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Abstract. This paper introduces a single valued (2n as well as 2n+1) sided polygonal neutrosophic numbers in 

continuation with other defined single valued neutrosophic numbers. The paper provides basic algebra like addi-
tion, subtraction and multiplication of a single valued (2n as well as 2n+1) sided polygonal neutrosophic numbers 
with examples. In addition, the paper introduces matrix for single valued (2n as well as 2n+1) sided polygonal 

neutrosophic matrix and its properties. 
 

Keywords: Fuzzy numbers, Intuitionistic fuzzy numbers, Single valued trapezoidal neutrosophic numbers, Single 

valued triangular neutrosophic numbers, Neutrosophic matrix.

 
1 Introduction 

In the real world problems, uncertainty occurs in many situations which cannot be handled precisely via crisp set 

theory. To approximate those uncertainties exists in the given linguistics words the fuzzy set theory is introduced 

by Zadeh [10]. After that, Dubois and Prade [2] defined the fuzzy number as a generalization of real number.  In 

continuation, many authors [5-8, 11-23] introduced various types of fuzzy numbers such as triangular, trapezoi-

dal, pentagonal, hexagonal fuzzy numbers etc. with their membership functions. Atanassov [1] introduced the 

concept of intuitionistic fuzzy sets that provides precise solutions to the problems in uncertain situations than 

fuzzy sets with membership and non-membership functions. After developing intuitionistic fuzzy sets, authors in 

[4, 6, 10, 19] defined various types of intuitionistic fuzzy numbers and different types of operations on intuition-

istic fuzzy sets are also established by suitable examples. Smarandache [9] introduced the generalization of both 
fuzzy and intuitionistic fuzzy sets and named it as neutrosophic set. The Single valued neutrosophic number and 

its applications are described in [3]. The results of the problems using neutrosophic sets are more accurate than 

the results given by fuzzy and intuitionistic fuzzy sets [11-20]. Due to which it is applied in various fields for 

multi-decision tasks [20-32]. The applications of n-valued neutrosophic set [24-26] in data analytics research 

fields given a thrust to study the neutrosophic numbers. This paper focuses on introducing mathematical opera-

tion of 2n and 2n+1 sided polygonal neutrosophic numbers and its matrices with examples.   

 

  The rest of the paper is organized as follows: The section 2 contains preliminaries. Section 3 explains single 

valued 2n+1 polygonal neutrosophic numbers whereas the Section 4 demonstrates Single valued 2n side polygo-

nal neutrosophic numbers. Section 5 provides conclusions followed by acknowledgements and references.  
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2. Preliminaries 

 

Definition 1 (Fuzzy Number)[4]: A fuzzy number is nothing but  an extension of a regular number in the sense 

that  it  does  not  refer  to  one  single  value  but  rather  to  a  connected  set  of  possible  values,  where  each 

of the possible value has its own weight between 0 and 1. This weight is called the membership function. The 

complex fuzzy set for a given fuzzy number  �̃�  can be defined as 𝝁�̃�(𝒙) is non-decreasing for 𝑥 ≤ 𝒙𝟎 and non-

increasing for ≥ 𝒙𝟎 . Similarly other properties can be defined.  

 

Definition 2 (Triangular fuzzy number [4]): A fuzzy number �̃�= {a, b, c } is  said  to  be  a triangular  fuzzy   

number  if  its  membership  function  is  given  by ,  where 𝑎 ≤ 𝑏 ≤ 𝑐 

 

𝝁�̃�(𝒙)=

{
 

 
(𝒙−𝒂)

(𝒃−𝒂)
𝑓𝑜𝑟  𝑎 ≤ 𝑥 ≤ 𝑏

(𝒄−𝒙)

(𝒄−𝒃)
𝑓𝑜𝑟  𝑏 ≤ 𝑥 ≤ 𝑐

𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 

 
Definition 3 (Trapezoidal fuzzy number [4]) 

 A Trapezoidal fuzzy number (TrFN) denoted by �̃�𝑃  is defined as (a, b, c, d), where the membership function 

 

𝝁�̃�𝑷(𝒙)=

{
  
 

  
 
𝟎 𝑓𝑜𝑟 𝑥 ≤ 𝑎

(𝒙−𝒂)

(𝒃−𝒂)
𝑓𝑜𝑟  𝑎 ≤ 𝑥 ≤ 𝑏

𝟏 𝑓𝑜𝑟  𝑏 ≤ 𝑥 ≤ 𝑐
(𝒅−𝒙)

(𝒅−𝒄)
𝑓𝑜𝑟  𝑐 ≤ 𝑥 ≤ 𝑑

𝟎 𝒇𝒐𝒓 𝒙 ≥ 𝒅

 

 

Or, 𝝁�̃�𝑷(𝒙)= max ( min (
(𝒙−𝒂)

(𝒃−𝒂)
 , 1, 

(𝒅−𝒙)

(𝒅−𝒄)
 ) ,0) 

 

Definition 4 (Generalized Trapezoidal Fuzzy Number) (GTrFNs) 

A Generalized Fuzzy Number (a, b, c, d, w), is called a Generalized Trapezoidal Fuzzy Number “x” if its mem-

bership function is given by 

 

(𝒙)=

{
  
 

  
 

𝟎 𝑓𝑜𝑟 𝑥 ≤ 𝑎
(𝒙−𝒂)

(𝒃−𝒂)
𝒘 𝑓𝑜𝑟  𝑎 ≤ 𝑥 ≤ 𝑏

𝒘 𝑓𝑜𝑟  𝑏 ≤ 𝑥 ≤ 𝑐
(𝒅−𝒙)

(𝒅−𝒄)
𝒘 𝑓𝑜𝑟  𝑐 ≤ 𝑥 ≤ 𝑑

𝟎 𝒇𝒐𝒓 𝒙 ≥ 𝒅

 

 

Or, 𝝁�̃�𝑷(𝒙)= max ( min (w 
(𝒙−𝒂)

(𝒃−𝒂)
,  w,𝒘 

(𝒅−𝒙)

(𝒅−𝒄)
) ,0) 

Definition 5 (Pentagonal fuzzy number [4]) 

A pentagonal fuzzy number (PFN) of a fuzzy set �̃�𝑃= {a, b, c, d, e} and its membership function is given by, 
 

𝝁�̃�𝑷(𝒙)=

{
 
 
 
 

 
 
 
 
𝟎 𝑓𝑜𝑟 𝑥 < 𝑎

(𝒙−𝒂)

(𝒃−𝒂)
𝑓𝑜𝑟  𝑎 ≤ 𝑥 ≤ 𝑏

(𝒙−𝒃)

(𝒄−𝒃)
𝑓𝑜𝑟  𝑏 ≤ 𝑥 ≤ 𝑐

𝟏 𝒙 = 𝒄
(𝒅−𝒙)

(𝒅−𝒄)
𝑓𝑜𝑟  𝑐 ≤ 𝑥 ≤ 𝑑

(𝒆−𝒙)

(𝒆−𝒅)
𝑓𝑜𝑟  𝑑 ≤ 𝑥 ≤ 𝑒

𝟎 𝒇𝒐𝒓 𝒙 > 𝒅
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Definition 6 (Hexagonal fuzzy number [4]) 

 A Hexagonal fuzzy number (HFN) of a fuzzy set �̃�𝑃= {a, b, c, d, e, f} and its membership function is given by, 

𝝁�̃�𝑷(𝒙)=

{
 
 
 
 

 
 
 
 

𝟎 𝑓𝑜𝑟 𝑥 < 𝑎
𝟏

𝟐
(
𝒙−𝒂

𝒃−𝒂
) 𝑓𝑜𝑟  𝑎 ≤ 𝑥 ≤ 𝑏

𝟏

𝟐
+

𝟏

𝟐
(
𝒙−𝒃

𝒄−𝒃
) 𝑓𝑜𝑟  𝑏 ≤ 𝑥 ≤ 𝑐

𝟏 𝑐 ≤ 𝑥 ≤ 𝑑

𝟏 −
𝟏

𝟐
(
𝒙−𝒅

𝒆−𝒅
) 𝑓𝑜𝑟  𝑐 ≤ 𝑥 ≤ 𝑑

𝟏

𝟐
(
𝒇−𝒙

𝒇−𝒆
) 𝑓𝑜𝑟  𝑑 ≤ 𝑥 ≤ 𝑒

𝟎 𝒇𝒐𝒓 𝒙 > 𝑑

 

Definition 7 (Octagonal fuzzy number [4]) 

 A Octagonal fuzzy number (OFN) of a fuzzy set �̃�𝑃= {
87654321 ,,,,,,, aaaaaaaa } and its membership 

function is given by, 

,
12

1

aa

ax
k




  21 axa   

  ,k   32 axa 
 

,)1(
34

3

aa

ax
kk




   43 axa   

PA
~ =   ,1   

54 axa   

,)1(
56

6

aa

xa
kk




   65 axa 

 

,k   76 axa 
 

,
78

8

aa

xa
k




  87 axa   

0,   Otherwise 

 

Where k= max{
87654321 ,,,,,,, aaaaaaaa } 

 

Definition 8 (A triangular intuitionistic fuzzy number)[4] 

A triangular intuitionistic fuzzy number a~
is denoted as 

(( , , ), ( , , )),a a b c a b c    
where 

'a a b b c c     

with the following membership function 
)(~ xa  and non-membership function

)(~ xa  

,
ab

ax




  ba 

 

)(~ xa  
,

bc

xc




  cb 

 

0, otherwise
 

 

,
ab

xb




  ba 

 

)(~ xa  
,

bc

bx




  cb 

 

1, otherwise 
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Definition 9 (Trapezoidal Intuitionistic fuzzy number) 

 

𝝁�̃�(𝒙)=

{
 
 

 
 
0 x ≤ 0

(x−a)

(b−a)
for  a < 𝑥 < 𝑏

w for  b ≤ x ≤ c
(d−x)

(d−c)
for  c < x < 𝑑

0 otherwise

         , 𝝂�̃�(𝒙)=

{
 
 

 
 

1 x ≤ 0
(b−x+ 𝑢�̃�(x−a))

(b−a)
for  a < 𝑥 < 𝑏

𝑢�̃� for  b ≤ x ≤ c
(x−c+ 𝑢�̃�(d−x))

(d−c)
for  c < 𝑥 < 𝑑

1 otherwise

 

Definition 10 (Single valued triangular neutrosophic number [3]): 

A triangular neutrosophic number �̃�=< (𝑎, 𝑏,𝑐) ;𝑤�̃�, 𝑢�̃�,𝑦�̃�>  is a special neutrosophic set on the real number set 

R, whose truth-membership, indeterminacy– membership and falsity-membership functions are defined as fol-

lows: 

𝝁�̃�(𝒙)=

{
 
 

 
 
(x−a)

(b−a)
wã for  a ≤ x ≤ b

wã for  x = b
(c−x)

(c−b)
wã for  b ≤ x ≤ c

0 otherwise

         , 𝝂�̃�(𝒙)=

{
 
 

 
 
(b−x+ 𝑢�̃�(x−a))

(b−a)
for  a ≤ x ≤ b

𝑢�̃� for  x = b
(x−b+ 𝑢�̃�(c−x))

(c−b)
for  b ≤ x ≤ c

1 otherwise

 

 

 

𝝀�̃�(𝒙)=

{
 
 

 
 
(b−x+ 𝑦�̃�(x−a))

(b−a)
for  a ≤ x ≤ b

𝑦�̃� for  x = b
(x−b+ 𝑦�̃�(c−x))

(c−b)
for  b ≤ x ≤ c

1 otherwise

 

A triangular neutrosophic number �̃� =< (𝑎, 𝑏,𝑐) ;𝑤�̃�, 𝑢�̃�,𝑦�̃�>  may express an ill-known quantity about  b which 

is approximately equal to b. 

Definition 11 (Single valued trapezoidal neutrosophic number [3]): 

A triangular neutrosophic number �̃�=< (𝑎, 𝑏,𝑐, d) ;𝑤�̃�, 𝑢�̃�,𝑦�̃�>  is a special neutrosophic set on the real number 

set R, whose truth-membership, indeterminacy– membership and falsity-membership function are defined as fol-

lows: 

 

𝝁�̃�(𝒙)=

{
 
 

 
 
(x−a)

(b−a)
wã for  a ≤ x ≤ b

wã for  b ≤ x ≤ c
(d−x)

(d−c)
wã for  c ≤ x ≤ d

0 otherwise

         , 𝝂�̃�(𝒙)=

{
 
 

 
 
(b−x+ 𝑢�̃�(x−a))

(b−a)
for  a ≤ x ≤ b

𝑢�̃� for  b ≤ x ≤ c
(x−c+ 𝑢�̃�(d−x))

(d−c)
for  c ≤ x ≤ d

1 otherwise

 

 

 

𝝀�̃�(𝒙)=

{
 
 

 
 
(b−x+ 𝑦�̃�(x−a))

(b−a)
for  a ≤ x ≤ b

𝑦�̃� for  b ≤ x ≤ c
(x−c+ 𝑦�̃�(d−x))

(d−c)
for  c ≤ x ≤ d

1 otherwise

 

The single valued trapezoidal neutrosophic numbers are a generalization of the intuitionistic trapezoidal fuzzy 

numbers, Thus,  the neutrosophic number may express more uncertainty than the intuitionstic fuzzy number. 

 

3. Single valued 2n+1 polygonal neutrosophic numbers 

 

Definition 12 (Single valued 2n+1 polygonal neutrosophic number):  

A single valued 2n+1 sided polygonal neutrosophic number �̃�=< (𝑎1,𝑎2 ,….,𝑎𝑛,…,𝑎2𝑛,𝑎2𝑛+1) ;𝑤�̃�, 𝑢�̃�,𝑦�̃�> is a 

special neutrosophic set on the real number set R, whose truth-membership, indeterminacy– membership and 

falsity-membership functions are defined as follows: 
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Example:1 If  𝑤�̃� = 0.2  ,𝑢�̃� = 0.4 𝑦�̃� = 0.3  and n= 4 , then we have an nanogonal neutrosophic number �̃� and it 

is taken as �̃� =< (3,6,8,10,11,21,43,44,56) >. Figure 1 demonstrates the Example 1. 

 
           

                                                                            Figure: 1 

Example: 2 

If  𝑤�̃� = 0.2  ,𝑢�̃� = 0.4 𝑦�̃� = 0.3  and n= 4 , then we have an nanogonal neutrosophic number �̃� and it is taken as 

�̃� =< (3,6,8,10,1,2,4,7,5) >. Figure 2 demonstrates the Example 2 and its neutrosophic membership. 

 
                                                                               Figure: 2 

 

Note 

The single valued triangular neutrosophic number can be generalized to a single valued 2n+1 polygonal neutro-

sophic number, where n=1,2,3,…,n 

 

�̃�=< (𝑎1,𝑎2 ,….,𝑎𝑛,…,𝑎2𝑛,𝑎2𝑛+1) ;𝑤�̃�, 𝑢�̃�,𝑦�̃�>, where�̃� may express an ill –known quantity about  𝑎𝑛 which is 

gradually equal to 𝑎𝑛. 

We mean that 𝑎2approximates𝑎𝑛, 𝑎3approximates𝑎𝑛 a littel better than𝑎2,………………. 𝑎𝑛−1approximates𝑎𝑛 a 

litte better than all previous 𝑎1, 𝑎2,…𝑎𝑛,  
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Remark 

If 0≤ 𝑤�̃�, 𝑢�̃�,𝑦�̃� ≤1, 0≤ 𝑤�̃�+ 𝑢�̃�+𝑦�̃� ≤1, 𝑦�̃�= 0  and the single valued 2n+1 sided polygonal neutrosophic num-

ber reduced to the case single valued 2n+1 sided polygonal fuzzy number. 

 

3.1. Operations of single valued 2n+1 sided polygonal neutrosophic numbers 

Following are the three operations that can be performed on single valued 2n+1 polygonal neutrosophic numbers 

suppose 𝑨𝑷𝑵𝑵=< (𝒂𝟏,𝒂𝟐 ,….,𝒂𝒏,…,𝒂𝟐𝒏 ,𝒂𝟐𝒏+𝟏); 𝒘�̃�, 𝒖�̃�,𝒚�̃�> and 𝑩𝑷𝑵𝑵=< (𝒃𝟏,𝒃𝟐 ,….,𝒃𝒏 ,…,𝒃𝟐𝒏 ,𝒃𝟐𝒏+𝟏) ;𝒘�̃�, 

𝒖�̃�,𝒚�̃� >are two single valued 2n+1 polygonal neutrosophic numbers then  

 

(i) Addition: 

𝑨𝑷𝑵𝑵 + 𝑩𝑷𝑵𝑵= < (𝒂𝟏+𝒃𝟏 , 𝒂𝟐+𝒃𝟐, …, 𝒂𝒏+𝒃𝒏 , …, 𝒂𝟐𝒏+𝒃𝟐𝒏 , 𝒂𝟐𝒏+𝟏+𝒃𝟐𝒏+𝟏); 𝒘�̃�+𝒘�̃�-𝒘�̃� ∙ 𝒘�̃�  , 𝒖�̃� ∙
𝒖�̃�,𝒚�̃� ∙ 𝒚�̃�> 

 

(ii) Subtraction: 

 𝑨𝑷𝑵𝑵 - 𝑩𝑷𝑵𝑵  = < (𝒂𝟏-𝒃𝟏 , 𝒂𝟐-𝒃𝟐 , …, 𝒂𝒏-𝒃𝒏 , …, 𝒂𝟐𝒏 -𝒃𝟐𝒏 , 𝒂𝟐𝒏+𝟏-𝒃𝟐𝒏+𝟏);   𝒘�̃�+𝒘�̃�-𝒘�̃� ∙ 𝒘�̃�  , 𝒖�̃� ∙
𝒖�̃�,𝒚�̃� ∙ 𝒚�̃� > 

Multiplication: 

𝑨𝑷𝑵𝑵*𝑩𝑷𝑵𝑵 = < (𝒂𝟏 ∙ 𝒃𝟏 ,𝒂𝟐 ∙ 𝒃𝟐  ,….,𝒂𝒏 ∙ 𝒃𝒏 ,…,𝒂𝟐𝒏 ∙ 𝒃𝟐𝒏 ,𝒂𝟐𝒏+𝟏 ∙ 𝒃𝟐𝒏+𝟏 ) ;𝒘�̃� ∙ 𝒘�̃�  ,𝒖�̃� + 𝒖�̃� - 𝒖�̃� ∙ 𝒖�̃� ,𝒚�̃� +
𝒚�̃� − 𝒚�̃� ∙ 𝒚�̃�> 

 

Remark 

If 𝑤�̃� = 1  ,𝑢�̃� = 0 𝑦�̃� = 0   then  single valued 2n+1 sided polygonal neutrosophic number 𝑨𝑷𝑵𝑵=< (𝒂𝟏,𝒂𝟐 

,….,𝒂𝒏,…,𝒂𝟐𝒏,𝒂𝟐𝒏+𝟏) ;𝒘�̃�, 𝒖�̃�,𝒚�̃�> reduced to the case of single valued 2n+1 sided polygonal fuzzy num-

ber𝑨𝑷𝑭𝑵=< (𝒂𝟏,𝒂𝟐 ,….,𝒂𝒏,…,𝒂𝟐𝒏,𝒂𝟐𝒏+𝟏)>, n=1,2,3,…,n. 

 

Remark 

If 0≤ 𝑤�̃�, 𝑢�̃�,𝑦�̃� ≤1 , 0≤ 𝑤�̃�+ 𝑢�̃�+𝑦�̃� ≤3,  and n=1, the single valued 2n+1 -sided polygonal neutrosophic num-

ber reduced to the case of the single valued triangular neutrosophic number𝑨𝑷𝑵𝑵=< (𝒂𝟏,𝒂𝟐,𝒂𝟑);𝒘�̃�, 𝒖�̃�,𝒚𝒂  ̃>[3]. 

 

Example 3: Let 𝑤�̃� = 1, 𝑢�̃� = 0, 𝑦�̃� = 0 and n= 1 

 

If  𝑤�̃� = 1, 𝑢�̃� = 0, 𝑦�̃� = 0 and n= 2, then we have an Pentagonal fuzzy number [5]: 

 

Let  A=( 1, 2, 3 , 4, 5)  and B=(2, 3,4,5,6) be two Pentagonal fuzzy numbers, then  

 

i. A + B = (3, 5, 7, 9,11) 
 

ii. A – B = (-1,-1, -1,-1,-1) 

 

iii. 2A = (2, 4, 6, 8, 10) 

 

iv. A.B = ( 2, 6, 12, 20, 30) 
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Figure: 3 

 

Figure 3 demonstrates operation given in Example 3.  The single valued 2n+1 polygonal neutrosophic number 

are generalization of the Pentagonal fuzzy number numbers [5] , and single valued triangular neutrosophic num-

ber [3] 

 

4. Single valued 2n-sided polygonal neutrosophic numbers 

 
Definition  13: The single valued trapezoidal neutrosophic number can be extended to a single valued 2n sided 

polygonal neutrosophic number �̃�=< (𝑎1 ,𝑎2  ,….,𝑎𝑛 ,𝑎𝑛+1 ,  …,𝑎2𝑛−1 ,𝑎2𝑛); 𝒘�̃� , 𝒖�̃� ,𝒚�̃�> where n=1,2,3,…,n, 

whose truth-membership, indeterminacy– membership and falsity-membership functions are defined as follows:  
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       1,   Otherwise 

where �̃� may represent an ill–known quantity of range,  which is gradually approximately equal to the interval 

[𝑎𝑛, 𝑎𝑛+1]. 
We mean that (𝑎2, 𝑎2𝑛−1 ) approximates [𝑎𝑛, 𝑎𝑛+1], 
(𝑎, 𝑎2𝑛−2 )  approximates [𝑎𝑛, 𝑎𝑛+1] a little better than (𝑎2, 𝑎2𝑛−1 ),  …………………(an, an+1 )  approximates 

[an, an+1] a little  better than all previous  intervals. 
Remark 

If 0≤ 𝑤�̃�, 𝑢�̃�,𝑦�̃� ≤1, 0≤ 𝑤�̃�+ 𝑢�̃�+𝑦�̃� ≤1, 𝑦�̃� = 0  and the single valued 2n -sided polygonal neutrosophic number 

reduced to the case of single valued 2n-sided polygonal fuzzy number. 

  

4.1 Single valued 2n-sided polygonal neutrosophic number 

 

Following are the three operations that can be performed on single valued 2n-sided  polygonal neutrosophic 

numbers suppose 𝑨𝑷𝑵𝑵=< (𝑎1 ,𝑎2  ,….,𝑎𝑛 ,𝑎𝑛+1,  …,𝑎2𝑛−1 ,𝑎2𝑛);𝒘�̃�, 𝒖�̃� ,𝒚�̃�> and 𝑩𝑷𝑵𝑵=<(𝑏1 ,𝑏2 ,….,𝑏𝑛,𝑏𝑛+1 ,  

…,𝑏2𝑛−1,𝑏2𝑛);𝒘�̃�, 𝒖�̃�,𝒚�̃�>are two2n-sided polygonal neutrosophic number. 

(i) Addition:  𝑨𝑷𝑵𝑵+𝑩𝑷𝑵𝑵=(𝑎1 + 𝑏1,𝑎2 + 𝑏2,….,𝑎𝑛 + 𝑏𝑛,𝑎𝑛+1 + 𝑏𝑛+1,…,𝑎2𝑛−1 + 𝑏2𝑛−1,𝑎2𝑛 +
𝑏2𝑛);𝒘�̃�+𝒘�̃�-𝒘�̃� ∙ 𝒘�̃� , 𝒖�̃� ∙ 𝒖�̃�,𝒚�̃� ∙ 𝒚�̃�> 

(ii) Subtraction:𝑨𝑷𝑵𝑵-𝑩𝑷𝑵𝑵=<(𝑎1 − 𝑏2𝑛,𝑎2 − 𝑏2𝑛−1,….,𝑎𝑛 − 𝑏𝑛,𝑎𝑛+1 − 𝑏𝑛−1,…,𝑎2𝑛−1 − 𝑏2,𝑎2𝑛 −
𝑏1);𝒘�̃�+𝒘�̃�-𝒘�̃� ∙ 𝒘�̃� , 𝒖�̃� ∙ 𝒖�̃�,𝒚�̃� ∙ 𝒚�̃�> 

(iii) Multiplication:𝑨𝑷𝑵𝑵*𝑩𝑷𝑵𝑵 =<(𝑎1 ∙ 𝑏1,𝑎2 ∙ 𝑏2,….,𝑎𝑛 ∙ 𝑏𝑛,𝑎𝑛+1 ∙ 𝑏𝑛+1,  …,𝑎2𝑛−1 ∙ 𝑏2𝑛−1,𝑎2𝑛 ∙
𝑏2𝑛);𝒘�̃� ∙ 𝒘�̃� ,𝒖�̃� +𝒖�̃�- 𝒖�̃� ∙ 𝒖�̃�,𝒚�̃� + 𝒚�̃� − 𝒚�̃� ∙ 𝒚�̃�> 

Remark 

If 𝑤�̃�  = 1  ,𝑢�̃�  = 0 𝑦�̃�  = 0   then  single valued 2nsidedpolygonal neutrosophic number 𝑨𝑷𝑵𝑵=<(𝑎1 ,𝑎2 

,….,𝑎𝑛,𝑎𝑛+1,  …,𝑎2𝑛−1,𝑎2𝑛);𝒘�̃�, 𝒖�̃�,𝒚�̃�> reduced to the case of single valued 2n- sided polygonal fuzzy 

number𝑨𝑷𝑭𝑵=<(𝑎1,𝑎2 ,….,𝑎𝑛,𝑎𝑛+1,  …,𝑎2𝑛−1,𝑎2𝑛) for  n=1,2,3,…,n. 
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Remark 

If 0≤ 𝑤�̃�, 𝑢�̃�,𝑦�̃� ≤1 , 0≤ 𝑤�̃�+ 𝑢�̃�+𝑦�̃� ≤3,  and n=2, the single valued 2n-sided polygonal neutrosophic number 

reduced to the case of single valued trapezoidal neutrosophic number 𝑨𝑷𝑵𝑵=< (𝒂𝟏,𝒂𝟐,𝒂𝟑 , 𝒂𝟒);𝒘�̃�, 𝒖�̃�,𝒚�̃�>[x]. 

 

Example 4:  if 𝑤�̃� = 1  ,𝑢�̃� = 0 𝑦�̃� = 0  and n= 3 then we have an Hexagonal fuzzy number [7-8]: 

Let  A=( 1, 2, 3 ,5 ,6)  and B=(2, 4,6,8,10,12) be two Hexagonal fuzzy numbers then  

A+ B= (3, 6,9, 13,16,19) 

 
Figure: 4 

Figure 4 demonstrates operation given in Example 4. 

 The single valued 2n-sided polygonal neutrosophic number are generalization of the hexagonal fuzzy numbers 

[8] ,intuitionistic trapezoidal fuzzy numbers[x] and single valued trapezoidal neutrosophic number [3] with its 
application [12-23] for multi-decision process [24-26]. 

 

5. Conclusion: 

This paper introduces single valued (2n and 2n+1) sided polygonal neutrosophic numbers its addition, subtrac-

tion, multiplication as well as polygonal neutrosophic matrix with an illustrative example. In near future our fo-

cus will be on applications of single-valued 2n sided polygonal neutrosophic numbers and its other mathematical 

algebra.  
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