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Abstract: In this paper, we introduce the notion of a single-valued co-neutrosophic graphs and study some methods
of construction of new single-valued co-neutrosophic graphs. We compute degree of a vertex, strong single-valued
co-neutrosophic graphs and complete single-valued co-neutrosophic graphs. We also introduce and give properties of
regular and totally regular single-valued co-neutrosophic graphs.

Keywords: Single-valued neutrosophic graphs; degree of a vertex; strong single-valued co-neutrosophic graphs;
complete single-valued co-neutrosophic graphs; regular and totally regular single-valued co-neutrosophic graphs.

1 Introduction and preliminaries
Zadeh [21] introduced the concepts of fuzzy set theory as a generalized concept of crisp set theory. The concept
of fuzzy graph theory as a generalization of Eulers graph theory was first introduced by Rosenfeld [17] in 1975.
Later, Bhattacharya [5] gave some remarks on fuzzy graphs. The concept of cofuzzy graphs by M. Akram [1].
The concepts of intuitionistic cofuzzy graph by Dhavaseelan [9]. Smarandache [20] introduced the concept of
neutrosophic sets. Certain types of neutrosophic graphs were introduced by R. Dhavaseelan et al. [10].Some
more work in single valued neutrosophic set,interval valued neutrosophic set and their application may be
found in Karaaslan,et .al., [13], Hamidi,et .al., [11, 14], Broumi, et.al., [6–8, 15] and Shimaa Fathi,et.al [18].
Kandasamy, et.al [12], introduced the new dimension of neutrosophic graph.

In this paper, we introduce the notion of a single-valued co-neutrosophic graphs and study some methods
of construction of new single-valued co-neutrosophic graphs. We compute degree of a vertex, strong single-
valued co-neutrosophic graphs and complete single-valued co-neutrosophic graphs. We also introduce and
give properties of regular and totally regular single-valued co-neutrosophic graphs.

Definition 1.1. [19] Let X be a space of points. A neutrosophic set A in X is characterized by a truth-
membership function T

A
(x), an indeterminacy membership function I

A
(x) and a falsity membership function

F
A

(x). The functions T
A

(x), I
A

(x)and F
A

(x) are real standard or non standard subsets of ]0−, 1+[. That is,
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T
A

(x) : X →]0−, 1+[, I
A

(x) : X →]0−, 1+[,F
A

(x) : X →]0−, 1+[ and 0− ≤ T
A

(x) + I
A

(x) + F
A

(x) ≤ 3+.
From philosophical point view, the neutrosophic set takes the value from real standard or non standard subsets
of ]0−, 1+[. In real life applications in scientific and engineering problems, it is difficult to use neutrosophic
set with value from real standard or non standard subset of ]0−, 1+[.

Definition 1.2. [2, 4] A single-valued neutrosophic graph is a pair G = (A,B), where A : V → [0, 1] is
single-valued neutrosophic set in V and B : V × V → [0, 1] is single-valued neutrosophic relation on V such
that

T
B

(xy) ≤ min{T
A

(x), T
A

(y)} I
B

(xy) ≤ min{I
A

(x), I
A

(y)} F
B

(xy) ≥ max{F
A

(x), F
A

(y)}

for all x, y ∈ V . A is called single-valued neutrosophic vertex set of G and B is called single-valued neu-
trosophic edge set of G, respectively. We note that B is symmetric single-valued neutrosophic relation on A.
If B is not symmetric single-valued neutrosophic relation on A, then G = (A,B) is called a single-valued
neutrosophic directed graph.

2 Single-valued co-neutrosophic graphs
Definition 2.1. A single-valued co-neutrosophic graph is a pair G = (A,B), where A : V → [0, 1] is a single-
valued co-neutrosophic set in V and B : V × V → [0, 1] is a single-valued co-neutrosophic relation on V such
that

T
B

(xy) ≥ max{T
A

(x), T
A

(y)}
I
B

(xy) ≥ max{I
A

(x), I
A

(y)}
F

B
(xy) ≤ min{F

A
(x), F

A
(y)}

for all x, y ∈ V . A and B are called the single-valued co-neutrosophic vertex set of G and the single-valued
co-neutrosophic edge set of G, respectively. We note that B is a symmetric single-valued co-neutrosophic
relation on A. If B is not a symmetric single-valued co-neutrosophic relation on A, then G = (A,B) is called
a single-valued co-neutrosophic directed graph.

Notation 2.1. The triples 〈TA(x), IA(x), FA(x)〉 denotes the degree of membership, an indeterminacy member-
ship and nonmembership of vertex x, The triples 〈TB(xy), IB(xy), FB(xy)〉 denote the degree of membership,
an indeterminacy membership and nonmembership of edge relation xy = (x, y) on V .

Definition 2.2. A partial single-valued co-neutrosophic subgraph of single-valued co-neutrosophic graph G =
(A,B) is a single-valued co-neutrosophic graph H = (V ′, E ′) such that

(i) V ′ ⊆ V , where T ′A(vi) ≤ TA(vi), I
′
A(vi) ≤ IA(vi), F

′
A(vi) ≥ FA(vi) for all vi ∈ V .

(ii) TB(xy)
′ ≤ TB(xy);IB(xy)

′ ≤ IB(xy); FB(xy)
′ ≥ FB(xy) for every x and y

Definition 2.3. A single-valued co-neutrosophic graphH = 〈A′
, B

′〉 is said to be a single-valued co-neutrosophic
subgraph of the single-valued co-neutrosophic graph G = 〈A,B〉 if A′ ⊆ A and B′ ⊆ B. In other words if
TA

′
(x) = TA(x);IA

′
(x) = IA(x); F ′

A(x) = FA(x) and TB(xy)
′

= TB(xy);IB(xy)
′

= IB(xy); FB(xy)
′

=
FB(xy) for every x and y
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a

(0.5, 0.5, 0.4)

b

(0.6, 0.6, 0.4)

c (0.3, 0.3, 0.7)d(0.5, 0.5, 0.5)

e

(0.6, 0.6, 0.3)

(0.6,0.6,0.3)

(0.5,0.5,0.4) (0.7,0.7,0.3)

(0.6,0.6,0.3)

(0.7,0.7,0.2)
(0.6,0.6,0.3)

Figure 1: G : Single-valued co-neutrosophic graph

a

(0.4, 0.4, 0.5)

b

(0.5, 0.5, 0.5)

c (0.2, 0.2, 0.8)d(0.4, 0.4, 0.4)

e

(0.5, 0.5, 0.4)

(0.6,0.6,0.4)

(0.5,0.5,0.4) (0.6,0.6,0.3)
(0.5,0.5,0.4)

(0.5,0.5,0.4)
(0.6,0.6,0.3)

Figure 2: H : Single-valued co-neutrosophic partial subgraph (H ⊆ G)

Definition 2.4. A single-valued co-neutrosophic graph G = 〈A,B〉 is said to be strong single-valued co-
neutrosophic graph if TB(xy) = max(TA(x), TA(y)),IB(xy) = max(IA(x), IA(y)) andFB(xy) = min(FA(x), FA(y)),
for all (xy) ∈ E.

Definition 2.5. A single-valued co-neutrosophic graph G = 〈A,B〉 is said to be complete single-valued co-
neutrosophic graph if TB(xy) = max(TA(x), TA(y)), IB(xy) = max(IA(x), IA(y)) andFB(xy) = min(FA(x), FA(y)),
for every x, y ∈ V .

Definition 2.6. Let G = 〈A,B〉 be a single-valued co-neutrosophic graph. Then the degree of a vertex v
is defined by d(v) = (dT (v), dI(v), dF (v)), where dT (v) =

∑
u6=v TB(u, v), dI(v) =

∑
u6=v IB(u, v) and

dF (v) =
∑

u6=v FB(u, v)

Definition 2.7. The minimum degree of G is δ(G) = (δT (G), δI(G), δF (G)), where δT (G) = min{dT (v)|v ∈
V }, δI(G) = min{dI(v)|v ∈ V } and δF (G) = max{dF (v)|v ∈ V }

R. Dhavaseelan, S. Jafari, M. R. Farahani, S. Broumi: On single-valued co-neutrosophic graphs



183 Neutrosophic Sets and Systems, Vol. 22, 2018

a

(0.5, 0.5, 0.4)

b

(0.6, 0.6, 0.4)

c (0.3, 0.3, 0.7)d(0.5, 0.5, 0.5)

e

(0.6, 0.6, 0.3)

(0.6,0.6,0.3)

(0.7,0.7,0.3)

(0.6,0.6,0.3)

(0.6,0.6,0.3)

Figure 3: H : Single-valued co-neutrosophic subgraph

a(0.6, 0.6, 0.3)

b(0.5, 0.5, 0.5)

c (0.5, 0.5, 0.4)

d (0.6, 0.6, 0.4)

(0.6,0.6,0.3)

(0.6,0.6,0.3)

(0.
6,0

.6,
0.3

)

(0.5,0.5,0.4)

(0.6,0.6,0.4)

(0.6,0.6,0.4)

Figure 4: Complete single-valued co-neutrosophic graph

Definition 2.8. The maximum degree of G is ∆(G) = (∆T (G),∆I(G),∆F (G)), where ∆T (G) = max{dT (v)|v ∈
V }, ∆I(G) = max{dI(v)|v ∈ V } and ∆F (G) = min{dF (v)|v ∈ V }

Example 2.1. Let G = 〈A,B〉 be a single-valued co-neutrosophic graph. Draw as below

The degrees are dT (a) = 1.6, dI(a) = 1.6, dF (a) = 1.0, dT (c) = 1.3, dI(c) = 1.3, dF (c) = 0.5, dT (d) =
1.7, dI(d) = 1.7, dF (d) = 1.1, dT (b) = 1.0, dI(b) = 1.0, dF (b) = 0.8.
Minimum degree of a graph is δT (G) = 1.0, δI(G) = 1.0, δF (G) = 1.1
Maximum degree of a graph is ∆T (G) = 1.7,∆I(G) = 1.7,∆F (G) = 0.5

Definition 2.9. Let G = 〈A,B〉 be a single-valued co-neutrosophic graph. The total degree of a vertex v ∈ V
is defined as :
Td(v) = TdT (v)+TdI(v)+TdF (v), where TdT (v) =

∑
(u,v)∈E

TB(u, v)+TA(v), TdI(v) =
∑

(u,v)∈E
IB(u, v)+

IA(v) and TdF (v) =
∑

(u,v)∈E
FB(u, v) + FA(v).
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a(0.5, 0.5, 0.4)

b(0.4, 0.4, 0.5)

c (0.6, 0.6, 0.4)

d (0.3, 0.3, 0.6)

(0.5,0.5,0.3)

(0.6,0.6,0.3)

(0.
5,0

.5,
0.4

)

(0.5,0.5,0.5)

(0.7,0.7,0.2)

If each vertex of G has the same total degree (r1, r2, r3), then G is said to be an (r1, r2, r3) totally regular
single-valued co-neutrosophic graph.

Definition 2.10. Let G = 〈A,B〉 be a single-valued co-neutrosophic graph. If each vertex has same degree
(r, s, t), then G is called (r, s, t) regular single-valued co-neutrosophic graph. Thus r = dT (v), s = dI(v), t =
dF (v);for v ∈ V .

Example 2.2. Let G = 〈A,B〉 be a single-valued co-neutrosophic graph. Draw as below

x(0.4, 0.4, 0.5)

y(0.3, 0.3, 0.5)

u (0.5, 0.5, 0.4)

v (0.5, 0.5, 0.4)

(0.6,0.6,0.4)

(0.7,0.7,0.3)

(0.
5,0

.5,
0.4

)

(0.5,0.5,0.4)

(0.7,0.7,0.3)

(0.6,0.6,0.4)

d(y) = (1.8, 1.8, 1.1), d(v) = (1.8, 1.8, 1.1), d(u) = (1.8, 1.8, 1.1), d(x) = (1.8, 1.8, 1.1). So, G is a
regular single-valued co-neutrosophic graph. But G is not totally regular single-valued co-neutrosophic graph.
Since Td(y) = 5.8 6= 6.1 = Td(v).

Remark 2.1. (a) For a single-valued co-neutrosophic graph, H = (A,B) to be both regular & totally regular,
the number of vertices in each edge must be same.

(b) And also each vertex lies in exactly same number of edges.

Proposition 2.1. Let G = 〈A,B〉 be a single-valued co-neutrosophic graph. Then TA : V → [0, 1], IA : V →
[0, 1], FA : V → [0, 1] is a constant function iff following are equivalent.

R. Dhavaseelan, S. Jafari, M. R. Farahani, S. Broumi: On single-valued co-neutrosophic graphs 
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(1) G is a regular single-valued co-neutrosophic graph,

(2) G is a totally regular single-valued co-neutrosophic graph.

Proof. suppose that (TA, IA, FA) is a constant function. Let TA(vi) = k1, IA(vi) = k2, FA(vi) = k3 for
all vi ∈ V . Assume that G is a (r1, r2, r3) regular single-valued co-neutrosophic graph. Then dT (vi) =
r1, dI(vi) = r2, dF (vi) = r3 for all vi ∈ V . So Td(vi) = TdT (vi) + TdI(vi) + TdF (vi)
TdT (vi) = dT (vi) + TA(vi), for all vi ∈ V

= r1 + k1 = c1.

TdI(vi) = dI(vi) + IA(vi), for all vi ∈ V
= r2 + k2 = c2.

TdF (vi) = dF (vi) + FA(vi), for all vi ∈ V
= r3 + k3 = c3.

Hence G is totally regular single-valued co-neutrosophic graph. Thus (1)⇒ (2) is proved.
Now, suppose that G is a (t1, t2, t3) totally regular single-valued co-neutrosophic graph, then TdT (vi) =

t1, TdT (vi) = t2, TdF (vi) = t3 for all vi ∈ V .

TdT (vi) = dT (vi) + TA(vi) = t1,
⇒ dT (vi) = t1 − TA(vi) = t1 − k1, for all vi ∈ V .

Similarly, TdI(vi) = dI(vi) + IA(vi) = t2,
⇒ dI(vi) = t2 − IA(vi) = t2 − k2, for all vi ∈ V .

TdF (vi) = dF (vi) + FA(vi) = t3,
⇒ dF (vi) = t3 − FA(vi) = t3 − k3, for all vi ∈ V . So, G is a regular single-valued co-neutrosophic graph.
Thus (2)⇒ (1) is proved. Hence (1) and (2) are equivalent.

Proposition 2.2. If a single-valued co-neutrosophic graph is both regular and totally regular, then (TA, IA, FA)
is constant function.

Proof. Let G be a (r, s, t) regular and (k1, k2, k3) totally regular single-valued co-neutrosophic graphs. So,
dT (v1) = r, dI(v1) = s, dF (v1) = t for v1 ∈ V and TdT (v1) = k1, TdI(v1) = k2, TdF (v1) = k3 for all
v1 ∈ V . Now,

TdT (v1) = k1, for all v1 ∈ V,
dT (v1) + TA = k1, for all v1 ∈ V,
r + TA(v1) = k1, for all v1 ∈ V,

TA(v1) = k1 − r, for all v1 ∈ V.
Hence TA(v1) is a constant function.

Similarly, IA(v1) = k2 − s for all v1 ∈ V and FA(v1) = k3 − t for all v1 ∈ V . Hence (TA, IA, FA) is a
constant.

3 Conclusion
In this paper, we introduced the notion of a single-valued co-neutrosophic graphs and study some methods of
construction of new single-valued co-neutrosophic graphs. We computed degree of a vertex, strong single-
valued co-neutrosophic graphs and complete single-valued co-neutrosophic graphs. Properties of regular and
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totally regular single-valued co-neutrosophic graphs are discussed. In future, we are introduce and discuss the
energy of Single-valued co-neutrosophic graphs.
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