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Abstract. This paper introduces a single valued (2n as well as 2n+1) sided polygonal neutrosophic numbers in
continuation with other defined single valued neutrosophic numbers. The paper provides basic algebra like addi-
tion, subtraction and multiplication of a single valued (2n as well as 2n+1) sided polygonal neutrosophic humbers
with examples. In addition, the paper introduces matrix for single valued (2n as well as 2n+1) sided polygonal
neutrosophic matrix and its properties.

Keywords: Fuzzy numbers, Intuitionistic fuzzy numbers, Single valued trapezoidal neutrosophic numbers, Single
valued triangular neutrosophic numbers, Neutrosophic matrix.

1 Introduction

In the real world problems, uncertainty occurs in many situations which cannot be handled precisely via crisp set
theory. To approximate those uncertainties exists in the given linguistics words the fuzzy set theory is introduced
by Zadeh [10]. After that, Dubois and Prade [2] defined the fuzzy number as a generalization of real number. In
continuation, many authors [5-8, 11-23] introduced various types of fuzzy numbers such as triangular, trapezoi-
dal, pentagonal, hexagonal fuzzy numbers etc. with their membership functions. Atanassov [1] introduced the
concept of intuitionistic fuzzy sets that provides precise solutions to the problems in uncertain situations than
fuzzy sets with membership and non-membership functions. After developing intuitionistic fuzzy sets, authors in
[4, 6, 10, 19] defined various types of intuitionistic fuzzy numbers and different types of operations on intuition-
istic fuzzy sets are also established by suitable examples. Smarandache [9] introduced the generalization of both
fuzzy and intuitionistic fuzzy sets and named it as neutrosophic set. The Single valued neutrosophic number and
its applications are described in [3]. The results of the problems using neutrosophic sets are more accurate than
the results given by fuzzy and intuitionistic fuzzy sets [11-20]. Due to which it is applied in various fields for
multi-decision tasks [20-32]. The applications of n-valued neutrosophic set [24-26] in data analytics research
fields given a thrust to study the neutrosophic numbers. This paper focuses on introducing mathematical opera-
tion of 2n and 2n+1 sided polygonal neutrosophic numbers and its matrices with examples.

The rest of the paper is organized as follows: The section 2 contains preliminaries. Section 3 explains single
valued 2n+1 polygonal neutrosophic numbers whereas the Section 4 demonstrates Single valued 2n side polygo-
nal neutrosophic numbers. Section 5 provides conclusions followed by acknowledgements and references.

S. Broumi, M. Mullai, M. Talea, A.Bakali, F. Smarandache, P. K. Singh, and Arindam Dey, SINGLE VALUED (2N+1)
SIDED POLYGONAL NEUTROSOPHIC NUMBERS AND SINGLE VALUED (2N) SIDED POLYGONAL NEUTRO-
SOPHIC NUMBERS



55 Neutrosophic Sets and Systems, Vol. 25, 2019

2. Preliminaries

Definition 1 (Fuzzy Number)[4]: A fuzzy number is nothing but an extension of a regular number in the sense
that it does not refer to one single value but rather to a connected set of possible values, where each
of the possible value has its own weight between 0 and 1. This weight is called the membership function. The
complex fuzzy set for a given fuzzy number A can be defined as uz(x) is non-decreasing for x < x, and non-
increasing for > x, . Similarly other properties can be defined.

Definition 2 (Triangular fuzzy number [4]): A fuzzy number A= {a, b, ¢ } is said to be a triangular fuzzy

number if its membership function is given by, wherea <b <c¢
Gma) fora<x<b
(b—a) -
”ﬁ(x):{ () for b<x<c
_ ) - -

k(c b
0 otherwise

Definition 3 (Trapezoidal fuzzy number [4])
A Trapezoidal fuzzy number (TrFN) denoted by A, is defined as (a, b, ¢, d), where the membership function

forx<a

fora<x<b

i((x a)
Mz, (X)= { for b<x<c
k

(dx)
<x<
o for c<x<d

0 forx>d

d—
or, pz, (%)= max(mln((x a) 1, Ed 2) ,0)
Definition 4 (Generalized Trapezoidal Fuzzy Number) (GTrFNs)
A Generalized Fuzzy Number (a, b, c, d, w), is called a Generalized Trapezoidal Fuzzy Number “x” if its mem-
bership function is given by

0 forx<a
(x-a)
|(b i for a<x<bh
=4 w for b<x<c
(d—-x)
|(dc)w for c<x<d
0 forx=>d
Or, iz, ()= max (min (W ;= ) TVRT am2)

)’ T (d-0)
Definition 5 (Pentagonal fuzzy number [4])

A pentagonal fuzzy number (PFN) of a fuzzy set 4,= {a, b, ¢, d, e} and its membership function is given by,

0 forx<a
% fora<x<bhb
% for b<x <c
Ma, ()= 1 x=c

(d-x)

o for c<x<d
(e=x%)
) ford<x<e

0 forx>d
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Definition 6 (Hexagonal fuzzy number [4])

A Hexagonal fuzzy number (HFN) of a fuzzy set 4,= {a, b, ¢, d, e, f} and its membership function is given by,
0 forx<a

“C%)  foras<x<b

IiIEY forb<x<c

2 2-c-b
B, ()= 1 c<x<d
1 x-d
I—E(a) fOT'CSXSd
1 f-x
E()Te) fordeSe
0 forx>d

Definition 7 (Octagonal fuzzy number [4])
A Octagonal fuzzy number (OFN) of a fuzzy set Ap= {a,,a,,a5,8,,a5,a4,a,,a5} and its membership
function is given by,

X—a
k+(1-k) 3. a,<x<a,
4 83
,UZ\F,:< L a,<x<a
a X
k+(@1-k)—=2 , A <Xx<a,
6 ~ 95

ag —a,

Q Otherwise

Where k=max{a, ,a,,3;,a,,38,3,3,,35}

Definition 8 (A triangular intuitionistic fuzzy number)[4]

A triangular intuitionistic fuzzy number a is denoted as ad=((a,b,c),(@',b',c"),

with the following membership function Ha (x) and non-membership function Va (x)

FX—a
, a <b
b-a
(X) < C—X b <
(x) = , <c
:ua C—b
0, otherwise
\
 b—x
-, a’ <b
b-a
X—b
v-(X) = , b<c
)= 9 o
1, otherwise
\
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Definition 9 (Trapezoidal Intuitionistic fuzzy number)

( 0 x<0 ( 1 x<0
| Ez:z fora<x<b |—(b_XJ(rbu_aa()X_a)) fora<x<b
ud(x)—{ forb<x<c ,vd(x)—4 Ug forb<x<c
|(ZX) forc<x<d |w forc<x<d
k( ) . k (d—c)
otherwise otherwise

Definition 10 (Single valued triangular neutrosophic number [3]):

A triangular neutrosophic number @=< (a, b,c) ;wg, uz,y5> is a special neutrosophic set on the real number set
R, whose truth-membership, indeterminacy— membership and falsity-membership functions are defined as fol-
lows:

(x—a) (b—x+ ug(x—a))
- <x< e ey <x<

oy Wa fora<x<b I( (b > fora<x<b

W5 for x=Db for x=D>b

Ba(X)=4 7 ()= 4

wwﬁ forb<x<c |(X b+u“(c D forb<x<c
(c-b) k (c-b)

0 otherwise 1 otherwise

(b—x+ yz(x—a))

(b-a)

Va for x=>b
(x—b+ yz(c—x))
T forb<x<c

1 otherwise

A triangular neutrosophic number @ =< (a, b,c) ;wg, uz,yz> may express an ill-known quantity about b which
is approximately equal to b.
Definition 11 (Single valued trapezoidal neutrosophic number [3]):
A triangular neutrosophic number =< (a, b,c, d) ;wg, uz,y5> is a special neutrosophic set on the real number
set R, whose truth-membership, indeterminacy— membership and falsity-membership function are defined as fol-
lows:

fora<x<b

Aqz(x)=

(&= <x< (b—x+ uz(x~a)) <<
o= fora<x<b | (b > fora<x<b
u(x)_{ Wy forb<x<c ){ forb<x<c
alX)=y 4
« X)wﬁ forc<x<d |(X C+u“(d D for c<x<d
k(d—C) k (d-c)
0 otherwise 1 otherwise

((b—x+ vg(x—a))
| (b-a)
Vi forb<x<c
(x—c+ yg(d-x))
k o forc<x<d
1 otherwise
The single valued trapezoidal neutrosophic numbers are a generalization of the intuitionistic trapezoidal fuzzy
numbers, Thus, the neutrosophic number may express more uncertainty than the intuitionstic fuzzy number.

fora<x<b

Aa(2)=

3. Single valued 2n+1 polygonal neutrosophic numbers

Definition 12 (Single valued 2n+1 polygonal neutrosophic number):

A single valued 2n+1 sided polygonal neutrosophic number G=< (a;,a; ,....,ay,--»A21:A2n+1) Wa» Ug: Vg™ 1S @
special neutrosophic set on the real number set R, whose truth-membership, indeterminacy— membership and
falsity-membership functions are defined as follows:
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X—a,
— Wy,
a, —q,

TA(X) =

Ay — X
Ayng — &,

a
n

\O, Otherwise

.

a, _X"'ya(x_al)
a, - ’

a; —X+Yz(x-a,)
a; — a4,

Ay — X+ Yz (X_an)
a,,—a, '

Fa(X) = Ya X=a,,

X—a,, + Yz (@, —X)

An,p 8
X—a,,+Y; (an+3 B X)

An.3 ~ 50

X—a,, + Yz (a2n+1 - X)
a2n+l - a2n
\ 1, Otherwise

W~, a2n < a‘2n+l

H 2 —

IA(X) =

<a

n+2

a‘n-¢—2 < an+3

’ a2n < a'2n-¢-1

a—q
a; —X+uz(x—a,)
2 , &, <a,
a—a,
an+1_X+u5(X_an) <a
’ n — “n+l
an, —4a,
uﬁ’ X=a‘n+l
X—a,, +U;z (an+2 - X) a <a
! n+l — “*n+2
A, 8,
X_an+2+u5(an+3_x) a <a
! Mn+2 — Mn+3
An,z — a5,
X—a,, + Uz (8, —X)
. 2 o ’ a2n < a‘2n+l

Ayn.1 — 8y,

\ 1, Otherwise
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Example:1 If w; =0.2 ju; =0.4y,;=0.3 and n=4, then we have an nanogonal neutrosophic number & and it
is taken as @ =< (3,6,8,10,11,21,43,44,56) >. Figure 1 demonstrates the Example 1.

! — - ~ T T T T | 1Y

MarDar srvp funcier
Indananmine fhunction
Non-Membershio function| 7

Figure: 1
Example: 2
If w;=0.2 ,u; =04y;=0.3 andn=4, then we have an nanogonal neutrosophic number & and it is taken as
a =< (3,6,8,10,1,2,4,7,5) >. Figure 2 demonstrates the Example 2 and its neutrosophic membership.

Figure: 2

Note
The single valued triangular neutrosophic number can be generalized to a single valued 2n+1 polygonal neutro-
sophic number, where n=1,2,3,...,n

A=< (aq,az 5. Qs 0oy, Oons1) Wa, Ug,Va>, Whered may express an ill —known quantity about a,, which is
gradually equal to a,,.

We mean that a,approximatesa,,, asapproximatesa,, a littel better thana,,................... a,_,approximatesa,, a
litte better than all previous a,, a,,...a,,
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Remark
If 0< wy, uz,ys <1, 0< wyi+ uz+y,; <1, y;= 0 and the single valued 2n+1 sided polygonal neutrosophic num-
ber reduced to the case single valued 2n+1 sided polygonal fuzzy number.

3.1. Operations of single valued 2n+1 sided polygonal neutrosophic numbers

Following are the three operations that can be performed on single valued 2n+1 polygonal neutrosophic numbers
Suppose Apyn=< (@1,Q3 seeeesQpseees@opn,Aoni1)s Wy, Ug,Ya> aNd Bpyny=< (b1,b3 seeeesDpyeecsbon bon 1) W5,
ug,y5 >are two single valued 2n+1 polygonal neutrosophic numbers then

(i Addition:

Apyy + Bpyn= < (a1tby, z+by, ooy Qptby,y ..oy Qpptboy, Qi tbonyq); WatWi-we - Wi, U -
Up.Ya ' Y5~
(i) Subtraction:

Apyy - Bpyy = < (ay-by, A3-byy ...y @y-by, ..., Q2-boy, Qppy1-baniq);  WatWi-wi - wi , Up -
Up.Ya“ Vb >
Multiplication:
Apyn*Bpyy =< (@y-by,a; " by yeeees@y by s Qo * Doy Qo1 Donyy) sWa Wi UG + Up- U~ Up, Y5 +
Yo — Ya' V5~
Remark
Ifw;=1 u,;=0y;=0 then single valued 2n+1 sided polygonal neutrosophic humber Apyy=< (a;,a,

sesenslpseenslon,Oani1) Wa, Uy, Va> reduced to the case of single valued 2n+1 sided polygonal fuzzy num-
berApFN:< (al,az ,....,an,...,azn,a2n+1)>, n:1,2,3,...,n.

ﬁeon;a;t; Uz.Va <1, 0< wyat uz+y; <3, and n=1, the single valued 2n+1 -sided polygonal neutrosophic num-
ber reduced to the case of the single valued triangular neutrosophic numberdpyy=< (a;,a,.,a3);wy, uz.Ya>[3]-
Example 3: Letw,; =1,u; =0,y,=0andn=1
If w;=1,u;=0,y;=0andn=2, then we have an Pentagonal fuzzy number [5]:
Let A=(1, 2,3, 4,5) and B=(2, 3,4,5,6) be two Pentagonal fuzzy numbers, then

i. A+B=(3,5,7911)

. A-B=(1-1,-1,-1-1)

iii. 2A=(2,4,6,8,10)

iv. A.B=(2,6,12, 20, 30)
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Figure: 3

Figure 3 demonstrates operation given in Example 3. The single valued 2n+1 polygonal neutrosophic number
are generalization of the Pentagonal fuzzy number numbers [5] , and single valued triangular neutrosophic num-
ber [3]

4. Single valued 2n-sided polygonal neutrosophic numbers

Definition 13: The single valued trapezoidal neutrosophic number can be extended to a single valued 2n sided
polygonal neutrosophic number G=< (a;,a; ,....,ap,Ani1> --0zp—1:27): Wa, Uz, Ya> Where n=1,2,3,....n,
whose truth-membership, indeterminacy— membership and falsity-membership functions are defined as follows:

X—a
[k—lwa, a, <x<a,
a —q

k+@-Kk) 22w, a,<x<a,

a3 —a,

X—a
k + (1—mk) 1w, a,, <x<a,
an T %pa
T,(X) = W;, a, <x<a,,
a., —X
kK + (1—mk)—"2 w;, a,,<x<a,,
Qn.o —Qpy
Ay, 4 — X
kK+(@1-k)—/"=—w;, a,,,<x<a,,,
Ayn1 — 3y,
a,, — X
k Wy, 8,5 <X<a,,

aZn - a2n—l
0, Otherwise
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/k+(1—mk)ﬂua, a, <x<a,

az_al
a, — X
k+@-(m-1)k)—=——u., a, <x<a,
3~ A
a ,—X
k+(@1-k)—2 Us, a,, <x<a,,
a‘n—l_a‘n—z
a —Xx
k—" Uz, a,;,<Xx=<a,
a‘n_a‘n—l
1,(X) = 0, a, <x<a,,
X—a,,
k - ué’ an+lSX£an+2
an+2_an+l
X—a,,,
k+(@Q-k) Uy, A, XA,
n+3 =~ “n+2

X—a
kK+(@-(m-1)k)—22u_, a, , <X<a, ,
2n-1 ~ Q2n2

X—a
k+@-mk) —2Lu., a, ,<x<a,,
An — A0

1, Otherwise
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ﬂ(+(l—mk)ﬂy5, a, <x<a,
a—q

Kt @—(m-Dk)2"Xy a, <x<a,

3 2

a, —X
kn—yé_’ a
a, —a,,

Fo(X) = 0, a, <x<a,,
X—a
k ________Jlil__.)la , a
a,,,—a

n+2 n+1

<x<a_,

n+1

n+2 —

Ktk 2"%mz g g <x<a .
a

n+3 n+2

K+ (-(m-Dk) 22y, , <x<a,,,
2n1 Qo2
k+(1- mk)& Vi, @y, SX<ay,
Aon 8y
1, Otherwise

where @ may represent an ill-known quantity of range, which is gradually approximately equal to the interval
[anlan+ll
We mean that (a,, a,,,_, ) approximates [a,, a, 11,
(a, ay,_, ) approximates [a,,, a,.] a little better than (a,, Azp_1 ), ceeeeeveeennnennnnn. (ap, apyq ) approximates
[an, ap44] 2 little better than all previous intervals.
Remark

If 0< wy, ugz. Vs <1, 0< wst uz+y,; <1, y; =0 and the single valued 2n -sided polygonal neutrosophic number
reduced to the case of single valued 2n-sided polygonal fuzzy number.

4.1 Single valued 2n-sided polygonal neutrosophic number

Following are the three operations that can be performed on single valued 2n-sided polygonal neutrosophic

numbers suppose Apyn=< (a1,Q3 ,...sQ0,0ps1> - Qan-1:Q2n)i Wi Ug,¥u> and Bpyn=<(b1,b; ,....,h,bp 1,
<+ sbon_1,b20): W5, ug,yp>are two2n-sided polygonal neutrosophic number.
(i) Addition:  ApyytBpyy=(a; + by,a, + by,....y + bp,apiq + brgis-Qoneq + bop 1,05, +
b2n)WatWp-Wg Wi , Up " Up.Ya " V5>
(i) Subtraction:Apyn-Bpyn=<(a; — b21,05 — byp_1,-+-s0n — bpsGpi1 — b1y 0opn—1 — b0y —
b,)iwatWy-Wwg * Wi, Up " U Y5 V5>
(iii) Multiplication:Apyy*Bpyy =<(a; *b1,ay * by,...s@y = by @iy * Dpy1s - oOoneq1 " bop1,02p

byn);Wa " Wi Ug + Up- U " U5 Ya + Y5 — Ya' V5>
Remark
Ifw;=1 ,u;=0y;=0 then single valued 2nsidedpolygonal neutrosophic number Apyy=<(a,,a,
yere @y @1y - 8on—1,027): Wi, Ug,Yg> reduced to the case of single valued 2n- sided polygonal fuzzy
numberAppy=<(a;,a, ,....an,Ans1, ---sq2n_1,02) fOr n=1,23....n.
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Remark
If 0< wy, uz,y; <1, 0< wit+uz+y; <3, and n=2, the single valued 2n-sided polygonal neutrosophic number
reduced to the case of single valued trapezoidal neutrosophic number Apyy=< (a4,az,a3 , a,);Wy, Uz,yz>[X].

Example 4: ifw; =1 ,u; =0y; =0 and n=3 then we have an Hexagonal fuzzy number [7-8]:
Let A=(1,2,3,5,6) and B=(2, 4,6,8,10,12) be two Hexagonal fuzzy numbers then
A+B=(3, 6,9, 13,16,19)

Figure: 4
Figure 4 demonstrates operation given in Example 4.
The single valued 2n-sided polygonal neutrosophic number are generalization of the hexagonal fuzzy numbers
[8] .intuitionistic trapezoidal fuzzy numbers[x] and single valued trapezoidal neutrosophic number [3] with its
application [12-23] for multi-decision process [24-26].

5. Conclusion:

This paper introduces single valued (2n and 2n+1) sided polygonal neutrosophic numbers its addition, subtrac-
tion, multiplication as well as polygonal neutrosophic matrix with an illustrative example. In near future our fo-
cus will be on applications of single-valued 2n sided polygonal neutrosophic numbers and its other mathematical
algebra.
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