
 
 
 
 
 
 
 
 

What Drives Correlation Between Stock Market Returns?   
International Evidence 

 
 

Johan Knif 
Swedish School of Economics and Business Administration (Hanken), Finland 

 
James Kolari 

Texas A&M University, Texas, US 
 

Seppo Pynnönen* 
University of Vaasa, Finland 

 
 
 
 
 
 
Current draft: November 14, 2005 

 
 

                                                 
Correspondence:  Professor James Kolari, Texas A&M University, Mays Business School, 
Finance Department, College Station, TX 77843-4218.   
Email address: j-kolari@tamu.edu 
Office phone:  979-845-4803 

This paper was prepared while Professor Pynnönen was a Visiting Faculty Fellow at the 
Mays Business School, Texas A&M University under a sabbatical leave funded by a senior 
scientist grant from the Academy of Finland.  The hospitality of Mays Business School and 
the generous funding of the Academy of Finland are gratefully acknowledged. 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Osuva

https://core.ac.uk/display/270104384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 1

What Drives Correlation Between Stock Market Returns?   
International Evidence 

 
Abstract 
 
This paper proposes to model time-varying conditional correlation as a function of 
conditional volatilities and possible additional explanatory variables via logit-type regression.  
The advantage of this approach is that it allows us to study the contributions of internal 
national market volatilities, external world market volatility, and some other factors to the 
correlation between stock market returns.  Empirical investigation of the incremental effect of 
volatility on correlation is reported for a number of stock markets in North America, Asia, 
and Europe.  Our results reveal that time-varying correlations between stock markets are 
primarily dependent on national and world market volatilities.  Weaker evidence is found that 
correlations are driven by market downturns.  Also, we find that correlations have been 
increasing between national markets in recent years.  
 
 
Key words: Conditional correlation, volatility, logit, GARCH. 
 
JEL classification:  C21; C22; C51; G10; G15 
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What Drives Correlation Between Stock Market Returns?   
International Evidence 

 
I. Introduction 

 
Numerous studies demonstrate that contemporaneous correlations between 

international stock markets’ returns are unstable over time (see Makridakis and Wheelwright 

(1974), Knif and Pynnonen (1999), and Koch and Koch (1991)).  In this regard, it is well 

known that correlations among international markets tend to increase when stock returns fall 

precipitously (see King and Wadhwani (1990), Lin, Engle, and Ito (1994), Longin and Solnik 

(1995), Karolyi and Stulz (1996), Solnik, Boucrelle, and Fur (1996), Ramchand and Susmel 

(1998), Chesnay and Jondeau (2001), Ang and Bekaert (2002), Dennis, Mayhew, and Stivers 

(2005), Baele (2005), Silvennoinen and Teräsvirta (2005), and others).  Extending these 

findings to domestic markets, studies by Ang and Chen (2002) and Silvennoinen and 

Teräsvirta (2005) find asymmetries in correlations between individual U.S. stocks and the 

aggregate U.S. market also.  

Only a few studies have sought to examine the sources of time-varying correlation.  

For example, based on a switching ARCH model and weekly data, Ramchand and Susmel 

(1998) find that correlations between the U.S. and other world markets are 2 to 3.5 times 

higher when the U.S. market is in a high volatility state (or regime) as compared to a low 

volatility state.  These results suggest that volatility is a major driver of correlation.  

However, applying extreme value theory, Longin and Solnik (2001) argue that correlation is 

not related to market volatility (large absolute returns) per se but to the market trend.  Using 

monthly data, they find that in international markets, especially in the case of negative 

returns, correlations tend to increase and hence the negative tail-distribution deviates 

considerably from the normal distribution.  Consequently, they infer that correlation tends to 

increase in bear markets but not in bull markets.  Also, they infer that conditional correlation 
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is mainly affected by market trend rather than volatility in periods of extreme returns.  Thus, 

the limited  empirical evidence on the question of what drives time-varying correlation is 

mixed.   

In this paper we attempt to contribute further evidence on the sources of correlation 

between stock returns.  Unlike the aforementioned studies that examine changing correlation 

across either various sub-periods, conditional or extreme value correlation, or correlation 

under different volatility regimes, we model the dependence of the correlation directly on the 

level of prevailing uncertainty, which is measured in terms of volatilities and other potential 

risk factors.  Starting from the definition of correlation, we derive an explicit logit functional 

relation between time-varying conditional correlation and conditional volatilities plus 

possible additional explanatory variables.  Importantly, this model enables us to 

comparatively investigate how time-varying correlation is affected by internal volatilities 

(i.e., volatility terms included in the correlation definition), external volatilities (i.e., volatility 

terms not included in the correlation definition), and other factors such as market trend.   

We collect daily returns for markets in North America (United States), Asia (Japan), 

and   Europe (United Kingdom, France, Germany, Switzerland, the Netherlands, Denmark, 

Sweden, Norway, and Finland), in addition to the Financial Times world index (FTAW) as a 

proxy for the world market.  Although preliminary analyses for the period 1990-2005 appear 

to suggest that volatilities and correlations are significantly higher when world markets are 

down trending (i.e., a bear market) as in some earlier studies cited above, more structured 

analyses using our logit regression model reveal that this effect is secondary in importance to 

volatility as a driver of correlation.  For the sample period 1990 to 2005, we find that time-

varying correlations between stock market returns are primarily explained by internal 

national market volatilities and external world market volatilities.  Moreover, in terms of 

economic significance, we find that large increases in volatility can substantially change 
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correlations.    Down trends in world markets are significant at times but have a relatively 

weaker relationship than volatility to correlations between stock market returns.  We also 

document that correlations have been increasing between national markets from 1990 to 

2005, which means that the increasing correlation found by Longin and Solnik (1995) for the 

period 1960 to 1990 has continued in recent years.  This trend is likely attributable to 

increasing financial market integration of national stock markets around the world.  We 

conclude from these findings that national market and world market volatility are the major 

drivers of time-varying correlation between international stock markets, and that down 

trending markets in some cases plays a role in explaining contemporaneous correlation also. 

The rest of the paper is organized as follows.  The next section discusses the 

methodology, including model development and estimation.  Section 3 describes the sample 

data.  Section 4 presents the empirical results, and Section 5 concludes. 

2.  Methodology 

This section deals with the relationship of correlation to time-varying volatility as 

well as to the underlying volatility regime.  In the GARCH literature time-varying correlation 

is considered to be a kind of clustering phenomenon in the same manner as volatility 

clustering.  This approach has the fundamental shortcoming of not identifying the sources of 

changing volatility and changing correlation.  The focus is on a description of the process, 

rather than explicitly understanding what explains changes in correlation, such as the 

magnitude of risk or other factors.  In this paper we model the degree of correlation as a 

function of the magnitude of local and global uncertainties and other factors.  In this way we 

attempt to identify potential drivers of changing correlations.  

A.  Modeling Correlation and Volatility 

By definition, the conditional correlation of (return) series tu  and tv  is defined as: 
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available information up to time 1−t .  In terms of the covariance, we have: 

 )(var)(var),(),(cov vuvuvu tttt ρ= .    (2) 

In the simple case when the correlation is time invariant, we see from equation (2) that the 

time-varying covariance must change in a fixed proportion to the product of the time-varying 

standard deviations.  In this case asymmetries in volatilities reflect asymmetries in the 

covariance as well.  Consequently, it may be difficult to infer on the basis of the covariance 

whether the dependence per se between the series is time-varying or due simply to the fixed 

relation between the volatilities and covariance determined by the time invariant correlation.  

In order to avoid this problem, we investigate the time variability in the covariation 

allowing also correlation to be time varying (rather than constant).  For this purpose we 

define as an instrumental tool a “generalized conditional covariance”  

  b
t

a
ttbat cvu ,2,1,, ),(cov σσ= ,     (3) 

where )(var,1 utt =σ , )(var,2 vtt =σ , and tc  is a coefficient which may be time-varying 

and may depend on some additional variables.  With 1== ba  and ),( vuc tt ρ= , equation (3) 

coincides with the usual covariance.  In equation (3) parameters a and b determine the 

importance of each standard deviation’s relative contribution to the covariance.  For example, 

if both a and b are larger than one, the correlation must increase as a function of the 

volatilities.  

To focus on the correlation, we divide both sides of equation (3) by the conditional 

standard deviations to get 
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where 1~ −= aa  and 1~ −= bb .  If the correlation is independent of the level of volatilities, 

we should have 0~~ == ba .  Given estimates of the correlations and standard deviations, we 

could in principle estimate equation (4) with non-linear techniques.  However, technical 

difficulties may arise because the left-hand-side is restricted by definition between –1 and +1, 

whereas the right-hand-side is not restricted in an econometric specification.  To linearize the 

problem and make both sides unrestricted, we adopt the Fisher z-transformation (or a 

generalized logit transformation) such that 

  ttt
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in which both sides are balanced in the sense that they can assume all real values.  A similar 

transformation is utilized in Christodoulakis and Satchell (2002).  Using the Taylor 

approximation (in the vicinity of zero), we have ( ) ttt ρρρ ≈−+ )1/()1(log5.0 .  Thus, the 

γ coefficients have a straightforward interpretation:  as volatility increases by 1%, the 

correlation should change by γ×01.0 .1  The intercept term parameter tω  may include other 

variables, such as world volatility, global market trend, etc.  If the correlation is neither 

dependent on the internal volatilities nor some external factors, coefficients 1γ  and 2γ  should 

be zeros, and tω  should be a constant.  A positive sign on the γ -coefficient indicates 

increasing correlation with the internal volatilities.  We call this effect convergence because 

of the implied more pronounced co-movement.  A negative coefficient sign would suggest 

that the internal volatility reflects local intra-market shocks that have no external impact and 

hence would reduce the co-movement in returns.  We call this effect divergence.  

To further investigate the properties of the above correlation model, we take the 

inverse transformation of equation (5), which gives 
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It is immediately obvious that 1<tρ  for all real values of the variables.  Consider next the 

asymmetry of correlation observed in several empirical studies (Longin and Solnik (2001), 

Ang and Chen (2002), and others).  From equations (5) and (6) it is obvious that asymmetry 

in volatility affects correlation.  For example, suppose that the volatility follows an 

asymmetric GARCH (or threshold GARCH, TGARCH, Zakoïan (1994)) process such that 

 2
11

2
12

2
110

2
−−−− +++= ttttt Iww βσααασ ,    (7) 

where 1−tI  is an indicator function equal to one if 01 <−tw , and zero otherwise.  Volatility 

asymmetry is captured in equation (7) by 2α , where positive 2α  indicates the presence of 

leverage. 

Because equation (5) is a monotonic transformation of the correlation in equation (6), 

we can utilize it in detecting the effect of leverage on correlation.  The impact of leverage 

depends on the sign of the γ coefficients.  For example, if 01 <γ  (i.e., a diverging volatility 

effect as discussed above), and given the usual case in which the contemporaneous 

correlation is positive, an increase in internal volatility induces a reduction in the co-

movements of the returns.  Hence, in the presence of leverage, a negative shock further 

increases the volatility and, in turn, decreases the correlation.  The opposite is true if the 

corresponding γ coefficient is positive.  Thus, the way asymmetries in local market risks are 

reflected in mutual correlations depend on whether convergence or divergence due to the 

volatility increase prevails between the markets.  In the presence of leverage, the former 

increases the correlation and the latter decreases it. 
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B.  Estimation of the Model 

In equation (5) the volatilities tu ,σ  and tv,σ  are internal in the sense that they are 

contained in the basic definition of the correlation.  Additionally, by structuring tω  further 

we may consider it as a function of additional explanatory variables, such as volatilities of 

other series which can serve as additional risk components in the correlation.  To investigate 

the influences of general market volatility and market trend effects on correlation (Longin 

and Solnik (2001)), we incorporate the world index volatility and indicator variables of world 

bullish and bearish markets into the correlation equation.  Also, to isolate these factors’ 

independent effects on correlation, it may be important to allow some additional covariates, 

such as the time trend discussed above, to eliminate confounding effects in the estimation.  

Hence, our final regression takes the general form 

  ηcβx ''
tttz += ,      (8) 

where [ ])1/()1(log tttz ρρ −+= , tx  is a vector including the constant term, log volatilities, 

and market trend (bullish/bearish), and tc  includes possible additional covariates (e.g., 

seasonal effects akin to day-of-week, turn-of-month, January effects, and ARMA terms). 

As already discussed, we have 1|| <tρ  for all real values of tz .  This implies that the 

conditional covariance matrix of bivariate return vector )',( ttt vu=u , 

 2/12/1
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is positive definite, where  
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As shown in Appendix A, since the positive definiteness of the covariance matrix is not 

guaranteed except in the bivariate case, our analyses are based solely on this case.  Assuming 
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conditional normality of the return vector and ignoring the constant terms, we can write the 

log likelihood as ∑= t tll , where tl  are the (conditional) likelihoods of the single 

observations given by 

 ttttt εε 1'
2
1||log

2
1 −Σ−Σ−=l ,             (11) 

where [ ]tttt E uuε 1−−= , and the prime denotes transposition.  Following Engle (2002), and 

using the right-hand presentation of the covariance matrix in equation (9), we can decompose 

the log likelihood as 

 ttttttttttt wwwRwRεDεD '
2
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2
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where )'/,/( ,2,2,1,1
2/1

ttttttt σεσε== − εDw  are independent variables with zero means and 

unit variances.  Hence, the last term can be ignored again as a constant from the likelihood.  

As in Engle (2002), we have 

  tttttV εDεD 1
, '

2
1||log

2
1 −−−=l ,             (13) 

and 

 tttttC wRwR 1
, '

2
1||log

2
1 −−−=l               (14) 

so that the log likelihood decomposes into the volatility part and correlation such that 

 tCtVtVC ,,, lll += .               (15) 

Because tD  is a diagonal matrix, equation (13) is the sum of individual volatility likelihoods.  

Making the reasonable assumption that the volatility parameters do not depend on the 

correlation parameters, the properties of maximum likelihood (ML) estimates imply that 

under standard regularity conditions the estimates resulting from the volatility part will be 

consistent.  Using these volatility parameters in the correlation likelihood, and solving the 
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ML estimates of the remaining parameters in the correlation function, again (by the 

properties of the ML) yields consistent estimates for these parameters (for a thorough 

discussion of two-step estimation, see Newey and McFadden (1994)). 

Decomposition of equation (15) and the above discussion suggests that two-step 

estimation can be expected to produce estimates as accurate as the single step estimation 

based on likelihoods given in equation (11).  The two-step procedure simplifies the 

estimation task and is particularly useful in high dimensional problems.  However, as already 

mentioned, we focus here on only the bivariate case because the positive definiteness of the 

correlation matrix cannot be guaranteed in general.  Even in this case, two-step estimation 

based on likelihoods in equation (15) is preferred.  

An alternative to the normal distribution is the t-distribution, for which the single 

observation log likelihood becomes 

 [ ]
[ ] ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Σ
++−Σ−⎥
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−
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mv
vv ttt

t

m

tm
εε 1

2

2

,
'

1log
2

log
2
1

2/)(
2/)(log

2
1 π

l ,           (16) 

where [ ]⋅Γ  is the Gamma function, m is the number of variables, and v  is the degrees of 

freedom.  In the bivariate case with 2=m , because [ ] [ ]1)1( −Γ−=Γ xxx , we have 

[ ] [ ]2/)2/(2/)2( vvv Γ=+Γ , and the first term on the right-hand-side of equation (16) reduces 

to )2log( π−  and can be dropped out from the likelihood.  However, it is obvious that, unless 

the degrees of freedom parameter v  is known, the t-log likelihood in equation (16) does not 

decompose contrary to the normal likelihood. 

Finally, diagnostic statistics to check the adequacy of the correlation model are 

derived in Appendix B. 
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3.  Data 

We utilize daily close-to-close stock index returns for twelve national markets, 

including stock exchanges in the United States (S&P500), Japan (Nikkei 225), UK (FT100), 

United Kingdom (FT100), Germany (DAX), Switzerland (SSMI), France (CAC40), the 

Netherlands (AEX General), Denmark (KFX), Sweden (Stockholm General), Norway (OSE 

All Share), and Finland (HEX All Share), in addition to the Financial Times world index 

(FTAW).  The sample series starts January 2, 1990 and ends January 31, 2005.  Index 

quotations for national holidays are replaced by the index value of the previous trading day 

yielding N = 3,992 daily observations.  Data is obtained mainly from the websites for Yahoo 

(finance.yahoo.com) and Global Financial Data Inc. (www.globalfindata.com) where 

complete descriptions of the indices can be found.   

Previous studies on the relationship between correlation, volatility, and market trends 

use weekly or monthly data, rather than daily data.  As observed in standard textbooks (e.g., 

Ingersoll (1985) and Campel, Lo, and MacKinlay (1997)), higher sampling frequency is 

associated with more accurate (contemporaneous) correlation and volatility estimates.  This is 

due to the fact that, unlike mean return estimation for which the sampling frequency is 

unimportant, lower frequency data smooths variation between adjacent observations resulting 

in smoothed estimates of correlation and volatility that discard important information.  

However, the benefits of more frequent sampling must be balanced against other problems, 

commonly called microstructure issues, which arise particularly in the case of intraday data.  

Consequently, we prefer daily data for the estimation of   contemporaneous correlation and 

time-varying volatilities.   

The daily index returns are defined by log-differences as 

 )/log(100 1−×= ttt IIr ,              (17) 
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where log is the natural logarithm, and tI  is the index value of day t.  Table 1 reports sample 

statistics for the returns.  Generally, the sample period is characterized by a small positive 

daily mean return between 0.02% to 0.04% for all other markets but Japan, where the average 

return is negative -0.031% due to the long stock market downturn there.  All the markets 

exhibit slight negative skewness and strong kurtosis, as well as highly statistically significant 

squared return autocorrelations (volatility clustering).  Additionally, besides the small Nordic 

markets, Switzerland and the world market index have slight though statistically significant 

return autocorrelations.  

Table 2 reports estimated contemporaneous correlation coefficients for the sample 

period.  All the correlations are positive ranging from 0.117 (US/Japan) to 0.803 

(France/Netherlands).  The overall average correlation is 0.475.  Japan has the lowest 

correlations with the other markets, with an average of 0.224.  These lower correlations are 

partially explained by the non-overlapping trading hours of Asian markets with the European 

and North American markets.  France and Netherlands have the highest average correlations 

of 0.575 and 0.593, respectively, with the other markets.  The major European markets of 

UK, Germany, France, Switzerland, and the Netherlands have the highest correlations with 

values ranging from 0.663 to 0.803.  The small Nordic markets of Sweden, Denmark, 

Finland, and Norway are also fairly highly correlated with one another as well as with the 

major European markets, with correlations ranging from 0.438 (Denmark/Finland) to 0.639 

(Sweden/Finland).   

To gain further insight into the nature of the cross-county correlations, we divided the 

sample into global up and down markets according to the slope of the trend in the world 

market index.  The trend is defined here as the slope of the Exponentially Weighted Moving 

Average (EWMA), or 

(18)  1t trend)1(index) world(trend −−+= tt ww  
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with weight 05.0=w  (i.e., 5% weight on the previous observation).  The world markets are 

considered down (bear market) when 1trendtrend −< tt , and up (bull market) otherwise.  

Another possibility could be to define pairwise bull/bear markets in a similar manner; 

however, this approach would be exposed to a selection bias.  That is, we first define regimes 

in which the markets are behaving alike and then measure whether the markets during these 

periods are more alike than on average in the sample period.  To avoid this selection bias we 

employ the trend of global markets to define bull and bear markets.  For further discussion of 

the selection bias and relative consequences to correlation of different value regimes of the 

variables affecting correlation, see Forbes and Rigobon (1998), Boyer, Gibson, and Loretan 

(1999), and Longin and Solnik (2001).  

Table 3 reports the estimated correlations for the down trending and up trending 

periods in panels A and B, respectively.  On average the correlations are 0.09 (24%) larger in 

the down markets than in the up markets.  The Swiss market correlations increase on average 

the most in absolute terms (0.122) in down markets, while the Japanese correlation increases 

the most in relative terms with an increase from 0.161 on average in up markets to 0.244 on 

average in down markets (or about a 50% increase in down markets). 

Most of the other differences are statistically significant2, with the exception of 

correlations between US/Japan, US/UK, US/France, US/Netherlands, and US/Finland.  The 

non-overlapping opening hours of markets in different parts of the world may have an impact 

on these results. 

We also calculated other sample statistics for these two market directions.  To 

conserve space the results are not reported here but are available from the authors upon 

request.  In summary, the results show that volatility was on average more than 40% higher 

in the down markets, and the difference in each case was highly statistically significant.  The 
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smallest increase in volatility during the down market was 31% for Norway, and the largest 

was over 50% for France.  For the US the increase was about 50% also. 

Table 4 reports the individual TGARCH specifications as given in equation (7) for the 

return volatilities over the whole sample period (with mean-returns modeled using an ARMA 

if needed to account for possible autocorrelation).  Panel A of Table 4 indicates that in 

several cases the return series are autocorrelated.  No discernible autocorrelation is found in 

the US, Japan, UK, Germany, and the Netherlands series.  Nevertheless, in most cases the 

asymmetric GARCH effect is clearly present, except for Finland.  From the diagnostic 

statistics in panel C of Table 4, we see that there is possibly left behind some longer lag 

autocorrelation in some return series (e.g., in France and the US), albeit small in magnitude 

(e.g., for France the largest autocorrelation for lags 1 to 5 is -0.038, and for the US it is -

0.037).  Hence, autocorrelation will not have any material impact on the TGARCH 

estimation, which is important here.  Again, according to the diagnostics in panel C of Table 

4, the asymmetric TGARCH captures fairly well the clustering volatility.  With respect to the 

squared residuals, the first order autocorrelation is borderline significant in the cases of Japan 

and Norway with corresponding autocorrelations of -0.034 and 0.029, respectively, which 

again are quite small.  For France, Norway, and Finland we removed one or two obvious 

outliers; however, the estimation results were not changed, with the exception of the kurtosis 

estimate.  As such, we retained all observations in our correlation estimations. 

IV.  Empirical Results 

This section reports estimation results for the logit regression models.  We have 

enhanced the basic model in equations (5) to (10) by including log world volatility, world 

down trend dummy defined by the sign of the slope of (18), and trend.  We present estimation 

results for European markets and leading world markets.  For the European markets there is 

no problem of non-overlapping trading hours that arises when using daily data to compute 
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correlations among leading markets in different parts of the world.  For this reason we use 

daily returns for analyses of European markets and weekly returns for the world leading 

markets that span different continents and daylight time zones.  As mentioned earlier, higher 

frequency observations tend to yield more precise estimates for correlations and volatilities.  

Consequently, forthcoming discussion begins with and places more emphasis on the 

European markets’ daily return results than the leading world markets’ weekly return results. 

A.  European Markets 

We break the European markets into two parts:  (1) major European markets, and (2) 

Nordic markets.  The reason for this bifurcation is that the Nordic markets form a fairly 

homogenous group and are considerably smaller in volume and market capitalization than the 

other European markets in our sample.  For example, each of the Nordic countries is only 

about 1/6th (1/20th) in market capitalization relative to the smallest major European market of 

Switzerland (largest European market of the UK) in the sample.  It also provides an 

opportunity to investigate whether the dependence structure among smaller markets and 

larger markets differ from each other. 

1.  Major European Markets 

As noted in Solnik, Boucrelle, and Fur (1996, p. 23), the volatilities themselves tend 

to be highly correlated with one another, thereby causing multicollinearity in regressions of 

national and world volatilities on correlation coefficients.  This proved to be the case in our 

study as well.  The average correlation of the log TGARCH volatilities between the major 

European markets was 0.84, with a minimum of 0.76 (UK/Switzerland) and maximum of 

0.92 (Germany/Netherlands).  The correlations with the world market volatility were 

generally close to 0.80.  It is obvious that there is much overlapping information in the 

volatilities; hence, when including all the volatility series into the equation, the results 

manifested the typical symptoms of multicollinearity.  One symptom was the significance of 
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volatility variables when included in the model one at a time but insignificance of volatility 

variables when  they are all included in the regression model (e.g., the case of UK/Germany).  

Another symptom was both positive and negative signs for estimated volatility coefficients 

(e.g., in each Swiss correlation the Swiss volatility was positive and highly significant, while 

the other country had a highly significant negative coefficient, which was also true for the 

Germany/France equation).  Because of the high degree of overlapping information, 

identification of each volatility’s marginal contribution becomes extremely unreliable.  Thus, 

we can only infer whether volatility per se is an important driver of correlations relative to 

other factors.  We do this by running the separate regressions with each volatility variable (in 

combination with the world down trend dummy and time trend in the equation).  The results 

for these separate (logit) regressions for pairwise countries denoted country(1)/country(2) are 

reported in Table 5, with country 1’s volatility in Panel A, country 2’s volatility in Panel B, 

and world volatility in Panel C.  

Panels A and B of Table 5 show that in almost all cases the national volatilities are 

statistically significant with positive signs.  In 8-out-of-10 cases (9-out-of-10 cases) the 

estimated coefficients for log σ1 (log σ2) are significant.  An exception here is the 

Germany/France correlation, in which neither of the national volatilities is significant.  Also, 

in the case of France/Netherlands correlations, the French volatility is not significant.  Panel 

C of Table 5 shows that in 10-out-of-10 cases the world volatility is highly statistically 

significant with positive sign, with the possible exception of the borderline significance in the 

UK/French equation. 

The world down trend dummy is statistically significant in a number of equations but 

not as frequently as the volatility variables.  In Panels A, B, and C of Table 5, world down 

trend is significant in 6-out-of-10 cases, 4-out-of-10 cases, and 1-out-of-10 cases, 

respectively.  Hence, when national volatilities are in the model, world down trend is a fairly 
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significant explanatory variable.  But when world volatility is in the model, the down trend 

dummy becomes insignificant for the most part, with the exception of the 

Germany/Switzerland equation. 

Finally, notice that the time trend is highly statistically significant in all equations, 

excluding Germany/Switzerland.  This suggests that the mutual correlations between 

European markets have been increasing over the last 15 years. 

We infer that national and world volatilities are the major drivers of changes in 

correlation over time (i.e., convergence), and that world down trend is significant but of 

lesser importance.  To get some intuition about the magnitude of the impact of volatility 

increases on the correlations, we can interpret the estimated regression coefficients as 

discussed earlier.  For example, in Panel C of Table 5, the regression coefficients vary from 

0.209 (UK/France) to 0.601 (France/Netherlands).  From Table 1 on average world volatility 

is about 13%.  If  world volatility increased by 10% (or by 1.3 percentage points to 14.4 %), 

the model would predict the UK/France correlation to increase by 0.02 and the 

France/Netherlands correlation by 0.06.  Other correlations would increase by amounts in 

between these values.  Importantly, these magnitudes have economic significance in the 

sense that larger increases in volatility can substantially change the correlation. 

According to the diagnostic statistics reported in the two last lines in each panel, 

empirically there are no differences between the models.  In terms of the Q-test, which 

measures the remaining correlation in the products 21zz  of the (Cholesky) standardized 

residuals, the only statistically significant cases are Germany/Netherlands and 

France/Netherlands.  However, the individual autocorrelations of the residual cross-products 

are of magnitude 0.05 or smaller, which are negligible compared to the autocorrelations in 

the range of 0.18 to 0.28 for the cross-products of the original returns series.  Thus, although 

statistically significant, these results are not economically meaningful.  The QM-statistics 
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measure adequateness in a broad sense by taking into account other possible serial 

dependencies.  There are dependencies (other than time-varying correlation) left behind in 

many of the models when lags are accumulated up to the fifth order.  However, the Q-

statistics indicate that these possible dependencies are likely from other sources than time-

varying correlation.  Accordingly, the overall results and in particular the Q-statistics indicate 

that the model performs quite well in capturing time-varying correlations. 

2.  Small Nordic Markets 

Table 6 reports the correlation equation results for the four Nordic markets of 

Sweden, Denmark, Finland, and Norway.  These markets are considerably smaller in volume 

and market capitalization than the major European markets (i.e., capitalization below 10% of 

the UK).  Summarizing the volatility findings:  in 3-out-of-6 cases (viz., Sweden/Denmark, 

Sweden/Finland, and Sweden/Norway) the national market volatilities of the first country are 

significant, in 4-out-of-6 cases (viz., Sweden/Finland, Sweden/Norway, Denmark/Norway, 

and Finland/Norway) the national market volatilities for the second country are significant, 

and in 6-out-of-6 cases the world market volatility is significant.  With only the exception of 

the Sweden/Norway correlation, the trend results indicate that the correlations between 

Nordic countries have been significantly increasing over the sample period.  Finally, with 

only the exception of the Sweden/Norway correlation, the world down trend is not 

statistically significant.  We infer that, to a greater extent than in the major European markets, 

the major driver behind time-varying correlations among small Nordic countries’ stock 

market returns is market volatility in general and world market volatility in particular.  When 

world market volatility increases, Nordic countries’ stock markets tend to move increasingly 

in the same direction and, hence, increase mutual contemporaneous correlations.  Notice that 

the marginal effect of world volatility is somewhat more pronounced in the correlations of 

these small European markets than the larger European markets discussed above.  Panel C of 
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Table 6 shows that the world volatility’s marginal effect on the correlations ranges from 

0.353 (Sweden/Norway) to 0.669 (Sweden/Denmark).  Again, these estimated coefficients 

can be interpreted to mean that, if the world volatility increases by 10% (i.e, from its average 

of 13% by about 1.3 percentage points to 14.4%), the correlations among Nordic markets are 

expected to increase by 0.04 for Sweden/Norway and 0.07 for Sweden/Denmark.  As we 

found for major European markets, large volatility shocks have economic significance.  

Finally, world down trend has a weaker effect than in the major European markets, due in all 

likelihood to the dominance of world volatility as the most important factor explaining 

contemporaneous correlations.   

The diagnostic statistics in the lower portion of Table 6 suggest that the models 

capture the time series dependencies in the data.  The only exception is the 

Finnish/Norwegian correlation, where the general QM statistics indicate dependencies in the 

residuals.  However, as in the case of the major European countries, we infer from the Q-

statistics that these potential dependencies are attributable to influences other than time-

varying correlation. 

B.  Leading World Markets 

As already mentioned, correlations based on daily returns between regions (North 

America/Europe, North America/Asia, and Europe/Asia) are prone to some degree to the 

problem of (largely) non-overlapping trading hours.  Information generated in Europe and the 

US is impounded in Asian returns the next day.  By contrast, Asian information is fully 

available in the US on a given trading day after being filtered through the European markets.  

The same is mainly true of the relationship between the US and Europe, where US 

information arrives in Europe the next day after being processed in the Asian markets.   

Due to this timing problem, we initially lagged US market daily returns one day 

relative to European and Japanese returns, and lagged European market daily returns one day 
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relative to Japanese returns (see Hamao, Masulis and Ng (1990) and Bessler and Yang 

(2003)).  In all cases the estimated coefficients for 1logσ  were positive and those for 2logσ  

were negative.  At first glance this appears to be divergence but another potential explanation 

is the use of lagged observations due to nonoverlapping trading hours (i.e., 2logσ is 

computed one day later than 1logσ ).  We tested this possibility by not lagging the data series 

(i.e., the data is lagged the other way with 1logσ  computed on the same day but later in time 

than 2logσ ).  Now the estimated coefficients for 1logσ  became negative and those for 

2logσ  became positive.  We further tested how lagged observations affect the estimated 

coefficients for 1logσ  and 2logσ  by using the European data series.  We lagged the German 

market returns relative to other countries’ returns and in every case the other country had a 

negative volatility coefficient.  These results suggest that contemporaneous correlations 

between stock markets are difficult to study when nonoverlapping trading hours exist.  

Importantly, the implication for our study is that the contemporaneous correlation results for 

the European countries are more reliable than those for leading world markets. 

 To mitigate the problem of nonoverlapping trading hours, we opted to run the 

analyses of leading world markets using weekly returns.  Table 7 reports the results of 

correlation regressions between the leading major markets in the world, including the US, 

UK, Germany, and Japan.2  Notice that national volatilities and the world volatility variable 

are generally significant for US/UK and US/Germany correlations3 but not significant in the 

correlations of Japan with the US, UK, and Germany.  A plausible explanation for the latter 

finding is the chronic economic stagnation and financial market turmoil in Japan throughout 

the 1990’s that affected its correlations with other leading markets.   
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 World down trend is significant for US/UK and UK/Japan correlations.  Thus, as in 

the European market results, market down trend is significant in explaining changes in 

correlation over time. 

 Finally, the time trend variable is significant for the US/UK, US/Germany, and 

Germany/Japan correlations but not for US/Japan and UK/Japan correlations.  We infer that 

correlations between leading markets have been generally increasing in our sample period, 

with the exception of the unique case of Japan. 

The diagnostic statistics in the lower panel of Table 7 again suggest that the models 

capture the time variation in the series.  The QM-statistic is only borderline significant in the 

US/Germany correlation.  In all other cases except Germany/Japan, the Q-statistics are far 

from significance.  A closer look at the autocorrelations of the cross-products of the Cholesky 

standardized residuals of the Germany/Japan case revealed that in each case the 

autocorrelation at lag 3 is about 0.12, which explains the significance of the Q-statistics. 

However, it is likely that this long lagged dependence between markets in different parts of 

the world is simply a random result. 

5.  Conclusion 

This paper focused on the dependence of contemporaneous return correlation between 

stock market returns in different countries on volatilities of both internal national markets and 

external world markets.  Starting with the definition of correlation, our main contribution was 

to propose an explicit model to investigate the contribution of the level of volatility and other 

variables with respect to mutual correlations between stock market returns.  More 

specifically, we directly modeled time-varying conditional correlation as a function of 

internal national market and external world market volatilities in addition to other 

explanatory variables via logit-type regression.   
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The markets in our study were:  North America -- US (S&P500);  Asia -- Japan 

(Nikkei225);  and Europe – United Kingdom (FT500), France (CAC40), Germany (DAX), 

Switzerland (SSMI), the Netherlands (AEX General), Denmark (KFX), Sweden (Stockholm 

All Share), Norway (OSE All Share), and Finland (HEX All Share).  Considering the small 

Nordic markets (Finland, Denmark, Norway and Sweden) as its own group provided an 

opportunity to investigate whether the correlations between small markets behave differently 

than those between larger markets.  We also included in our analyses the Financial Times 

world index (FTAW) as a proxy for world market volatility.  Initial empirical analyses of 

stock market returns using daily data in the sample period 1990-2005 confirmed that 

correlation is more pronounced when the world market index is trending down.  However, 

further structured analyses based on our logit-type regression model using daily data lead us 

to conclude that the major determinants of time-varying correlations between stock market 

returns are national market and world market volatilities (i.e., the convergence effect).  After 

controlling for the general increasing trend in the correlations, the world volatility was 

especially pronounced in the small Nordic market equations.  Moreover, in terms of 

economic significance, we found that large increases in volatility can substantially change 

correlations.  These results support earlier studies that find mutual correlations tend to 

increase when volatility is high (Solnik, Boucrelle, and Fur (1996), Ramchand and Susmel 

(1998), Dennis, Mayhew, and Stivers (2005), Baele (2005), and others).  We also find that 

correlations between stock market returns in different countries increase during worldwide 

bearish markets (Longin and Solnik (2001), Ang and Chen (2002), and others), but this 

relationship was weaker in magnitude than volatility.  Further results showed that most of the 

stock market correlations between countries have been increasing from 1990 to 2005.  Hence, 

the increase in market correlations reported by Longin and Solnik (1995) for the period 1960 

to 1990 has continued in recent years.  This trend likely is due to increasing global capital 
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flows and coincident financial market integration.  Finally, we found that contemporaneous 

correlation results using daily returns for the European countries with overlapping trading 

hours were more reliable than those for the leading world markets with nonoverlapping 

trading hours. 

Future research is recommended on what drives contemporaneous correlation 

between stocks in individual domestic markets.  In this instance there is no problem of 

nonoverlapping trading hours.  As cited earlier, Ang and Chen (2002) use monthly returns to 

investigate correlations between different segments of domestic U.S. stocks and the aggregate 

U.S. market.   Following their study, small and large stocks, value and growth stocks, past 

loser and winner stocks, stocks in different industries, etc. are possible cases to examine to 

gain insight into the functional relationship between the contemporaneous correlation of 

these different segments’ returns and potential determinants, including their respective 

volatilities, domestic market volatility, market trends, and other variables.   
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Footnotes 

1.  This is because, if xay log= , then 
x

a
dx
dy 1= .  Consequently, 

x
a

x
y 1≈

∆
∆  or 

x
xa

x
xay ∆=∆≈∆ 10001.0 .  Thus, a 1 percentage change in x amounts approximately to a 

0.01a change in y. 

2.  The test statistic is 3)( 21 −−= Tzzt , where T is the total sample size, and 
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⎝
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+=
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iz

ρ
ρ
ˆ1
ˆ1log

2
1 , i = 1, 2 are the Fisher transformations.  Under the null hypothesis of 

equality of population correlations, the t-statistic is asymptotically N(0,1)  

distributed. 

3.  Panel C of Table 7 shows that the world volatility’s marginal effect on the correlations for  

US/UK and US/Germany are 1.121 and 0.769, respectively.  If the world volatility increased 

by 10%, the correlations among these markets would be expected to increase by 0.12 and 

0.08, respectively.  
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APPENDIX A.  Positive definiteness of the correlation matrix 

As discussed in section II, a necessary and sufficient condition for the covariance 

matrix to be positive definite in the bivariate case is that 1<tρ , which is always the case for 

equation (6).  Unfortunately, in the general case with three or more variables, there are no 

simple rules to guarantee the positive definiteness of the covariance matrix.  The difficulty is 

easily demonstrated with a simple example of three series, denoted 1, 2, and 3, with 

correlations 21ρ , 31ρ , and 32ρ .  If 031 =ρ  and 2
3221 1 ρρ −±= , the correlation matrix is 

singular, and even negative definite if 2
3221 1 ρρ −> .  Thus, in the general case without 

strong restrictions on the correlations, we cannot guarantee the positive definiteness.  

A simplified case that guarantees positive definiteness has found some popularity in 

portfolio optimization is the “constant correlation model” or “overall mean correlation 

model” (e.g., Elton and Gruber (1973)), which we will refer to as the uniform 

contemporaneous correlation model.  That is, for all pairs i and j of stocks, the time t 

correlations are the same, i.e., ttij ρρ =, .  As such, the correlation matrix simplifies to 

')1( ιιIR ttt ρρ +−= , where I is an mm×  the identity matrix, and ι  is a m-vector of ones 

with m the dimension (number of return series) of the correlation matrix.  Though extremely 

simple, the uniform correlation model has proven to perform surprisingly well in portfolio 

diversification relative to more general models. Essentially this model means that, while the 

correlations are time-varying cross-sectionally, the best estimate of the pair-wise correlations 

is the grand mean, and the deviations of the single pair-wise correlations are zero-mean 

deviations from the grand mean.  In this simple case a necessary and sufficient condition for 

the positive definiteness of the correlation matrix is 1
1

1 <<
−

− tm
ρ , which is usually met, 

because stocks are on average positively correlated.  Finally, we should note that, because 
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tjtittij ,,, σσρσ = , the covariances need not be the same across pairs.  An implication of this is 

that, if one applies the single index model, the uniform correlation model leads to a restricted 

beta with tmttiti ,,, /σρσβ = , where tm,σ is the volatility of the market index.  Thus, the beta 

varies cross-sectionally only as a function of the volatilities. 
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APPENDIX B.  Residual testing 

Given the conditional variances ith , 2,1=i , with ),0(~| 1 ttit hN−Ψε , we 

have  

 )1,0(NID~
it

it
it h

w
ε

= ,             (B.1) 

(i.e., the standardized residuals are independent standard normal random variables). 

Accordingly, a standard tool to test the adequacy of the conditional variance specification is 

to check the autocorrelations of the squared standardized residuals of the form (B.1).  A 

popular Portmanteau testing tool is the Ljung and Box (1979) Q-statistic.  Another tool is the 

ARCH-test introduced by Engle (1982). 

Although itw  are serially independent, the joint distribution of  )',( 21 ttt ww=w  need 

not be, and indeed is not, if the correlation is time-varying.  Thus, in order to take into 

account the serial dependency in the bivariate case, and thereby check the adequacy of the 

correlation specification, we can utilize the time t Cholesky decomposition of the covariance 

matrix such that 

  ttt 'AA=Σ ,              (B.2) 

where tA  is a (unique) lower triangular matrix with positive diagonal elements. Defining 

Cholesky-standardized residuals as 

  ttt wAr 1−= ,              (B.3) 

then 

 ),(~ I0r NIDt ,              (B.4) 

where  I is the 22×  identity matrix. 
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To test the white noisiness of tr , a multivariate extension of the Ljung-Box type 

Portmanteau statistic (see Hosking (1980)) can be utilized.  The statistic is of the form 

  )'(tr1)(QM 1
000

1
000

1

2 −−

=
∑ −

= CCCC jj

s

j jT
Ts ,            (B.5) 

where 

  ∑
=

−−=
T

t
jtitij T

C
1

'ˆˆ1 rr ,              (B.6) 

is the estimated cross autocorrelation matrix of the Cholesky-standardized residuals with 

0r =uˆ  for 0≤u , and the hat indicates that the tA - matrix in equation (B.2) is computed 

from the estimated residual covariance matrix.  If the (standardized) residuals are white 

noise, the LB(s) is asymptotically ))(( 22 ksp −χ -distributed, where p is the number of series 

(here p = 2), and k is the lag-length in the return vector autoregression (VAR). 

The multivariate Ljung-Box statistic is an aggregate test statistic.  Significance of the 

statistic indicates that there is either non-modeled clustering volatility or clustering 

correlation, or both, in the residuals.  To determine whether the time-varying volatility is 

captured by the fitted model, a simple diagnostic tool is to test the autocorrelation of the 

cross-products of the Cholesky-standardized residuals with the univariate Ljung-Box 

statistic. 
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Table 1 
Descriptive Statistics for Daily Stock Index Returns by Country 

 
  US JPN UK GER SWZ FRA NED DEN SWE NOR FIN World 

Mean (%) 0.031 -0.031 0.018 0.022 0.030 0.017 0.025 0.026 0.030 0.032 0.036 0.017
Volatility (%, pa) 16.129 23.437 16.350 22.888 18.374 21.345 20.789 16.514 20.568 18.576 29.292 13.067
Kurtosis (excess) 3.885 3.366 2.987 3.598 5.046 2.820 4.946 3.068 4.198 5.501 7.121 3.421
Skewness -0.102 0.199 -0.063 -0.163 -0.244 -0.093 -0.119 -0.261 0.238 -0.341 -0.353 -0.119
Range 12.687 19.662 11.493 17.424 15.761 14.680 17.048 11.228 16.771 18.141 31.966 10.130
Minimum -7.114 -7.234 -5.589 -9.871 -8.299 -7.678 -7.531 -6.258 -6.894 -9.206 -17.403 -5.053
Maximum 5.573 12.428 5.904 7.553 7.462 7.002 9.517 4.970 9.877 8.934 14.563 5.077
Jarque-Bera (JB) 2465.1 1871.0 1455.2 2125.3 4186.2 1300.9 3994.4 1577.6 2907.4 5006.4 8342.4 1915.0
p-value (JB) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
rho(1) -0.001 -0.021 0.014 -0.009 0.035 0.018 0.010 0.072 0.087 0.101 0.056 0.177
p-value [rho(1)] 0.926 0.196 0.380 0.590 0.029 0.267 0.538 0.000 0.000 0.000 0.000 0.000
rho(1) [squared return] 0.197 0.096 0.217 0.173 0.230 0.174 0.265 0.244 0.175 0.198 0.143 0.145
p-value [rho(1) sq return] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
N 3922 3922 3922 3922 3922 3922 3922 3922 3922 3922 3922 3922
Daily index returns in the sample period December 31, 1989 to January 31, 2005 are defined as differences in log-prices, or ( ))1log()log(100 −−×= tItItr . 
Returns for national holidays are replaced by zeros. The sample size (N) is 3,922. 
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Table 2 
Contemporaneous Cross-Market Return Correlations Between Countries 

 
  US JPN UK GER SWZ FRA NED DEN SWE NOR FIN World 

US 1            
JPN 0.119 1           
UK 0.402 0.249 1          
GER 0.455 0.229 0.663 1         
SWZ 0.377 0.245 0.682 0.713 1        
FRA 0.406 0.235 0.748 0.749 0.717 1       
NED 0.405 0.255 0.760 0.779 0.764 0.803 1      
DEN 0.246 0.225 0.489 0.528 0.512 0.523 0.556 1     
SWE 0.349 0.274 0.609 0.642 0.608 0.663 0.664 0.536 1    
NOR 0.250 0.266 0.514 0.532 0.554 0.524 0.567 0.514 0.588 1   
FIN 0.288 0.199 0.508 0.528 0.458 0.551 0.563 0.438 0.639 0.460 1  
World 0.782 0.472 0.603 0.625 0.565 0.598 0.604 0.419 0.549 0.438 0.442 1

Average1 0.360 0.224 0.549 0.568 0.545 0.575 0.593 0.441 0.543 0.462 0.454 0.561
1 World market is excluded from the marketwide averages. 
Daily index returns in the sample period December 31, 1989 to January 31, 2005 are defined as log-differences, or ( ))1log()log(100 −−×= tItItr .   
Returns for national holidays are replaced by zeros.  The sample size (N) is 3,922. 
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Table 3 
Contemporaneous Cross-Market Stock Return Correlations When World Markets Are Up and Down Trending  

 
Panel A.  Up trending world market returns 

 US JPN UK GER SWZ FRA NED DEN SWE NOR FIN 
US 1           
JPN 0.101 1          
UK 0.389 0.179 1         
GER 0.406 0.189 0.594 1        
SWZ 0.341 0.159 0.592 0.631 1       
FRA 0.383 0.173 0.687 0.699 0.619 1      
NED 0.390 0.186 0.682 0.741 0.680 0.749 1     
DEN 0.193 0.150 0.416 0.471 0.416 0.442 0.486 1    
SWE 0.308 0.198 0.538 0.593 0.535 0.591 0.614 0.468 1   
NOR 0.211 0.175 0.429 0.464 0.447 0.436 0.488 0.412 0.502 1  
FIN 0.262 0.126 0.445 0.487 0.397 0.482 0.536 0.381 0.589 0.397 1

Average 0.327 0.161 0.484 0.514 0.467 0.512 0.540 0.372 0.481 0.385 0.403
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    Table 3, continued 
 

Panel B.  Down trending world market returns 
 US JPN UK GER SWZ FRA NED DEN SWE NOR FIN 

US 1           
JPN 0.098 1          
UK 0.392 0.281 1         
GER 0.472 0.231 0.705 1        
SWZ 0.382 0.287 0.737 0.766 1       
FRA 0.406 0.261 0.789 0.780 0.781 1      
NED 0.393 0.279 0.810 0.800 0.815 0.839 1     
DEN 0.262 0.261 0.531 0.557 0.571 0.575 0.596 1    
SWE 0.354 0.306 0.651 0.666 0.650 0.710 0.689 0.574 1   
NOR 0.249 0.312 0.567 0.570 0.624 0.583 0.614 0.584 0.642 1  
FIN 0.282 0.229 0.541 0.543 0.485 0.591 0.567 0.465 0.665 0.491 1

Average 0.361 0.244 0.583 0.594 0.589 0.612 0.617 0.479 0.573 0.503 0.474
Daily index returns in the sample period December 31, 1989 to January 31, 2005 are defined as log-differences, or ( ))1log()log(100 −−×= tItItr .   
Returns for national holidays are replaced by zeros.  The sample size (N) is 2,404 in up markets (panel A) and 1,518 in down markets (panel B). 
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Table 4 
Conditional Variance Estimates for Stock Returns by Country 

 
Panel A.  Mean equation 
 US JPN UK GER SWZ FRA NED DEN SWE NOR FIN World
Constant 0.0272 -0.039 0.015 0.033 0.023 0.009 0.030 0.026 0.051 0.054 0.020 0.011
Standard error 0.0129 0.021 0.013 0.017 0.017 0.018 0.015 0.016 0.018 0.019 0.024 0.013
AR(1)     0.044 0.025  0.112 0.101 0.496 0.140 0.204
Standard error     0.018 0.017  0.018 0.017 0.086 0.018 0.016
Other lags1     0.055     -0.363   
Standard error     0.015     0.091   
Panel B.  Variance equation 
Constant 0.010 0.050 0.011 0.022 0.057 0.025 0.018 0.037 0.029 0.036 0.019 0.011
Standard error 0.001 0.006 0.002 0.003 0.004 0.004 0.005 0.014 0.008 0.008 0.007 0.001
ARCH(1) 0.006 0.022 0.016 0.032 0.017 0.011 0.039 0.051 0.033 0.059 0.053 0.014
Standard error 0.005 0.005 0.006 0.007 0.006 0.005 0.017 0.018 0.015 0.014 0.013 0.006
ARCH(1) < 0 0.099 0.112 0.074 0.090 0.157 0.089 0.072 0.053 0.114 0.102 0.024 0.123
Standard error 0.008 0.010 0.008 0.009 0.012 0.009 0.022 0.021 0.024 0.026 0.017 0.009
GARCH(1) 0.935 0.902 0.935 0.911 0.855 0.929 0.910 0.887 0.894 0.863 0.930 0.910
Standard error 0.005 0.008 0.006 0.007 0.009 0.006 0.011 0.018 0.011 0.018 0.010 0.007

1For Norway the mean model is ARMA(1,1), and for Switzerland AR lags 1 and 4 are used. The standard errors are the robust standard errors described in 
Bollerslev and Wooldrige (1992). 
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Table 4, continued 
 
Panel C.  Diagnostic statistics 
 US JPN UK GER SWZ FRA NED DEN SWE NOR FIN World
Q(1) z 2.458 0.141 3.310 1.543 2.148 0.416 3.305 0.558 1.260 0.270 0.129 5.757
p-value 0.117 0.707 0.069 0.214 0.143 0.519 0.069 0.455 0.262 0.603 0.720 0.016

Q(5) z 
11.30

0 0.859 9.653 6.938 3.828
14.17

0 9.301 2.719 4.273 3.326 9.333 10.387
p-value 0.046 0.973 0.086 0.225 0.281 0.007 0.098 0.606 0.370 0.344 0.053 0.034
Q(1) z2 2.456 4.616 0.425 3.011 0.546 0.213 1.928 2.925 1.043 3.933 1.828 0.549
p-value 0.117 0.032 0.515 0.083 0.460 0.644 0.165 0.087 0.307 0.047 0.176 0.459
Q(5) z2 4.371 6.562 2.883 6.782 0.725 5.234 2.959 4.531 1.465 4.191 2.090 0.863
p-value 0.497 0.255 0.718 0.237 0.867 0.264 0.706 0.339 0.833 0.242 0.719 0.930
Skewness -0.363 -0.029 -0.112 -0.130 -0.609 -0.141 -0.458 -0.442 -0.066 -0.064 -0.093 -0.232
p-value 0.000 0.459 0.004 0.001 0.000 0.000 0.000 0.000 0.092 0.100 0.018 0.000
Excess kurtosis 1.917 1.844 1.112 1.122 5.856 0.639 2.500 4.121 2.347 1.426 3.729 1.896
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

JB-residuals 686.5 556.3 210.4 216.9
5845.

8 79.7
1158.

7
2903.

1 902.7 335.1 2278.0 622.9
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
N 3922 3922 3922 3922 3922 3921 3922 3922 3922 3921 3920 3922

This table gives the individual ARMA-TGARCH specifications as given in equation (7).  The sample period of daily observations covers January 2, 1990 to 
January 31, 2005 of log daily returns, or ( ))1log()log(100 −−×= tItItr .  Returns for national holidays are replaced by zeros.   
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Table 5 
Logit Regression Results for Major European Markets  

 
Dependent variable:  Logit transformation of time-varying correlation between countries 1 and 2, or [ ])1/()1(log ,12,12 tt ρρ −+  

 UK(1)/GER(2) UK(1)/FRA(2) UK(1)/SWZ(2) UK(1)/NED(2) GER(1)/FRA(2) 
Independent variables Coef Std err p-val Coef Std err p-val Coef Std err p-val Coef Std err p-val Coef Std err p-val 
Panel A. Country 1 volatility alone 
Constant 0.773 0.076 0.000 1.284 0.087 0.000 1.002 0.083 0.000 1.491 0.100 0.000 0.924 0.084 0.000 
Log σ1 0.339 0.109 0.002 0.421 0.119 0.000 0.229 0.115 0.047 0.679 0.120 0.000 0.137 0.089 0.126 
World down trend 0.174 0.125 0.163 0.083 0.153 0.586 0.352 0.149 0.018 0.260 0.131 0.047 0.095 0.125 0.445 
Time trend(x 1,000) 0.632 0.061 0.000 0.515 0.059 0.000 0.415 0.058 0.000 0.285 0.073 0.000 0.834 0.064 0.000 
Diagnostic statistics Stat p-val  Stat p-val  Stat p-val  Stat p-val  Stat p-val  
QM(5) 25.088 0.068  46.026 0.000  31.239 0.013  38.455 0.001  49.188 0.000  
Q(5) z1z2 3.555 0.615  1.616 0.899  6.784 0.237  3.502 0.623  2.962 0.706  
Panel B. Country 2 volatility alone 
Constant 0.742 0.071 0.000 1.118 0.076 0.000 1.043 0.076 0.000 1.459 0.020 0.000 0.876 0.078 0.000 
Log σ 2 0.352 0.112 0.002 0.294 0.141 0.038 0.655 0.119 0.000 0.636 0.080 0.000 -0.075 0.165 0.651 
World down trend 0.071 0.070 0.307 0.152 0.157 0.332 0.231 0.152 0.129 0.288 0.130 0.027 0.186 0.166 0.262 
Time trend(x 1,000) 0.571 0.065 0.000 0.564 0.061 0.000 0.383 0.058 0.000 0.214 0.024 0.000 0.905 0.066 0.000 

Diagnostic statistics                
QM(5) 24.22 0.085  47.53 0.000  29.76 0.019  36.86 0.002  49.42 0.000  
Q(5) z1z2 2.59 0.763  1.76 0.882  2.86 0.722  3.75 0.587  2.85 0.723  
Panel C. World volatility alone 
Constant 0.805 0.108 0.000 1.238 0.103 0.000 1.055 0.110 0.000 1.538 0.124 0.000 1.188 0.103 0.000 
Log world volatility 0.287 0.115 0.013 0.209 0.114 0.067 0.250 0.117 0.033 0.530 0.122 0.000 0.406 0.107 0.000 
World down trend 0.125 0.146 0.392 0.112 0.159 0.482 0.287 0.176 0.102 0.160 0.148 0.280 -0.126 0.156 0.419 
Time trend(x 1,000) 0.665 0.062 0.000 0.577 0.065 0.000 0.433 0.063 0.000 0.356 0.072 0.000 0.780 0.068 0.000 

Diagnostic statistics                
QM(5) 24.84 0.073  46.58 0.000  30.94 0.014  37.68 0.002  48.91 0.000  
Q(5) z1z2 3.23 0.665  3.68 0.597  6.74 0.240  3.93 0.560  3.45 0.631  
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Table 5, continued 
 

Dependent variable:  Logit transformation of time-varying correlation between countries 1 and 2, or [ ])1/()1(log ,12,12 tt ρρ −+  

 GER(1)/SWZ(2) GER(1)/NED(2) FRA(1)/SWZ(2) FRA(1)/NED(2) SWZ(1)/NED(2) 
Independent variables Coef Std err p-val Coef Std err p-val Coef Std err p-val Coef Std err p-val Coef Std err p-val 
Panel A. Country 1 volatility alone 
Constant 1.351 0.074 0.000 1.308 0.068 0.000 1.095 0.074 0.000 1.173 0.094 0.000 1.641 0.083 0.000 

Log σ1 0.242 0.123 0.049 0.231 0.069 0.001 0.309 0.181 0.087 0.308 0.281 0.273 0.903 0.119 0.000 
World down trend 0.500 0.140 0.000 0.272 0.138 0.049 0.405 0.163 0.013 0.366 0.159 0.021 0.194 0.157 0.218 
Time trend(x 1,000) 0.092 0.061 0.135 0.485 0.065 0.000 0.341 0.068 0.000 0.716 0.080 0.000 0.074 0.066 0.262 
Diagnostic statistics                
QM(5) 29.39 0.021  19.03 0.267  45.19 0.000  52.17 0.000  30.03 0.018  
Q(5) z1z2 4.16 0.526  19.21 0.002  8.09 0.152  14.64 0.012  1.47 0.916  
Panel B. Country 2 volatility alone 
Constant 1.459 0.073 0.000 1.359 0.072 0.000 1.265 0.087 0.000 1.391 0.099 0.000 1.629 0.085 0.000 
Log σ 2 0.603 0.130 0.000 0.205 0.098 0.037 0.780 0.143 0.000 0.522 0.102 0.000 0.477 0.100 0.000 

World down trend 0.400 0.165 0.015 0.276 0.127 0.030 0.270 0.176 0.126 0.242 0.178 0.174 0.292 0.154 0.058 

Time trend(x 1,000) 0.062 0.061 0.305 0.472 0.070 0.000 0.271 0.073 0.000 0.567 0.093 0.000 0.030 0.068 0.663 

Diagnostic statistics                

QM(5) 29.60 0.020  18.93 0.273  44.26 0.000  51.39 0.000  28.91 0.025  

Q(5) z1z2 3.43 0.634  18.68 0.002  4.37 0.498  17.00 0.005  1.09 0.955  

Panel C. World volatility alone 
Constant 1.561 0.119 0.000 1.503 0.092 0.000 1.380 0.116 0.000 1.561 0.105 0.000 1.756 0.033 0.000 

Log world volatility 0.388 0.124 0.002 0.331 0.116 0.004 0.463 0.129 0.000 0.601 0.116 0.000 0.509 0.089 0.000 

World down trend 0.358 0.179 0.045 0.025 0.123 0.837 0.209 0.204 0.304 0.078 0.197 0.691 0.152 0.135 0.262 

Time trend(x 1,000) 0.089 0.074 0.229 0.503 0.058 0.000 0.307 0.074 0.000 0.649 0.080 0.000 0.119 0.045 0.008 

Diagnostic statistics                

QM(5) 29.26 0.022  18.66 0.287  45.28 0.000  50.38 0.000  28.91 0.025  

Q(5) z1z2 4.46 0.485  15.00 0.010  7.43 0.190  15.50 0.008  1.20 0.945  
The sample period covers daily observations from January 2, 1990 to January 31, 2005 (N = 3,922).  QM(5) is a multivariate Box-Ljung statistics aggregated 
over lags 1 to 5 (discussed in Appendix B), and Q(5) is the univariate Box-Ljung statistic for the autocorrelation in the cross-products of the Cholesky 
standardized residuals (derived in Appendix B) aggregated over lags 1 to 5.  The time trend estimates are multiplied by 1,000. 
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Table 6 
Logit Regression Results for Nordic Markets 

 

 Dependent variable:  Logit transformation of time-varying correlation between countries 1 and 2, or [ ])1/()1(log ,12,12 tt ρρ −+  

 SWE(1)/DEN(2) SWE(1)/FIN(2) SWE(1)/NOR(2) DEN(1)/FIN(2) DEN(1)/NOR(2) FIN(1)/NOR(2) 
Independent  
variables Coef 

Std 
err p-val Coef Std err p-val Coef Std err p-val Coef Std err p-val Coef Std err p-val Coef Std err p-val 

Panel A: Country 1 volatility alone 
Constant 0.861 0.098 0.000 0.730 0.073 0.000 1.015 0.072 0.000 0.305 0.092 0.001 0.127 0.087 0.144 0.574 0.081 0.000 

Log σ1 0.423 0.094 0.000 0.483 0.123 0.000 0.288 0.111 0.009 -0.123 0.121 0.311 -0.103 0.142 0.466 0.152 0.121 0.210 
World down trend 0.016 0.164 0.924 -0.151 0.193 0.434 0.449 0.151 0.003 -0.171 0.139 0.216 0.103 0.155 0.507 0.233 0.175 0.183 
Time trend (x 1,000) 0.152 0.075 0.043 0.594 0.074 0.000 0.086 0.059 0.144 -0.236 0.066 0.000 -0.136 0.068 0.045 0.274 0.092 0.003 

Diagnostic statistics Stat p-val  Stat p-val  Stat p-val  Stat p-val  Stat p-val  Stat p-val  
QM(5) 23.80 0.094  24.54 0.078  21.74 0.152  28.29 0.029  27.63 0.035  40.45 0.001  
Q(5) z1z2 17.68 0.003  28.34 0.000  3.51 0.622  11.57 0.041  1.39 0.925  1.13 0.951  
Panel B: Country 2 volatility alone 
Constant 0.844 0.093 0.000 0.695 0.081 0.000 0.999 0.079 0.000 0.509 0.082 0.000 0.851 0.092 0.000 0.564 0.095 0.000 
Log σ 2 0.264 0.169 0.118 0.265 0.139 0.056 0.418 0.088 0.000 -0.040 0.112 0.721 0.461 0.143 0.001 0.292 0.124 0.018 
World down trend 0.156 0.168 0.352 -0.033 0.168 0.845 0.446 0.152 0.003 0.084 0.156 0.588 0.235 0.171 0.170 0.202 0.158 0.201 
Time trend (x 1,000) 0.200 0.074 0.007 0.550 0.102 0.000 0.124 0.060 0.039 0.351 0.098 0.000 0.107 0.072 0.137 0.344 0.081 0.000 

Diagnostic statistics Stat p-val  Stat p-val  Stat p-val  Stat p-val  Stat p-val  Stat p-val  
QM(5) 22.88 0.117  23.99 0.090  21.66 0.155  20.67 0.192  26.29 0.050  41.06 0.001  
Q(5) z1z2 18.10 0.003  28.75 0.000  3.15 0.677  24.30 0.000  2.07 0.839  0.65 0.986  
Panel C: World volatility alone 
Constant 1.215 0.105 0.000 1.021 0.115 0.000 1.187 0.100 0.000 0.803 0.108 0.000 1.090 0.095 0.000 0.853 0.106 0.000 

Log world volatility 0.669 0.118 0.000 0.559 0.123 0.000 0.354 0.119 0.003 0.460 0.114 0.000 0.427 0.114 0.000 0.491 0.119 0.000 

World down trend -0.170 0.165 0.303 -0.260 0.197 0.185 0.367 0.145 0.011 -0.185 0.156 0.235 0.113 0.159 0.476 0.003 0.141 0.982 

Time trend (x 1,000) 0.104 0.075 0.169 0.570 0.091 0.000 0.078 0.061 0.199 0.253 0.077 0.001 0.044 0.065 0.504 0.267 0.062 0.000 

Diagnostic statistics Stat p-val  Stat p-val  Stat p-val  Stat p-val  Stat p-val  Stat p-val  

QM(5) 23.99 0.090  23.43 0.103  21.79 0.150  20.60 0.194  24.52 0.079  39.82 0.001  

Q(5) z1z2 13.85 0.017  27.47 0.000  3.10 0.685  22.56 0.000  2.98 0.703  0.53 0.991  
The sample period covers daily observations from January 2, 1990 to January 31, 2005 (N = 3,922).  QM(5) is a multivariate Box-Ljung statistics aggregated 
over lags 1 to 5 (discussed in Appendix B), and Q(5) is the univariate Box-Ljung statistic for the autocorrelation in the cross-products of the Cholesky 
standardized residuals (derived in Appendix B) aggregated over lags 1 to 5.  The time trend estimates are multiplied by 1,000. 
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Table 7 
Logit Regression Results for Leading North American, European, and Asian Stock Markets  

 
Dependent Variable:  Correlation Between Country (1) and Country (2) 

 US(1)/UK(1) US(1)/GER(2) US(1)/JPN(2) UK(1)/JPN(2) GER(1)/JPN(2) 

Independent variables Coef Std error p-value Coef 
Std 

error 
p- 

value Coef Std error p-value Coef Std error p-value Coef Std error p-value 
Panel A. Country 1 volatility alone 
Constant 0.359 0.154 0.020 0.011 0.153 0.943 0.607 0.176 0.001 0.668 0.223 0.003 0.512 0.252 0.042 

Log σ1 0.511 0.250 0.041 0.197 0.236 0.403 -0.140 0.284 0.622 -0.453 0.311 0.145 -0.322 0.271 0.235 
World down trend 0.591 0.325 0.069 0.486 0.375 0.195 0.345 0.360 0.339 0.950 0.340 0.005 0.373 0.298 0.211 
Time trend(x 100) 0.285 0.056 0.000 0.550 0.758 0.000 0.079 0.069 0.250 0.089 0.075 0.236 0.206 0.067 0.002 
Diagnostic statistics                
QM(5) 19.61 0.238  26.79 0.044  19.05 0.266  5.12 0.995  19.22 0.258  
Q(5) z1z2 3.05 0.693  9.99 0.076  5.34 0.376  2.54 0.770  22.11 0.000  
Panel B. Country 2 volatility alone 
Constant 0.249 0.219 0.256 -0.466 0.209 0.026 0.401 0.534 0.453 1.117 0.447 0.012 0.333 0.423 0.431 
Log σ 2 0.532 0.313 0.089 0.775 0.269 0.004 0.157 0.444 0.723 -0.573 0.406 0.158 -0.026 0.339 0.939 

World down trend 0.639 0.325 0.049 0.203 0.336 0.546 0.214 0.353 0.544 0.887 0.345 0.010 0.212 0.272 0.435 

Time trend(x 100) 0.318 0.059 0.000 0.495 0.728 0.000 0.064 0.065 0.320 0.018 0.066 0.781 0.161 0.068 0.017 

Diagnostic statistics                

QM(5) 20.03 0.219  26.90 0.043  18.54 0.293  5.34 0.994  18.83 0.278  

Q(5) z1z2 5.94 0.312  7.71 0.173  5.28 0.382  2.07 0.840  21.42 0.001  

Panel C. World volatility alone 
Constant 0.047 0.205 0.817 -0.225 0.188 0.231 0.623 0.208 0.003 0.620 0.191 0.001 0.423 0.177 0.017 

Log world volatility 1.121 0.324 0.001 0.769 0.365 0.035 -0.137 0.223 0.538 -0.381 0.298 0.201 -0.337 0.288 0.242 

World down trend 0.130 0.338 0.701 0.105 0.395 0.790 0.349 0.279 0.212 0.938 0.380 0.014 0.418 0.296 0.158 

Time trend(x 100) 0.315 0.056 0.000 0.539 0.615 0.000 0.066 0.057 0.245 0.074 0.067 0.270 0.190 0.062 0.002 

Diagnostic statistics                

QM(5) 20.45 0.201  26.88 0.043  18.94 0.272  5.35 0.994  19.42 0.248  

Q(5) z1z2 5.86 0.320  8.71 0.121  5.82 0.324  2.53 0.772  22.88 0.000  
The sample period covers weekly observations from January 2, 1990 to January 31, 2005 (N = 790).  QM(5) is a multivariate Box-Ljung statistics aggregated 
over lags 1 to 5 (discussed in Appendix B), and Q(5) is the univariate Box-Ljung statistic for the autocorrelation in the cross-products of the Cholesky 
standardized residuals (derived in Appendix B) aggregated over lags 1 to 5.  The time trend estimates are multiplied by 100. 


