs and the Krein-von Neumann extension of Asym are transversal
(Theorem 3.9). It should be noted that the selection of a certain \basic operator" for
the regularization of a formal expression A0+V , where V is, in general, an in�nite
dimensional singular perturbation, plays also a key role in the approach suggested
recently by Arlinskii and Tsekanovskii [12] for determining self-adjoint realizations
of A0+V . Observe, that for �xed parameters bij of the singular perturbation in (1.4)
the corresponding operator realization A depends on the choice of an admissible

matrix R or, what is equivalent (see (3.3)), of an admissible operator eA. If the
singular perturbation V in (1.4) is form-bounded (i.e., X � H�1(A0)), then the
admissible operator is determined uniquely and it coincides with the Friedrichs
extension ofAsym (cf. Corollary 3.7). So, in this case, the formulas (1.6), (1.7) de�ne
a unique operator realization for (1.4) with the parameters bij �xed. Otherwise,
X 6� H�1(A0) and then one needs to impose some extra assumptions in order to
select a unique admissible operator for the regularization of (1.4).

It is well known, see e.g. [3], [6], [8], [15], [16], [27], [36], that various symmetry
properties of the unperturbed operator A0 and its singular perturbation V play
an important role in applications to quantum mechanics. For this reason, it is
natural to impose additional symmetry conditions for the choice of a unique admis-
sible operator in order to ensure a physically meaningful correspondence between
the parameters bij of the singular perturbation and the corresponding operator
realization.

To study this problem in an abstract framework, one needs to de�ne the notion
of symmetry for the unperturbed operator A0 and for the singular elements  j in
(1.4). Generalizing the ideas suggested in [35], [28], and [5], the required de�nitions
will be formulated here as follows:

Let T be some subset of the real line R and let U = fUtgt2T be a one-parameter
family of unitary operators acting on H with the following additional property:

(1.8) Ut 2 U () U�t 2 U
De�nition 1.1. A linear operator A acting in H is said to be p(t)-homogeneous
with respect to U if there exists a real function p(t) de�ned on T, such that

(1.9) UtA = p(t)AUt; 8t 2 T:
In other words, the set U determines the structure of a symmetry and the prop-

erty of A to be p(t)-homogeneous with respect to Umeans that A possesses a certain
symmetry with respect to U.

De�nition 1.2. A singular element  2 H�2(A0) n H is said to be �(t)-invariant
with respect to U if there exists a real function �(t) de�ned on T, such that

(1.10) Ut = �(t) ; 8t 2 T:
Here Ut stands for the continuation of Ut onto H�2(A0), see Section 4 for details.

The condition of �j(t)-invariance of  j is equivalent to the relation (see (4.11))

�j(t) <  j ; u >=<  j ; U
�
t u >; 8u 2 H2(A0); 8t 2 T:

In Section 4, it is shown that the preservation of these properties for the ex-
tended functionals <  exj ; � > in (1.6) is equivalent to the p(t)-homogeneity of the

corresponding admissible operator eA (see Theorem 4.6). Consequently, in the case
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where the unperturbed operator A0 is p(t)-homogeneous and the singular elements
 j are �j(t)-invariant, the natural requirement of �j(t)-invariance for the extended
functionals <  exj ; � > gives the possibility to select a unique admissible operatoreA by imposing the additional requirement of p(t)-homogeneity of eA. In Section 4
this problem is studied in detail.

It turns out that the existence of p(t)-homogeneous admissible operators for
the regularization of (1.4) is closely related to the transversality of the Friedrichs
and the Krein-von Neumann extension of Asym (cf. Theorem 3.9, Theorem 4.9).

Furthermore, the construction of an admissible operator eA in Theorem 4.10 im-

mediately implies that eA is an extremal extension of Asym, see De�nition 3.10 for
details. It should be noted that extremality is a physically reasonable concept.
For example, only the operators which are extremal in this sense determine a free
evolution in the Lax{Phillips scattering theory [30], [33].

In Section 5, the properties of self-adjoint operator realizations of (1.4) are stud-
ied under the assumptions that the operator A0 and the singular elements  j in
(1.4), respectively, are p(t)-homogeneous and �j(t)-invariant with respect to a fam-

ily U and an admissible operator eA for the regularization of (1.4) is chosen to be
p(t)-homogeneous.

In Section 6, the results obtained in the earlier sections are applied for the
investigation of �nite rank singular perturbations of the Schr�odinger operator ��
assuming the �(t)-invariance with respect to scaling transformations in R3. The
choice of U as the set of scaling transformations is inspired here by the fact that
Shr�odinger operators with regular potentials homogeneous with respect to scaling
transformations have a lot of interesting properties, see e.g. [17], which appear
due the homogeneity of potentials. The results of Section 6 show that the �(t)-
invariance of singular potentials with respect to scaling transformations also ensures
speci�c properties for the corresponding self-adjoint operator realizations of (1.4).
It is emphasized that this condition of symmetry makes it possible to get simple
solutions to many non-trivial problems (like description of nonnegative operator
realizations, spectral properties, completeness of the wave operators, explicit form
of the scattering matrix, and so on).

Throughout the paper D(A), R(A), and ker A denote the domain, the range, and
the null-space of a linear operator A, respectively. A � D stands for the restriction
of A to the set D. The transpose (of a matrix or a vector) is denoted by B>, v>.

2. Operator realizations of finite rank singular perturbations

Consider the heuristic expression (1.4) involving the singular perturbation term
V =

Pn
i;j=1 bij <  j ; � >  i. Following [5], [6] �rst some regularization (1.6) of (1.4)

is constructed as an operator from D(A�sym) to the scale space H�2(A0) and then
the corresponding operator realization A of (1.4) is de�ned by (1.7) as an operator
in H.

To clarify the meaning of A0 and  exj in (1.6), observe that A0 stands for the
continuation of A0 as a bounded linear operator acting from H into H�2(A0). Using
the extended resolvent in (1.3) this continuation of A0 can be determined also by
the formula

(2.1) A0f := [(A0 + I)�1]�1f � f; 8f 2 H:
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The linear functionals <  exj ; � > are extensions of the functionals <  j ; � > onto
D(A�sym). Using the well-known relation

(2.2) D(A�sym) = D(A0) _+H; where H = ker (A�sym + I);

one concludes that <  j ; � > can be extended onto D(A�sym) by �xing their values
on H. It follows from (1.2), (1.3), and (1.5) that the vectors

(2.3) hj = (A0 + I)�1 j ; j = 1; : : : ; n;

form a basis of the defect subspace H = ker (A�sym+ I) of Asym. Hence, <  exj ; � >,
1 � j � n, are well-de�ned by the formula

(2.4) <  exj ; f >:=<  j ; u > +

nX
p=1

�prjp

for all elements f = u +
Pn

p=1 �php 2 D(A�sym) (u 2 D(A0), �p 2 C), when the
entries

rjp :=<  j ; (A0 + I)�1 p >=<  j ; hp >

of the matrix R = (rjp)
n
j;p=1 are determined.

If all  j 2 H�1(A0), then rjp are well de�ned and R is a Hermitian matrix (see
[5]). Otherwise, the matrix R is not uniquely determined. In what follows, it is
assumed that R is already chosen as a Hermitian1 matrix. The problem of an
appropriate choice of R will be discussed in Section 3.

In order to describe an operator realization A of (1.4) in terms of parameters bij
of the singular perturbation V , the method of boundary triplets (see [22], [31], [19],
and the references therein) is now incorporated.

De�nition 2.1 ([22]). A triplet (N;�0;�1), where N is an auxiliary Hilbert space
and �0, �1 are linear mappings of D(A�sym) into N , is called a boundary triplet of
A�sym if

(A�symf; g)� (f;A�symg) = (�1f;�0g)N � (�0f;�1g)N ; f; g 2 D(A�sym)
and the mapping (�0;�1) : D(A�sym)! N �N is surjective.

The next two results (Lemma 2.2 and Theorem 2.3) were proved in [7]. For the
convenience of the reader some principal steps of their proofs are repeated.

Lemma 2.2. The triplet (Cn;�0;�1), where the linear operators �i : D(A�sym) !
Cn are de�ned by the formulas

(2.5) �0f =

0B@ <  ex1 ; f >
...

<  exn ; f >

1CA ; �1f = �

0B@ �1
...
�n

1CA ;

where f = u +
P

j=1 �jhj 2 D(A�sym) (u 2 D(A0); �j 2 C) and <  exj ; f > is

de�ned by (2.4), forms a boundary triplet for A�sym.

1the requirement of Hermiticity arises from the natural assumption that an operator realization
of (1.4) obtained via its regularization is self-adjoint if the singular perturbation V is symmetric,
see Theorem 2.3 for details.
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Proof. Using (1.3), (2.2), and (2.3) it is easy to verify with straightforward calcu-
lations that the mappings

(2.6) b�0f =

0B@ �1
...
�n

1CA ; b�1f =

0B@ <  1; u >
...

<  n; u >

1CA ; f = u+
X
j=1

�jhj ;

satisfy the conditions of De�nition 2.1. Thus, (Cn; b�0; b�1) is a boundary triplet for
A�sym.

It follows from (2.4), (2.5), and (2.6) that

(2.7) �0f = b�1f +Rb�0f; �1f = �b�0f; f 2 D(A�sym):
These relations between �i and b�i, and the fact that (Cn; b�0; b�1) is a boundary
triplet for A�sym, imply that (Cn;�0;�1) also is a boundary triplet for A�sym. �

Observe, that using [19] it is easy to see that the Weyl functionsM(z) and cM(z)
associated with the boundary triplets (2.5) and (2.6), respectively, are connected
via the linear fractional transform

M(z) = �(R+ cM(z))�1; z 2 C n R:
Theorem 2.3. The operator realization A of (1.4) is an intermediate extension of
Asym which coincides with the operator

(2.8) AB = A�sym �D(AB); D(AB) = f f 2 D(A�sym) : B�0f = �1f g;
where �i are de�ned by (2.5) and B = (bij)

n
i;j=1 is the coe�cient matrix of the

singular perturbation V =
Pn

i;j=1 bij <  j ; � >  i in (1.4).

If V is symmetric, i.e., < V u; v >=< u; V v > (u; v 2 H2(A0)), then the corre-
sponding operator realization AB becomes self-adjoint.

Proof. It follows from (2.1) that

(2.9) A0hj =  j � hj

for all hj de�ned by (2.3). Rewriting f 2 D(A�sym) in the form f = u+
P

i=1 �ihi,
where u 2 D(A0), hi 2 H, �i 2 C, and using (1.6), (2.5), and (2.9) leads to

ARf = A0u�
nX
i=1

�ihi +

nX
i;j=1

bij <  exj ; f >  i +

nX
i=1

�i i

= A�symf + ( 1; : : : ;  n)[B�0f � �1f ]:

This equality and (1.7) show that f 2 D(A) if and only if B�0f � �1f = 0.
Therefore, the operator realization A of (1.4) is an intermediate extension of Asym
and A coincides with the operator AB de�ned by (2.8).

To complete the proof, it su�ces to observe that V is symmetric if and only if

the corresponding matrix of coe�cients B = (bij)
n
i;j=1 is Hermitian, i.e., B = B

>
.

In this case, the formula (2.8) immediately implies the self-adjointness of AB (see
[22]). Theorem 2.3 is proved. �

Remark 2.4. Another approach, also involving the use of boundary triplets, to
determine self-adjoint operator realizations of �nite rank singular perturbations of
the form A0 +G�G�, where G is an injective linear mapping from Cn to H�k(A0)
was presented in [18, Section 4].
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3. Admissible matrices and admissible operators

There are certain natural requirements for the determination of the entries rjp
of the matrix R in (2.4). Indeed, if the subsapce

(3.1) X = span f j : j = 1; : : : ; n g
has a nonzero intersection with H�1(A0), then for any  2 X \ H�1(A0), the cor-
responding element h = (A0 + I)�1 belongs to H1(A0) and, hence, the functional
<  ; � > de�ned by (1.3) admits the following extension by continuity onto H1(A0):

<  ; f >= ((A0 + I)1=2f; (A0 + I)1=2h); 8f 2 H1(A0):
In order to preserve such natural extensions of <  ; � > onto D(A�sym) \ H1(A0)

in the de�nition (2.4), the concept of admissible matrices R as introduced in [6] is
used.

De�nition 3.1. A Hermitian matrix R = (rjp)
n
j;p=1 is called admissible for the

regularization AR of (1.4) if its entries rjp are chosen in such a way that if a
singular element  = c1 1 + � � � + cn n belongs to H�1(A0), then for all f 2
D(A�sym) \ H1(A0)

(3.2) <  ex; f >=

nX
j=1

cj <  exj ; f >= ((A0 + I)1=2f; (A0 + I)1=2h);

where <  exj ; f > are de�ned by (2.4) and h = (A0 + I)�1 .

It is convenient to describe the set of admissible matrices in terms of a certain
associated operators. In fact, it follows from Lemma 2.2, relations (2.7), and the
general theory of boundary triplets [19], [31] that the operator

(3.3) eA := A�sym �D( eA); D( eA) = ker �0 = f f 2 D(A�sym) : �Rb�0f = b�1f g;
is a self-adjoint extension of Asym and the choice of an admissible matrix R in (2.4)

is equivalent to the choice of eA de�ned by (3.3).

De�nition 3.2. An operator eA is called admissible for the regularization of (1.4)

if eA is de�ned by (3.3) with an admissible matrix R.

Since R is Hermitian, De�nition 3.2 implies that eA is a self-adjoint extension

of Asym. In general, an admissible operator eA need not be nonnegative. It is
nonnegative if and only if

(3.4) (AF + I)�1 � ( eA+ I)�1 � (AN + I)�1;

where AF is the Friedrichs extension and AN is the Krein-von Neumann extension
of Asym (see e.g. [29], [24] and the references therein).

The next lemma gives some useful facts concerning the (unperturbed) nonnega-
tive self-adjoint operator A0 and its relation to the Friedrichs extension AF of Asym.
They can be considered to be well known from the extension theory of nonnegative
operators, therefore details for the present formulations with their proofs are left
to the reader; see e.g. [9], [20], [24], [25], [29], [31].

Lemma 3.3. Let C = (A0 + I)�1 � (AF + I)�1 and let S0 = A0 \AF . Moreover,
denote H = ker (A�sym + I) and H0 = ker (S�0 + I). Then:

(i) R(C) = H0;
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(ii) ker C = ran (S0 + I) = ran (Asym + I)�H00, where H00 = H	H0;
(iii) R(C1=2) = domA

1=2
0 \H = domA

1=2
0 \H0;

(iv) D(A1=20 ) = D(A1=2F ) _+R(C1=2).

Using the spaces introduced in (1.1) one can rewrite the decomposition in part
(iv) of Lemma 3.3 as follows:

(3.5) H1(A0) = D �1 R(C1=2);

where D (= D(A1=2F )) stands for the completion of D(Asym) in the Hilbert space
H1(A0) and �1 denotes the orthogonal sum in H1(A0).

The set of all admissible operators can now be characterized as follows.

Theorem 3.4. A self-adjoint extension eA of Asym is an admissible operator for the

regularization of (1.4) if and only if eA is transversal to A0 (i.e., D(A0) +D( eA) =
D(A�sym)) and
(3.6) D( eA) \ H1(A0) � D(AF );

where AF is the Friedrichs extension of Asym.

Proof. Assume that the self-adjoint extension eA of Asym is transversal to A0 and

satis�es the condition (3.6). In view of (2.6) D(A0) = ker b�0. Therefore transver-
sality of eA and A0 is equivalent to the representation of D( eA) in the form (3.3)
with an n�n Hermitian matrix R (here Asym has �nite defect numbers (n; n)), cf.
[19], [20, Proposition 1.4]. By Lemma 3.3, see also (3.5), one can write

(3.7) H1(A0) = D �1 H0; H0 = H \ H1(A0) = (A0 + I)�1[X \ H�1(A0)];
where X is as in (3.1). Since

(3.8) D(AF ) = D \D(A�sym);
equality (3.7) shows that the condition (3.6) is equivalent to the relation

(3.9) ((A0 + I)1=2 ~f; (A0 + I)1=2h) = 0; 8 ~f 2 D( eA) \ H1(A0); 8h 2 H0:
Now it is shown that R is an admissible matrix in the sense of De�nition 3.1 by
verifying (3.2) for all  2 X \ H�1(A0). Observe, that the mapping �0 de�ned in
Lemma 2.2, see also (2.7), determines the extended functionals <  exj ; f > in (2.4).

The transversality of eA and A0 yields the following decomposition for the ele-
ments f 2 D(A�sym):
(3.10) f = ~f + u;

where ~f 2 D( eA) and u 2 D(A0) are uniquely determined modulo D(Asym). If
 =

Pn
j=1 cj j 2 H�1(A0), then by (3.7) h = (A0 + I)�1 2 H0. Now with

f 2 D(A�sym) \ H1(A0) decomposed as in (3.10) one obtains:

<  ex; f > =

nX
j=1

cj <  exj ; f >= c�0f
(3:10)
= c�0( ~f + u)(3.11)

(2:7)
= c(b�1 +Rb�0)u = cb�1u (2:6)

= <  ; u >
(1:3)
= ((A0 + I)u; h)

where c := (c1; : : : ; cn). On the other hand, it follows from (3.9) that

((A0 + I)1=2f; (A0 + I)1=2h) = ((A0 + I)1=2( ~f + u); (A0 + I)1=2h) = ((A0 + I)u; h);
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which combined with (3.11) proves (3.2). Thus, R is an admissible matrix and eA
is an admissible operator.

Conversely, assume that eA is an admissible operator. Then the relation (3.3)

ensures the transversality of eA and A0 and R determines the extended functionals
<  exj ; f > via (2.4). Reasoning as in (3.11)) it is seen that (3.2) implies

0 = ((A0 + I)1=2f; (A0 + I)1=2h)� <  ex; f > = ((A0 + I)1=2 ~f; (A0 + I)1=2h)

for all f 2 D(A�sym) \ H1(A0) and h 2 H0. Thus, the relation (3.9) and, equivalently,
the relation (3.6) is satis�ed. Theorem 3.4 is proved. �

For some further study of admissible operators the following lemma is needed.

Lemma 3.5. Let eH be a subspace of H = ker (A�sym + I). Then the symmetric
operator

(3.12) S = AF �D(S); D(S) = (AF + I)�1[R(Asym + I)� eH]
satis�es the relations

(3.13) D(S) \ D(A0) = D(Asym) and D(S) +D(A0) = D(AF ) _+H0
if and only if

(3.14) dim eH = dimH0 and eH \H00 = f0g;
where H0 = H \ H1(A0) and H00 = H 	H0. In this case, the domain of S admits
the following description:

(3.15) D(S) = D(Asym) _+ fu+ h0 : h0 2 H0; u = u(h0) g;
where u = u(h0) 2 D(A0) can be (uniquely) determined from h0 2 H0; in particular,
u satis�es the relation

(3.16) ((A0 + I)u;eh?) =<  ; u >= 0; 8eh? 2 H 	 eH;  = (A0 + I)eh?:
Proof. Denote S0 := AF \A0. By Lemma 3.3

(3.17) D(S0) = (A0 + I)�1[R(Asym + I)�H00] = (AF + I)�1[R(Asym + I)�H00];
where H00 = H	H0. Comparing (3.12) and (3.17), one concludes that

D(S) \ D(A0) = D(S) \ D(S0) = (AF + I)�1[R(Asym + I)� ( eH \H00)]:
Thus,

D(S) \ D(A0) = D(Asym) () eH \H00 = f0g:
The relations (3.12) and (3.17) also show that

(3.18) D(S) +D(A0) = (AF + I)�1[R(Asym + I)� ( eH _+H00)] + (A0 + I)�1H0:
Here (A0 + I)�1H0 can be represented as

(3.19) (A0 + I)�1H0 = f (AF + I)�1h0 + Ch0 : h0 2 H0 g;
where C = (A0 + I)�1 � (AF + I)�1. It follows from Lemma 3.3 that

(3.20) R(C) = H0; ker C = ran (Asym + I)�H00:
Relations (3.18), (3.19), and (3.20) show that the second identity in (3.13) holds if

and only if an arbitrary element h0 2 H0 admits the representation h0 = eh + h00,eh( 6= 0) 2 eH, h00 2 H00. Since eH \H00 = f0g, this representation is possible only in

the case where dim eH = dimH0.
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The de�nition (3.12) shows that D(S) = D(Asym) _+(AF + I)�1 eH; where
(AF + I)�1 eH = f (A0 + I)�1eh� Ceh : eh 2 eHg:

Since eH satis�es (3.14), it follows from (3.20) that C eH = H0. Now, setting u =

(A0+ I)�1eh and h0 = �Ceh, one obtains (3.15) and (3.16). Note that the preimageeh = C�1h0 2 eH, and therefore also u, is uniquely determined by h0 2 H0, �

The next theorem gives a description of all admissible operators.

Theorem 3.6. Let eA be a self-adjoint extension of Asym and let the symmetric

operator S := eA\AF be represented as in (3.12) with some subspace eH of H. Then
the following statements are equivalent:

(i) eA is an admissible operator for the regularization of (1.4);

(ii) eA is a self-adjoint extension of S transversal to the Friedrichs extension SF
of S and the subspace eH satis�es the conditions in (3.14).

Proof. Let eA be an admissible operator. Since eA and A0 are transversal, one has

(3.21) D( eA) \ D(A0) = D(Asym); D( eA) +D(A0) = D(AF ) _+H = D(A�sym):
The condition (3.6) is equivalent to

D( eA) \ H1(A0) = D( eA) \ D(AF ) = D( eA \AF ):

Thus, intersecting all parts of (3.21) with H1(A0) one concludes that the relations

(3.13) are true for S = eA \ AF . By Lemma 3.5, the subspace eH satis�es (3.14).
Furthermore, since the Friedrichs extension SF of S coincides with AF , one gets

D(SF )\D( eA) = D(AF )\D( eA) = D(S). This implies the transversality of SF andeA. The implication (i) ) (ii) is proved.

Now, assume that (ii) is satis�ed. Since S � Asym, the operator eA is a self-

adjoint extension of Asym. It follows from (3.12) that ker (S� + I) = H 	 eH
and hence, D(S�) = D(SF ) + ker (S� + I) = D(AF ) _+(H 	 eH). On the other

hand, the transversality of SF and eA gives D(S�) = D(AF ) + D( eA). Therefore,

D(AF )+D( eA) = D(AF ) _+(H	 eH). This equality together with the second relation
in (3.13) yields

D(A0) +D( eA) = D(S) +D(A0) +D( eA)
= (D(AF ) _+H0) +D( eA)
= D(AF ) _+H0 _+(H	 eH):(3.22)

The conditions (3.14) imply that H0 _+(H 	 eH) = H. Hence, (3.22) shows that

D(A0) + D( eA) = D(AF ) _+H = D(A�sym), i.e., eA and A0 are transversal. Fur-

thermore, by Lemma 3.3, see also (3.8), D(AF ) _+H0 = H1(A0) \ D(A�sym). Now,
employing the second relation in (3.13) one obtains

D( eA) \ H1(A0) = D( eA) \ (D(S) +D(A0)) = D(S)+D(Asym) = D(S) � D(AF ):

According to Theorem 3.4 this means that eA is an admissible operator for the
regularization of (1.4). Thus, the implication (ii) ) (i) is proved. �
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Corollary 3.7. If all the singular elements  j in the formal expression (1.4) belong
to H�1(A0), then there exists a unique admissible operator for the regularization of
(1.4) and it coincides with the Friedrichs extension AF of Asym.

Proof. Assume that  j 2 H�1(A0) for all j = 1; : : : ; n. Then D(A�sym) � H1(A0)

and H0 = H. Let eA be an admissible operator for the regularization of (1.4) and

let S = eA \ AF . By Theorem 3.6 the corresponding subspace eH satis�es (3.14) in

Lemma 3.5, so that eH = H. Now (3.12) gives S = AF and since S = eA \ AF , one

concludes that eA = AF . This completes the proof. �

Corollary 3.8. If all the elements  j in (1.4) are H�1(A0)-independent (i.e. X \
H�1(A0) = f0g), then every self-adjoint extension eA of Asym transversal to A0 is
admissible for the regularization of (1.4).

Proof. The condition of H�1(A0)-independency means that H0 = f0g. In this case,

only the zero subspace eH = f0g can satisfy (3.14). The corresponding operator S
coincides with Asym. Moreover, since H0 = f0g, Lemma 3.3 shows that SF = AF =

A0. Thus, by Theorem 3.6, eA is admissible if and only if it is transversal to A0. �

The properties of admissible operators for the regularization of (1.4) is closely re-
lated to the transversality of the Friedrichs and the Krein-von Neumann extensions
of Asym.

Theorem 3.9. There exists a nonnegative admissible operator eA for the regulariza-
tion of (1.4) if and only if the Friedrichs extension AF and the Krein-von Neumann
extension AN of Asym are transversal.

Proof. Let eA be a nonnegative admissible operator. Then eA is a nonnegative ex-

tension of Asym and therefore ( eA+ I)�1 satis�es the inequalities (3.4). Recall that
transversality of self-adjoint extensions eA1 and eA2 of Asym is equivalent to

(3.23) [( eA1 + I)�1 � ( eA2 + I)�1]H = H;
(see e.g. [19]). Hence, if AF and AN are not transversal then (AF + I)�1h =

(AN + I)�1h for some nonzero h 2 H. Then nonnegativity of eA and A0 yields

( eA+ I)�1h = (A0 + I)�1h due to (3.4) (with similar inequalities for A0), so that

[( eA+ I)�1 � (A0 + I)�1]H � H	 < h >;

and by (3.23) eA and A0 cannot be transversal. This is a contradiction to the

admissibility of eA. Thus AF and AN are transversal.
To prove the converse statement assume that AF and AN are transversal. LeteH be a subspace of H, which satis�es (3.14) and let the symmetric operator S

be de�ned by (3.12) in Lemma 3.5. Moreover, let eA be the Krein-von Neumann

extension of S. Clearly, eA is a nonnegative self-adjoint extension of Asym. It

remains to prove that the operator eA is admissible for the regularization of (1.4).
To see this, observe that the Friedrichs extension of S coincides with AF . Then it
follows from [11, Proposition 7.2] that the Friedrichs extension SF = AF and the

Krein-von Neumann extension eA of S are transversal with respect to S. Therefore,

by Theorem 3.6, eA is an admissible operator. �
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Observe that S in Theorem 3.9 is a restriction of the Friedrichs extension AF of
Asym. Since the admissible operator eA constructed in Theorem 3.9 is the Krein-

von Neumann extension of S it is a consequence of [11, Theorem 6.4] that eA is an
extremal extension of Asym in the sense of the following de�nition

De�nition 3.10. [[10], [11]] A self-adjoint extension eA of Asym is called extremal
if it is nonnegative and satis�es the condition

inf
u2D(Asym)

( eA(f � u); f � u) = 0 for all f 2 D( eA):
Theorem 3.11. Let the Friedrichs extension AF and the Krein-von Neumann ex-
tension AN of Asym be transversal, and let S be de�ned by (3.12) and (3.14). Then
among all self-adjoint extensions of S there exists a unique extremal admissible

operator eA for the regularization of (1.4).

Proof. In view of Theorem 3.9, it su�ces to show that the Krein-von Neumann

extension eA of S is the only extremal extension of Asym which is admissible for the
regularization of (1.4).

To prove this assume that bA is extremal and admissible. Then by [11, Theorem

6.4] bA as an extremal extension of Asym is the Krein-von Neumann extension of

the symmetric operator bS := bA \AF . Moreover, by Theorem 3.6 the admissibility

of bA means that bS is determined via (3.12) where the corresponding subspace bH
satis�es (3.14).

Since bA is an extension of S, one has S � bS or, equivalently, eH � bH, where
the subspaces eH and bH correspond to S and bS in (3.12). Now the �rst equality in

(3.14) forces that eH = bH and hence S = bS. Therefore, bA = eA and this completes
the proof. �

Remark 3.12. The selection of a self-adjoint operator eA transversal to the initial
one A0 (but without additional condition of admissibility, see (3.6)) is also a key
point of the approach used in [12] to the determination of self-adjoint realizations
of a formal expression A0 + V , where a singular perturbation V is assumed to be
(in general) an unbounded self-adjoint operator V : H2(A0) ! H�2(A0) such that
ker V is dense in H. In this case, the regularization of A0 + V takes the form
AP;V = A0 + V P and it is well de�ned on the domain

D(AP;V ) = f f 2 D(A�sym) : Pf 2 D(V ) g;
where P is the skew projection onto H2(A0) in D(A�sym) that is uniquely determined

by the choice of eA.
4. Singular perturbations with symmetries and uniqueness of

admissible operators

According to (2.4) and (3.3) the regularization AR of (1.4) depends on the choice

of an admissible operator eA. Apart from the case of form bounded singular per-
turbations, admissible operators are not determined uniquely, cf. Theorem 3.6.
However, the uniqueness can be attained by imposing some extra assumptions mo-
tivated by the speci�c nature of the underlying physical problem.

In typical cases (see, e.q. [5], [6]), where the original operator A0 and its singular
perturbation V =

Pn
i;j=1 bij <  j ; � >  i possess some symmetry properties with



SYMMETRIES IN THE THEORY OF SINGULAR PERTURBATIONS 13

respect to a certain family of unitary operators U, the preservation of initial sym-
metries of  j for the extended functionals <  exj ; � > enables one to determine a

unique admissible operator eA. In this section, we study this problem in an abstract
framework.

4.1. Preliminaries. First some general facts concerning p(t)-homogeneous oper-
ators are given. Let the operator A in H be p(t)-homogeneous with respect to a
one-parameter family U = fUtgt2T of unitary operators acting on H, cf. De�nition
1.1. The equality

(Au; u) = (UtAu;Utu) = p(t)(AUtu; Utu); u 2 D(A);
shows that if A 6= 0 is symmetric (nonnegative), then p(t) 2 R n f0g (respectively
p(t) > 0). Moreover, (1.8) and (1.9) imply that if A 6= 0 then

(4.1) p(t)p(g(t)) = 1; 8t 2 T;
where the function of conjugation g(t) : T ! T is uniquely determined by the
formula

(4.2) Ug(t) = U�t ; t 2 T:
If A is densely de�ned then the adjoint of A is a densely de�ned operator, which is
p(t)-homogeneous, too.

Lemma 4.1. Let A be a closed densely de�ned p(t)-homogeneous operator with
respect to a family U = fUtgt2T (cf. De�nition 1.1). Then also its adjoint A� is
p(t)-homogeneous with respect to U and moreover for all t 2 T and all z 2 C,
(4.3) Ut(ker (A� zI)) = ker (p(t)A� zI) :

In particular, ker A (as well as ker A�) is a reducing subspace for every Ut, t 2 T.
Proof. Since A is p(t)-homogeneous one has UtA = p(t)AUt for all t 2 T. As a
unitary operator Ut is bounded with bounded inverse, and therefore, the previous
equality is equivalent to

A�U�t = p(t)U�t A
� () UtA

� = p(t)A�Ut; 8t 2 T;
which means that A� is p(t)-homogeneous with respect to U.

The assertion (4.3) is immediate from the p(t)-homogeneity of A: if Ah = zh
then zUth = UtAh = p(t)AUth. Hence, Ut(ker (A� zI)) � ker (p(t)A� zI) and if
A 6= 0 the reverse inclusion is obtained by using (4.1). For A = 0 the equality (4.3)
is trivial.

The last assertion follows from (4.3) with z = 0 and the assumption (1.8) con-
cerning the family U. �

In the case that A is symmetric the formula (4.3) in Lemma 4.1 shows how the
unitary operators Ut, t 2 T, transform the defect subspaces ker (A� � zI) of A.

Corollary 4.2. Let A in Lemma 4.1 be nonnegative and p(t)-homogeneous with
respect to the family U = fUtgt2T, and let A0 be a nonnegative selfadjoint extension
of A. Then

(p(t)A0 + I)(A0 + I)�1Ut(ker (A� + I)) = ker (A� + I):
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Proof. By Lemma 4.1 the adjoint A� of A is also p(t)-homogeneous and (4.3) implies
that

Ut(ker (A
� + I)) = ker

�
A� +

1

p(t)
I

�
:

Moreover, the equality

(p(t)A0 + I)(A0 + I)�1ker
�
A� +

1

p(t)
I

�
= ker (A�sym + I)

is always satis�ed for a nonnegative self-adjoint extensions A0 of A. �

Let the operatorA0 in (1.4) be p(t)-homogeneous with respect to a one-parameter
family U = fUtgt2T of unitary operators acting on H (see De�nition 1.1). De�ne a
family of self-adjoint operators on H by

(4.4) Gt = (p(t)A0 + I)(A0 + I)�1; t 2 T:
Clearly, Gt is positive and bounded with bounded inverse for all t 2 T. Moreover,
it follows from (1.9) and (4.1) that

(4.5) (A0 + I)�1Ut = Ut(p(g(t))A0 + I)�1

and

(4.6) GtUt = UtG
�1
g(t) = (Gg(t)Ug(t))

�1:

The de�nition of the norm on H�2(A0) given in (1.2) and the identity

(A0 + I)�1Ut = GtUt(A0 + I)�1

show that for all g 2 H
kUtgk�2 � kGtk kgk�2:

Hence, the operators Ut can be continuously extended to bounded operators Ut in
H�2(A0) and, furthermore,

(4.7) (A0 + I)�1Ut = GtUt(A0 + I)�1 

for all  2 H�2(A0) and t 2 T. The equality (4.2) shows that Ut has a bounded
inverse which satis�es U�1t = Ug(t). The operator Ut can be characterized also as
the dual mapping (adjoint) of Ug(t) with respect to the form de�ned in (1.3). In
fact, using (1.3), (1.9), (4.2), and (4.7), it is seen that the action of the functional
< Ut ; � > on the elements u 2 H2(A0) is determined by the formula

< Ut ; u >= ((A0 + I)u;GtUth) = (Ug(t)(p(t)A0 + I)u; h)

= ((A0 + I)Ug(t)u; h) =<  ;Ug(t)u >;(4.8)

where h = (A0 + I)�1 .
Now consider a singular element  2 H�2(A0), cf. (1.4). The assumption that

 is �(t)-invariant with respect to U, i.e. Ut = �(t) for all t 2 T (see De�nition
1.2), implies some relations between the functions �(t), p(t), and g(t).

Proposition 4.3. Let the operator A0 in (1.4) be p(t)-homogeneous with respect
to the family U and let  2 H�2(A0) n H be �(t)-invariant with respect to U. Then
for all t 2 T one has

(4.9) �(t)�(g(t)) = 1

and, moreover,

j�(t)j = 1 if p(t) = 1 and minf1; p(t)g < j�(t)j < maxf1; p(t)g if p(t) 6= 1:
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Proof. It follows from (1.10) and (4.7) that  2 H�2(A0) n H is �(t)-invariant with
respect to U if and only if

(4.10) GtUth = �(t)h; 8t 2 T;
where h = (A0 + I)�1 . This together with (4.6) implies that

h = (Gg(t)Ug(t))(GtUt)h = �(t)Gg(t)Ug(t)h = �(t)�(g(t))h;

which proves (4.9). Moreover, (4.10) shows that j�(t)jkhk = kGtUthk: In particular,
if p(t) = 1, then Gt = I and j�(t)jkhk = kUthk = khk and, hence, j�(t)j = 1.

In the case where p(t) 6= 1 the formula for Gt in (4.4) with an evident reasoning
leads to the following estimates

�(t)khk = �(t)kUthk < kGtUthk < �(t)kUthk = �(t)khk;
where �(t) = minf1; p(t)g and �(t) = maxf1; p(t)g. This completes the proof. �

4.2. p(t)-homogeneous self-adjoint extensions of Asym. Let the operator A0
be p(t)-homogeneous with respect to the family U. In what follows all the singular
elements  j (j = 1; : : : ; n) appearing in (1.4) are assumed to be �j(t)-invariant with
respect to U. In view of (1.10) and (4.8) the �j(t)-invariance of  j is equivalent to

(4.11) �j(t) <  j ; u >=<  j ; Ug(t)u >; 8u 2 H2(A0); 8t 2 T;
where the linear functionals <  j ; � > are de�ned by (1.3). This implies the follow-
ing basic result.

Lemma 4.4. Let A0 be p(t)-homogeneous and let  j be �j(t)-invariant with respect
to U, j = 1; : : : ; n. Then the symmetric operator Asym de�ned by (1.5) and its
adjoint A�sym are also p(t)-homogeneous with respect to U.

Proof. It follows from (1.5) and (4.8) that

<  j ; Utu >=< Ug(t) j ; u >= �j(g(t)) <  j ; u >= 0

for every u 2 D(Asym). Thus Ut : D(Asym)! D(Asym) and hence by (1.9) Asym is
p(t)-homogeneous: UtAsym = p(t)AsymUt. By Lemma 4.1 also the adjoint A�sym is
p(t)-homogeneous with respect to U. �

If the assumptions in Lemma 4.4 are satis�ed, the defect subspace ker (A�sym+I)
of Asym is invariant under GtUt, see Corollary 4.2.

For the next result recall that if A is a nonnegative operator (or in general a
nonnegative relation) in a Hilbert space H, then the Friedrichs extension AF and
the Krein-von Neumann extension AN of A can be characterized as follows (see [9]
for the densely de�ned case and [23], [24], [25] for the general case):

If ff; f 0g 2 A�, then ff; f 0g 2 AF if and only if

(4.12) inf
�kf � hk2 + (f 0 � h0; f � h) : fh; h0g 2 A	 = 0:

If ff; f 0g 2 A�, then ff; f 0g 2 AN if and only if

(4.13) inf
�kf 0 � h0k2 + (f 0 � h0; f � h) : fh; h0g 2 A	 = 0:

Lemma 4.5. Let Asym be p(t)-homogeneous with respect to U. Then the Friedrichs
extension AF and the Krein-von Neumann extension AN of Asym in (1.5) are

also p(t)-homogeneous with respect to U. Moreover, Ut(D(A1=2F )) � D(A1=2F ) and

Ut(R(A1=2N )) � R(A1=2N ) for all t 2 T.
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Proof. By Lemma 4.1 A�sym is p(t)-homogeneous with respect to U. Hence, in view

of (1.8) and (1.9), a self-adjoint extension eA of Asym is p(t)-homogeneous with
respect to U if and only if

(4.14) Ut : D( eA)! D( eA); 8t 2 T:
To prove that AF is p(t)-homogeneous with respect to U, assume that f 2 D(AF ).
Then g = Utf 2 D(A�sym) and there is a sequence hn 2 D(Asym) attaining the
in�mum in (4.12). Then Uthn 2 D(Asym), Uthn ! Utf = g, and
(4.15)�
A�symUtf �AsymUthn; Utf � Uthn

�
= (p(g(t))

�
A�symf �Asymhn; f � hn

�! 0;

so that g 2 D(AF ) by (4.12). Therefore, Ut(D(AF )) � D(AF ) and AF is p(t)-
homogeneous with respect to U.

To prove the p(t)-homogeneity of AN assume that f 2 D(AN ). Then again
g = Utf 2 D(A�sym) and there is a sequence hn 2 D(Asym) attaining the in�mum
in (4.13). In particular, Asymhn ! A�symf , Uthn 2 D(Asym), and

AsymUthn = p(g(t))UtAsymhn ! p(g(t))UtA
�
symf = A�symUtf = A�symg:

Moreover, (4.15) is satis�ed. Therefore, (4.13) shows that g 2 D(AN ). This proves
that Ut(D(AN )) � D(AN ) and thus AN is p(t)-homogeneous with respect to U.

Finally, recall that the domain D = D(A1=2F ), see (3.7), can be characterized as
the set of vectors f 2 H satisfying

hn ! f; (Asym(hn � hm); hn � hm)! 0; m; n !1;

and the range R(A1=2N ) as the set of vectors g 2 H satisfying

Asymhn ! g; (Asym(hn � hm); hn � hm)! 0; m; n !1;

with hn 2 D(Asym). The last statement is clear from these characterizations using
similar arguments as above with the sequence hn. This completess the proof. �

According to (4.11) the �j(t)-invariance of  j can be described with the aid of the
linear functionals <  j ; � > in (1.3). The next theorem shows that the preservation
of the �j(t)-invariance for the extended functionals <  exj ; � > de�ned by (2.4) is
closely related to the existence of p(t)-homogeneous self-adjoint extensions of Asym
transversal to A0.

Theorem 4.6. Let A0 be p(t)-homogeneous, let  1; : : : ;  n be �j(t)-invariant with
respect to U, and let <  exj ; f > be de�ned by (2.4). Then the relations

(4.16) �j(t) <  exj ; f >=<  exj ; Ug(t)f >; 1 � j � n; 8t 2 T;
are satis�ed for all f 2 D(A�sym) if and only if the corresponding self-adjoint oper-

ator eA de�ned by (3.3) is p(t)-homogeneous with respect to U.

Proof. Denote

(4.17) �(t) =

0BBB@
�1(t) 0 : : : 0
0 �2(t) : : : 0
...

...
. . .

...
0 0 : : : �n(t)

1CCCA :
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Then det�(t) 6= 0, t 2 T, by Proposition 4.3, since  i is �j(t)-invariant with respect
to U. By using (2.5) in Lemma 2.2 the conditions (4.16) can be rewritten as follows:

(4.18) �(t)�0f = �0Ug(t)f; 8f 2 D(A�sym); 8t 2 T:
Since D( eA) = ker �0, (4.18) immediately implies that Ut(D( eA)) � D( eA), cf. (4.2).
Thus the relations (4.16) ensure the p(t)-homogeneity of eA with respect to U.

Conversely, assume that eA is p(t)-homogeneous with respect to U. According to
(3.3), (4.2), and (4.14) this is equivalent to

(4.19) �Rb�0Ug(t)f = b�1Ug(t)f; 8f 2 D( eA); 8t 2 T:
Using (4.4), (4.9), and (4.10) it is seen that

Ug(t)hj = p(t)Gg(t)Ug(t)hj + (I � p(t)Gg(t))Ug(t)hj

=
p(t)

�j(t)
hj + (1� p(t))(A0 + I)�1Ug(t)hj ;

(4.20)

where hj = (A0 + I)�1 j , j = 1; : : : ; n. This expression and relations (2.6), (4.8)
yield the following equalities for all f = u+

P
j=1 �jhj 2 D(A�sym) and t 2 T:

(4.21) b�0Ug(t)f = p(t)�(t)
�1b�0f; b�1Ug(t)f = �(t)b�1f + (1� p(t))G>(t)b�0f;

where G(t) = ((hi; Uthj))
n
i;j=1. Now with f 2 D( eA) substituting these expressions

into (4.19), using (3.3), and taking into account that b�0(D( eA)) = Cn, one concludes

that the p(t)-homogeneity of eA is equivalent to the matrix equality

(4.22) �(t)R� p(t)R�(t)
�1

= (1� p(t))G>(t); 8t 2 T:
Finally, employing (2.7) and (4.21) it is easy to see that equality (4.22) is equivalent
to (4.18). Therefore, the extended functionals <  exj ; � > satisfy the relations (4.16).
Theorem 4.6 is proved. �

Remark 4.7. In the particular case where p(t) = t� and �(t) = t� with �; � 2 R,
another condition for the preservation of �(t)-invariance for <  exj ; � > has been
obtained in [5, Lemma 1.3.2].

By Theorem 4.6 the existence of extended functionals <  exj ; � > for which the
�j(t)-invariance properties (4.16) are satis�ed is equivalent to the existence of a

p(t)-homogeneous self-adjoint extension eA of Asym transversal to A0. Such type
extensions can easy be described with the aid of the relation (4.22). Indeed, the

proof of Theorem 4.6 shows that (4.22) is equivalent to the p(t)-homogeneity of eA.
By rewriting (4.22) componentwise as follows

(4.23) �ij(t)rij = (1� p(t))(hj ; Uthi); �ij(t) =

�
�i(t)� p(t)

�j(t)

�
; 1 � i; j � n;

one concludes that eA is a p(t)-homogeneous self-adjoint extension of Asym transver-

sal to A0 if and only if eA is de�ned by (3.3) and the entries rij of R in (3.3) satisfy
(4.23) for all t 2 T.

In the case that p(x) � 1, the right-hand side of (4.23) vanishes and (4.23)
reduces to �ij(t)rij = 0, 1 � i; j � n. Moreover, by Proposition 4.3 �ii(t) � 0
and, therefore, the entries rii cannot be uniquely determined from (4.23). This
implies the existence of in�nitely many 1-homogeneous self-adjoint extensions of
Asym transversal to A0.
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Example 4.8. Let � > 0 and let eA be de�ned byeA� = A�sym � D( eA�); D( eA�) = D(Asym) _+ker (A�sym + �I):

Then for all � > 0, eA� is a 1-homogeneous self-adjoint extensions of Asym transver-
sal to A0.

In the case that p(t) 6� 1, the next theorem shows that transversality of AF

and AN is a necessary condition for the existence of p(t)-homogeneous self-adjoint
extensions of Asym transversal to A0.

Theorem 4.9. If p(t) 6= 1 at least for one point t 2 T, and the Friedrichs AF

and the Krein-von Neumann AN extensions of Asym are not transversal, then p(t)-
homogeneous self-adjoint extensions of Asym transversal to A0 do not exist.

Proof. Assume that eA is a self-adjoint p(t)-homogeneous extension of Asym and
that p(t0) 6= 1 for t0 2 T. It follows from (1.9) that

Ut0(
eA� �I) = p(t0)

� eA� �

p(t0)
I

�
Ut0 ; � 2 R:

Now, if � is a negative eigenvalue of eA, then the in�nite series of negative numbers

�=p(t0)
n, n 2 N, also are eigenvalues of eA, and this contradicts the assumption of

�nite defect indices of Asym. Hence, eA is a nonnegative extension of Asym. Now it
follows from Theorem 3.9 that, in the case where AF and AN are not transversal,
p(t)-homogeneous self-adjoint extensions of Asym transversal to A0 do not exist. �

4.3. Uniqueness of p(t)-homogeneous admissible operators. In this subsec-
tion the class of admissible operators is studied in further detail in the case that
the additional condition of �(t)-invariance or p(t)-homogeneity is imposed for the
regularization of the singular perturbations determined by (1.4).

The requirement of �j(t)-invariance (4.16) for the extended functionals <  exj ; � >
is in a good agreement with the fact that certain elements  j in (1.4) may belong
to H�1(A0) and, hence, the corresponding functionals <  j ; � > admit natural
extensions (3.2) by continuity onto H1(A0) \ D(A�sym). In particular, if the linear
span X of f jgnj=1 belongs to H�1(A0), then the extended functionals <  exj ; � >
are determined by continuity onto D(A�sym) and they automatically possess the
property of �j(t)-invariance (4.16), since Ut �D(A0) can be extended by continuity
onto H1(A0). In this case, the set of admissible operators consists of a unique
element which coincides with the Friedrichs extension AF (see Corollary 3.7) and
this admissible operator is p(t)-homogeneous.

In the case that X \ H�1(A0) 6= X admissible operators for the regularization
of (1.4) are not determined uniquely. In this subsection, it is shown that the
natural assumption of �j(t)-invariance for the extended functionals <  exj ; � > in the
regularization (1.6) of (1.4) allows one to select, in many cases, a unique admissible

operator eA.
By Theorem 4.6 the �j(t)-invariance of <  exj ; � > is equivalent to the p(t)-

homogeneity of the corresponding operator eA de�ned by (3.3). Therefore, equiva-
lently, the requirement of p(t)-homogeneity imposed on the set of admissible oper-

ators can be used to select a unique admissible operator eA.
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Theorem 4.10. Let AF and AN be transversal, let the operator S de�ned in (3.12)

be p(t)-homogeneous for some choice of eH satisfying conditions (3.14), and, assume
that for every �ij(t) in (4.23), there exists at least one point tij 2 T such that
�ij(tij) 6= 0. Then there exists a unique p(t)-homogeneous admissible operator for
the regularization of (1.4).

Proof. Let eA be the Krein-von Neumann extension of S. The second part of the

proof of Theorem 3.9 shows that eA is admissible operator. By Lemma 4.5, eA is
p(t)-homogeneous. Its uniqueness follows from the fact that condition �ij(tij) 6= 0
ensures in view of (4.23) the uniqueness of p(t)-homogeneous self-adjoint extensions
of Asym transversal to A0. �

The next statement contains some conditions for the p(t)-homogeneity of S which
are convenient for applications.

Proposition 4.11. Let A0 and Asym be p(t)-homogeneous with respect to U and

let the symmetric operator S be de�ned by (3.12), where eH satis�es (3.14) and let

Y = (A0 + I)(H	 eH). Then:
(i) S is p(t)-homogeneous if and only if Y is invariant under Ut, t 2 T, and

(4.24) (h0; Uteh?) = 0; 8h0 2 H0; 8eh? 2 H 	 eH; 8t 2 T0 = f t 2 T : p(t) 6= 1g:
(ii) If GtUt, t 2 T, is self-adjoint, then S with eH = H0 is p(t)-homogeneous if

and only if (4.24) holds.
(iii) If Y is a linear span of some �j(t)-invariant singular elements  j in (1.4),

then S is p(t)-homogeneous if and only if (4.24) holds.
(iv) S is p(t)-homogeneous if the singular elements  j in (1.4) form an H�1(A0)-

independent system.

Proof. (i) By Lemmas ,4.1, 4.5 A�sym and AF are p(t)-homogeneous with respect to
U. By the de�nition (3.12) S � AF and hence p(t)-homogeneity of S is equivalent
to the relation Ug(t)(D(S)) � D(S) for all t 2 T.

The de�nition (3.12) shows that ker (S� + I) = H 	 eH. Hence, if S is p(t)-

homogeneous with respect to U then GtUt(H 	 eH) = H 	 eH by Corollary 4.2.

According to (4.7) the subspace H 	 eH is invariant under GtUt if and only if

Y = (A0 + I)(H 	 eH) is invariant under the operator Ut, t 2 T. Thus, if S is
p(t)-homogeneous with respect to U then Y is invariant under Ut, t 2 T.

Now let f = h0 + u 2 D(S) be decomposed as in Lemma 3.5, see (3.15), (3.16).
The de�nition of S in (3.12) implies that

(4.25) Ug(t)f 2 D(S) () ((AF + I)Ug(t)f;eh?) = 0; 8eh? 2 H 	 eH:
It follows from (4.20) that

(AF + I)Ug(t)f = (A�sym + I)Ug(t)f = (1� p(t))Ug(t)h
0 + (A0 + I)Ug(t)u:

By taking (4.8) into account one obtains

((AF + I)Ug(t)f;eh?) = (1� p(t))(Ug(t)h
0;eh?) + ((A0 + I)Ug(t)u;eh?)

= (1� p(t))(h0; Uteh?)+ < Ut ; u > :
(4.26)

If Y is invariant under Ut, t 2 T, then < Ut ; u >= 0 for all f = h0 + u 2 D(S).
Now (4.25) and (4.26) show that Ug(t)f 2 D(S) if and only if the condition (4.24)
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is satis�ed. Therefore, S is p(t)-homogeneous if and only if Y is invariant under Ut
and (4.24) holds.

(ii) Since A0 and AF are p(t)-homogeneous, the symmetric restriction S0 :=
AF \ A0 and its adjoint S�0 are also p(t)-homogeneous, see Lemma 4.1. It follows
from (3.17) that f 2 D(S0) if and only if f 2 D(A0) and

((A0 + I)f; h0) = 0; 8h0 2 H0 = H \ H1(A0):
Hence, ker (S�0 +I) = H0 and GtUtH0 = H0 for all t 2 T by Corollary 4.2. Similarly
GtUtH = H for all t 2 T, since Asym is p(t)-homogeneous. Therefore, if GtUt
is self-adjoint, then H and H0 are reducing subspaces for the operators GtUt and
consequently GtUtH00 � H00 is satis�ed for all t 2 T. Then, according to (4.7),
Y = (A0 + I)H00 is invariant under Ut. Now the claim follows from part (i) witheH = H0 and H	 eH = H00.

(iii) If Y has a basis formed by some �j(t)-invariant singular elements  j , then
Y is invariant under Ut, see (1.10). So, the statement is reduced to (i).

(iv) The assumption implies that H0 = f0g. Hence by Lemma 3.12 S = Asym
and S is p(t)-homogeneous. �

Example 4.12. A general zero-range potential in R.
A one-dimensional Schr�odinger operator corresponding to a general zero-range

potential at the point x = 0 can be given by the expression

A0 + b11 < �; � > �(x) + b12 < �0; � > �(x) + b21 < �; � > �0(x) + b22 < �0; � > �0(x);

where A0 = �d2=dx2 (D(A0) = W 2
2 (R)) acts in H = L2(R), �

0(x) is the derivative
of the Dirac �-function (with support at 0).

In this case, Asym = �d2=dx2 � fu(x) 2W 2
2 (R) : u(0) = u0(0) = 0g and the

corresponding Friedrichs and Krein-von Neumann extensions are transversal (see,
e.g., [11]). The functions

(A0 + I)�1 1 = h0(x) =
1

2

�
e�x; x > 0
ex; x < 0

;

(A0 + I)�1 2 = h00(x) =
1

2

� �e�x; x > 0
ex; x < 0

;

where  1 = �(x) and  2 = �0(x), form an orthogonal basis of H = ker (A�sym + I)

such that H0 =< h0(x) > and H00

=< h00(x) >.
De�ne U = fUtgt2[0;1) as a collection of the space parity operator U0f(x) =

f(�x) (f(x) 2 L2(R)) and the set of scaling transformations Utf(x) =
p
tf(tx),

t > 0. In this case, A0 is p(t)-homogeneous with respect to U, where p(0) = 1 and
p(t) = t�2 if t > 0. The elements  j (j = 1; 2) are �j(t)-invariant, where �1(0) = 1,

�1(t) = t�1=2 (t > 0) and �2(0) = �1, �2(t) = t�3=2 (t > 0). Furthermore, for such
a choice of U, T0 = f t 2 [0;1) : p(t) 6= 1g = (0;1) and

(h0; Uth00) = t1=2
Z 1

�1
h0(x)h00(tx)dx = 0; 8t 2 T0:

Let us put eH = H0. Then Y = (A0 + I)H00

=<  2 > and part (iii) of Proposi-
tion 4.11 implies that the operator S de�ned by (3.12) is p(t)-homogeneous. Calcu-
lating �ij(t) in (4.23) for �1(t), �2(t), and p(t) as given above, it is easy to see that
�ij(0) 6= 0 if i 6= j and �ii(t) 6= 0 for all t > 0. In this case, by Theorem 4.10 there
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exists a unique p(t)-homogeneous admissible operator eA for the regularization of
the one-dimensional Schr�odinger operator with general zero-range potential.

To identify eA it su�ces to determine the entries rij of the corresponding admis-
sible matrix R with the aid of (4.23):

For t = 0, (4.23) takes the form

�
0 2r12

�2r21 0

�
= 0 and, hence, r12 = r21 = 0.

On the other hand, for t > 0 calculating both sides of (4.23) leads to

t�1=2(1� t)

�
r11 0
0 �r22

�
= (1� t�2)

 p
t

8(1+t) 0

0
p
t

8(1+t)

!
and thus r11 = 8; r22 = �8. Substituting the coe�cients rij in (2.4) results in the
well-known extensions of �(x) and �0(x) onto D(A�sym) =W 2

2 (Rnf0g) (see [5]):

< �ex; f >=
f(+0) + f(�0)

2
; < �0ex; f >= �f

0(+0) + f 0(�0)
2

:

The corresponding admissible operator eA is the restriction of �d2=dx2 to
D( eA) = � f(x) 2W 2

2 (Rnf0g) : �f(�0) = f(+0); �f 0(�0) = f 0(+0)
	
:

4.4. The case of rank one singular perturbations. In the case of rank one
singular perturbations A0 + b <  ; � >  with A0 p(t)-homogeneous and  �(t)-
invariant, the condition for the existence of a unique p(t)-homogeneous admissible
operator turns out to be particularly simple.

Proposition 4.13. If p(t0) 6= �2(t0) at least for one point t0 2 T and the operators
AF and AN do not coincide, then there exists a unique p(t)-homogeneous admissible

operator eA for the regularization of A0+ <  ; � >  . Furthermore, if  2 H�1(A0)
then one has eA = AF and A0 = AN , and if  2 H�2(A0) n H�1(A0) then eA = AN

and A0 = AF .

Proof. If p(t0) 6= �2(t0), then �(t0) 6= 0 in (4.23). This means that there exists only
one p(t)-homogeneous self-adjoint extension of Asym that is di�erent from A0. By
Lemma 4.5, the extensions AF and AN are p(t)-homogeneous. Hence, one of them

is eA and the other one coincides with A0.
If  2 H�1(A0), then by Corollary 3.7 eA coincides with AF and consequently

A0 = AN . If  2 H�2(A0) n H�1(A0), then (3.7) shows that A0 = AF and, hence,eA = AN . Proposition 4.13 is proved. �

Example 4.14. A point interaction in Rn (n = 1; 2; 3).
Consider the following singular rank one perturbation

��+ b < �; � > �(x);

where �(x) is the Dirac �-function with support at 0 and A0 = �� (D(A0) =
W 2
2 (R

n) is the Laplace operator in H = L2(R
n).

The operator A0 is t�2-homogeneous with respect to the set of scaling trans-
formations U = fUtgt2(0;1) in L2(R

n), where Utf(x) = tn=2f(tx). Moreover, the

singular element  = � is t�n=2-invariant (cf. [5]).
If n = 1, then �(x) 2 H�1(A0) =W�1

2 (R), and by Proposition 4.13 the operator
A0 is the Krein-von Neumann extension of

(4.27) Asym = �d2=dx2 � fu(x) 2W 2
2 (R) : u(0) = 0 g:
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The Friedrichs extension eA has the domain

D( eA) = fu(x) 2W 2
2 (R n f0g) \W 1

2 (R) : u(0) = 0 g:
If n = 2, then p(t) = t�2 = �2(t) for all t > 0 and hence Proposition 4.13 cannot
be applied. In fact, in this case the Friedrichs extension AF and the Krein-von
Neumann extension AN of Asym in (4.27) are equal and they coincide with ��.
Theorem 4.9 shows that t�2-homogeneous self-adjoint extensions of Asym di�erent
from A0 = �� do not exist.

If n = 3, then �(x) 2 W�2
2 (R3) nW�1

2 (R3), and by Proposition 4.13 A0 is the
Friedrichs extension of

Asym = �� � fu(x) 2W 2
2 (R

3) : u(0) = 0 g:
The Krein-von Neumann extension eA of Asym has the form:

eAf(x) = ��u(x)� u(0)
e�jxj

jxj ; D(
eA) = f f = u(x) + u(0)

e�jxj

jxj : u 2W 2
2 (R

3)g:

and it coincides with the unique t�2-homogeneous admissible operator. Another
description of the Krein-von Neumann extension of Asym obtained with the aid of
the Fourier transformation can be founded in [13].

Using the following functionals introduced in [34]

�0(f) = lim
jxj!0

j x j f(x); �1(f) = lim
jxj!0

�
f(x)� �0(f)

j x j
�
; 8f(x) 2 D(A�sym);

one can rewrite the domains of the Friedrichs extension A0 and Krein-von Neumann
extension eA of Asym as follows:

D(A0) = ff 2 D(A�sym) : �0(f) = 0 g; D( eA) = ff 2 D(A�sym) : �0(f) = �1(f)g:

5. Operator-realizations in the case of singular perturbations with

symmetries

In this section, self-adjoint operator realizations AB of (1.4) given by formula
(2.8) are studied under the condition that the unperturbed operator A0 and the
singular elements  j in (1.4) are, respectively, p(t)-homogeneous and �j(t)-invariant

with respect to U. Moreover, it is assumed that the admissible operator eA for the
regularization of (1.4) is chosen to be p(t)-homogeneous.

5.1. Special classes of operator realizations. Since the unperturbed operator
A0 and singular elements  j in (1.4) possess di�erent symmetries with respect to
U, the operator realizations AB of (1.4) preserving the initial symmetry of A0 (i.e.,
the property of p(t)-homogeneity) can be interpreted as \transparent" with respect
to singular perturbations considered in (1.4).

Theorem 5.1. The operator AB de�ned by (2.8) is p(t)-homogeneous if and only
if the relations

�i(t)�j(t) = p(t); 8t 2 T
hold for all indices 1 � i; j � n corresponding to non-zero entries bij of B.
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Proof. By Lemma 4.4, the operator A�sym is p(t)-homogeneous. Therefore, AB is
p(t)-homogeneous if and only if Ug(t) : D(AB) ! D(AB); 8t 2 T: By (2.8), this
relation can be rewritten as

(5.1) B�0Ug(t)f = �1Ug(t)f; 8t 2 T; 8f 2 D(AB):
Since the admissible operator eA is p(t)-homogeneous, the boundary operator �0

satis�es (4.18) (see Theorem 4.6). Hence, B�0Ug(t)f = B�(t)�0f . On the other

hand, relations (2.7), (2.8), and (4.21) lead to �1Ug(t)f = p(t)�(t)
�1
B�0f . The

last two equalities and (5.1) show that the p(t)-homogeneity of AB is equivalent to
the matrix equality �(t)B�(t) = p(t)B, t 2 T: Rewriting this componentwise, one
obtains the equalities �i(t)�j(t)bij = p(t)bij ; 1 � i; j � n. �

Corollary 5.2. If there exists a point t0 2 T such that p(t0) 6= 1 and relations
�i(t0)�j(t0) = p(t0) hold for all indices 1 � i; j � n corresponding to non-zero
entries bij of B, then AB is a nonnegative operator.

Proof. If the matrix B satis�es the conditions above, then AB is p(t)-homogeneous
with respect to the family U0 := fUt 2 U : t 2 ft0; g(t0)g g. Now, to complete the
proof, it su�ces to repeat the arguments of Theorem 4.9. �

5.2. The Weyl function and the resolvent formula. Let (Cn;�0;�1) be the

boundary triplet of A�sym constructed in Lemma 2.2 and let eA be a self-adjoint
extension of Asym de�ned by (3.3).

The 
-�eld 
(z) and the Weyl function M(z) associated with the boundary
triplet (Cn;�0;�1) are de�ned by

(5.2) 
(z) = (�0 � Hz)
�1; M(z) = �1
(z); z 2 �( eA):

Here Hz = ker (A�sym � zI), z 2 C, denote the defect subspaces of Asym. The
mappings �i are de�ned by (2.5) and M(z) is an n� n-matrix function.

Theorem 5.3. The operator eA is p(t)-homogeneous with respect to U if and only
if for at least one point z = z0 2 CnR (and then for all non-real points z) the Weyl
function M(z) satis�es the relation

(5.3) p(t)M(z) = �(t)M(p(t)z)�(t); 8t 2 T;
where �(t) is de�ned by (4.17).

Proof. Let fz 2 Hz, z 2 C. Then Lemma 4.1 and relation (4.1) imply

(5.4) Ug(t)fz 2 ker (A�sym �
z

p(g(t))
I) = ker (A�sym � p(t)zI):

Furthermore, it follows from (2.7) and the proof Theorem 4.6 that the equality

(5.5) �1Ug(t)f = p(t)�(t)
�1
�1f

is satis�ed for all f 2 D(A�sym). Putting f = fz 2 Hz in (5.5), recalling (5.4), and
taking into account that M(z)�0fz = �1fz, z 2 C (see (5.2)), one can rewrite (5.5)
as follows:

(5.6) M(p(t)z)�0Ug(t)fz = p(t)�(t)
�1
M(z)�0fz:

If the identity (5.3) holds for some non-real z = z0, then (5.6) implies that

(5.7) �0Ug(t)f = �(t)�0f
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for all f = fz0 2 Hz0 . Since M�(z) = M(z) [19] and hence, (5.3) holds for z0,
the relation (5.7) is also true for f = fz0 2 Hz0 . Moreover, since  j are �j(t)-
invariant, equalities (4.16) are satis�ed for all f 2 D(Asym). This means that (5.7)
holds for f 2 D(Asym). Consequently (5.7) is true on the domain D(A�sym) =

D(Asym) _+Hz0
_+Hz0 . By Theorem 4.6 this yields the p(t)-homogeneity of eA.

Conversely, assume that eA is p(t)-homogeneous. In this case, (5.7) holds for all
f 2 D(A�sym) (see the proof of Theorem 4.6). But then, for all non-real z and all
fz 2 Hz,

M(p(t)z)�(t)�0fz
(5:7)
= M(p(t)z)�0Ug(t)fz

(5:4)
= �1Ug(t)fz

(5:5)
= p(t)�(t)

�1
�1fz=p(t)�(t)

�1
M(z)�0fz

that justi�es (5.3). Theorem 5.3 is proved. �

Let AB be a self-adjoint realization of (1.4) de�ned by (2.8). Then the resolvents

of AB and eA are connected via Krein's formula

(5.8) (AB � zI)�1 = ( eA� zI)�1 + 
(z)(B�M(z))�1
(z)�; z 2 �(AB) \ �( eA):
Moreover, z 2 �(AB) if and only if det(B�M(z)) = 0, cf. [19].

The explicit form ofM(z) can be found as follows. By (2.7) it is easy to see that

the Weyl functionsM(z) and cM(z) associated with the boundary triplets (2.5) and
(2.6), respectively, are connected via the linear fractional transform

(5.9) M(z) = �(R+cM(z))�1; z 2 C n R:
The boundary triplet (2.6) is one of the most used boundary triplets and the corre-

sponding Weyl function cM(z) is studied well. In particular, if the singular elements
 j in (1.4) form an orthonormal system in H�2, then (see [19, Remark 4])cM(z) = (z + 1)PH[I + (z + 1)(A0 � zI)�1]PH:

By combining this relation with (5.9) one gets an explicit form for M(z).

6. Singular perturbations of the Schr�odinger operator �(t)-invariant
with respect to scaling transformations in R3

In this section we study spectral and scattering properties of operator realizations
of the formal expression

(6.1) ��+

nX
i;j=1

bij <  j ; � >  i; bij 2 C; bij = bji; n 2 N;

where elements  j 2 W�2
2 (R3) n L2(R3) are �j(t)-invariant with respect to the set

of scaling transformations U = fUtgt2(0;1) (Utf(x) = t3=2f(tx)) in L2(R
3) and the

linear span X of f jgnj=1 satis�es the condition X \ L2(R3) = f0g.
In the case of scaling transformations, it is easy to verify that the free Schr�odinger

operator A0 = ��, (D(�) = W 2
2 (R

3)) is t�2-homogeneous and the function of
conjugation g(t) (see (4.2)) has the form g(t) = 1=t (see [5]).

The next theorem gives a description of all continuous functions �(t) for which
there exists at least one �(t)-invariant singular element  2W�2

2 (R3).
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Theorem 6.1. For a continuous function �(t) de�ned on (0;1) there exists at least
one singular element  2W�2

2 (R3) nL2(R3) which is �(t)-invariant with respect to
U if and only if �(t) = t��, where 0 < � < 2.

Proof. Assume that for a given continuous function �(t) there exists a �(t)-invariant
element  2 W�2

2 (R3) n L2(R3). Since UtUp = UpUt = Utp (p > 0; t > 0), equality
(1.10) yields that �(t)�(p) = �(tp). This relation is possible only if �(t) = 0 or
�(t) = t�� (� 2 R) (see, e.g. [21]). Furthermore, Proposition 4.3 enables one to
restrict the set of possible functions �(t) as follows: �(t) = t��, where 0 < � < 2.

To complete the proof of Theorem 6.1 it su�ces to construct t��-invariant sin-
gular elements for any 0 < � < 2.

Fix n(w) 2 L2(S2), where L2(S2) is a Hilbert space of functions sguare-integrable
on the unit sphere S2 in R3 and determine the functional

^
n(w)

jyj3=2��2 W�2
2 (R3) by

the formula

(6.2) <

^
n(w)

jyj3=2�� ; u(x) >=
Z
R3

n(w)

jyj3=2��(jyj2 + 1)
(jyj2 + 1)

^
u(y)dy (y = jyjw 2 R3);

here
^
u(y) = 1

(2�)3=2

R
R3
eix�yu(x)dx is the Fourier transformation of u(x) 2W 2

2 (R
3).

It is easy to verify that
(6.3)

(Ug(t)u)
^
(y) = (U1=tu)

^
(y) =

1

(2�t)3=2

Z
R3

eiy�xu(x=t)dx = Ut
^
u(y) = t3=2

^
u(ty):

Using (6.2) and (6.3), one obtains

<

^
n(w)

jyj3=2�� ; Ug(t)u >= t�� <

^
n(w)

jyj3=2�� ; u >; 8u 2W 2
2 (R

3):

By (4.11) this means that the functional  =
^

n(w)
jyj3=2�� is t��-invariant with respect

to scaling transformations U. Theorem 6.1 is proved. �

A more detailed study of functionals that are t��-invariant with respect to scal-
ing transformations leads to the conclusion that the set L� of all t��-invariant
singular elements  2 W�2

2 (R3) n L2(R3) coincides with the in�nite dimensional
subspace

L� =

8<: =

^
n(w)

jyj3=2�� : n(w) 2 L2(S2)
9=; of W�2

2 (R3):

If all elements  j in (6.1) belong to L� for a �xed � (0 < � < 2), i.e., if all  j
are t��-invariant, then the singular perturbation V =

Pn
i;j=1 bij <  j ; � >  i also

possesses a certain symmetry with respect to U. Indeed, by means of (4.8), (1.10),
and Proposition 4.3, it is easy to see that

(6.4) UtV u = �2(t)V Utu = t�2�V Utu; 8u 2 H2(A0); t > 0:

In this case, the singular potential V possesses a certain homogeneity property
(t�2�-homogeneity) with respect to scaling transformations.

Note that the delta function �(x) belongs to L3=2 and the elements of this space

admit a particularly simple description as
^

n(w), where n(w) runs through L2(S
2).
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In particular, if one chooses n(w) in the form of spherical harmonic of zero order

Y0(w) = 1=(2�)3=2, then
^

Y0(w)= �(x).
For this reason, the expression (6.1) where all  j 2 L3=2 can be considered as a

generalization of the classical one-point interaction ��+ b < �; � > � in R3.
In what follows all singular elements  j in (6.1) are assumed to be t�3=2-invariant

with respect to scaling transformations, i.e.,  j =
^

nj(w) (nj(w) 2 L2(S
2)). The

symmetric operator Asym = ��sym in (1.5) associated with (6.1) takes the form
(6.5)
��sym = �� �D(�sym); D(�sym) = fu(x) 2W 2

2 (R
3) :<  j ; u >= 0; 1 � j � n g:

Comparing (1.3) and (6.2), one concludes that the functions hj in (2.3)) have the
form

(6.6) hj(x) =

�
nj(w)

jyj2 + 1

�^
(x) =

 
nj(w)

jyj2 + 1

!_
(x);

where the symbol _ denotes the inverse Fourier transformation.
It is easy to verify that hj(x) 2 L2(R3)nW 1

2 (R
3) and hence, all the elements  j in

(6.1) are W�1
2 (R3)-independent. By Corollary 3.8 this means that any self-adjoint

extension �e� of ��sym transversal to �� is admissible for the regularization of

(6.1). Imposing the additional restriction of t�2-homogeneity of �e� with respect
to scaling transformations allows one to select a unique admissible operator.

Proposition 6.2. The Krein-von Neumann extension of ��sym is the unique t�2-
homogeneous admissible operator for the regularization of (6.1)

Proof. According to [33, Theorem 3.1], the Friedrichs and the Krein-von Neumann
extensions of the symmetric operator

��min = �� �D(�min); D(�min) = fu(x) 2W 2
2 (R

3) :<  ; u >= 0;  2 L3=2 g
are transversal and the Friedrichs extension of ��min coincides with ��. Since
��sym de�ned by (6.5) is, simultaneously, an extension of ��min and a restriction
of ��, Proposition 7.2 in [11] implies that the Friedrichs extension �� and the
Krein-von Neumann extension ��N of ��sym are also transversal.

Since the singular elements  j in (6.1) areW
�1
2 (R3)-independent, the operator S

de�ned by (3.12) coincides with ��sym and Corollary 3.8 shows that the operator
��N is admissible for the regularization of (6.1). By Lemma 4.5 this operator
is t�2-homogeneous with respect to the scaling transformations. Moreover, in our
case, the coe�cients �ij(t) in (4.23) have the form

(6.7) �ij(t) = t�1=2(t�1 � 1)

and hence, �ij(t) 6= 0 (8t > 0; t 6= 1). This fact and (4.23) ensures the uniqueness of
��N as a t�2-homogeneous admissible operator for the regularization of (6.1). �

To describe the admissible operator ��N one needs to determine the entries
rij of the corresponding admissible matrix R in (3.3). To do this, it su�ces to
calculate the scalar products (hj ; Uthi) in (4.23).

It follows from (6.3) and (6.6) that

Uthi(x) = Ut

�
ni(w)

jyj2 + 1

�^
(x) =

�
U1=t

ni(w)

jyj2 + 1

�^
(x) = t1=2

�
ni(w)

jyj2 + t2

�^
(x):
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Hence,

(hj ; Uthi) = t1=2
Z
R3

ni(w)nj(w)

(jyj2 + t2)(jyj2 + 1)
dy =

�

2

t1=2

1 + t
(ni; nj)L2(S2);

where (ni; nj)L2(S2) =
R
S2
ni(w)nj(w)dw is the scalar product in L2(S

2). Substitut-
ing this expression into (4.23) and taking (6.7) into account, one getsR = krijkni;j=1,
where rij = ��

2 (ni; nj)L2(S2). Furthermore, it follows from (1.3) and (6.2) (for
� = 3=2) that

rij = ��
2
(ni; nj)L2(S2) = �2(

^
ni(w);

^
nj(w))W�2

2 (R3) = �2( i;  j)W�2
2 (R3):

Hence, R = �2(( i;  j)W�2
2 (R3))

n
i;j=1, where  j =

^
nj(w) are singular elements in

(6.1). In particular, if  j form an orthonormal system inW�2
2 (R3), then R = �2E,

where E stands for the identity matrix.
The following statement is a direct consequence of Theorem 2.3 and [32, Theorem

3] if one takes into account that �� is the Friedrichs extension of ��sym and the
Krein-von Neumann extension ��N is de�ned by R = �2E in (3.3).

Proposition 6.3. Let the singular elements  j =
^

nj(w) in (6.1) form an ortho-

normal system in W�2
2 (R3). Then the self-adjoint operator realization AB = ��B

of (6.1) de�ned by (2.8) is nonnegative if and only if det(2B�E) 6= 0 and

0 � B(2B�E)�1 � 1

2
E:

Remark 6.4. A description of all nonnegative self-adjoint operator realizations of
(1.4) presented in [32] is based on the extremal properties (3.4) of the Friedrichs and
the Krein-von Neumann extensions and the speci�c form (see (2.5), (2.7)) of the
boundary operators �i. A general approach to the description of all nonnegative
self-adjoint extensions of a symmetric operator has been proposed recently in [13].

Since here the singular potential V is t�3-homogeneous with respect to scaling
transformations (cf. (6.4) with � = 3=2), it is natural to expect that the correspond-
ing self-adjoint realizations ��B of (6.1) possess speci�c spectral and scattering
properties, which appear due to the homogeneity of singular perturbations.

Theorem 6.5. For any self-adjoint operator realization AB = ��B of (6.1) de-
�ned by (2.8), the following statements are true:

(i) the point spectrum �p(��B) has empty intersection with R+;
(ii) the spectrum of ��B consists of the set [0;1) of absolutely continuous

spectrum and at most n (counting multiplicities) negative eigenvalues;
(iii) if ��B is nonnegative, then the wave operators W� = limt!�1 e�it�Bei�t

exist and are unitary operators in L2(R
3);

(iv) if ��B is nonnegative and the singular elements  j =
^

nj(w) in (6.1) form

an orthonormal system in W�2
2 (R3), then the S-matrix

S(��B;��) = FW �
+W�F�1

(F is the Fourier transformation in L2(R
3)) of the Schr�odinger equation

iut = ��Bu coincides with the multiplication operator by the boundary
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value2 S(��B;��)(�) of the contractive operator-valued function

S(��B;��)(�) = (E� 2i�B)(E+ 2i�B)�1; � 2 C+
analytic in the upper half-plane C+.

Proof. Statements (i){(iii) follow from [33, Theorem 3.3]. Since the Friedrichs ex-
tension of ��sym coincides with ��, the explicit form of S(��B;��)(�) is a direct
consequence of [32, Section 4]. �

Remark 6.6. In [32] the expression for S(��B;��)(�) in terms of the coe�cients
bij of the singular perturbation in (6.1) was obtained by using the Lax{Phillips
method in the scattering theory. Another description of S(��B;��)(�) in terms of
parameters in the Krein's resolvent formula was obtained in [1]. In this case, the
stationary approach in the scattering theory has been used.
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