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Abstract. In this paper, we have introduced neutrosophic 
hyperideals of a semihyperring and considered some op-

erations on them to study its basic notions and properties. 
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1 Introduction 

Hyperrings extend the classical notion of rings, substi-
tuting both or only one of the binary operations of addition 
and multiplication by hyperoperations. Hyperrings were in-
troduced by several authors in different ways. If only the 
addition is a hyperoperation and the multiplication is a bi-
nary operation, then we say that R  is a Krasner hyperring 
[4]. Davvaz [5] has defined some relations in hyperrings 
and proved isomorphism theorems. For a more compre-
hensive introduction about hyperrings, we refer to [9]. As a 
generalization of a ring, semiring was introduced by Van-
diver [17] in 1934. A semiring is a structure )0;;;( R  
with two binary operations   and   such that )0;;( R  is 
a commutative semigroup, );( R a semigroup, multiplica-
tion is distributive from both sides over addition and 

000  xx  for all Rx . In [18], Vougiouklis 
generalizes the notion of hyperring and named it as semi-
hyperring, where both the addition and multiplication are 
hyperoperation. Semihyperrings are a generalization of 
Krasner hyperrings. Note that a semiring with zero is a 
semihyperring. Davvaz in [12] studied the notion of semi-
hyperrings in a general form. 

Hyperstructures, in particular hypergroups, were intro-
duced in 1934 by Marty [11] at the eighth congress of 
Scandinavian Mathematicians. The notion of algebraic hy-
perstructure has been developed in the following decades 
and nowadays by many authors, especially Corsini [2, 3], 
Davvaz [5, 6, 7, 8, 9], Mittas [12], Spartalis [15], Strati-
gopoulos [16] and Vougiouklis [19]. Basic definitions and 
notions concerning hyperstructure theory can be found in 
[2]. 

The concept of a fuzzy set, introduced by Zadeh in his 
classical paper [20], provides a natural framework for gen-
eralizing some of the notions of classical algebraic struc-

tures.As a generalization of fuzzy sets, the intuitionistic 
fuzzy set was introduced by Atanassov [1] in 1986, where 
besides the degree of membership of each element there 
was considered a degree of non-membership with (mem-
bership value + non-membership value)≤ 1. There are also 
several well-known theories, for instances, rough sets, 
vague sets, interval-valued sets etc. which can be consid-
ered as mathematical tools for dealing with uncertainties. 

In 2005, inspired from the sport games (winning/tie/ 
defeating), votes, from (yes /NA /no),from decision mak-
ing(making a decision/ hesitating/not making), from (ac-
cepted /pending /rejected) etc. and guided by the fact that 
the law of excluded middle did not work any longer in the 
modern logics, F. Smarandache [14] combined the non-
standard analysis [8,18] with a tri-component log-
ic/set/probability theory and with philosophy and intro-
duced Neutrosophic set which represents the main distinc-
tion between fuzzy and intuitionistic fuzzy logic/set. Here 
he included the middle component, i.e., the neutral/ inde-
terminate/ unknown part (besides the truth/membership 
and falsehood/non-membership components that both ap-
pear in fuzzy logic/set) to distinguish between ’absolute 
membership and relative membership’ or ’absolute non-
membership and relative non-membership’. 

Using this concept, in this paper, we have defined neutro-
sophic ideals of semihyperrings and study some of its basic 
properties. 

2 Preliminaries 

Let H be a non-empty set and let )(HP  be the set of all 
non-empty subsets of H . A hyperoperation on H  is a 
map )(: HPHH   and the couple ),( H  is
called a hypergroupoid. 
If A  and B  are non-empty subsets of H  and Hx , 
then we denote baBA

BbAa





,
,
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AxAx  }{  and }{xAxA   . A hypergroupoid
),( H  is called a semihypergroup if for all Hzyx ,,

we have )()( zyxzyx    which means that
vxzu

zyvyxu


 
 . 

A semihyperring is an algebraic structure );;( R  which 
satisfies the following properties: 
(i) );( R is a commutative semihypergroup 
(ii) );( R  is a semihypergroup 
(iii) Multiplication is distributive with respect to hyperop-
eration + that is zxyxzyx  )( , 

zyzxzyx  )(
 (iv) 000  xx  for all .Rx  

A semihyperring );;( R is called commutative if and on-
ly if abba    for all Rba , . 
Vougiouklis in [18] and Davvaz in [6] studied the notion 
of semihyperrings in a general form, i.e., both the sum and 
product are hyperoperations. 

A semihyperring );;( R with identity RR 1  means 

that xxx RR  11  for all Rx . 
An element Rx is called unit if there exists 

Ry such that xyyxR 1 . 
 A nonempty subset S  of a semihyperring );;( R  is 
called a sub-semihyperring if Sba  and Sba 

for all Sba , . A left hyperideal of a semihyperring R

is a non-empty subset I  of R  satisfying 
(i) If  Iba , then Iba   
(ii) If Ia  and Rs then Ias 

(iii) .RI   
A right hyperideal of R  is defined in an analogous manner 
and an hyperideal of R is a nonempty subset which is both 
a left hyperideal and a right hyperideal of R . 
For more results on semihyperrings and neutrosophic sets 
we refer to [6, 10] and [14] respectively. 

3. Main Results

Definition 3.1. [14] A neutrosophic set A  on the uni-
verse of discourse X  is defined as 

},)(),(),(:{ XxxAxAxAxA FIT  where 
 [1,0]:,, XAAA FIT and

  3)()()(0 xAxAxA FIT
 . From philosoph-

ical point of view, the neutrosophic set takes the value 
from real standard or non-standard subsets of  [1,0] . But 
in real life application in scientific and engineering prob-
lems it is difficult to use neutrosophic set with value from 
real standard or non-standard subset of  [1,0] . Hence we 
consider the neutrosophic set which takes the value from 
the subset of [0, 1].
Throughout this section unless otherwise mentioned R
denotes a semihyperring. 

Definition 3.2. Let ),,( FIT   be a non empty 
neutrosophic subset of a semihyperring R  (i.e. anyone of 

)(xT , )(xI or )(xF not equal to zero for some 
Rx ).Then   is called a neutrosophic left hyperideal 

of R  if 
(i) )},(),(min{)(inf yxz TTT

yxz
 


 

(ii) ,
2

)()()(inf yx
z

II
I

yxz









(iii) )},(),(max{)(sup yxz FFF

yxz

 


(iv) ),()(inf yz TT

xyz
 



(v) ),()(inf yz II

xyz
 


 

(vi) ).()(sup yz FF

xyz

 


 

for all ., Ryx   
Similarly we can define neutrosophic right hyperideal of 
R . 

Example 3.3. Let },,,0{ cbaR   be a set with the hy-
peroperation   and the multiplication  defined as fol-
lows: 
  0 a b c 
0 0 a b c 
a a {a,b} b c 
b b b {0,b} c 
c c c c {0,c}
and 
 0 a b c 
0 0 0 0 0 
a 0 a a a 
b 0 a b c 
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c 0 a c c 

Then ),,( R is a semihyperring. 
Define neutrosophic subset   of R  by 

)1.0,6.0,1()0(  , )3.0,4.0,7.0()( a , 
)2.0,5.0,8.0()( b  )4.0,2.0,6.0()( c . Then   

is a neutrosophic left hyperideal of R . 

Theorem 3.4. A neutrosophic set  of R  is a neutro-
sophic left hyperideal of R  if and only if any level subsets 

]}1.0[,)(:{:  ttxRx TT

t  , 

]}1.0[,)(:{:  ttxRx II

t   and 

]}1.0[,)(:{:  ttxRx TF

t   are left hyperide-

als of R . 

Proof. Assume that the neutrosophic set   of R is a neu-
trosophic left hyperideal of R . 
Then anyone of IT  ,  or F  is not equal to zero for 

some Rx i.e., in other words anyone of  I

t

T

t  ,  or 
F

t is not empty for some ]1,0[t . So, it is sufficient to 
consider that all of them are not empty. 
Suppose  tyx , ),,( F

t

I

t

T

t  and Rs .Then 

tttyxz TTT

yxz



},min{)}(),(min{)(inf 

t
ttyx

z
II

I

yxz








 22
)()()(inf 



tttyxz FFF

yxz




},max{)}(),(max{)(sup 

which implies F

t

I

t

T

tyx  ,, i.e., .tyx 

Also 
,)()(inf txz TT

sxz





,)()(inf txz II

sxz



  

,)()(sup txz FF

sxz




  

Hence .tsx 

Therefore t is a left hyperideal of R . 

Conversely, suppose )(  t is a left hyperideal of R . If 
possible   is not a neutrosophic left hyperideal. Then for 

Ryx ,  anyone of the following inequality is true. 

)}(),(min{)(inf yxz TTT

yxz
 


 

2
)()()(inf yx

z
II

I

yxz









)}(),(max{)(sup yxz FFF

yxz

 


 

For the first inequality, choose 

)}](),(min{)(inf[
2
1

1 yxzt TTT

yxz
 


. Then 

)}(),(min{)(inf 1 yxtz TTT

yxz
 


 which implies 

T

tyx
1

,   but  T

tyx
1

 - a contradiction. 
For the second inequality, choose 

)}](),(min{)(inf[
2
1

2 yxzt III

yxz
 


. Then 

2
)()()(inf 2

yx
tz

II
I

yxz








 which implies 

I

tyx
2

,   but  I

tyx
2

 - a contradiction. 
For the third inequality, choose 

)}](),(max{)(sup[
2
1

3 yxzt FFF

yxz

 


. Then 

)}(),(max{)(sup 3 yxtz FFF

yxz

 


 which im-

plies F

tyx
3

,   but  F

tyx
3

 - a contradiction. 
So, in any case we have a contradiction to the fact that 

t is a left hyperideal of R . 
Hence the result follows. 

Definition 3.5. Let   and  be two neutrosophic subsets 
of R. The intersection of   and is   defined by 

)}(),(min{))(( xxx TTTT    

)}(),(min{))(( xxx IIII    

)}(),(max{))(( xxx FFFF    
for all .Rx  

Proposition 3.6. Intersection of a nonempty collection of 
neutrosophic left hyperideals is a neutrosophic left hyper-
ideal of R . 

Proof. Let }:{ Iii  be a non-empty family of neutro-

sophic left hyperideals of R  and Ryx , . Then 

))((inf zT

i
Iiyxz





)(infinf zT

i
Iiyxz




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)}}(),({min{inf yx T

i

T

i
Ii




  

)}(inf),(infmin{ yx T

i
Ii

T

i
Ii




  

)}(),(min{ yx T

i
Ii

T

i
Ii



  

))((inf zI

i
Iiyxz





)(infinf zI

i
Iiyxz





2
)()(

inf
yx I

i

I

i

Ii

 




2

)(inf)(inf yx I

i
Ii

I

i
Ii







2

)()( yx I

i
Ii

I

i
Ii





 . 

))((sup zF

i
Iiyxz






)(supsup zF

i
Iiyxz




  

)}}(),({max{sup yx F

i

F

i
Ii




  

)}(sup),(supmax{ yx F

i
Ii

F

i
Ii




  

)}(),(max{ yx F

i
Ii

F

i
Ii



  

)(

)(inf

)(infinf

))((inf

x

x

z

z

T

i
Ii

T

i
Ii

T

i
Iisxz

T

i
Iisxz

























)(

)(inf

)(infinf

))((inf

x

x

z

z

I

i
Ii

I

i
Ii

I

i
Iisxz

I

i
Iisxz

























)()(sup

)(supsup

))((sup

xx

z

z

F

i
Ii

F

i
Ii

F

i
Iisxz

F

i
Iisxz



















Hence i
Ii



  is a neutrosophic left hyperideal of R . 

Definition 3.7. Let R , S be semihyperrings and 
SRf : be a function. Then f  is said to be a homo-

morphism if for all Rba ,  
)()()()( bfafbafi   

)()()()( bfafabfii   

SRfiii 0)0()( 

where R0  and S0  are the zeros of R and S  respectively. 

Proposition 3.8. Let SRf : be a morphism of 
semihyperrings. Then 
(i) If   is a neutrosophic left hyperideal of S , then 

)(1 f [13] is a neutrosophic left hyperideal of R . 
(ii) If f  is surjective morphism and   is a neutronsophic 
left hyperideal of R , then )(f [13] is a neutrosophic 
left hyperideal of S . 

Proof. Let SRf : be a morphism of semihyperrings. 
Let   be a neutrosophic left hyperideal of S and 

Rsr , . 

))((inf 1 zf T

srz




))((inf zfT

srz



  

))((inf
)()()(

zfT

sfrfzf



  

))}(()),((min{ sfrf TT   

)})((),)((min{ 11 sfrf TT   . 

))((inf 1 zf I

srz




))((inf zfI

srz





))((inf
)()()(

zfI

sfrfzf



  
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2
))(())(( sfrf II  



2
))(())(( 11 sfrf II   

 . 

))((sup 1 zf F

srz





 

))((sup zfF

srz






))((sup
)()()(

zfF

sfrfzf




  

))}(()),((max{ sfrf FF   

)})((),)((max{ 11 sfrf FF   . 
Again 

))((inf 1 zf T

rsz




))((inf zfT

rsz





))((inf
)()()(

zfT

sfrfzf





))(( sfT ))((1 sf T . 

))((inf 1 zf I

rsz




))((inf zfI

rsz



  

))((inf
)()()(

zfI

sfrfzf



  

))(())(( 1 sfsf II   . 

))((sup 1 zf F

rsz





))((sup zfF

rsz






))((sup
)()()(

zfF

sfrfzf




  

))(( sfF ).)((1 sf F  

Thus )(1 f  is a neutrosophic left hyperideal of R . 
(ii) Suppose  be a neutrosophic left hyperideal of R  and 

'x , Sy ' . Then 

)))(((inf '
'''

zf T

yxz



 

)(supinf
)( '1'''

zT

zfzyxz





)(supinf
)(),( '1'1'''

zT

yfyxfxyxz


 
  

)}}(),({min{sup
)(),( '1'1

yx TT

yfyxfx


 

  

)}(sup),(supmin{
)()( '1'1

yx T

yfy

T

xfx


 

  

)}))(((),))((min{( '' yfxf TT  . 

)))(((inf '
'''

zf I

yxz



 

)(supinf
)( '1'''

zI

zfzyxz





)(supinf
)(),( '1'1'''

zI

yfyxfxyxz


 
  

2
)()(sup

)(),( '1'1

yx II

yfyxfx

 


 

)](sup)(sup[
2
1

)()( '1'1
yx I

yfy

I

xfx


 

  

)]))((()))(([(
2
1 '' yfxf II   . 

)))(((sup '

'''
zf F

yxz




)(infsup
)( '1'''

zF

zfzyxz






)(infsup
)(),( '1'1'''

zF

yfyxfxyxz


 



)}}(),({max{inf
)(),( '1'1

yx FF

yfyxfx


 
  

)}(inf),(infmax{
)()( '1'1
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)(sup
)(),( '1'1

zI

yfyxfx


 



)))((()(sup '

)( '1
yfy II

yfy

 


. 

)))(((sup '

'''
zf F

yxz




)(infsup
)( '1'''

zF

zfzyxz




  

)(inf
)(),( '1'1

zF

yfyxfx


 


)))((()(inf '

)( '1
yfy FF

yfy
 



Thus )(f is a neutrosophic left hyperideal of S . 

Definition 3.9.  Let   and   be two neutrosophic sub-
sets of .R  Then the Cartesian product of   and   is de-
fined by 
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)}(),(max{ 21 yy FF  ),)(( 21 yyFF   . 

Hence    is a neutrosophic left hyperideal of .RR  

Definition 3.11. Let  and   be two neutrosophic sets 
of a semiring R . Define composition of   and   by 
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Theorem 3.12. If   and  be two neutrosophic left hy-
perideals of , R  then   is a neutrosophic left hyper-
ideal of R . 
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Hence  is a neutrosophic left hyperideal of R . 

Conclusion 
This is the introductory paper on neutrosophic hyperideals 
of semihyperrings in the sense of Smarandache[14]. Our 
next aim to use these results to study some other properties 
such prime neutrosophic hyperideal, semiprime neutro-
sophic hyperideal,neutrosophic bi-hyperideal, neutrosophic 
quasi-hyperideal, radicals etc. 
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