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Abstract

I. The existence of eigenvalues is shown for certain
classes of integral equations with continuous kernels. A number
of interesting and useful results are thereby treated in a unified
and relatively elementary way. The simplicity of these new proofs
make the results accessible to introductory courses on the theory

of integral eqguations.

II. Collocation with piecewise polyncomial functions is
developed as a method for solving two-point boundary value problems.
Convergence is shown for a general class of linear problems and a
rather broad class of nonlinear problems. Some computational
examples are presented to illustrate the wide applicability and

efficiency of the procedure,

.
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I. EXISTENCE OF EIGENVALUES OF INTEGRAL EQUATIONS

1. Introduction. The concept of eigenvalues XA and eigenfunctions
¢(x) £ 0, solutions of

1

W) = | kxyday (1.1)

0
is central to the theory of integral equations. Nonetheless
introductory treatments of the subject rarely show the existence
of eigenvalues for other than Hermitian kernels. Even more
advanced treatments such as [5] are limited to kernmels rather
gsimilar to Hermitien kernels. But this still leaves many problems
where the existence of eigenvalues is of interest because of their
physical significance. Exemples are the continuous kernels arising
in the theory of lasers which we mention later. For some continuous
kernels (1.1) has no nonzero eigenvalues, & simple example being
K(x,y) = sin 2nx cos 2xy. However, there are useful sufficient
conditions that do assure eigenvalues exist. The major results
[6, pp. 1550-1552] for continuous kernels assert the existence of

a non-zero eigenvalue if

(i) X(x,y) is positive or
(i) the trace of some iterated kernel of order three or higher

is non-zero or

o 1=







(i1i) K(x,y) satisfies a Holder condition in either variable
with exponent o > 1f2 and the trace of some iterated kernel is
non-zero [2,5,9]., We believe the reason these results are not
often established is that they depend on relatively deep results
of the Fredholm theory and on an understanding of the genus of
entire functions, which is méterial not usually developed in
courses today. The favored approaches to integral eguations
appear to be the determinant-free ones such as Schmidt's dissection
procedure and the theory of compact operastors. They are simpler
than Fredholm's theory end say & great deal about eigenvalues and
functions if they exist but do not actually show existence.
Complementary existence results such as the ones mentioned obviously

make these theories considerably more interesting and significant.

The main objective of this part of the thesis is to derive existence
and related results for eigenvalues in & way accessible to introductory
courses on integral equations; the proofs are new and are of some

interest in themselves.

A natural approach to the eigenvalue problem (1.1) would be

to replace the integral by & Riemann sum

M) =1 J?:l K(x,9/n)6(/n) (1.2)

or proceeding further, approximate (1.1) by a matrix problem

n A
M(t/m) 22 z k(/n,9m)00m)  1=1,..n. (L.3)

-







Indeed, one of Hilbert's approsches to the eigenvelue prcblem for
symmetric kernels proceeds in Just this way. Results about the
eigenvalues of matrices ere relatively easy to obtain and it seems
reasonable to attempt to establish the existence of eigenvalues of
(1.1) from an approximating matrix problem. We shall do this and
establish all three sufficient conditions mentioned above. Along
with (i) the fundamental results of positive kermel theory are
recovered. With the exception of tools from advanced calculus
like Arzeld's theorem, all the theorems we use are found in
intermediate-level matrix theory texts such as [1,3]. It is worth
remarking that the result (ii) is sharp [8, p. 80] so that it is

perhaps surprising our simple method suffices.

2. Preliminaries. We collect here a few definitions and those

non-trivial results of matrix theory which we shall draw upon.

The pth iterated kernel is defined recursively by

Kl(x)y')

K( x;Y)

1
P(xy) = | K 2)K(z,y)a
0

By the trace of K we mean
0y = trace K = tr K = gz K(x,x)dx

and the higher order traces are

-5-







. =fr k¥ = X KP(x,x)dx .

The n X n matrix A = (aij) is said to be positive if
aij >0 for all i,j. It is relatively simple to establish the
Perron theory of positive matrices which, among other things, says
A has a regl eigenvalue p > 0 which is larger in magnitude than
any other eigenvalue, there is an eigenvector v associated with

p +which has positive components, and

n , n
min 7 a,, 6 <p<max 2, &a.. . (2.1)
§ Wi 207 Fq gLy

The Euclidean, or Schur, norm of an n X n complex-valued

matrix A is defined to be

= = la, P .

i, j=1

It {xi] are the eigenvalues of A, Schur's inequality states

n
2 2
Z byl <A

The trace of a matrix A is

n
tr A= 2 a

3
=

and it is an elementary result that







n
tr AP = 3 P . (2.2)
" 1
i=1

If the columns of A are al,ag,...,an, Hadamard's inequality is
laet a] < flat] « []a%]] ==+ [la"]
where the Euclidean norm is used.

Except when specified to the contrary, w(§) denotes a modulus
of uniform continuity for a kernel K(x,y) continuous on
0<x, y<1 &and M denctes

M= max |K(xy)]| .
0<x,y<1

i Existence Theorems. Positive kernels will be studied first.
This is because the theory of positive matrices gives us a number

of tools unavailable in the general case. Our proof, however, is
general in nature and the succeeding results will just require

more attention to certain details. It-is convenientland interesting
to go on to establish most of Jentzsch's results [9] for positive

kernels, and we shall do so.







Theorem 1. Let the function K(x,y) be continuous and

positive for 0 < x, y <1. Then the integral equation

3.

W(x) = S K(x,y)¢(y)ay , 0<xcs1
0

has an eigenvalue *1 which is positive, simple, larger in modulus
than any other eigenvalue, and has an associated eigenfunction

¢(x) >0 for 0<x<1.

Proof. With (1.3) to motivate us, consider the matrix problem

n s
anlgln) 1 z K(l/n,J/n)ggn), 1<i<n, (3.1)
J:

and henceforth denote the matrix K(n) = (%I((l/n,a/n)). From the
theory of positive matrices there is a real eigenvalue lin) which
is largest in magnitude and it has a positive eigenvector (¢£n)).

For reasons that will be clear later, normalize this vector so that

n
%{ El ¢§n) =k e - (3.2)

Equation (1.2) suggests defining an approximate eigenfunction
n
0 (x) vy

| i |
AW - 1 .Ei K(x,a/n;¢gn> . ‘ (3.3)

Notice ¢(™(i/n) = ¢§“) for 1<i<nm.

-6-







(n)

Our aim is to show a subsequence of the 11 and the

- ¢(n)(x) converge to an eigenvalue M end eigenfunction d(x)
respectively. To prevent the definition (3.3) from collapsing in
the limit, we shall need to show the eigenvalues bounded avay from

zero. Now the inequality (2.1) obviously implies

o0<m= min K(x,y) < )é“) <M (3.4)
0<x,y<1 '

independently of n. Because all Xén) lie in [m,M] we can

(n*)

extract a convergent subsequence n', M and

0<m< xl S M.

L]
Now we need a convergent subsequence of the ¢(n )(x). Uniform
boundedness of this set follows directly from (3.2), (3.3), (3.4)

which imply

<B<¢™ ) <

BI=X

y  0sx<l., (3.5)

Moreover,

|¢(n')(x)_¢(n’)(y)[ —(__‘T I Z [K(x’j/nt)_x(y,:}/nt)]¢§n')l
n ll J=1

colleaD o oole) |y <o

N
(3.6)

1
This inequality holds for all n' so the set {¢(n )(x)] is

equicontinuous. Arzela's theorem guarantees the existence of a

o







subsequence n" such that ¢(n”)(x) converges uniformly to a
continuous limit function ¢(x), This limit function is non-
trivial becavse of ( 3,5) but we shall see a more generally
applicable reason in a moment.

To justify a passage to the limit from matrix to integral

egquation we need a lemma on the closeness of approximation.

Lemma 1. Let f(x) € ¢[0,1] and let «(8) be a modulus

of uniform continuity for £(x). Then

1 n .
| | fax -2 T 2(9m)| <ult/n) .
0 3=1
Proof.
3
1 n = n /n ;
| | #x)ax -2 = 2(¥m)| < T | [ 7 te-2(9/m)ax|
0 3=1 JB 5
n
I/
< }I:l) X ’ u)(l/n)dx=(n(l/n) :
371 g1
n

If o6) is a modulus of continuity for K(x,y), then from

( 3.5) and (3.6 ) we can easily show

max  [K(x,3)0™ ) (3) k(2,20 )(2) | < 2 u(s)
ly-z| <5

w8







for all n', Then Lemma 1 implies

l " 1 " -~
lx K(x,y)d?(n )(y)dy - —r]i:rr % K( X, J/I'l")d)(n )(J/nn) | S iﬁ'}f‘ G)(:L/I'I“) :
0] j=1

Combining this with (3,3) shows

1

900 - [ ke ey = e(a) (

T)

N

0

where

lea™)| < 2 o/n")

uniformly in x. If now we let n" + o in (3.7) and realize the
order of limit and integration may be interchanged beceuse of the
uniformity of convergence, we have proved the existence of the

positive eigenvalue ll and its positive eigenfunction ¢(x).

We already know ¢(x) is non-trivial but the following argument
"
to the same effect will generalize. Apply Lemma 1 to ¢(“ )(x)
using the modulus of continuity of (3.6 ) and the normalization (3.2).

Then

l " n" L 1"

lX 02 ) (x)ax - T ¢(n )(3/a")| = |Xl ¢(u )(x)ax-1]| < al2q)

0 oA 0 0
(3.8)

Passing to the limit shows

l 1 1
j ¢(n )(x)dx - j ¢(x)ax =1 .
0 0

~9..







Our remaining task is to show kl is simple and larger in
modulus than any other eigenvalue. Applying the above procedure
to the transposed kernel K(y,x) shows that xl is an eigenvalue

of K(y,x) with a positive eigenfunction ¢i(x). This is becsause

the matrix problem (3.1) for X(y,x) has the matrix K(n)T and

we know the matrices K(n), K(n)T

(n')
1

have the same eigenvalues.
Choosing then ) as before we are led to the assertion. By

definition

1
M 01 (x) = Xo K(y,x)¢] (y)ay .

If A is any other eigenvalue of K(x,¥y), M + A, &nd ¢k(x)

its eigenfunction, then

1.
[T 1 0008 ()4, (x)avax
070

1
M Xo ¢; (x)9, (x)ax

U}

1
M Xo 01 (v)9, (¥)ay

on interchanging the order of integration. This equation says
¢i(y) is orthogonal to ¢k(y), hence ¢k(y) is not of one sign.

As a consequence

1
In ] 16, ()] < }0 K(x,y) ¢, (¥)lay, o0<x<1 (5.9)

which then implies

=10=
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1
[ K(x,¥)¢4 (x) |4, (v) |axay

o

1 rl
n [ 6Oy - |

1
> Il | 61001, 6o lax (3.10)

and we conclude that

M Ind

To see ll is simple let us suppose there is another eigen-

function ¢(x) and

X(l) |4(x)|ax = Xz $(x)ax =1 .

There are two cases. First, suppose &(x) is not of one sign.
Then (3.9 ), (3.10) hold with ]¢k(x)| replaced by |y(x)],

M replaced by *1 and we get the contradiction M > |x1|. If
¢(x) is of one sign, then ¢(x) - |y(x)| must be a non-trivial
eigenfunction corresponding to xl. By the previous argument it
too must be of cne sign, hence identically zero because of the

normalization. The contradiction shows )\1 is simple. a8

The inequality (3.4) gives a bound on M. A direct application

of (2.1) to K(x,y) or K(y,x) gives sharper bounds.

=11=







Corcllary 1. Let

1 I:

A(x) = j K(x,y)dy, B(y) = Xo K(x,y)ax .
0

Then

min A(x) <A
0<x<1 0<x<1

min B(y) < M S omax B(y) .
0<y<1 0<y<1

Proof. Use (2.1) directly as in (3.}4) and pass to the limit via
Lemma 1. [£]

An interesting and useful corollary is the comparison result

which follows.

Corollary 2. If Kl(x,y), Ke(x,y) satisfy the hypotheses of

the theorem and
K (%¥) > K,(x,y), X (xy) # K,(xy) ,

then their largest eigenvalues satisfy ,1(1) > x(e).'

Proof. From the theorem we know there are positive eigen=-

functions ¢(x), corresponding to k(l) for Kl(x,y), and y(x),
corresponding to l(2) for the transposed kermel Kz(y,x). The

inequality

=12~







A

X X Kl(x’y)¢(3)é(x)dxdy
00

1
A1) j ¢(x)y(x)ax
0

L S
& IO }0 KQ(X;Y)¢(Y)¢(x)dxay

1
2
2B [ gy e
0
gives the result. [#]

A crucial step in the proof of this theorem was showing the
sequence of eigenvalues [kin)] of the matrix problems had a
positive lower bound to keep the definition ( 3,3) from degenerating.

If we can establish this on other grounds, examination of the proof

gives hope it will be more generally valid. This is the case.

Theorem 2, If K(x,y) is continuous (not necessarily

real-valued) on 0<x, y <1, and if s tr X° £ 0 for some
p > 3, then there exists a non-zero eigenvalue of the integral

equation (1.1).

Proof. Once again consider the matrix problem (3.1). Let

(n)

*1 be an eigenvalue of maximum modulus for each n. Corresponding

to the normmalization (3.2) we now require
n
1 n
Lz 1M =2 (3.11)
J=1

of the eigenvector.

5 I







It is easy to obtain uniform upper bounds on the [|A£n)|] by

classical matrix inequalities. For example Schur's inequality gives
q P q

1/
n 5 2
1 e
W2 < 2 1 Exndm?) T <n.
1,3=1
o a(n) (n)
As before define ' /(x) by (3.,3). To see the [lxl |1 are bounded
below by a positife constant suppose the contrary. That is, suppose
L]
there is a sequence n' such that |x£n )| +0 as n' =+ oco. The
elementary result (2.2) then guarantees
(n")\p n’ (n')p
lex(x™ 7 = | = (7))
J=1
L

n n'
(n')p (n')p-2

< 7 Ix < 2

1 S L

(n'),?
PO

Schur's ineguality says

B 1 00) 2 ()2
z b < 8

independently of n'. Accordingly we find that for all p > 3,
]
tr(l{(n ))p +0 a n'+ o0 .

It is natural to expect

1
ek )P o o P - o,

vhich leads to a contradiction, since by hypothesis some Up + 0

with p > 3. This expectation is justified by

-1h4-







Lemma 2. If K(x,y) is continuous on O <X, y<1, then

1
tr(K(n))p + tr KP = Y Kp(x,x)dx as n -+ o .

0
Proof.
i Xl Kp(xl,xl)dxl-tr(K(n))p’
0
1.1 §
= s K(x, ,x,)K(%,,%,) <+ K(x )dy ces ax
| Xo XO Xo s - - 2 p
. k. k.k kK k
1 2 2
~” ""I; 2 K('nij‘f')K("n_:'hz) B R K("ﬁgs%
e !
o SR
n n n
% 5 [ Ogm)e e Rx,x)
Ky Koy eeenk =1l | k-1 k_-1
n n
-K(nl,f : <——*)Jax1 - axy

<nP - L. pPled)) = pPle(d) .
- nP n n

Let n + oo in this inequality to complete the proof. @

Combining these results we see there is a constant m > 0 for

vhich M > |1£H)| >m>0 for all n. Thus we may extract a

35
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(n*)

subsequence n' such that M + 2 and M > BY >m>0. As

in ( 3.5), ( 3.6) one may now show

(1) [¢(n')(x)] is uniformly bounded with l¢(n')(x)| £ % ?
0 5 X S 1)
and

(i) {¢(n')(x)} is equicontinuous with |¢(n|)(x)-—¢(nt)(y)] < m(mﬁ)

for |x—y| <5 .

Thus Arzela's theorem allows us to extract & uniformly convergent
: (n") : al 8 i
subsequence ¢ (%) » ¢(x). Arguing as in ( 3.8 ) but now with

the normalization ( 3.11) we have
1 " 1
{ 1600 () ax » [ 14Golax =1
0 0

s0 that the limit function is non-trivial.

Now passage from the matrix to integral equation is just as
before when we remark %4 w(s) is a modulus of uniform continuity

for K(x,y)¢(n )(y) considered as a function of y. ]

This theorem is known to be sharpbut the condition is rather
inconvenient to test for a given kernel and we seek some simpler
sufficient conditions. Naturally we would expect a kernel being

Hermitian suffices for this theorem, and it does as we now show.

16







Corollary 1. If X(x,y) #+ 0 is a continuous Hermitisn

kernel, it has a non-zero eigenvalue.

Proof, It is easy to see

1
Ke(x,y) = j K(x,z)K(z,y)dz

0
is also continuous and Hermitian. Moreover
1

1l
Ke(x,x) = X K(x,2z)K(x,z)dz = X ]K(x,z)]de >0
0 (0]

for some x since K is non-trivial. But then

AE E o
0y, = E Kh(x,x)dx = Y X Ke(x,z)K‘(z,x)dzdx
0 “0 °0
2 Al
= X I IKQ(x,z)|2dzdx >0 .,
0“0

and the result follows from the theorem.

It is also easy to complement Theorem 1 with a relastively simple

sufficient condition when X(x,y) is non-negative.

Corollary 2. If K(x,y) is a continuous kernel with
K(x,y) >0 for 0<x, y<1, and if tr X" $ O for some p > 1,

then it has a non-zero eigenvalue.

Proof. Because of the theorem only the cases p = 1,2 are

open. If ¢, $ 0, there is some KX(x,x) # 0 and accordingly an

€ > 0 such that K(y,z) >m >0 for [x-¥| <e |x-2| < e-

=5 Jy







But then 0 z_m(2e)3 > 0 and the theorem guarantees an eigenvalue.
Similarly if o, $ 0, there are x, ¢ > O such that Ke(y,z) >mn >0,

for |x-y| E e |x—z| < ey and oy z m(29)2 2 0L 7]

The next theorem is another effort to find simple but powerful
sufficient conditions. It has seen good use recently in showing the
integral equations of laser theory have eigenvalues. Our proof
will draw on some understanding of determinants and is rather less
obvious than the preceding theorems. This is largely because of
the nature of the sufficient condition itself, as Fredholm chose a
condition suitable to his theory of integrsl equations. Nevertheless

our approach requires no knowledge of the Fredholm theory whatsoever.

Theorem 3, If K(x,y) satisfies a HOlder condition in
either variable with exponent @ > 1/2 and if tr K° $ 0 for

some p > 1, then (1.1) has at least one non-zero eigenvalue.
Proof. First we shall establish the proposition

(P) If K(x,y) satisfies a HSlder condition in either
variable with exponent « >'l/2, it is not possible

for g, $ 0 ana ¢, * 0 forall p>1.

To show this we shall consider as in [5, p. 11L4]

¥ a3 yeessX
el [ e ey n2

00 0

-18-







K(xl,xl) K(xl,xE) e K(xl,x )

K(x2’xl) K(x2:x2) Sl I{(xe,xn)'

l!
K(x ...,xn) - : . (3.12)

K(x,x)  Klx,x) -+ K(x,x )

The v will be bounded using the Holder condition end Hadamard's
inequality in a way discovered by Fredholm [4] and used later by
Cochran [2] and Hochstadt [7]. We wish to emphasize that the origin
and significance of this quentity to the Fredholm theory is
completely immsterial to our development. As far as we are concerned
it is Jjust a quantity which can be easily related to the traces and

which can be bounded with the Holder condition.

It will be clear that the Holder condition can hold for either

variable, but to be specific let

|CI

(%, ¥, )-K(x,9,)| < Llyy-v,|" - (3.13)

Subtracting the second column of the determinant from the first, the

third from the second, ... , the nth from the (n-1)st, (3.12) can

be rewritten as

i






K(x %) - K(x,x)  K(xg,x,) - K(Yi,v%) oo K(xp,x )
K(x,%) - K(x,,%)  K(x,,%,) - K(xz.,:%) “er K(x,,x )
K(xn,xi) - K(xn,xz) K(xn,xé) - K(Xn’XB) r K(xn,xn) )

Then using the HOlder inequality (3,13) and Hadamard's inequality we

find
(e ERT CE e,

for a suitable constant C. The determinant being symmetric in the

Xi we may assume

> > > “a e > >
o X 7 % X 2 0.
It is then easy to prove by induction that

l-n
|(25_-X2)(x2-x3)"-(xn-1-xn)| < (n-1) :
Combining these inequalities we find

lu | <c” nn/a(n-l)a(l-n) ) - (3.114)
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On the other hand, from the definition of the determinant

(3.12)
(xl,...,x

Xy Xy ) 235(“)K(x1:x )K(XE:X )°°-K(x » X, i

where the summation extends over all n! permutations =(1,...,n)

and s(x) is the sign of the permutation. For each product extract the
component of the fomm K(xl,xi)---K(xr,xl), and sum all the terms
with this common factor. These sums comprise all combinations of

one element from each of the remaining rows and columns (with the
appropriate sign), or egquivalently they are the determinants of the

matrices formed by removing rows and columns 1, i,...,r. Thus we

get (5: P. 115]

iR T
o) Wi (S
g

+ 2 ('i)k+]—fc(xl’xi)” .K(xr’xl)K(Xi,xé; .. -:x;l k

(3.15)

where xl,xi,...,xr represent k of the variables and xi,...,x&_k
are the remaining n-k. Suppose now the proposition (P) is false,
s0 that ¢, + 0 but e, = O for all p > 1. On carrying out the

integrations of (3%.15) to get u we find
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W oEoyu g - (n-—l)oeun_2 + (n-l)(n-E)gsun_5 + e

+ (-1)PH(n-1) (n-2) -+ (n-pHldou,

#eee w (1) (01)t o ug

- Glun—l )

g? which if a > 1/2 contradicts the bound (3.1k) no

matter wvhat C dis, end the contradiction establishes (P).

This implies un =

The theorem itself requires several cases. It is implied by
Theorem 2  when Up + O for some p > 3. If Op = 0 and oq + o,
the proposition (P) guarantees some Oy $0 for p>3 and the
result again follows from Theorem 2, i - Oy + O, consider the

kernel

G(XJY) = Kz(XJY) .

Now G(x,y) satisfies

1 X
|G(x,yl)-G(x,yé)| = | SO K(x,z)K(z,yl)dz - XO K(x,z)K(z,yé)dz|

|CI

<My -y,

Since we can apply proposition (P) to G(x,y) we conclude

ter=trK2p=02p4=o

for some p > 1 and this last case is settled by reference to

Theoren 2. B
22,

| . T e e






A recent application of this theorem is to the kernel

K(x,y) = o)
which arises in the consideration of a laser rescnant cavity
involving rectangular reflecting surfaces which are mirror images
of each other. The quantity H is a parameter so that the use of
Theorem 3% is obvious. The theorem also applies to laser kernels
associated with other practical reflector configurations. It was
only recently realized that the existence of the eigenvalues could
be established this way. The interesting papers [2, T, 10] discuss

these applications in scme detail.
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II. A Collocation Method for Boundary Value Problems

1. Introduction. The approximation of solutions of boundary value
problems has recently been an area of much interest and intense
activity.for numerical enalysts. One important approach used by
a number of Russian authors is collocation with polynomials. We
continue the study of collocation but use piecewise polynomial
functions. (This is done for special cases in [10] and [1, p. 52].)
With this approsch better convergence in a simpler setting is
obtained. Piecewise polynomials turn out to be much better
computationally, too., The resulting linear systems are easy to
arrive at and involve band matrices instead of the dense matrices
when polynomials are used. Piecewise polynomial functions are also
more adaptable to special problems. For example, we prove a quite
unique result which states that if a solution to the differential
equation has discontinuities in its derivatives, a high rate of
convergence can be achieved when these points are used for
collocation. Applications to quite general nonlinear problems are
then developed which, although powerful, are by no means complete.
Computational examples, some rather difficult, are presented to
illustrate the theoretical results.

Our conclusion is that collocation with piecewise polynomials
is a very satisfactory way to solve boundary value problems. Among
the virtues of our collocation procedure in the linear case are its

generality and ease in application. In addition, it is relatively
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simple to vary the order of the method or to adapt the mesh to a

particular solution., Thisis in marked contrast to virtually any
other method. The author shares the opinion of L.F, Shampine*

that the only methods which can generally compete with this procedure
in solving a single mth order linear problem are extrapolation to

the limit [12] and perhaps the parallel shooting technique [7; 13, p.61].

# Opinion expressed to the author in a private communication.
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2. The Linear Problem. We shall first be concerned with the linear
differential equation

o1 )
Lol = w®™(e) + T o (e3u®e) = £(a), (a<s<h) (21
k=0

subject to the m 1linearly independent; homogeneous boundary conditions

M-l
B! [aiku(k)(a)+siku(k)(b)] = Q,

g (2.2)

(aik’ By = comst; 1<i<m),

There is no loss of generality in assuming the boundary conditions
(2.2) are homogeneous. For suppose we seek a solution v(s) of

(2.1) subject to the nonhomogeneous boundary conditions

m-1
2 oy e, e -,
- (2.2')

(aik, Biy» Ty = comst; 1 <i<m).

Let q(s) be any function in C(m)[a,b] which satisfies (2.2!).
For example, a polynomial could be constructed for this purpose.
Then on setting v(s) = q(s) + u(s) , the problem is conveniently

transformed to solving

_

L{u] = g(s) = £(s) - Lla(s)]

subject to the homogeneous boundary conditions (2.2).
The collocation method will be used to approximate solutions

of (2.1), (2.2). Although the method itself is not very precisely

B







defined, it basically involves forming an approximate solution as a
linear combination of a convenient set of functions, the coefficients
of which are determined by requiring the combination to satisfy the
differential equation at certain points (collocation at these points).
Polynomial functions, a reasonable choice for the basis functions,
were used by Karpilovskaya [1l, p.531] and more recently by Shindler
[22,23] and Vainniko [27]. In their analyses the differ-
ential equation is transformed to an operator equation. The colloca-
tion condition turns out to be equivalent to a projection of the
operator equation into a finite dimensional subspace, where the relevant
projection operators represent interpolation by polynomials. Karpilovskaya
and Shindler considered these operators as mappings from C into C.
A classical result of Natanson [15, p. 91] shows the projection
operators cannot then be uniformly bounded. However, in the special
case of interpolation at the Gauss, Legendre, or Chebyshev points, the
rate of growth of the norms of these operators is known and the colloca-
tion method was shown to converge. Vainniko's treatment included these
results as special cases. The operators were considered as mappings
from C into Lﬁ , Wwhere Lﬁ = Lﬁ[a,b] is the space of functions
square summable on the interval [a,b] with weight function p(s).
Since the BErdos-Turén theorem implies the uniform boundedness of the
relevant projection operators, the proofs were simplified and the rate
of convergence guaranteed by the theory was improved.
In the development of numericel analysis, it has generally turned

out that using piecewise polynomial functions leads to better convergence
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results and simpler proofs than using polynomials, especially when
dealing with boundary value problems. Using piecewise polynomial
functions the resulting projection operators from C into C have
uniformly bounded norms even if one allows much grester flexibility
in the selection of collocating points than in the polynomial case.
For these reasons we are led to consider collocating with piecewise
polynomial functions. It will develop that in fact the proofs do
turn out to be simpler and do give stronger results and that for a
suitable choice of a basis the matrices which arise are band, as
opposed to the dense matrices when polynomials are used, which is of
great computational significance.

It is now convenient to dispose of some mathematical preliminaries.
First we recall one of Jackson's theorems [9, p.123] which shows the
rate of convergence of polynomials to a continuous function in the mini-

max sense. Throughout we use for the norm of a continuous function v(s)

il = max |v(s)]| .
® esed
We shall just write !lv!l in what follows unless ”va is needed for

clarity.

—

Theorem 1, Let En(v) denote the error of the best uniform
approximation to v € C = C[a,b] by a polynomial of degree n

(more precisely, less than or equal to n). Then

E(v) <60 (%), (2.3a)

vhere - o(5) is a modulus of continuity for the function v(s).

1t vec?) then - |
E (v) <2228 |y, (2.3v)
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Lastly, if v ¢ C(p) and n=>p-1>1 then

p p-1
(p-1)! n*
ir T, is any partition of [&8,b] into n subintervals

[s;,8;44), 0<i<n-1, suchthat

8 =8,<s <:<8 =b, (2. ka)
then we define
h(x ) = max (s.,.-8.) .
n 0<i<n-1 i+l i

Definition: A function +v(s) is in the family L(ﬂn,k,m) if
v(s) is a polynomial of degree (at most) Xk on each subinterval
of =z and V€ C(m). The subfamily L'(ﬁn,k,m) consists of
all functions in L(nn,k,m) which satisfy the boundary conditions
(2.2).

It is natural to require ccllocation on e To determine the
coefficients of the piecewise polynomials, it will also be necessary
to collocate on additional points. We use similarly placed points
in. each subinterval of T More specifically, assume a partition

of [0,1] is given,

= < < eee < = )
0=ty <t tg=1. (2.5)
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Define the mapping Ei(t) =5, + t(s from [0,1] onto

141755)

[si,si+l] for each i. Labelling Si,J = ?i(tj), ve arrive at

i

a set of nd + 1 points

g =g < 8 S vaw S B

- I o Thaet 5 | 1,d - %141 (0<is<n-1) (2.10)

vhich we denote by xd;. While this uniform partitioning of the
subintervals of T is not & necessity, it will be very convenient.
We might hope that an element of L'(ﬂn,m+d,m) could be found
which satisfies (2.1) on the points of ,afn, i.e., & piecewise
polyncmiel function approximating the solution of (2.1), (2.2) found
by collocating on ‘édn' In a natural representation the number of
coefficients that determines such ‘a piecewise polynomial function is
n(m+d+l), and this number of equations arises from the collocation
procedure sketched. This leads us to suspect the problem is well-

posed, as we shall prove for sufficiently fine meshes.

Theorem 2. Suppose that the coefficients ek(s) and free term £(s)
of (2.1) are at least continuous on [a,b] and that (2.1), (2.2)

has a unique solution u(s). Also suppose that the problem u(m) =0
with boundary conditions (2.2) has a unique solution. Let a partition
(2.5) of [0,1] and a sequence of partitions nn(n=l,2,3,...) of
[a,b] such that %iﬂ h(xn) = 0 be given. Using (2.4a), (2.4b),
form the set of points xﬁL (n=1,2,3,...). Then for all sufficiently

large n there is a unique un(s) € L'(ﬁn,m+d,m) which
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collocates on 'E{n' Moreover, un(s) and its derivatives up to
and including order m converge uniformly to u(s) and its deriva-

tives of corresponding orders. The convergence satisfies
@y <ar ™) (0<x<n) (2.6)

vhere (I is a conctant independent of n and the free term f£(s),
and Fn(u(m)) is the error of the best uniform approximation to

u(m)(s) by an element of L(xn,d,o).

Proof: It is well-known [17, p. 29] that the hypotheses imply the
exigtence of the Green's function G(s,t) for the problem u(m) =0

end (2.2). The continuity conditions and boundary conditions imply

that if the mth derivative of un(s) is specified, then the approximate
solution is uniquely specified via the Green's function, So if we can

show that vn(s) = uim)(s) in L(ﬂn,d,O) is uniquely defined, the

same is true of un(s) in L'(ﬁn,m+d,m). More generally

bk
uéﬁ)(s) X E éﬂﬁifﬁﬁl v (t)at, (0<k<m1). (2.7)
a 38

The collocation condition when expressed in terms of vn(s) takes

the form
m-1 b k. ., ,
(s + T o) | 26(sLt) y (t)at - £(s') =0 (2.8)
a a8

for all s! ng; s

-31-







Define a linear projection Pn which maps each continuous
function into its Lagrange interpolating polynomial of degree d on
each subinterval of T vhere the nodes of the n polynomials are
given in (2.4b). Notice that P projects the space C onto
L(m)(ﬂn,m+d,m) = L(ﬂn,d,o) since the s, are points of interpolation.
The collocation on _ein given by (2.8) can now be written in operator

form as

Pn(vn + Kvn) = Pnf 5

where K 1is an integral operator with kernel

m-1 k
t
K(s,t) = ¥ e (s) i_ELELHl :
k=0 k 3s

Because of the uniqueness of the interpolation polynomial of degree

d on each subinterval, Pn?n =v_ , 80 (2.8) simplifies further to

e 1
v, TR Ky = P . (2.81)

This operator equation is thus equivalent to determining vn(s)
by collocating on ‘c£n' Continuity of vn(s) follows since the
joints s; are among the points of interpolation. Thus if (2.8')
can be shown to have a unique solution, then it is apparent from the

relation (2.7) that an approximate solution un(s) € L'(xn,m+d,m)

is uniquely defined.
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Lemma : Under the hypotheses of Theorem 2 , the operators Pn

converge strongly to the identity operator I: C + C.

Proof: Iet g €C. For any n consider an interval [si, si+1]

in nx ~ subdivided as in (2.4%). From (2.3a) of Jackson's theorem,

8, ,.~8
i i+l 1
sup lste)-ey(e)| <6 (=),
g, <s <=8
i- — i+l
*
where pd(s) is the best uniform approximation to g(s) by a poly-

nomial of degree @& on [si,si+l]. Thus, if :g(s)

form of the polynomial interpolating g(s) at the nodes (2.Lb)
[Bi’si+l] , then
max< le(s)-s (s)l
%28 28
*
. <Fax< ]g(s)-pd(s)| + max
= 81 =® 2% By SRS 85
s )
o g 3 S
< & LY+ max | 2 iolls,) -
2d e Vs a‘®ij
= 8341 90
(B
h(x, )
< s prA], i),

where the Lebesgue constant

=33

is Lagrange's

of

Ip3(s)-5,(s)|

(2.9)







a
> |

A:I;:' max j(s)l
< =
8y <s < si+lj~0
and
d
8-8,
£3(8)="ﬂ_(31: ) .
r=0 1,3 i,r’
r%j
The relationship between (2.4b) and (2.5) shows easily that
" d t-tr
£4(s) = 45(t) == TT - )
r=0 ' G
r$)
B854
for tz-é—-'-'--é-— and Ofif_n.
i+1774
This shows
n 2 #*
A = max b2 l.ej(t)l =M (2.10)
OE'tSl j=0
independent of i and n .
Recalling the definition of P g, this equality and (2.9) imply

h(u
n
le-Pell < (1Mo —3

Since

g € C was aribitary, the lemma is proved.

)

) + 0 488 n -+ ew ,







It follows directly that the norms of the operators P are
n

uniformly bounded, beceuse using (2.10) for any g € C implies

d
”Pngﬂ <  max max | = g(sij)zj(s)l
6] S 5§ E n-1 E1 S 8 S sj-[-l j=0
S max Ig(s)l . max A = T!g“-i M
a<s<hb 0<i<n1l *

which in turn implies that
”Pn” <M (el 855003 (2.11)

From the continuity of the coefficients ek(s) and known
properties of the Green's function [17, P. 31], KX(s,t) is continuous
except possibly for s =1, where it has a Jjump discontinuity if
e, (%) 1 0. By familiar arguments one can then show that K is a
completely continuous operator mapping C into C. This complete
continuity of K and the strong convergence of the operators Pn

imply that the operators PnK in C converge strongly to K, i.e.,
"PnK-KH +0 a8 n-+e. (2.12)

(m)(s)

There is by assumption a unique continuous solution v(s) = u
of the equation

v+Kv=*~ (2.1*)
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for any £ € C, hence the bounded linear operator (IH()—l exists.

From the strong convergence of the completely continuous operators

PnK to K stated in (2,12), we may conclude that for all sufficiently

large n +the bounded operators (I+PnK)-l exist and are in fact

uniformly bounded, say
lI(z+2_x)™| a,...) . (2.13)

\SU (n=n,n

0’0

Therefore, equation (2.8') is uniquely solvable for all sufficiently
large n (say for n > no) . Equivalently, a unique element of
L‘(ﬂn,mﬁl,m) satisfying (2.8) exists. We have demonstrated

that the collocation procedure being used is well-defined.

Lastly, the rate of convergence is to be bounded. Subtracting

(2.8') from

(I+PnK)v - Ph(I+K}v + (v-an)

= Pnf B (v-an)
we obtain

(I+PnK)(v-vn) =V-BY. . (2.1%)

Then (2.13) and (2.14%) imply that

..:r_H

\Iv-vnﬂ < l](I-PnK) llv-an][ <o Hv-an!l (n> no) A

Let zn(s) be any element of L(ﬂn,d,O). From (2.11)
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vl < gllv-p v!
H_vnv_ < gllv anl

= g”(v-zn) - Pn(v-zn)”

<o(llv-z !l + |p (v-z )

< o(l+M)Hv-an 5 (n > nO) P
Since zn(s) € L(:rn,d,o) was arbitrary,
v vl < o(1n)E, (u(m’) (2.15)

This shows that the mth derivatives converge. For convergence of

the lower order derivatives, (2.7) implies the relation

b _k
ugﬁ)(s)-u(k)(s) - | a_ﬁi;;gl [v (t) - v(t)lat , (0 <k <m1;n>ny) .

a os
Denoting

M = max X | G(St) lat ,

a<s<b
the inequality

Huik)- u(k)ﬂ < Mk”vn - vl (0<k <m-1; n> no)

follows immediately. Combining this with (2.15) we conclude that

there is a constant () satisfying (2.6), and the proof is complete.
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We are now interested in the order of the bound Fn(u(m)) in (2-6)-

The following lemma gives us a useful bound.

Lerma: Let Fn(v) denote the minimax error in approximating v € C

——————

by an element of L(ﬂn,d,O). Then

h(x_)
F (v) < 18a(—7—) - (2.162)
If v € C(l) then
on (=)
Fn(v) R veion !1v'!10 : (2.16b)

Lastly, i v € ¢®) and a>p-1 >1 then

3.6P(p-1)P~2

F (v) <
n = )P

- pnlx )PV, - (2.16c)

Proof: Suppose there are polynomials pi(s) of degree d on [si,si+l]
such that

max [v(s)-py(s)| < ¢ (0<i<nl;n>1).
558509

These bounds are not directly applicable to Fn(v) in (2.6) because
elements of L(ﬂn,d,O) must be continuous. We form a suitable -function
by adding a linear function xi(s) to pi(s) on every other subinterval

of n.» 80 that







pi(s) on [Si’si+l] , 1 even

pi(s) + xi(s) on [si’si+l] , 1 oad

is in L(ﬁn,d,O). Since

[v(s)-p; (812, (8)] < [v(s)-p, ()] + [ry(s)]

<% ;<8< 8
<3¢ (51—8—-51+

10 1 odd) ,

it follows that

vz, < 3e

The lemma is now immediate from (2.3a), (2.3b) and (2.3c) in

the previously stated theorem of Jackson. &

The following corollary 1is a direct conseguence of the lemma,

Corollary: Assume that the hypotheses of Theorem 2 are satisfied.
Suppose also that the solution u(s) of (2.1), (2.2) is C(p) on

every subinterval of = (n =1,2,.,..), where u(p)(s) is defined
at the joints by right and left hand lim_its if necessary. Then for

d>p-m-1>0, as n+

“uz(lk)_.u(k)n - 0([h(,¢n)]p'm), (0<k<m). (2.17)

2™ (5) ¢ c(p-m)

Proof: We have v(s) = on each subinterval of
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ﬁn(n =1,2,...). It is easily shown that (2.16c) is valid under

‘this weakened hypothesis, so the result follows from (2.6). .

We point out that a finite number of Jjump discontinuities in
u(p)(s) are permitted if we place joints there. In this case we
have the remarkable result that convergence is unaffected. One might
know where discontinuities are on physical grounds, for example in
beam problems where there are discontinuities only at the supports,

or on examining Jumps in the derivatives of the coefficients ek(s),

£(s).







5. Higher Order Convergence. From the last theorem we see that a

lack of continuous derivatives reduces the order of convergence that can
be guaranteed, although we have just observed that a finite number of
Jump discontinuities have no effect provided we know where they are. Ve
now ask if improved convergence can be shown when u(p)(s) is

continuous, but u(p+1)(5)

has a finite number of discontinuities
and we do not know where they are. in this case no action by the
analyst is necessary, as we are just noting a situation when a higher
rate of convergence is guaranteed. We have learned of some recent work

of Swartz and Varga being prepared for publication which has results of

this general nature, but otherwise our results seem unique.

Theorem 3. Suppose that the hypotheses of Theorem 2 are satisfied,
the pth derivative of u(s) is continuous, and its (p+l)st
derivative has discontinuities at a finite number of points (say

at N points). Then for d >p - m >0,
1l
[l ot )P™72) , 0gxgm-1) ()

as n <+ 00.

Proof: It will be necessary to consider the operators as acting in
different spaces than those of Theorem 2. Let the operator K now
be a mapping from L, = L?[a,b] into C. The boundedness of K

follows directly from Cauchy's inequality, for if v € L, then







b
Kvll =  max IX K(s,t)v(t)dt'
wm 535 s<b a

1
< [ SZ IK(S;t)Iedt] a QVHE

where 1/
b 2
il = [ ] Iv(t)|2dt] .

a

From the continuity properties of K(s,t), for any ¢ > O there
exists a § > 0O such that
b

2
Xa |K(Bl,t)—K(52,t)| it < e

2

for all 815, € [a,b] satisfying ]sl-32| < §. As a consequence,
b
kv (s))-Kv(s,)| = | ja(K(sl,t)-K(se,t))v(t)dtI
o 5 S/
<[ Sa |K(s,,%)-K(s,,t) | dt] Ivil,
< GHVHE

for lsl_sel < §. Thus any set of uniformly bounded functions is
mapped into an equicontinuous family. Sinee this family is compact in

C, the operator K is completely continuous.
The operators P, (n=1,2,3,...) are uniformly bounded as

mappings from C into C, so they are also uniformly bounded when






considered as mappings from C into L2' Likewise the operators

Pn converge strongly to the inclusion operator P from C into
L2. Then the complete continuity of K:L2 + C implies that in L2

the operators satisfy

HPnK-PKH +0 as n + oo .

Equation (2.1') has a solution v(s) unique in I, where we let

2
PK = K. So the bounded operator (Iﬂ?’}()'l from L,
into L2 exists, and the same erguments as in Theorem 2 imply
(I-l-'PnK)-l: L2 > L2 exist and are uniformly bounded for =all
sufficiently large n, say
Iz K) Y <o'  (a>n,) . (2.13")

In this manner we can show as before that the approximate solutions

from collocation satisfy

vp-vllp < 0'(1+M')Fﬁ(u(m)) (n>n,) , (2.15")

where now M' is the uniform bound on the operators P:C+L, and
Fﬁ(u(m)) is the error of the best spproximation in the L, sense to
u(m)(s) by an element of L(ﬂn,d,o).
We now desire a bound for this error F;(u(m)). Let pi(s)
be the best uniform approximation to wv(s) = u(m)(s) on
[Si’ si+1] by a polynomial of degree d. Then form zn(s) by

the construction in the previous lemms. It follows easily that

3.







b
Hzn-vﬁg j [zn(t) - v(t)|%at

il

a
G |
=2 [ a4 - v()]%at
i=0 8,
1
541
o
= 2:1 E |zn(t) - v(t)|%at +
84
Bin1
+ 232 Js Izn(t) - v(t)ledt.
i

The first sum consists of &ll subintervals containing discontinuities

of v(p"mﬁl)(s) and the subintervals adjacent o them. The second

sum consists of the remaining subintervals. Using (2.160) we
obtain
8 s
i+l i+l 2(p-m+l)
2 2(p-m) X h' dt
vl < _ :
lz,-vll7 < 2, [S Mo P et & 3 s Mohy

i i

< sy )12 4 (oa) b (s, )12(0-242)

< M[n(x,)12(P-m)

where Mi(l <i<3) are constants.
Combining the last inequality with (2.15') we conclude that

”vn-vH2 =_()([h(xn)]p"m+ %).

The result (3.1) will now follow because for any s' € [a,b],







B e
|u£k)(s')—u(k)(s')l a ] X awﬁifizil [v,_ (t)-v(t)]at|
a 38
- T Yo v Y/
5 G(s',t),2 r 2
<[[ e o LT R IEORIOTE Y

< Q}c“vn'VHE p (Qk = const; O <k < m-1).
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k, The Nonlinear Problem, We now extend our development of the

collocation method to the nonlinear ordinary differential equation

u(m)(s) - f(s,u,u',...,u(m'l)), (a <s <D) (h.d)

subject to the linear,homogeneous boundary conditions
m-1

2 layuiaye w®mn <o, (

Q@ sByy = const; 1< i<m). (4.2)
Unlike the linear case, a solution of (4.1), (4.2) is not necessarily
unigue. For this reason we only consider the collocation procedure
when applied to a sufficiently small neighborhood of an isolated
solution. A paper of Vainniko [28] treated the nonlinear problem

by using polynomials in a way quité similar to his treatment of the
linear case. In particular, the boundary value problem (4.1), (4.2)
was reformulated as an operator equation in a Banach space. The
collocation condition is again equivalent to a projection of the
operator equation into a finite dimensional subspace. However, the
problem is now complicated by the fact that these operator equations
are nonlinear., Krasnosel'skii [14] has developed a general theory
of approximate solutions of operator equations by projection methods,
and Vainniko based his treatment on these results. We only need to
alter Vainniko's analysis to deal with piecewise polynomial functions,
This is more appropriately done in different spaces and is basically

simpler. We first state a few fundamental definitions and give the

main theorem used by Vainniko.
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Suppose that T is a nonlinear, completely continucus operator
defined on a Banach space B, The operator T is Frechet differenti-

able &nd T’(v) is its Frechet derivative at the point v if

T™w - Tv = T'(v)(w-v) + 1(w,v) , (4.3)
where 1 1is an operator such that

Hﬂiﬁ;ﬁlﬂ +0 &as w=v,
I| w-v ||

In addition, we say that the operator T is continuously differenti-
able at the point v dif it is differentiable at each point of a

neighborhood of the point v and the linear operator T' satisfies

et (w)-T'(v)|| + 0 as w v,

When possible we use notation consistent with that of the linear
theory. The linear case is obviously included in the following analysis,
80 the statement of the theorem is perhaps more easily understood by

interpreting it for linear equations.

Theorem 4. Suppose that in a Banach space B the operator equation
w = Tw (4.%)

has a solution v, A suffiéient condition that v be an isolated
solution of (4.4) in some sphere |lw-v]| <o (¢ > 0), and have a non-

zero index (see [ 14, p. 90]) is that K be differentiable at the

point v and the homogeneous equation
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w - PK'(v)w =0 (L.5)

have only the triviel solution w = 0. Suppose the operators T

and {T ]} can be represented in the form

T=PK, T =PK,
n n

vhere K 1is a nonlinear, completely continuous operator mapping
B into another Banach space B', and P and {Pn] are continuous
linear operators taking B' into B. Suppose further that the
sequence of operators Pn converges to the operator P. Then the

equation

w=TWw (4.6)

]
has & solution : satisfying an-vd <o for all sufficiently large
n, v, *V 8 n* 00, and the rate of convergence is bounded by

the inequality

v vl S!d‘H(Pn-P)KvH (M' = const; n > n,).

Moreover, if the operator K i1s continuously differentiable at
the point v, then for all sufficiently large n the solution e

of (4.6) is unique in the sphere an-v" £ s

Applying the collocation method to approximate a solution of

(%.1), (4.2) proceeds in basically the seme way as in the linear
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problem (2.1), (2.2). Given a partition = of [a,b], the set of
points gin is constructed from (2.4a), (2.4b). Then an approxi-
mate solution un(s) in L'(ﬁn,m+d,m) is sought which satisfies
(4.1) at all of the points of _gdn , i.e., which collocates on _£j£.
To find such a function requires solving a nonlinear system of
equations, which must be shown to have solutions. In contrast to
the linear case, & solution to the continuous problem may not be
unique. Accordingly we must restrict our attention to a neighborhood
of an isolated solution of the continuous problem and show that the
nonlinear finite difference equations have unique solutions in this
neighborhood for sufficiently fine meshes. This will require either
an assumption or sufficient condition to guarantee an isolated
solution of the differential equation--an intrinsic distinction from

the linear case.

Theorem 5. Suppose that u(s) is a solution of the boundary
value problem (4,1), (4.2), that the functions f(s,zo,zl,...,zm_lj
and af(s,zo,zl,...,zm_l)/azk (0 <k <m-1) are defined and

contiruous for

a<s<b, |zk-u(k)(s)| <b (0<kx <m-1; §>0), (L48)

and that the homogeneous equation y(m) = 0 subject to the boundary
conditions (4.2) has only the trivial solution. If the linear homo-

geneous equation
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u(m‘l))

y(m)(s) ) mi% SECE MRS oy

: ys) =0 (4.9)
k=0 2y

subject to (L4.2) has only the trivial solution, then this is
sufficient to guarantee that there exists a ¢ > 0 such that u(s)
is the unique solution of (%.1), (4.2) in the sphere

™Y <o

Assume a partition (2.5) of [0,1] and a sequence of partitions
T (n=1,2,3,...) of [a,b] satisfying

1lim h(xn) =0
n+oo

are given. Form the set of points‘,cfh (n=1,2,3,...) from (2.4a),
(2.4). Then for all sufficiently large n there is a unique element
un(s) of L'(ﬂn,m+d,m) satisfying (4.1) at each point of 'Edh and
Huﬁm)-u(m)ﬂ < g. The approximate solutions un(s) and their
derivatives through order m tend uniformly to u(s) and its

derivatives of corresponding orders. The rate of convergence is

bounded by
Rl <or ™) (0 <x <m) (.10)
where €@ is a constant independent of n and Fn(u(m)) is the error

of the best uniform approximation to u(m)(s) in  L(x,,4,0) .
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Proof: We shall first transform (4.1), (%.2) to an operétor
equation of the form (4.4) in the Banach space C and transform
the collocation equations to the form (4.6). Then upon verifying
the other conditions of Theorem 4, we shall use it to prove the

theorem.

Let G(s,t) be the Green's function for the homogeneous

equation y(m) =0

subject to the boundary conditions (4.2).
Properties of this Green's function which were stated in section 2

imply that the operators

L kG(s t)
6 w(s) = X A8 w(t)at (0<k <ml; 6, =06)  (4.11)

a as
mapping C into C are completely continuous. As in the linear case
denote v(s) = u(m)(s), S0 thatu(k%s) = Gkv(s), (0 <k <m-1). Since

the mappings G, are bounded, there exists a > 0 such that if

X b
[lw-vll < 8, ‘then zk(s) = ka(s), (0 <k <m-1), lies in the region
(4.8). Hence on the sphere llw-v|l < 8, we can define a nonlinear

operator K mapping C into C by

b b b m-lG 5%
Kw = £(s X G(s,t)w(t)dt, j a-(—"-(s’—t)-w(t)dt,..., ( 3—-—IEL—_1f—)w(t)dt)
o a OF ‘a  s
= f(s,Gow,le,...,Gm_lw) -

(k.12)

5l







In fact since the operators G are completely continuous and

k
'f(s,zo,zl,...,zm_l) is continuous in the region (4.8), the operator

K is completely continuous in the sphere |jw-vil < 5, -

If P denotes the identity operator from C into C, then

(4.12) implies that the operator equation
w = PKw (L.4?Y)

in the Banach space C is equivalent to (k.1), (4.2). Furthermore,
the solutions of these equations are connected by the relationships
v s u(m) and u = Gv.

Approximating a solution of (4.1),.(4.2) by the collocation

method is equivalent to finding an element uim)(s) of L(ﬂn,d,o)

which satisfies

uém)(si) = f(s;Gougm)(s'),Glugm)(s'),...,Gm_luim)(s')),ﬁ'(Egd; ]
(%.13)

and then determining the approximate solution un(s) in

L‘(un,m+d,m) via the Green's function. To represent this in operator
form, define as before the linear operator Pn as the mapping which
takes a continuous function v(s) into the unique function in
L(ﬂn,ﬁ,O) that interpolates v(s) on the points (2.4b) of each sub-
interval of . Using the definition of the operator K from
(4.12) and denoting v, = ugé) , the collocation equation above may

be expressed in C as the operator equation.
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Pv =P Ky
nn n n

But P v_=v_, so this simplifies to
nn n

v, =BKv . (4.6')

Upon letting B = B' = C and denoting T =PK, T

i PnK, equations

(4.4'), (4.6') become (4.%), (4.6). A previous 1emmé implies that
the continuous linear operators Pn converge strongly in C to

the identity operator P. By hypothesis equation (4.9) subject to
(4.2) nas only the trivial solution. Thus if we show that equations
(4.9), (4.2) are equivalent to (4.5), tﬂen Theorem 4 will give us
convergence of the approximate solﬁtions using the collocation method

and the bound (4.7) on the rate of convergence.

The partial derivatives of f£(s,z z are continuous

i ERRRFL LY
in the region (4.8) by assumption. So with definitions (4.3) and (4.12)
we can show that the eoperator K is differentisble in the region

|lw-vl] <&, and

m-1 af(s,Gow,le,...,G ¥)

K'(w) = e F
! ;E% 0% %

Also K is clearly continuously differentiable. This relation
implies that equations (4.9), (4.2) in operator form are just (4.5).
Therefore, (4.5) has only the trivial solution, and the point v is

an isolated solution of (4.4') with a non-zero index in a sufficiently
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small sphere, say 'lw-vl <g (0 <g <8). We have shown all of
Theorem 4 is applicable to our collocation procedure.

For sll sufficiently large n (say n > no) the collocation
equation (4.13) has a unique solution vn(s) = uﬁm)(s) in
L(nn,d,o) satisfying an-vﬂ < g. Morcover, equation (4.7) gives

the bound

Ivg=vll < W2, -2

= M'nan-vU y (m> no)

where the constant M' is independent of n. If zn(s) is any

element of L(x _,d,0), then P z_ = z_ so that
n nn n

Ilv. ~v]| < M'|P v-v-P z +z ||
"n =" "n nn n

< M'[HPn(v-zn)H + Hv-znn ]
SM'(l+M)';1_v-zn'l'! ;
where M is the uniform bound on HPnH given in (2.11). This last
inequality implies
H"n"’” < M'(1+M)Fn(V).
Finally, by using the boundedness of the operators G (0 <x <m-1)

and relation (2.7), the inequality (4.10) follows by the same arguments

as those in the linear case. &z







The current level of development of numerical methods for

nonlinear boundary value problems permits a complete solution only
for relatively simple nonlinear problems. By a complete solution
we mean a difference scheme that is formulated in a computable vay,
a process guaranteed to solve the resulting finite set of nonlinear
equations for the coefficients of an approximate solution, and a
proof that the epproximate solutions converge to a solution of the
continuous nonlinear problem. We achieve all except the second
requirement for quite realistic problems. Indeed they are much more
general than those for which a complete treatment is available.
There are other results of the type we give, notably those of Urabe
[25,26 ], and numerical experience with real problems has shown no

particular difficulty in solving the nonlinear equations.
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S Computational Aspects. We must now deal with the more practical
aspects of the collocation method. Specifically, suppose we wish to
compute an approximate solution of the boundary value problem (2.1),
(2.2). To do this we need an element of L'(xn,m+d,m) which
collocates on the points of‘gin. Consequently, a convenient
representation of such a function is required.

Suppose a partition . of [a,b] of the form (2.4a) is given
and the points (2.Lb) are determined from a partition (2.5) of [0,1].
Perhaps the most natural representation for a function un(s) in

L'(ﬂn,m+d,m) is of the form

4 Xm+d+l

m+d, 2 m+d-1 Jdd
JUTTH e 3Bl ) A

1
un(s)—xi(s-si+l) +x;(s-85 4

(5.1)

for s € [s,,s ], (0<i<nl).

i+l

Then un(s) is uniquely determined by the n(m+d+1) coefficients
xg, (1 <j<mta+l, 0<4i <n-1l). These coefficients are calculated
from the m boundary conditions, the nd + 1 collocation conditions
(on,gin), end the (m+1)(n-1) continuity conditions. Arrange these
equations in the order they arise when moving from left to right.

That is, the first equations are those from the boundéry conditions

at a = s., then the collocation condition on the points of_gin in

0,
[so,sl], then the continuity conditions at s,, then the collocation
condition on the points of‘cd; in (51,52], etc. If the boundary

conditions are separated, the resulting matrix is block tridiagonal
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with block size (m+d+l) X (m+d+l). Tt is in fact a band matrix
with band width 2(m+d)+1, simplifying considerably the computation
of the solution of a large system of equations.

The continuity conditions undergo no changes in different
problems, and one might expect that a proper choice of a basis for

L'(ﬂn,m+d,m) would have them "built in." Such bases have been worked

out for certain cases. These representations which we mention below

are given in [ 5]. Suppose that we are concerned with approximate

solutions from the spaces L'(ﬁn,2n&l,m), (n =1,2,3,...), the so-
. (m+1) :

called smooth Hermite spaces H (ﬁn) which result when

d=m+ 1, We may think of an element of H(m+l)(xn) in the follow-

ing way: At each joint N (o e S n), associate the parameters

i

X (0 <k <m). Then in each subinterval [si,s ]  there is a

141

unique polynomial vi(s) of degree 2m + 1 satisfying

=%ﬂ (0<k <m) . (5.2)

(x) o2 _lx)
vio(eg) =1, vy (e y,)
An approximate solution un(s) defined on [Si’si+1] by vi(s)

(0 <i<n) is uniquely determined by these (n+1)(m+l) coefficients.
%
To calculate these coefficients, a convenient basis for H(m 1)(:rn)

is

{z; k(s,m,:tn): 0<i<n, 0<k<m},
. =5

vhere
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zf(Lf})i (Sj:m;'ﬁn) = 61362}( (0 < S my 0<J< n) (5_3)

Each zi,k(s,m,xn) has its support in the interval [s, .,s

11 J.
By using this approach, the continuity conditions are sutomatically

a 5.2 5

satisfied. The (n+l)(m+l) unknown coefficients can be efficiently
determined by ordering the equations as before (as they arise when
moving from left to right). With separated boundary conditions,

the matrix from the resulting linear system is block tridiagonal

with block size (m+l) X (m+l). Also, this band matrix has band
width 2[% m] + 1. The case of the general Hermite spaces arises if

d >m+ 1, When these are treated in a similar fashion, there are

nd +m + 1 resulting coefficients to determine. Lastly, we mention
(e

the spline spaces, Sp 8 (ﬂn) , which arise when m is even

and d =1, A basis can be formed whose elements have their support

contained in m+2 adjacent subintervals. The matrix problem to be

solved has dimension n +m + 1, One computational difficulty of

these bases must be stressed, however. While the collocation conditiong

are of a very simple nature at the Jjoints si(o s s O n), they

become somewhat unruly at the other points of ‘Cdn vhen we use the

given bases which have the continuity conditions automatically satisfied.

The matrix problem being solved does depend on the differential operator,

s0 there seems to be no reason for choosing one basis over another on

grounds of conditioning. However, we have seen difficulties with

the bases with continuity conditions built in. Residual correction may

be a good idea for such cases. A separate effect is the increased







difficulty in accurately forming the matrix using the smooth bases. But
in any event the standard bases with continuity built in, while desirable
in the sense that band widths of the matrices are decreased, can be
rather unsatisfactory.

Since they are easily solved with Gaussian elimination, the band
matrices obtained from our use of piecewise polynomials are much more
economical than the dense matrices from using polynomials. We must
pivot to guarantee stability, but with partial pivoting the elimina-
tion can be arranged to preserve the band structure. Although this
increases the band width, the storage is still very economical. The
code is made more efficient by testing for zero multipliers,
thereby utilizing the block tridiagonal nature of the systems.

We have seen in our analysis that ideally the Lebesgue constant
(2.10) would be minimized. So a computational consideration is that
of the choice of the partition (2.5) of [0,1]. Tt is known that the
best order for these constants is asymptotically achieved with the
Chebyshev points, but a best choice of points for the finite case is
an open question. It has been demonstrated, however, that for practical
computations the "expanded" Chebyshev points give a smaller Lebesgue
constant than from the Chebyshev points [16]., Furthermore, the
endpoints of the interval are always elements of the "expanded"

Chebyshev points, a necessity for our purposes.
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6. Tlustrative Computations. All computational exsmples were

carried out on an IRM %60 in single precision (which is approximately
seven decimal digits) unless otherwise stated. Uniformly spaced

points were used for collocation in all except the third example. In

each case the approximate solutions were piecewise cubic or quintic
polynomial functions computed by using the representation (5.1); In
the first example we compare results from this approach to those frﬁm
using the basis (5.3), where the continuity conditions are automatically
satisfied. In the case of a second order differential equation the
approximation spaces L(ﬂn,m+d,m) are the cubic spline space Sp(g)(nn)
and the smooth Hermite space H(i)(xn). In some instances numerical
results from the paper of Ciarlet, Schultz, and Varga [5] are
presented by way of comparison. They will be marked with an asterisk.

The notation 1.k x 1072 = 1.4(-3) 1is used for convenience.

Problem 1, First we consider the almost trivial second order problem

u"(s) - bu(s) = 4 cosh 1, u(0) =u(1) =0 . (6.1)
This problem has the unigue solution
u(s) = cosh (2s-1) - cosh 1. (6.2)

The homogeneous problem u" = 0 with the boundary conditions in
(6.1) obviously has a Green's function,.and Theorem 2 is applicable.
It turns out that cubic splines with either our collocation method

or the variational procedure of [5] yield approximate solutions to

(6.1) that are 0(h°).
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However, the constant in the error bound can be expected to be smaller

for the variational method, as the results below show,

Hun - ul|
(2) N - (3)
h Sp - Variational Sp - Collocation H - Collocation
1/5 h.23(-5) 5.23(-3) 3.46(-6)
/7  1.71(-5) 2.63(-3) 2.21(-6)
1/9  5.80(-6) 1.58(-3) 2.15(-6)

Comparison is made between the O(hh) computations with H(B)

and some discrete methods having the same order of convergence, too.
These methods are Collatz's Mehrstellenverfahren [6, p. 164],

the Bramble and Hubbard five-point scheme [ 3], and Numerov's scheme

b5, p. 701,

lu, - wll
h Collatz” Bramble-Hubbard Numerov
1/5 2.56(-5) 2.06(-3) 3.88(-5)
1/10 1.65(-6) 1.64(-4) 4.83(-6)

We now illustrate the computational difficulties that can
arise when using the basis with continuity built in, given in
(5.2), (5.3). The solution (6.2) and its derivatives are approxi-

mated in H(B) using both single and double precision.
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Single Precision

ho -l llut -t [t - "l
1/5  1.29(-5) 5.05(-5) 3.86(-4)
1/7  3.28(-6) 4.39(-5) 1.00(-3)
1/9  2.06(-5) 8.87(-5) 1.13(-3)

Double Precision

h Hun-uH Huﬁ-u'” Hu;—u"ﬂ
1/5  1.49(-6) 7.22(-5) 7.14(-5)
/7 3.90(-T7) 1.88(-6) 1.92(-5)
1/9  1.u3(-7). 6.87(-7) 7.18(-6)

The roundoff errors from using the representation (5.1), however,

are more reasonable then those using (5.2), (5.3), since the number

of asccurate digits are basically equal to the number in single

precision arithmetic.
Problem 2. The next example is a "real" problem,

u'(s) + (3 cot s + 2 tan s) u'(s) + .T‘u(s) = 0,

u(30) = 0, u(60) =5 .
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This differential equation arises when considering the stress distri-
bution in a spherical membrane having normal and tangential loads.
The unique solution to (6.3) undergoes a steep rise from u(30) =0
to u(3l) = 277. The physical application also requires a good
approximation to u'(s). Considerable effort has been unsuccessful

in attempting to solve this problem by a shooting method on a CDC 6600.
We use collocation with 51 Jjoints to solve (6.3) and compare our
results to those using central differences with 3000 mesh points and
double precision [19]. It is easy to show Theorem 2 applies to this
slightly more general problem. Rather than solve the problem with
homogeneous boundary conditions by the technique in section 2, the

inhomogeneous boundary conditions are just incorporated directly

in the matrix problem. The agreement below is sufficiently good that

we believe the H(B) solution is accurate.

g Differences Sp(g) H(B)
35.01  1.7L437(2) 1.71383%(2) 1.71436(2)
40,01 8.69492(1) 5.89450(1) 8.89487(1)
45.01 4. ho578(1) 4. 40560(1) 4.50576(1)
50.0L  2.12367(1) 2.12360(1) 2.12367(1)
55.01 1.01900(1) 1.01898(1) 1.01900(1)
Problem 3, Consider another linear second order problem

eu(s) - (2-52)u(s) = .1,
u(-1) = u(1) = 0,

o< g <1,

(6.4)







This singular perturbation problem is given as an illustration in a
paper on geophysical dynamics [4 ]. There exists a unique solution
to (6.4) symmetric about O and having a boundary layer at 1

of width 0(ve ) . The paper states that an asymptotic solution is

(1+s) [ (1'3) \ . (6.5)
: / 5

Letting ¢ = 1.(-8), we compare an approximate solution from using

5(3) with 49 Joints to the solution (6.5).

collocation in
The Joints were placed symmetrically about the origin on an ad hoc
basis, with those in [0,1] placed at = 8 R s SRR gl s O T
¢95, .97, .9, .985, .99, .9925, . 995, . 996, . 997, . 9975, . 998, . 9955, . 999,

« 9995, .9997, .9999, and 1.0. The answers are symmetric; the

maximum errors over several subintervals are shown below.

Interval Max Difference
[0.0,0.8] 9.54(-7)
[0.8,0.999] %.17(-6)
[0.999,0.9995] 5.84(-5)
[0.9995,1.0] 5.24(-4)

The last interval contains the boundary layer.

Problem 4. We turn now to a third order differential equation,
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y

o=

u"t(s) + % ws) = le u'(s) =
s

(6.6)
w™(1) + .3ut(l) = u'(2) + ..22 u'(2) = u(2) = o.

This boundary value problem which describes the symmetrical bending

of a laterally loaded circular plate [2k 3 p.53] has the unique

solution
2 2
u(s) = EH (ln % - 1) - %; ( izg + % 1n 2\
2.6 3.3 0 1n2 (6.7)

8
--é-:-i-lnz’ln§+—2-:g+ 3 -

Note that variational methods could not be applied to (6.6), at

least in its present form, because it is not self-adjoint. Using
<3)

piecewise quintics, we expect the convergence of collocation

to (6.7) and its derivatives to Dbe O(h5).

h Hun-u” Hué - utll Hu; - " Hu;' - u"tl|
1/5 3.81(-5) 7.44(-5) 2,58(-14) 3.76(-3)
1/7  1.14(-5) 2.00(-5) 7.84(-5) 1.58(-3)
1/9  17.63(-6) 8.58(-6) 3.22(-5) 8.05(-4)
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Problem 5. The highest order equation that we consider is fourth

order. The problem

u(iv)(s) = (sh + lbs§ + &952 + 328 - 12) e’ 3
(6.8)
u(0) = u'(0) = u(1l) =u'(1) =0 ,

corresponds to the bending of a thin beam clamped at both ends. The

unique solution of (6.8) is
u(s) = 52(1-5)2 & L (6.9)

Approximations to (6.9) using the variational method with functions
in H(g) and the collocation method with G (%) piecewise

quintics are compared, as are the first derivative approximstions.

12). veraartonny® L'(x,,5,4) - Collocation
h ha, ~ull hat —utll llu_=ull fut_<ull
n n n n
1/5 6.95(-4) 1.09(-2) 5.42(-3) 1.78(-2)
1/7  1.98(-4) 4.33(-3) 2.75(-3) 9.09(-3)
1/9  7.61(-5) 2,13(-3) 1.66(-3) 5.48(-3)

Problem 6. Our last linear example is the second order problem

u"(s) + su'(s) - u(s) = se® - [s](6 - 125 + P . 353) 2

i (6.10)

u(-1) = e -2, u(l) = e.







The unique solution to (6,10) is

u(s) = ’ (6.11)

Although the derivatives of u(s) have jump discontinuities at the
origin, the corollary to Theorem 2 implies that this will not hinder
convergence of our collocation procedure if 0 is a joint, For
example, Wwe expect approximate solutions in H(3) and their
derivatives to converge to the solution (6.11) and its corresponding
derivatives at the rate O(hh) in such cases. But when O is not
a joint, the convergence should be slower. These expectations are

born out in the following double precision calculations,.

h Hun-uH Hu; - utll Hun - u"|
1/4 3. 40(-6) 1.00(-5) 6.54(-5)
1/8 2.17(-7) 6.18(~T7) 4. 47(-6)
1/12 4,29(-8) 1.22(-7) 9.07(-7)
1/16 1.36(-8) 3.85(-8) 2,91(~T7)
1/3 3.88(-3) 3,20(~2) 4.95(-1)
1/9 1.61(-L4) 3.10(-3) 1.66(-1)
1/15 3.56(-5) 1.07(-3) 1.00(-1)
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Problem 7. Now we turn to a nonlinear problem,

u"(s) = exp(u(s)) , u(o) =u(1) = o. (6.12)

The negative function

u(s) = 1n ¢ sec ( c(s - 2) .
(s) = 1n2 +21n [ (22 IF (6.13)

vhere ¢ = 1,336056 ,

is the unique solution of (6.12). So Theorem 5 applies to our

example, and we can approximate a solution to (6.13) using collocation

(3)

in H . This approximation is found by an iterative procedure
which requires the solution of a linear problem for each iterate:

n

Va1 (8) = ¥pn(8) = ex y (s) - v (s),

Y (0) = ¥ (1) = 0,

where yo(s) = 0. The scheme is known to converge for this problem
[20]. To determine a criterion for stopping the iterations, denote

the coefficients of yn(s) and y_..(s) given in (5.1) by

n+l

yg and y g (0<3<5, 0<i<n-l), respectively. If we stop

iterating when
max {h5'j|yg -y gl} <B, (6.1%)
0<i<n-l
0S3I<S







then (5.1) guarantees that Hyn - yn+l” <5B.

So we incorporate this criterion in our computer problem with
B = .5(-6) and take the latest iterate as the approximate solution

of the nonlinear problem when this test is passed.

H(e)- Variational* H(s) - Collocation
h I ~ull lhu v lJut-ut! : Uuﬁ-u"”
1/3  1.19(-5) 1.11(-6) 3.58(-6) 2.83(-5)
1/%  4.u8(-6) 1.13(-6) 1.31(-6) 9.83(-6)
1/5  3.69(-6) 1.27(-6) 6.56(-7) 4.59(-6)

Problem 8. Lastly, we consider a problem both physically and

theoretically interesting. This nonlinear problem is Bratu's equation,

u'(s) = - exp(u(s)) ,

(6.15)
u(o) =u(1) =0 .

There are two solutions to (6.15), both of which are positive and
symmetric about .5, and one is strictly greater than the other [8].
It is shown in [2] that the smaller solution lies in [O,c),

where ¢ =1n 1.2, and it has

‘ cos(% - 8)

v.(s) = -1

1.(
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as & lower bound and

as an upper bound. The linear differential equation

y'(s) + 2®y(s) = o,

y(0o) =y(1) =0

which corresponds to (4.9) has only the trivial solution when u(s)
is the smaller solution of (6.15) (see [2, p. 31]). Consequently,
this solution has a non-zero index, and Theorem 5 can be applied.

We again use collocation in the space H(s). Jt is known that with
the iteration scheme yo(s) =0,

Yrip (8) = —exn(y, (s)), ¥

n+l(0) == yn+l(l) = OJ

the successive iterates monotonically increase to this solution [21].
Using the criterion (6.14) with B = 1.0(-6) as a stopping rule,

the following results were obtained.







H(E) Collocation

s Lower Bound 10 joints 15 joints Upper Bound
1/15  3.1071(-2) 3, 4078(-2) 3 4221 (-2) 3, 4867(-2)
2/15  6,374(-2) 6.3794(-2) 6.3992(-2) 6.5107(-2)
1/5 8.8599(-2) 8.8824(-2) 8.9027(-2) 9.0556(~2)
4/15  1.0861(-1) 1.0900(-1) 1.0921(-1) 1.1108(-1)
1/3 1.2370(-1) 1.2422(-1) 1.2443(-1) 1.2657(-1)
2/5 1.3380(-1) 1.3%06(-1) 1.3462(-1) 1.3694(-1)
7/15  1.3386(-1) 1.3951(-1)  1.3973(-1)  1.ke1l(-1)
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