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Abstract

The realization that twisted light beams with helical phasefronts could carry orbital

angular momentum (OAM) that is in excess of the photon’s spin angular momentum

(SAM) has spawned various important applications. One example is the design

of novel imaging systems that achieve three-dimensional (3D) imaging in a single

snapshot via the rotation of point spread function (PSF).

Based on a scalar-field analysis, a particular simple version of rotating PSF im-

agery, which was proposed by my advisor Dr. Prasad, furnishes a practical approach

to perform 3D source localization using a spiral phase mask that generates a com-

bination of Bessel vortex beams. For a special annular design of the mask, with

the spiral-phase winding number in successive annuli changing by a fixed quantum

number, this Bessel-beam combination can yield a shape and size invariant PSF that

rotates as a function of the axial position of the source, and possesses a superior

depth of field (DOF) when compared to other rotating PSFs.
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In the first part of this dissertation, we present a vector-field analysis of an im-

proved rotating PSF design that encodes both the 3D location and polarization

state of a monochromatic point dipole emitter for high numerical aperture (NA) mi-

croscopy, in which non-paraxial propagation of the imaging beam and the associated

vector character of light fields are properly accounted for. By examining the angle

of rotation and the spatial form of the PSF, one can simultaneously localize point

sources and determine the polarization state of light emitted by them over a 3D field

in a single snapshot. We also propose a more advanced approach for doing joint

polarimetry and 3D localization using a SAM-OAM conversion device without the

need for high NA is also proposed.

A recent paradigm-shifting research proposal has focused on employing the tool-

box of quantum parameter estimation for the problem of super-resolution of two

incoherent point sources. Surprisingly, the quantum Fisher information (QFI) and

associated quantum Cramér-Rao bound (QCRB) for estimating the one-dimensional

transverse separation of the source pair are both finite constants that are achievable

with purely classical measurements that utilize coherent projections of the optical

wavefront.

A second important contribution of this dissertation is the generalization of the

previous quantum limited transverse super-resolution work to full 3D imaging with

more general PSF. Under the assumption of known centroid, we first derive the

general expression of 3 × 3 QFI matrix with respect to (w.r.t.) the 3D pair sep-

aration vector, in terms of the correlation of the wavefront phase gradients in the

imaging aperture. For a clear circular aperture, the QFI matrix turns out to be

a separation-independent diagonal matrix. Coherent-projection bases that can at-

tain the corresponding QCRB in special cases and small separation limits are also

proposed with confirmation by numerical simulations.

We next extend our 3D analysis to treat the more general 6-parameter problem

vi



of jointly estimating the 3D pair-centroid location and pair-separation vectors. We

also present the results of computer simulation of an experimental protocol based

on the use of Zernike-mode projections to attain these quantum estimation-limited

bounds of performance.
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References 127

D Derivation of QFI 128

References 131

E Some Properties of Sine and Cosine States 132

E.0.1 Orthonormaility and Completeness . . . . . . . . . . . . . . . 132

E.0.2 The Overlap Integrals 〈Amn|K±〉, A = CC,CS, SC, SS . . . . . 133

xi



Contents

References 135

F Likelihood Function for Photon Division into N Channels 136

References 139

G Photon wavefunction in the pupil plane 140

References 143

H CFI for Multinomial Distribution 144

References 146

xii



List of Figures

2.1 Examples of GL modes: (a) intensity, (b) phase. Image taken from

Ref. [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 The Gauss-Laguerre modal plane. Image taken from Ref. [2]. . . . . 14

2.3 GL modal composition (m,n) of the corkscrew PSF in normalized

units. Inset shows the corkscrew PSF phase mask in radians. Image

taken from Ref. [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Schematic diagram of a specific Fresnel zone with its spiral phase

retardation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Incoherent PPE-PSF with L = 7 (top row) and L = 9 (middle row).

The IDL-PSF, is shown for comparison in the bottom row. The plots

from left to right are for increasing values of defocus, from -24 radians

to +24 radians of defocus in steps of 8 radians, at the edge of the

pupil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Transformation of an incident wavefront ΣO into the outgoing (imag-

ing) wavefront ΣI , with the pupil shown by a dashed vertical line.

The two linear s and p polarizations for a typical ray crossing the

two wavefronts are also shown. A polarization analyzer, denoted by

J, is inserted in the beam path following the focusing lens. . . . . . 23

xiii



List of Figures

2.7 Ratio of P (0, 0, 1) to P (1, 0, 0) vs NA. . . . . . . . . . . . . . . . . . 32

2.8 The PSF signal, for low NA of value 0.2, for XP (top left); YP (top

right); LCP (bottom left) ; and ZP (bottom right) state of emission

for the point dipole emitter located in the plane of Gaussian focus, for

a seven-zone phase mask, L = 7, with a = 1, b = 0. The full array size

in each panel is 16×16 in units of squared Airy disk radius (see text).

The color coding in each PSF, with yellow representing its brightest

pixel and blue its faintest, is only for the ease of visualization of its

spatial structure. The brightest pixel of the PSF in the bottom right

plot is, in fact, over 100 times fainter than those for the other three

plots, which agrees well with Fig. 2.7. Image taken from Ref. [29]. . 33

2.9 Same as Fig. 2.8, except for high NA of value 0.9. The XP, YP, and

LCP emission states have PSFs with comparable brightest pixels,

within 10% of one another, but which are a factor of 2 brighter than

for the ZP emission state. This phenomenon also agrees well with

the growing ratio plotted in Fig. 2.7. Image taken from Ref. [29]. . . 35

2.10 The rotating PSF signals on the sensor array for the XP (1st row);

YP (2nd row); and ZP (3rd row) states of emission for the point

dipole for the low-NA case, namely for NA=0.2. The figures in each

row from left to right display the PSFs corresponding to the values

−162π, 0, and +162π radians for the defocus parameter, kδzO, or

equivalently δzO being -3.25, 0, and +3.25 units of the wave depth

of field, λ/NA2, of the microscope. Image taken from Ref. [29]. . . . 36

2.11 Same as Fig. 2.10, except NA is chosen to be higher at 0.9, but δzO

taking the same three values in units of λ/NA2 as in Fig. 2.10. Image

taken from Ref. [29]. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

xiv



List of Figures

2.12 The MTF signals corresponding to the PSFs in Fig. 2.10. For the cho-

sen parameter values, the array in each panel is the minimal square

circumscribing the disk of diffraction limited bandwidth of the im-

ager. Image taken from Ref. [29]. . . . . . . . . . . . . . . . . . . . 38

2.13 Same as Fig. 2.12, except for high NA of value 0.9. Image taken from

Ref. [29]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.14 Standard deviation of the estimated nx and ny vs average total pho-

ton number for XZP state of the dipole source fixed at the center of

the object plane and δzO changed from −4λ (1st column) to 0 (2nd

column) to 4λ (3rd column). The value of NA was chosen to be 0.9

here corresponding to R/zO = 2.06 with nO = 1. . . . . . . . . . . . 43

2.15 Standard deviation of the estimated δxO, δyO and δzO (top to bot-

tom) vs average total photon number for (left to right) δzO = −4λ,

0, and +4λ for the x polarized state of emission, with λ = 550nm

and NA=0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.16 Same as Fig. 2.15 except for the y polarized state of dipole emission. 45

2.17 Same as Fig. 2.15 except for the z polarized state of dipole emission. 46

3.1 Examples of q-plates. The tangent to the lines shown indicate the

local direction of the optical axis. (a) q = 1/2, α0 = 0; (b) q = 1,

α0 = 0; (c) q = 1, α0 = π/2. Image taken from Ref. [8]. . . . . . . . 54

3.2 The total PSF signal (1st column), PSF signal in x polarization chan-

nel (2nd column) and y polarization channel (3rd column) for the

point dipole emitter located in the plane of Gaussian focus in XLP,

YLP, 45LP, 135LP, LCP and RCP states (from top to bottom). . . . 57

xv



List of Figures

3.3 The total rotating PSF signals for emission of the point dipole with

s3 = 0 (1st row); s3 = 1 (2nd row); and s3 = −1 (3rd row). s0 is

fixed to be 1. The figures in each row from left to right display the

PSFs corresponding to the values -4m, 0, and 4m for δzO. We choose

λ = 1µm, R=0.5 m, zO = 1000m. . . . . . . . . . . . . . . . . . . . 58

3.4 The square root of the average variance of the reconstructed Stokes

parameters vs average total photon number for dipole at δzO = 0

emitting in XLP, YLP, 45LP, 135LP, LCP, RCP, UP and PP (1, 0.5,

0.4, 0.3) states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Standard deviation of the estimated δxO, δyO and δzO (top to bot-

tom) vs average total photon number for (left to right) δzO = −4m,

0, and +4m for the x polarized state of emission, with λ = 1µm,

R = 0.5m, zO = 1000m. . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Plots of QFI (dashed line) and CFI w.r.t. lx(y) for ly(x) = 0.025 (lower

curve) and ly(x) = 0.25 (upper curve) and for lz = 0.025 (left panels)

and lz = 0.25 (right panels). . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Plots of QFI (dash line) and CFI w.r.t. lz, for four different values

of l⊥, namely 0.025, 0.05, 0.125, and 0.25. . . . . . . . . . . . . . . 79

4.3 Plots of CRBs w.r.t. lx(y) for ly(x) = 0.025 (lower curve) and ly(x) =

0.25 (upper curve) and for lz = 0.025 (left panels) and lz = 0.25

(right panels). Variances obtained from ML estimation are shown by

different marker symbols. Image taken from Ref. [48]. . . . . . . . . 82

4.4 Plots of CRB w.r.t. lz, for four different values of l⊥, namely 0.025,

0.05, 0.125, and 0.25. Variances obtained from ML estimation are

shown by different marker symbols. Image taken from Ref. [48]. . . 83

xvi



List of Figures

5.1 Plots of QCRB for sx vs. lx for various values of ly and for two

different values of lz, namely 0.025 (left panel) and 0.25 (right panel).

Image taken from Ref. [4]. . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Plots of QCRB for sx vs. ly for two different values of lz, namely

0.025 (left panel) and 0.25 (right panel). Image taken from Ref. [4]. 102

5.3 Plots of QCRB for sz vs. lz for five different values of l⊥. Image

taken from Ref. [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 (a) Plot of variance of estimation of lx with changing values of lx

(shown by marker symbols), with the other two l coordinates being

equal to 0.025, for σsx = σsy = 0.005; σsz = 0.01; (b) Same as

(a) except lx → lz. Plots of CRBs w.r.t. lx(z) are also shown for

comparison. Image taken from Ref. [4]. . . . . . . . . . . . . . . . . 105

xvii



Glossary

SAM spin angular momentum

OAM orbital angular momentum

3D three-dimensional

PSF point spread function

DOF depth of field

NA numerical aperture

FI Fisher information

CFI classical Fisher information

QFI quantum Fisher information

CRB Cramér-Rao bound

CCRB classical Cramér-Rao bound

QCRB quantum Cramér-Rao bound

PPE pupil-phase-engineered

MTF modulation transfer function

xviii



Glossary

GL Gauss-Laguerre

DH Double-Helix

SLD Symmetric Logarithmic Derivative

ML maximum-likelihood

xix



Chapter 1

Introduction

1.1 Twisted Light and Its Applications

In 1909, by drawing an analogy between light and mechanical systems, Poynting [1]

deduced that circularly polarized light carries an angular momentum. We now see

his deduction as being compatible with our understanding of the ±~ spin angular

momentum (SAM) states of the photon. A SAM of ±~ per photon is consistent with

the description of the absorption and emission of light from dipole transitions within

atomic systems, where the angular momentum is conserved between the electronic

state and the interacting optical field [2].

In 1932, Darwin [3] recognized that more complicated transitions required an

angular momentum exchange between light and atom corresponding to integer mul-

tiples of ~. This additional angular momentum can be thought to arise from the

effect of light’s linear momentum acting off-axis with respect to the center of the op-

tical beam or center of mass of the interacting object. For many decades this orbital

angular momentum had been associated only with higher-order atomic or molecular

transitions and hence considered to be a rare occurrence.

1



Chapter 1. Introduction

In 1992 Allen, Beijersbergen, Spreeuw, and Woerdman [4] realized that light

beams with helical wavefronts carry orbital angular momentum (OAM) in addition

to the SAM, the latter being responsible for the vector character of the associated

electromagnetic fields. They showed that beams with a transverse phase structure

of exp(−ilφ) carry an OAM of l~ per photon, an angular momentum that can be

arbitrarily many times greater than the spin of the photon. An important feature

of beams with helical phase structure is that the beam axis marks a singularity

in the optical phase. This phase singularity is manifested as a perfect zero in the

optical intensity, meaning that OAM-carrying beams typically have annular intensity

cross-sections.

The discovery of OAM in excess of SAM has led both to new understandings of

optical effects and a number of exciting applications. These applications range from

optical manipulation [5], optical communication [6]-[9], astronomy [10, 11], quantum

optics [12]-[17] and nano optics [18]-[22], to the design of novel 3D imaging system

[23]-[27]. It is the last application that is our main concern in the first part of this

dissertation.

1.2 Quantum Limited Super-resolution

Light is an electromagnetic wave with both an amplitude and a phase. Standard

imaging systems use lenses to refocus this wave and project an image of the source

onto a screen, where the intensity is recorded at each position, but information about

the wavefront is typically discarded. When light passes through finite-sized optical

elements, diffraction smears out the spatial distribution of light with an accompany-

ing decrease of local intensities, so that point-sources map onto finite-sized spots at

the image-plane. Rayleigh’s criterion [28] for resolving two incoherent point sources,

which asserts that a minimum separation between the sources equal to the diffraction-

2



Chapter 1. Introduction

limited spot size is necessary for them to be resolvable, has been the most influential

resolution criterion in the history of optics [29]. Based on the limited technology in

Lord Rayleigh’s era, his criterion, largely a visually-based one, neglects the possibil-

ity of better resolution using light of greater intensity or using a longer observation

period. One typical workaround to diffraction limits has been to reduce the wave-

length or to build higher numerical aperture optics, thereby making the PSF sharper

while also capturing more of the source emission. In recent years, techniques have

been developed in specific cases that address these limits in more novel ways. Despite

their success, these techniques require careful control of the source of illumination

[30]-[35], which is not always possible, especially in astronomical applications.

A more useful and experimentally more meaningful approach to optical resolution

can be formulated in terms of the Fisher information (FI) and the associated Cramér-

Rao bound (CRB) [36], which sets a limit on the precision with which the source-pair

separation can be estimated. For direct imaging, as we shall review, FI drops off to 0

quadratically with decreasing pair separation. As a consequence, the variance of any

biased estimator based on these intensity measurements diverges in this limit, which

has been colloquially called Rayleigh’s curse. Recently the problem of resolving two

incoherent point sources was approached from the perspective of quantum metrology

[37] and quantum estimation theory using quantum Fisher information (QFI) and

the associated quantum Cramér-Rao bound (QCRB) [38, 39]. This bound provides a

ultimate limit to the accuracy of estimating the source separation optimized over all

possible measurement techniques allowed by quantum mechanics. Surprisingly, the

QCRB for estimating the separation of two incoherent point sources is independent

of that separation [40]. Even more surprisingly, the quantum limit has been shown

to be achievable with classical phase-sensitive measurements [40]-[44].

3



Chapter 1. Introduction

1.3 Dissertation Overview

The first main topic of this dissertation is 3D polarimetric imaging with rotating

PSF. In Chapter 2, we first review the theory of the rotating PSF concept invented

by my advisor Dr. Prasad [23], then generalize the theoretical model of the rotating

PSF imaging based 3D localization of point sources to high numerical aperture (NA)

microscopy for which the non-paraxial propagation of the imaging beam and the as-

sociated vector character of light fields must be properly accounted for. Our analysis

supports the prospects of simultaneous acquisition of the state of polarization and

3D location of a point source with high NA objectives. The main results of chapter 2

are based on our publication [45] in the Journal of the Optical Society of America A.

In Chapter 3, we discuss a SAM-OAM conversion [46] device named the q-plate [47],

then propose an advanced approach for doing joint polarimetry and 3D localization

of a point source using such a q-plate.

The second main topic of this dissertation concerns an application of the tools of

quantum parameter estimation to 3D super-resolution and centroid super-localization

of an incoherent pair of equally bright point sources. In Chapter 4 we calculate the

QFI matrix for estimating the full 3D pair separation vector, extending previous

work on pair separation in one and two transverse dimensions. We next show that

the pair-separation QFI is, in fact, identical to the source localization QFI. We also

propose general coherent-projection bases that can attain the QFI in two special

cases and small separation limits. The achievability of the QFI bounds is confirmed

by numerical simulations of an approximate experimental realization of such quan-

tum limited pair super-resolution using a special basis of Zernike modes. The main

results of Chapter 4 are based on our publication [48] in Physical Review Letters.

In Chapter 5 we extend our analysis of Chapter 4 to the joint estimation of the 3D

location of the centroid and the 3D separation of the source pair, which we may

regard as being equivalent to the problem of localizing both sources simultaneously.

4



Chapter 1. Introduction

We will first calculate the 6×6 QFI matrix for simultaneous pair centroid-separation

estimation and then discuss the fundamental, estimation-theoretic trade-offs between

the two tasks, which we confirm using simulations. The main results of Chapter 5

are based on our most recent publication [49] in Physical Review A.

In Chapter 6 we describe our current work in progress on extending the analyses

of Chapters 4 and 5 to an unequally bright point source pair. We also review the

significant contributions of this dissertation and discuss potential future work.
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Chapter 2

3D Polarimetric Imaging with

High Numerical Aperture

Rotating PSF

2.1 Introduction

By exploiting the notion of orbital angular momentum of light beams, Prasad in-

vented in 2013 a novel pupil-phase-engineered (PPE) point spread function (PSF)

design in which as a function of defocus the PSF merely rotates without changing

its shape and size [1]. This rotating PSF design permits the acquisition of the three-

dimensional (3D) positional information of point sources in a snapshot mode with

a larger depth of field when compared to previous rotating PSFs using a selected

subset of Gauss-Laguerre (GL) modes and complicated optimization algorithms.

We organize this chapter as follows: In sections 2.2 and 2.3 we will briefly re-

view the GL modes based rotaing PSF and Prasad’s original rotating PSF with

scalar-field analysis. In section 2.4 we will propose a modified version of Prasad’s
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original rotating PSF based on the considerations of wave polarization and its evo-

lution in propagation through an arbitrary numerical aperture (NA) imaging system

which admits non-paraxial propagation and significant longitudinal components of

the radiation fields. For a polarized monochromatic point dipole emitter in high NA

microscopy, we will show that our modified rotating PSF is capable of performing

3D polarimetric imaging with its polarization-sensitive spatial structure and largely

rigid rotation as a function of source axial displacement. Using maximum-likelihood

estimation, we will show that the point dipole’s 3D positional and orientational

parameters can be simultaneously reconstructed from Poisson shot-noise corrupted

image data in a robust fashion.

2.2 Rotating PSFs with Gauss-Laguerre Modes

2.2.1 Double-Helix PSF

The Gauss-Laguerre (GL) basis is a family of functions that form an orthogonal basis

for two-dimensional complex functions [2]. Each element of the basis is indexed by

two integers, m and n, which are parameters of the generalized Laguerre polynomial.

m and n satisfy the relation

m = ±(n− 2k), (2.1)

where n can be any positive integer, k is an integer between [0, n/2]. Fig. 2.1 displays

the intensity and phase of some lower order GL modes [2]. As m grows, the intensity

distribution expands out, it also controls the number of times the phase vortex wraps.

As n grows, the intensity and phase distributions have more concentric rings.

The GL basis is of interest to 3D imaging community because the superpositions

of certain combinations of GL modes exhibit the phenomenon of continuous rotation
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Figure 2.1: Examples of GL modes: (a) intensity, (b) phase. Image taken from Ref.
[2].

as they propagate [3]. Piestun et al. showed that a rotating Double-Helix (DH) PSF

could be formed by a superposition of Gauss-Laguerre (GL) modes that lie along a

straight line in the GL modal plane [2] represented in Fig. 2.2. The rotating DH PSF

system can be implemented by introducing a mask that encodes the rotating PSF

transfer function in the Fourier plane of a standard imaging system. For example, the

superposition of modes with indices (1,1), (3,5), (5,9), (7,13), (9,17) forms a useful
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Figure 2.2: The Gauss-Laguerre modal plane. Image taken from Ref. [2].

rotating PSF transfer function. When such a GL superposition is implemented as

the transfer function of an imaging system, the PSF of the system has two lobes and

rotates with changing defocus.

The main disadvantage of above-mentioned rotating DH PSF is its very low trans-

fer function efficiency, which makes it inappropriate for photon limited situations.

Using an iterative optimization procedure, Pavani and Piestun [4] proposed in 2008

a new type of rotating DH PSF which solved this low efficiency problem. Their

high-efficiency rotating DH PSFs are optimized to have the following attributes: (1)

the rotation of the main lobes appears only within a limited volume instead of the

whole 3D space, (2) maximum energy is directed towards the main lobes, and (3)

the transfer function modulates only the phase.
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2.2.2 Corkscrew PSF

The corkscrew PSF proposed by Lew et al. in W. E. Moerner’s group at Stanford

University [5] is also based on a superposition of GL modes (m,n) [2] equal to

(1,1), (2,4), (3,7), and (4,10). Since these modes have both amplitude and phase

components, directly using these modes is also highly photon inefficient.

Consequently, Lew et al. [5] designed an efficient phase-only mask to emulate the

behavior of these modes. They optimized the corkscrew PSFs phase mask design by

running an iterative optimization algorithm, using these modes as a starting point.

Their algorithm used three constraints: (1) a phase-only mask in the Fourier plane

of a 4f system; (2) a GL modal composition that is concentrated near the original

superposition of modes described above; and (3) a Gaussian-like rotating spot in the

image plane of the 4f system. The resulting phase mask and GL modal composition

of the corkscrew PSF are shown in Fig. 2.3. Note that the cloud of GL modes

surrounding the original superposition has the effect of limiting the rotation of the

corkscrew PSF to a finite depth of field.

2.3 Prasad’s Original Rotating PSF

In this section, we review the theory of Prasad’s original rotating PSF [1] with scalar-

field analysis.

For a phase-engineered pupil, the coherent PSF K, as a function of image-plane

radial distance sI and azimuthal angle φI , is given by the pupil integral

K(sI , φI ; ζ) =
1√
π

∫ 2π

φ=0

∫ 1

u=0

u du dφ exp[i2π~u · ~sI + iζu2 − iψ(~u)], (2.2)

where ~u is the pupil-plane position vector ~ρ normalized by the pupil radius R, ~u =

(u, φ) = ~ρ/R, and ~sI = (sI , φI) is the image-plane position vector ~ρI normalized by
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Figure 2.3: GL modal composition (m,n) of the corkscrew PSF in normalized units.
Inset shows the corkscrew PSF phase mask in radians. Image taken from Ref. [5].

Figure 2.4: Schematic diagram of a specific Fresnel zone with its spiral phase retar-
dation

the in-focus diffraction spot-radius parameter at the imaging wavelength λ for the
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image plane a distance zI from the pupil,

~sI =
~ρI
ρ0

, ρ0 =
λzI
R
. (2.3)

The defocus parameter ζ at the pupil edge is related to the object-plane distance

δzO from the in-focus object plane, according to the relation

ζ = − πδzOR
2

λzO(zO + δzO)
' −πδzOR

2

λz2
O

, for δzO << zO, (2.4)

where zO is the distance between the lens and the plane of Gaussian focus. For

a pupil phase mask with L annular Fresnel zones, the spiral phase structure ψ(~u)

consists of spiral phases of integer winding number in the various zones, with the

winding number changing from one zone to the next by a fixed integer step and all

phase dislocation lines oriented along the same radial direction. For a low-NA imager

the outer radii of the zones are chosen to scale as the square root of the zone index,

which amounts to the following spiral phase structure in the pupil:

ψ(~u) = ψ(u, φ) =

{
(al + b)φ

∣∣∣∣∣
√
l − 1

L
≤ u <

√
l

L
, l = 1, . . . , L

}
, (2.5)

where a and b are any two integers. The magnitude of a which is the step size of

the phase winding number change from one zone to the next, controls the number

of primary lobes in the PSF. The sign of a, on the other hand, determines the sense

of rotation of the PSF with changing δzO. The simplest form for the spiral phase

structure is a = ±1 and b = 0, for which we have a single-lobe PSF. Fig. 2.4 shows

a schematic of one of the Fresnel zones.

For the spiral phase structure with a = 1 and b = 0, the coherent PSF K may be

expressed as

K(sI , φI ; ζ) =
2π√
π

L∑
l=1

il exp(−ilφI)
∫ √l/L

√
(l−1)/L

duuJl(2πusI) exp(iζu2), (2.6)

where we used the identity∫ 2π

0

dφ exp[ix cos(φ− φI)− il(φ− φI)] = 2πilJl(x). (2.7)
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For sufficiently small sI the radial integrals over u may be performed approximately

by treating the slowly varying Bessel function Jl as a constant over the lth zone. The

remaining exponential integral then can be evaluated exactly as

∫ √l/L

√
(l−1)/L

du u exp(iζu2) = exp[iζ(l − 1/2)/L]
sin[ζ/(2L)]

ζ
, (2.8)

the coherent PSF in (2.6) may thus be approximated by the sum

K(sI , φI ; ζ) ≈ 2
√
π exp[−iζ/(2L)]

sin[ζ/(2L)]

ζ

×
L∑
l=1

il exp[−il(φI − ζ/L)]Jl(2π
√
l/LsI). (2.9)

We see that each term in the sum in Eq. (2.9) depends on φI and ζ only via φI−ζ/L.

Since the overall prefactor in Eq. (2.9) is essentially independent of ζ for ζ << L, the

PSF should rotate uniformly with changing defocus at the rate 1/L with excellent

shape and size invariance. Since this invariance holds approximately out to ζ ∼ L,

increasing the number of Fresnel zones will extend the shape invariance of the PSF

to a larger range of defocus values. The PSF performs a complete rotation with ζ

over the range [−2Lπ, 2Lπ], but when |ζ| = 2Lπ, the prefactor in Eq. (2.9) vanishes,

indicating that the PSF must break apart as |ζ| approaches 2Lπ from below.

We can numerically evaluate Eq. (2.5) by using the two-dimensional fast Fourier

transform (fft2 code in MATLAB). In Fig. 2.5 we display the rotation of the inco-

herent rotating PSF |K|2 for two different values of L, namely 7 and 9, for defocus

phase at the pupil edge changing from -24 to 24 rad. For comparison, we also display

the ideal diffraction-limited PSF (IDL-PSF) without any phase mask over the same

range of defocus values in the bottom row. The main lobe of the PPE-PSF main-

tains its compact elliptical core and rotates with changing defocus in a nearly shape-

and size-invariant manner out to the largest defocus value, the rate of rotation with

changing defocus is indeed larger for L = 7 than for L = 9. The IDL-PSF has a

18



Chapter 2. 3D Polarimetric Imaging with High Numerical Aperture Rotating PSF

Figure 2.5: Incoherent PPE-PSF with L = 7 (top row) and L = 9 (middle row). The
IDL-PSF, is shown for comparison in the bottom row. The plots from left to right
are for increasing values of defocus, from -24 radians to +24 radians of defocus in
steps of 8 radians, at the edge of the pupil.

very tight Airy form when the source is in focus, but spreads rapidly with increasing

defocus, resulting in poor 3D resolution and sensitivity.

Being based on nondiffracting Bessel modes [6, 7, 8], Prasad’s rotating PSF has

a superior depth of field (DOF) when compared to previous rotating PSFs [4, 5, 9],

all of which combine diffracting GL vortex modes that spread more readily with

propagation. A clear performance comparison between different rotating PSFs was

nicely made in the dissertation work of Dr. Rakesh Kumar [10], a former Ph.D.

student in Dr. Prasad’s research group. Prasad’s novel rotating PSF design is

also highly versatile and analytically quite tractable, since by changing just the

parameters a and b in the phase mask, one can obtain rotating PSFs with different

geometrical structures, all capable of achieving 3D imaging [10, 11].
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2.4 High NA Rotating PSF

2.4.1 Introduction

In this section we consider the modification of Prasad’s original rotating PSF that

results from the evolution of wave polarization, as the image-forming wave non-

paraxially propagates through a high NA imaging system with significant longitudi-

nal components. The vector-field treatment of image formation we present here is

based on the pioneering work of Richards and Wolf [12, 13], which has been exten-

sively used in various settings for optical fields passing through high NA focusing

elements [14]-[17].

Except for positional information, the polarization state of emission has been

probed over the years [18]-[27] in the single-molecular imaging community. Polari-

metric information, including the orientation of the emitting dipole, is important for

reducing systematic errors in localizing the polarized emitters and assessing their lo-

cal molecular environment [28]. Since the rotational symmetry of the optical system

is broken by the anisotropic spiral phase structure, different emitter polarizations

correspond to different shapes of the point spread function, with these differences

accentuated by the large NA of the imager. From the 2D position of the center of

rotation, the angle of rotation about that center, and the shape of the image, our

rotating PSF imager can thus simultaneously localize a point source in full 3D and

capture its polarization state of emission without any need for polarization sensors.

The main work in this section was published in Ref. [29].
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2.4.2 Radiation Field from a Point Dipole Emitter

Consider a point electric dipole source located at position ~rO, with dipole moment

~p exp(−iωt) oscillating at angular frequency ω. The electric field radiated by the

dipole at point ~r in the radiation zone may be described by the matrix relation [30]

E(~r, ~rO) =
k2
O exp(ikO|~r − ~rO|)

4πε0|~r − ~rO|
(
I− n̂ n̂T

)
p, (2.10)

where kO = nOω/c, nO is refractive index of the medium in which the radiating

dipole is embedded, and each underlined vector is to be regarded as a 3× 1 column

vector with elements that are the Cartesian components of the corresponding spatial

vector, indicated by an overhead arrow or caret sign (for unit vectors). Here I is

the identity matrix, n̂ = (~r − ~rO)/|~r − ~rO| is the unit observation vector, and the

superscript T denotes matrix transpose. For brevity, we omit a pure time-dependent

exponential, exp(−iωt), from (2.10) and all subsequent expressions for the complex

field. For sources close to the origin, for which rO << r that we assume to be true,

we may replace in (2.10) n̂ by r̂ = ~r/r, and |~r − ~rO| in the denominator by r but

in the exponential by the more accurate approximation, r − r̂ · ~rO, which would

accommodate location-dependent phase changes that can be large if kr0 is large.

Within these approximations, the electric-field vector (2.10) takes the form

E(~r, ~rO) =
k2
O exp(ikOr − ikOr̂ · ~rO)

4πε0r
MO(r̂)p, (2.11)

in which the matrix MO is defined as

MO(r̂) = I− r̂ r̂T . (2.12)

2.4.3 Action of the Focusing, Polarizing, and Spiral Phase

Elements

We assume in this section a perfect primary image-capture optical element, typically

the objective in a microscope, that images a point source as a point image with
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perfect geometrical focusing over its typically large NA. Such a perfect focusing ele-

ment turns a diverging spherical wavefront from a point into a converging spherical

wavefront, as shown in Fig. 2.6. Under conditions of exit-pupil radius and object

and image-plane distances being much larger than the light wavelength, Wolf and

Richards [13] provided a comprehensive treatment of approximate diffractive vector-

field propagation in an imaging system. By means of an accurate stationary-phase

approximation, this approach treats each source ray as a plane wave with an as-

sociated transverse polarization that undergoes the transformation appropriate to

the transmission of a plane wave locally at the point at which the ray intersects

the surface of the focusing element [31]. Applications of this approach to high NA

single-molecule microscopy have been proposed by a number of authors [20, 26, 32].

An ideal high-NA focusing element acts in three important ways. First, it rotates

the electric field vector locally so the electric field of a light ray leaving the element,

just as the electric field of a light ray incident on it, stays transverse to the direction

of the ray. Second, if we assume perfectly transmissive optics, its interaction with

the optical wavefront modifies the amplitude of the wavefront in such a manner that

the optical power is conserved locally. Third, it changes the phase of the incident

wavefront in a pupil-position-dependent manner to turn it into a converging wave-

front. As shown in Fig. 2.6, this phase change in the pupil at location ~r, relative to

that at the pupil center, is by amount

δφ(~r) = −kOAB − kIBC = −kO(r − zO)− kI(|~rI0 − ~r| − zI), (2.13)

where kI = nIω/c is the optical propagation constant in the image space of refractive

index nI , ~rI0 is the location of the Gaussian image of a point source at the origin

under perfect geometrical focusing. The image plane will be taken to be a distance zI

away from the plane of the exit pupil. We shall take zO and zI to be large compared

to the optical wavelength, λ = 2πc/ω, which is a necessary condition for the validity
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Figure 2.6: Transformation of an incident wavefront ΣO into the outgoing (imaging)
wavefront ΣI , with the pupil shown by a dashed vertical line. The two linear s
and p polarizations for a typical ray crossing the two wavefronts are also shown.
A polarization analyzer, denoted by J, is inserted in the beam path following the
focusing lens.

of our analysis and is typically an excellent assumption.

In a practical high-NA microscope, with the sample placed under a cover slip

and an immersion liquid between the slip and the objective, even the slightest op-

tical phase and amplitude changes from depth variations of the fluorescent label

molecules and index fluctuations result in aberrations that can compromise the abil-

ity to achieve extreme sub-wavelength 3D localization of the labels. Spherical aber-

ration is another geometric phase error, quartic in pupil coordinates in the lowest
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order, that cannot be entirely compensated in a high-NA system and must be added

to (2.13). Further, transversely varying amplitude changes caused by the reflection

of rays incident at large angles at the optical surfaces of the objective amount, in

effect, to an apodization of the pupil, but this is typically mitigated by suitable

anti-reflection coatings. We shall assume here that all such complications have been

largely eliminated by proper design, and treat the microscope as a perfect geomet-

rical imager. Equivalently, the results of this chapter may be regarded as providing

upper bounds on the performance of a practical microscope.

The field vector will be expressed in terms of its s and p linear polarizations

with respect to (w.r.t.) the ray direction, with unit orthonormal basis vectors (ŝ, p̂)

and (ŝ, p̂′) in the object and image spaces, respectively, with the identity of the s

polarizations in the two spaces imposed. The rotation of the field vector is described

by the matrix, ML,

ML(~r) = ŝ ŝT + p̂′ p̂T , (2.14)

where p̂′ is obtained by rotating p̂ by angle (θ + θ′) about the fixed polarization

vector, ŝ, with the angles θ and θ′ being the inclination angles for the two rays

w.r.t. the optical axis, which we take to be the z axis, i.e., θ = cos−1(zO/r), θ
′ =

cos−1(zI/|~r − ~rI0|). Since ŝ and p̂ are simply the spherical-coordinate basis vectors

φ̂ and θ̂, respectively, it follows that

p̂′ = r̂ sin(θ + θ′) + θ̂ cos(θ + θ′). (2.15)

These relations between the polarization basis vectors and the coordinate basis vec-

tors may be used to express ML explicitly in terms of the spherical coordinates of the

pupil point, ~r, w.r.t. the reference source point taken at the origin of the coordinate

system.

The polarizing optical element, denoted by J in Fig. 2.6, follows the focusing

element in the beam path. Its purpose is to analyze the image-forming beam in
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its two transverse polarization components in order to examine how the different

polarizations of the beam are transformed by the imager, depending on the state of

polarization of the emitting dipole. In the simplest case of a perfect polarizer, it is

described by the matrix operator,

J = ê ê†, (2.16)

where ê is the unit polarization vector representing the polarization being analyzed.

For a linear polarizer, this vector may be x̂ or ŷ for the x or y polarization, while

for the case where no polarization analysis of the imaging beam is performed, J

is simply the identity matrix (in the polarization plane). We shall consider three

specific examples of J here, namely x̂ x̂T , ŷ ŷT , and the identity matrix, represented

by their sum. These are all represented by the single idempotent matrix,

J = αx̂ x̂T + βŷ ŷT , J2 = J, (2.17)

in which (α, β) is either (1,0) or (0,1) or (1,1).

In the absence of any polarization dependence of either the lens or the phase mask,

which we assume here, the wavefront phase change (2.13) resulting from perfect lens

focusing and that due to the spiral phase mask, Ψ(u, φ), amount to a multiplication

of the incident EM field by the corresponding complex phase exponentials.

On the whole, thus, the propagation of the field from the source dipole to the pupil

plane, as described by (2.11), followed by the action of the focusing and polarizing

elements, as described by (2.13), (2.14), and (2.17), and imposition of the engineered

pupil phase, yield the following transformation of the source dipole-moment vector

to the column vector representing the electric field of the imaging radiation in the

exit pupil:

p −→ E ′P (~r) =
k2
Oe

ikOr−ikO r̂·~rO

4πε0r
exp[iδφ(~r) + iψ(u, φ)]

× JML(~r)M0(r̂)p. (2.18)
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2.4.4 Propagation to the Image Plane

As noted in [13], the use of geometrical optics to describe the rotation of the ray

and associated field polarization at optical interfaces from the object to the image

space entails a modification of the electric-field amplitude, even when there is no

loss of light due to reflection or absorption. Since an area element dA of the exit-

pupil plane is transformed to area elements, dA cos θ and dA cos θ′, when projected

orthogonal to the ray directions on the object and image sides, respectively, energy

conservation requires that the incoming and outgoing radiation fluxes on the two

sides, proportional to n0| ~EO|2 cos θdA and nI | ~EI |2 cos θ′dA, be equal to each other.

This implies the following modification of the field amplitude between the object and

image spaces:

| ~EI | =
√
nO cos θ

nI cos θ′
| ~EO|. (2.19)

We shall henceforth set nI to 1, as is typical for a practical microscope, so kI = k =

ω/c.

The electric field vector in the image plane is given by a diffractive propagation

of the pupil-plane field on the right-hand side (RHS) of (2.18) to the image plane.

In view of the assumption that the aperture and image-plane distance are large

compared to the wavelength, the image-plane field at position ~rI , accounting for the

amplitude adjustment factor (2.19), is given by the Rayleigh-Sommerfeld diffraction

formula,

~EI(~rI) =
k

2πi

∫
P (~ρ)

√
nO cos θ

cos θ′
~E ′P (~r)

eik|~rI−~r|

|~rI − ~r|
cos θ′d2ρ

=
k
√
nO

2πi

∫
P (~ρ)

√
cos θ cos θ′ ~E ′P (~r)

eik|~rI−~r|

|~rI − ~r|
d2ρ,

(2.20)

where P (~ρ) is the pupil function, typically the binary indicator function taking the

value 1 inside the pupil and 0 outside. The specific choice of the obliquity factor,
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cos θ′, given by

cos θ′ = zI/|~rI − ~r|, (2.21)

in the first equation in (2.20) results from the use of the Dirichlet boundary condition

for a planar aperture in the radiation zone, as shown in Ref. [33]. Its preference over

other competing forms of the obliquity factor is justified in Appendix A by a careful

angular-spectrum based analysis of the diffractive propagation law. The square-root

factor in the integrand of the first equation adjusts the field amplitude, as required

by (2.19), and gives rise to a more symmetrical form for the overall obliquity factor,

which, as we show in Appendix B, yields a rigorous conservation of the optical flux.

On substituting (2.18) into (2.20) and using (2.13), along with kO = k nO, we ob-

tain the following expression for the image-plane electric field written in the column-

vector form:

EI(~rI) =
k3n

5/2
O eik(nOzO+zI)

8iπ2ε0

∫
d2ρP (~ρ)

eiΦ(~r,~rI)

r|~rI − ~r|

×
√

cos θ cos θ′ J ML(~r)MO(r̂)p, (2.22)

where the overall phase function in the pupil has the value

Φ(~r, ~rI) = ψ(u, φ) + k(|~rI − ~r| − |~rI0 − ~r| − nOr̂ · ~rO). (2.23)

This phase may be well approximated by expanding the difference between the first

two terms inside the parentheses on the RHS of (2.23) to first order in the vector

separating the image point ~rI from the Gaussian image point ~rI0,

Φ(~r, ~rI) = ψ(u, φ) + k[k̂I · (~rI − ~rI0)− nOr̂ · ~rO], (2.24)

where k̂I is the unit vector along the image-space ray from ~r to ~rI0,

k̂I =
(~rI0 − ~r)
|~rI0 − ~r|

. (2.25)
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2.4.5 Generalized Spiral Phase Profile

For an axially defocused point dipole, for which ~rO = δzOẑ, the pupil phase retarda-

tion resulting from its defocus, according to (2.24), is −knOr̂ · ~rO = −knOδzO cos θ,

along a ray from the source intersecting the pupil at position ~ρ and making angle

θ with the optical axis. This added phase retardation from axial defocus increases

over the pupil as the incident ray angle θ is changed from 0 (at pupil center) to

tan−1(R/zO) (at the edge of the pupil of radius R). We subdivide the pupil into L

contiguous annular zones, much as we did in the paraxial analysis of the rotating

PSF imager, but now choose the outer radius, ρl, of the lth zone by requiring that

at pupil points at this radial distance the defocus-induced phase retardation relative

to the central ray, namely knOδzO(1− cos θ) at ρ = ρl, be proportional to lδzO, i.e.,

knOδzO

(
1− zO√

z2
O + ρ2

l

)
= γlδzO. (2.26)

With the choice (4.3) for the spiral phase, the overall pupil phase (2.24) at the outer

radius of the lth zone will then have the requisite rotational form, l(aφ + γδzO),

with respect to the azimuthal and defocus coordinates. Dividing (2.26) by the its

value corresponding to the outermost zone, for which l = L and ρL = R, eliminates

the proportionality constant, γ, and yields the outer radius of the lth zone by the

relation:

1− zO√
z2
O + ρ2

l

1− zO√
z2
O +R2

=
l

L
, (2.27)

which may be expressed in terms of the (object-side) NA, namely NA = nOR/(z
2
O +

R2)1/2, if necessary. For paraxial propagation, ρl ≤ R << zO, relation (2.27) simpli-

fies to the choice, ρl = R(l/L)1/2, made in Ref. [1].

We shall set nO = 1 in the rest of the dissertation for the purposes of our the-

oretical analysis, henceforth regarding NA as being a purely geometrical aperture
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variable, namely sin θO. It would be simple enough to re-insert any factors involving

nO for liquid-immersed objectives to restore the full definition of NA and expressions

for the electric field in the rest of the dissertation.

2.4.6 Polarization Dependent Rotating PSF

We take the detector plane to be orthogonal to the optical (z) axis of the imager. The

expected image intensity, I(~rI), on the detector is then given by the z component of

the time-averaged Poynting vector,

I(~rI) =
1

2
Re ẑ · [ ~EI(~rI)× ~H∗I (~rI)] (2.28)

where the magnetic field, ~HI(~rI), at the image plane may be calculated by applying

Faraday’s law to (2.22). For a vanishingly small image-side numerical aperture that

we assume throughout this dissertation, R << zI , ~HI(~rI) turns out to be essentially

(ε0/µ0)1/2ẑ× ~EI(~rI), so the use of the simple vector triple product identity in (2.28)

implies the following expression for I(~rI):

I(~rI) =
1

2

√
ε0
µ0

|ẑ × ~EI(~rI)|2. (2.29)

The full rotational character of the intensity (2.29) and its dependence on the

state of polarization of the emitter may be made more explicit by evaluating the

product J ML(~r)MO(r̂)p present in (2.22) and then substituting for Ψ(u, φ) its spiral

phase structure that we discussed in the previous section.

As we show in Appendix C, this yields the following expression for the electric

field:

ẑ × ~EI(~rI) =
k3√zOR2 exp[ik(zO + zI)]

16iπ2ε0zI

∫
d2uP (Ru)

× (1 + u2 tan2 θO)−3/4 exp
[
− i 2π~u · ~sI

+ iψ(u, φ)− i kδzO
(1 + u2 tan2 θO)1/2

]
~F (θ, φ), (2.30)
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where θO = sin−1(NA) is the half angle of the light cone incident on the objective,

~u = ~ρ/R is the normalized pupil-position vector we defined earlier, ~sI = ~rI/(λzI/R)

is the image-plane position vector in units of the Airy disk radius, and ~F is the

following function of spherical angles in the object space:

~F (θ, φ) =x̂β{px sin 2φ(1− cos θ)− py[(1 + cos θ)

+ cos 2φ(1− cos θ)] + 2pz sinφ sin θ}

+ŷα{px[(1 + cos θ)− cos 2φ(1− cos θ)]

− py sin 2φ(1− cos θ)− 2pz cosφ sin θ}. (2.31)

In the limit of low NA, i.e., for sin θO << 1, we may set θ equal to 0 in (2.31),

which reduces ~F to the constant vector, 2(−βpyx̂+αpxŷ), along which the magnetic

field vector of the imaging beam is oriented in this limit. We may extract from the

image intensity data, proportional to |~F |2 ∼ (α2|px|2 + β2|py|2), the magnitudes of

px and py separately by means of a polarization analysis along the x and y axes,

corresponding to (α, β) taking the value (1,0) and (0,1), respectively. The image

fields, being transverse, are insensitive, however, to the longitudinal (z) component

of the dipole in the low-NA limit. Importantly, the rotational character of the PSF

resulting from the combination of the last two terms in the exponential inside the

integrand of (2.30) is fully preserved, resulting in a relatively long interval of axial

defocus, δzO, around 0 over which the PSF largely rotates uniformly about the

Gauassian image point with changing axial position of the emitter, as predicted in

[1].

For moderate to high NA, on the other hand, the three components of the dipole

emitter affect the image field differently. By first expressing the sine and cosine

functions of φ as combinations of complex, pure-phase exponentials, writing ~u · ~sI
as u sI cos(φ − φI), and then transforming φ → φ + φI , we see that the different

terms in ~F (θ, φ) contribute terms in the PSF, which, although all rotating at the
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same rate with changing axial position, are superposed coherently with φI dependent

coefficients in the image plane. Even though the rotational character of the PSF

contributed by the combination of ψ(u, φ) and the defocus-dependent phase term in

(2.30) is thus no longer exact for a general dipole orientation, the PSF, as we shall

see presently, still rotates approximately, while mainitaining its general shape, with

changing values of defocus over an extended range that is rather similar to that for

the case of low NA.

By integrating (2.28) over the image plane and using (2.29), we obtain the total

time-averaged power

P (px, py, pz) ∼
∫ 2π

0

∫ 1

u=0

dφ du u(1 + u2 tan2 θO)−3/2|~F |2. (2.32)

According to expression (2.31) for ~F with α = β = 1, the total power integrals for

purely x and z-polarized dipole have the forms

P (1, 0, 0) ∼
∫ 1

0

du u(1 + u2 tan2 θO)−3/22(1 + cos2 θ), (2.33)

and

P (0, 0, 1) ∼
∫ 1

0

du u(1 + u2 tan2 θO)−3/24 sin2 θ, (2.34)

after the φ integration. Utilizing relations tan θ = (Ru)/ZO and cos θ = (1 +

u2 tan2 θO)−1/2, the above integrals over u can be transformed to

P (1, 0, 0) ∼
∫ θO

0

dθ 2 sin θ(1 + cos2 θ); P (0, 0, 1) ∼
∫ θO

0

dθ 4 sin3 θ. (2.35)

Therefore the ratio of P (0, 0, 1) to P (1, 0, 0) can be evaluated as

P (0, 0, 1)

P (1, 0, 0)
=

2(2− cos θO − cos2 θO)

4 + cos θO + cos2 θO
, (2.36)

where θO = sin−1(NA). In Fig. 2.7 we plot the ratio (2.36) to show that it grows

with increasing NA.
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Figure 2.7: Ratio of P (0, 0, 1) to P (1, 0, 0) vs NA.

We now illustrate graphically the modification of the spatial pixel-wise distribu-

tion of the PSF signal, I(~rI), that results from changing the state of 3D polarization

of the point dipole emitter and how these modifications are accentuated by increasing

the NA of the imaging microscope. In the next two figures, no polarization analysis

of the PSF has been performed, i.e., α = β = 1, so the total PSF signal power is

being plotted in each instance. As we shall see, with increasing NA, the differences

among the PSFs for the various transversely polarized emitters increase, but their

differences from the PSF for the longitudinally polarized emitter decrease. A linear

polarization analysis of the PSF signal, achieved by setting (α, β) to either (1,0) or

(0,1) in (2.31), can, however, magnify these differences, as we shall discuss later.

In the four panels of Fig. 2.8, we display the PSF corresponding to the point dipole

emitting in x-polarized (XP; top left), y-polarized (YP; top right), left circularly

polarized (LCP; bottom left), and z-polarized (ZP; bottom right) states. The axial
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Figure 2.8: The PSF signal, for low NA of value 0.2, for XP (top left); YP (top right);
LCP (bottom left) ; and ZP (bottom right) state of emission for the point dipole
emitter located in the plane of Gaussian focus, for a seven-zone phase mask, L = 7,
with a = 1, b = 0. The full array size in each panel is 16 × 16 in units of squared
Airy disk radius (see text). The color coding in each PSF, with yellow representing
its brightest pixel and blue its faintest, is only for the ease of visualization of its
spatial structure. The brightest pixel of the PSF in the bottom right plot is, in fact,
over 100 times fainter than those for the other three plots, which agrees well with
Fig. 2.7. Image taken from Ref. [29].

defocus parameter, defined here as kδzO, which is simply 2π times the number of

waves of axial displacement of the source from the plane of Gaussian focus, was

chosen to be 0 for these plots, but in subsequent plots we have changed its value over

a wide range to see how the PSF rotates with changing axial displacement of the
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source point. For the plots in Fig. 2.8, NA was chosen to be low at 0.2, corresponding

to R/zO = 0.204, while the PSFs corresponding to the same four polarization states

for a high value of NA, namely 0.9, for which R/zO = 2.06, are shown in Fig. 2.9. For

the low NA value, all cases of transversely polarized dipoles generated PSF intensity

patterns that are rather indistinguishable, both in their spatial structure and the

intensity of their brightest pixel, but for the longitudinally polarized dipole emission

(bottom right), the brightest pixel was considerably fainter by a factor of over a

hundred, which is consistent with the small ratio shown in Fig. 2.7 for low NA. The

spatial form of the PSF in the latter case is also perceptibly different from those of

the others.

A comparison of Figs. 2.8 and 2.9 shows that with increasing geometric NA, the

differences of the PSFs corresponding to the source dipole emitting in different trans-

verse polarization states (XP, YP, or LCP) grow, becoming sufficiently different in

form that their differences can be exploited to recover the full state of polarization

of the emitter. By contrast, the brightness of the PSF signal for the purely longitu-

dinally polarized emitter tends to catch up with that for the transversely polarized

emitters, its brightest pixel being fainter only by a factor of 2 at NA of 0.9, which is

also consistent with the growth of the ratio shown in Fig. 2.7 with increasing NA.

These differences can be greatly exaggerated by means of a linear polarization

analysis of the PSF signals, as achieved mathematically by varying the relative

strength of the parameters α and β in (2.31) that we noted earlier. Thus, for exam-

ple, for the dipole in the XP state of emission the x-polarized component of the PSF

signal turns out to be about 60 times as bright as its y component at the high NA

of 0.9, but nearly 105 times as bright at the low NA of 0.2. A similar relationship

holds for the YP polarized emitter when the y-polarized component of the corre-

sponding PSF is compared to its x-polarized component. We note that while this

linear dichroism between the x and y polarized components of the emitted signal is
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Figure 2.9: Same as Fig. 2.8, except for high NA of value 0.9. The XP, YP, and
LCP emission states have PSFs with comparable brightest pixels, within 10% of one
another, but which are a factor of 2 brighter than for the ZP emission state. This
phenomenon also agrees well with the growing ratio plotted in Fig. 2.7. Image taken
from Ref. [29].

ameliorated by increase of the NA, it is still substantial even at the highest geomet-

ric NA values in a practical microscope, and thus can be exploited at arbitrary NA

values to distinguish between linear polarization states. At the high NA value of

0.9, such analysis, as we shall presently show via the results of our simulations, can

discriminate between linear and circular polarization states of emission as well, since

even for emission in linear polarization oriented at 450 or 1350 to the x axis, the dif-
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ference in the signal strength from the case of circularly polarized emission is about

10%. All other axes of linear polarization of the emitter entail a larger difference.

The longitudinal (z) component of the dipole moment is easily distinguished from its

transverse components, as we noted earlier, in terms of the relative contributions to

the total PSF signal power that can be separately attributed to these components.

Figure 2.10: The rotating PSF signals on the sensor array for the XP (1st row); YP
(2nd row); and ZP (3rd row) states of emission for the point dipole for the low-NA
case, namely for NA=0.2. The figures in each row from left to right display the PSFs
corresponding to the values −162π, 0, and +162π radians for the defocus parameter,
kδzO, or equivalently δzO being -3.25, 0, and +3.25 units of the wave depth of field,
λ/NA2, of the microscope. Image taken from Ref. [29].

In Figs. 2.10 and 2.11, we display the rotation of the PSF with changing value
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Figure 2.11: Same as Fig. 2.10, except NA is chosen to be higher at 0.9, but δzO
taking the same three values in units of λ/NA2 as in Fig. 2.10. Image taken from
Ref. [29].

of the axial-defocus parameter. The three rows of figures refer, respectively, to the

cases of XP, YP, and ZP polarization states of dipole emission. The corresponding

modulation transfer function (MTF) signals are shown in Figs. 2.12 and 2.13. The

fact that the MTF signal fills the spatial frequency plane rather densely around dc

in each case indicates excellent prospects for a rather robust recovery of source pa-

rameters, as we shall verify in the next section in our simulation-based numerical

studies. Note also a definitive rotational behavior of both the PSF and MTF with

changing axial depth of the emitter. However, their shape and size do change signifi-
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Figure 2.12: The MTF signals corresponding to the PSFs in Fig. 2.10. For the chosen
parameter values, the array in each panel is the minimal square circumscribing the
disk of diffraction limited bandwidth of the imager. Image taken from Ref. [29].

cantly with such rotation, particularly for the high-NA case. This is quite consistent

with the discussion about the presence of a φ-dependent factor in the integrand that

tends to undermine the rotational character of the PSF with changing axial depth

and can become quite significant at large values of NA. Nevertheless, we clearly see

the joint-polarimetric-localization capability of our high-NA imager.

We note importantly that regardless of the value of the NA the rotated orien-

tation of the elliptical region surrouding the brightest pixel in the PSF contains

excellent information about the 3D location of the emitter, since the rate of rota-
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Figure 2.13: Same as Fig. 2.12, except for high NA of value 0.9. Image taken from
Ref. [29].

tion of this bright elliptical lobe is uniform with defocus δzO and roughly equal to

k(1 − cos θO)/(aL), according to (2.30) on which the zone-radius condition (2.27)

is imposed. This implies that the elliptical lobe rotates by angle π over an axial

defocus change equal to aL/[2(1 − cos θO)] waves. This information can be used to

obtain a starting guess for δzO and by applying the PSF model (2.30) the corre-

sponding transverse location, (δxO, δyO), as we discuss in the next section where we

also describe how we remove the ambiguity between the two possible values of δz0

corresponding to any specific orientation of the elliptical lobe. The detailed spatial

form and strength of the polarization-analyzed PSF signals also contain sufficiently
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discriminating information about the state of 3D polarization of the emitter. In a

single 2D snapshot acquired by a single sensor array, such an imager can thus perform

a joint estimation of 3D locations and states of polarization of many well separated

point emitters located in a 3D volume that is many waves deep even at the highest

NA.

2.4.7 Simultaneous Reconstruction of Dipole Orientation and

Position from Rotating PSF

We simulated image data for the case of a single dipole emitter being linearly polar-

ized under varying values of mean total photon number under the Poisson shot-noise

model valid for the rather typical EM-CCD cameras employed in the photon-counting

mode by practical single-molecule imaging microscopes. The data-dependent Pois-

son noise is generated by using the MATLAB poissrnd code. All the results in this

section refer to the case of the higher, experimentally more relevant geometric NA

value of 0.9.

We specify the orientation of the oscillating dipole in terms of the x and y

components of the unit vector along it, namely nx and ny, with its z component,

nz =
√

1− n2
x − n2

y, chosen to be non-negative to prevent physically irrelevant am-

biguity in its orientation. We formulated the inverse problem of reconstructing the

orientation and 3D position of the point dipole emitter from the noisy image data

as a minimization problem with respect to the five parameters nx, ny, δxO, δyO, and

δzO, where δxO, δyO, and δzO are the x, y, and z coordinates of the dipole position

in the object space. We use maximum-likelihood estimation for photons behaving as

a Poisson process, for which the cost function to be minimized is

C(nx, ny, δxO, δyO, δzO) = Σ
Np

j=1[Îx(j)−Ix(j)·ln(Îx(j))+Îy(j)−Iy(j)·ln(Îy(j))] (2.37)

where Îx and Îy denote 2D arrays representing the estimated spatial distributions of

40



Chapter 2. 3D Polarimetric Imaging with High Numerical Aperture Rotating PSF

the light intensity, as functions of the five parameters, at the detector in the x and

y polarization channels, respectively. The corresponding noisy image data arrays for

those channels are denoted by Ix and Iy.

For each set of values of the five parameters, 200 noisy data frames for each

average total photon number were generated for each of the two linear polarizations

into which the PSF data are analyzed. The closeness of the starting guess for the

values of these parameters to their true values was particularly critical for the three

location parameters, δxO, δyO, δzO, to achieve a successfully convergent minimization.

Two possible guesses for δzO, as we noted earlier, are provided by the orientation of

the brightest image lobe, which is the least noise affected region in the PSF data and

thus most robustly characterized. The corresponding transverse location, (δxO, δyO),

for each δzO value, was calculated from the PSF model (2.30) from which the location

of the brightest pixel relative to the source location was numerically evaluated. The

latter piece of information was then applied to the brightest pixel of the noisy image

data, and thus the corresponding guess for the transverse source location, (δxO, δyO),

determined. The two possible values of the 3D location coordinates thus determined

were subsequently substituted, one at a time, into the cost function, (2.37), and the

optimization routine, for which we used the Matlab fminunc code, was allowed to

minimize it iteratively. On convergence, the smaller of the two minimized values of

the cost function was then taken to correspond to the correct estimate of the five

parameters of interest. The above disambiguation process was largely insensitive to

the starting guesses for the dipole orientation parameters, (nx, ny), and so we set

them to (0,0) at the start for each of the two minimizations. This process correctly

estimated the true values of all five parameters with high precision over each of the

200 simulated noisy data frames for all the 4 mean total photon number values we

used, which are 2500, 5000, 7500 and 10000.

In Fig. 2.14 we plot the standard deviation of the successfully reconstructed dipole
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orientation components for the XZP state (nx = 1/
√

2, ny = 0, nz = 1/
√

2), while

δxO and δyO were both fixed at 0, and the axial displacement, δzO, was changed from

−4λ to 0 to +4λ, corresponding to kδzO changing from −8π to 0 to +8π radians.

For NA=0.9, these extremal displacements at the boundaries of the defocus range

are, respectively, -3.25 and +3.25 units of the characteristic DOF, λ/NA2, of an ideal

microscope. We note that the orientation of the emitting dipole is best determined

when it is “in focus,” with the error being less than a tenth of a degree, but even for

±4λ of axial defocus, the error is still acceptably small. Similar results were obtained

for other emitter polarizations as well.

In Figs. 2.15-2.17, we plot the standard deviation of each of the three coordinates

of the successfully recovered 3D location of the dipole emitter for three different cases

of the dipole orientations, namely along the x, y, and z axes, respectively. Each of

these figures has nine subplots, corresponding to the three coordinates and three

different values of axial defocus, namely −4λ, 0, and +4λ. The emitter is located at

the image center, δxO = δyO = 0, in the transverse plane at each value of the axial

defocus. For purposes of illustration, λ was chosen to be 550 nm for these plots.

We note that the transverse coordinates are always better determined than the axial

coordinate, with the standard deviation of the values of the recovered coordinates

being essentially independent of the state of the emitter polarization. In principle,

transverse localization errors no larger than a few nm are possible, with the axial

localization being a factor of 2-3 worse.

2.5 Conclusions

In this chapter we have provided a fully vectorial electromagnetic model of the ro-

tating PSF image of a single molecule point dipole emitter formed by a microscope

of arbitrary NA with a generalized version of the original spiral phase mask. Our
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Figure 2.14: Standard deviation of the estimated nx and ny vs average total photon
number for XZP state of the dipole source fixed at the center of the object plane
and δzO changed from −4λ (1st column) to 0 (2nd column) to 4λ (3rd column). The
value of NA was chosen to be 0.9 here corresponding to R/zO = 2.06 with nO = 1.

analysis is justified in the usually applicable limit of optical components and propa-

gation path lengths being large when compared to the imaging wavelength. In the

limit of low NA, the model reduces to the scalar-field version of the rotating PSF. For

high NA, the shape of our PSF becomes sensitively dependent on the state of source

polarization, and the brightest region of the PSF can still rigidly rotate as a function

of the axial position of the source. We have analyzed the polarization dependent

rotating image in two orthogonal linear polarization channels, and discussed how
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Figure 2.15: Standard deviation of the estimated δxO, δyO and δzO (top to bottom)
vs average total photon number for (left to right) δzO = −4λ, 0, and +4λ for the x
polarized state of emission, with λ = 550nm and NA=0.9.

such polarization analysis can extract more detailed information about the dipole

orientation. Numerical simulations have confirmed that the 3D position and orienta-

tion of the point dipole emitter can be robustly recovered using maximum-likelihood

estimation.
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Figure 2.16: Same as Fig. 2.15 except for the y polarized state of dipole emission.
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Figure 2.17: Same as Fig. 2.15 except for the z polarized state of dipole emission.
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Chapter 3

3D Polarimetric Imaging via

SAM-OAM Conversion

3.1 Introduction

We propose in this Chapter a new polarimetric imaging protocol based on the the

conversion of the wave polarization, which at the most elementary level represents

the state of the spin angular momentum (SAM) of any photon in the wave, to a

corresponding orbital angular momentum (OAM) state [1]. The so-modified source

radiation will then be passed into a spiral phase mask (SPM) to perform full 3D po-

larimetric imaging. Unlike the high NA imaging approach developed in the previous

chapter, this new approach does not depend on the NA of the imager being large,

since it does not use the large obliquity of rays to create a dependence of the imaging

beam on the nature of polarization of the dipole emitter. It therefore can be also

applied to telescope imaging. We shall illustrate this approach for the simple case of

paraxial imaging, NA << 1, obviating any complications of a vector-field treatment.
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3.2 The Basic Concept of q-plate Technology

Since SAM is associated with optical polarization and OAM with the optical wave-

front, at first sight they appear to be quite independent, non-interacting properties

of light, at least in the paraxial limit. For this reason, for about ten years after

the publication of the seminal paper by Allen et al [2], which started the current

field of research in the optical OAM, the possibility of an interaction between SAM

and internal OAM taking place in a single paraxial optical beam was not consid-

ered. The generation and control of optical OAM has been based only on essentially

polarization-independent tools, such as cylindrical lenses [2], spiral phase plates [3],

holograms [4, 5] and certain optical elements in suitable interferometric setups [6, 7].

In 2006, Marrucci et al. [8] proposed that anisotropic inhomogeneous media such

as liquid crystals (LC) could give rise to a previously unrecognized optical process in

which the interaction of SAM of light with the medium’s birefringence gives rise to

the appearance of OAM, arising from the medium’s inhomogeneity. In rotationally

symmetric geometries, this process involves no net transfer of angular momentum to

matter, so that the SAM of the photon is entirely converted into its OAM. For this

reason, the process was dubbed spin-to-orbital conversion of angular momentum,

and the first LC-based device achieving this conversion was named q-plate [8, 9].

This exciting invention has been attracting increasing attention and given rise in

recent years to a number of new results and to significant progress [10] in the field

of orbital angular momentum of light. Particularly promising are quantum photonic

applications, because the polarization control of OAM allows the transfer of quantum

information from the SAM qubit subspace to the OAM subspace of the photon and

vice versa.

The q-plate is a patterned birefringent half-wave plate with the orientation of its

local optical axis changing as a function of the azimuthal angle coordinate φ in the
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plate plane by the linear relation

α(u, φ) = qφ+ α0, (3.1)

where q is required, for periodicity (single-valuedness) of the optical axis, to be either

half-integral or integral.

The q-plate transforms the column vector (Ex, Ey)
T of the x and y components

of the electric field of radiation locally by the following Jones matrix

Q = R(−α)WR(α), (3.2)

where the form of Q can be interpreted as a rotation to the local birefringent axes

followed by the relative phase shift and the inverse rotation to the original axes,

R(α) is the usual 2D rotation matrix,

R(α) =

 cosα sinα

− sinα cosα

 , (3.3)

and W denotes the phase retardation matrix of a half-wave plate,

W =

 1 0

0 −1

 . (3.4)

Performing the simple matrix product in (3.2) yields the following result:

Q =

 cos 2α sin 2α

sin 2α − cos 2α

 . (3.5)

Under the Jones matrix (3.5), the x, y-component column vectors, (1 ± i)T ,

corresponding to the two circularly polarized waves are transformed as follows: 1

±i

 −→ e±i2α

 1

∓i

 = e±i2qφe±i2α0

 1

∓i

 .
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The wave undergoes a perfect flip of its helicity and a OAM vorticity change by

amount ±2q. A few examples of q-plate geometries for different values of q and

α0 are shown in Fig. 3.1. The last two cases correspond to rotationally symmetric

plates, giving rise to perfect spin-to-orbital angular momentum conversion, with no

angular momentum transfer to the plate. But in the non-rotationally-symmetric case

(a), the material undergoes an angular momentum change of ±1 unit of ~. In the

rest of this Chapter, we shall, for definiteness, use the q-plate with q = 1 and α0 = 0.

Figure 3.1: Examples of q-plates. The tangent to the lines shown indicate the local
direction of the optical axis. (a) q = 1/2, α0 = 0; (b) q = 1, α0 = 0; (c) q = 1,
α0 = π/2. Image taken from Ref. [8].

3.3 Improved 3D Polarimetric Imaging via SAM-

OAM Conversion

For the purposes of illustration, consider the problem of imaging a point dipole

emitter that is transversely polarized orthogonal to the z axis expressed as

~p = pxx̂+ pyŷ = p+ê+ + p−ê−, (3.6)

with p± = 1√
2
(px ∓ ipy), where ê± = (x̂± iŷ)/

√
2 are the circular-polarization (CP)

unit basis vectors. Here we define the four Stokes parameters of emission, up to an
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overall common factor, as

s0 =〈|px|2〉+ 〈|py|2〉 = 〈|p+|2〉+ 〈|p−|2〉;

s1 =〈|px|2〉 − 〈|py|2〉 = 2Re〈p∗+p−〉;

s2 =2Re〈p∗xpy〉 = 2Im〈p∗+p−〉; and

s3 =2Im〈p∗xpy〉 = 〈|p+|2〉 − 〈|p−|2〉. (3.7)

In the limit of low NA, the total image-plane electric field, ~EI , for the imaging system

in the previous chapter reduces to the form

~EI = EIxx̂+EIyŷ ∼
∫
d2uP (Ru) exp[−i 2π~u·~sI+iΨ(u, φ)+i

πR2δzO
λz2

O

](pxx̂+pyŷ),

(3.8)

where EIx(y) is the x(y) component of the total image plane electric field ~EI . The

expected image intensity Ix(y) in the x(y) polarization channel has the simple form

Ix(y) ∼ 〈|EIx(y)|2〉. (3.9)

By means of a polarization analysis, we are able to extract |px| and |px| separately,

but the image plane intensity is insensitive to the relative phase difference between

px and py, which means in the low NA limit s2 and s3 are unable to be encoded

in our previous SPM-based imaging system even when there is linear polarization

analysis.

We next discuss the image field modification created by a q-plate with q = 1 and

α0 = 0, for which the Jones calculus w.r.t. the elementary pure-helicity states ê±

yields

ê± −→ e±i2φê∓. (3.10)
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Under the transformation law (3.10) of the q-plate, which is placed in a plane conju-

gate to the exit pupil of the imager, the final expression for the image-plane electric

field has the form

~EI(~rI) ∼
∫
d2uP (Ru) exp[−i 2π~u · ~sI + iψ(u, φ) + i

πR2δzO
λz2

O

]

× (p−e
−i2φu ê+ + p+e

+i2φu ê−)

=

∫
d2uP (Ru) exp[−i 2π~u · ~sI + iψ(u, φ) + i

πR2δzO
λz2

O

]

× 1√
2

[(p+e
+i2φu + p−e

−i2φu)x̂− i(p+e
+i2φu − p−e−i2φu)ŷ]. (3.11)

Substituting (3.11) into (3.9) and using (3.7) for the Stokes parameters, we have Ix

and Iy as

Ix ∼
|a+|2 + |a−|2

2
s0 −

|a+|2 − |a−|2

2
s3 +Re(a∗+a−)s1 − Im(a∗+a−)s2, (3.12)

Iy ∼
|a+|2 + |a−|2

2
s0 −

|a+|2 − |a−|2

2
s3 −Re(a∗+a−)s1 + Im(a∗+a−)s2, (3.13)

where a± are defined as the integrals

a± =

∫
d2uP (Ru) exp[−i 2π~u · ~sI + iψ(u, φ)± i2φ+ i

πR2δzO
λz2

O

]. (3.14)

We see Ix and Iy can now encode all the 4 Stokes parameters. However, the total

image intensity I = Ix + Iy has the form,

I ∼ (|a+|2 + |a−|2)s0 − (|a+|2 − |a−|2)s3, (3.15)

which can still encode s3 because of the q-plate, but has no sensitivity to s1 and s2,

thus the polarization analysis is still needed to fully encode the Stokes vector.

In Fig. 3.3, we display from top to bottom the PSF signal corresponding to the

point dipole with δzO = 0 emitting in x-linearly polarized (XLP), y-linearly polarized

(YLP), 45◦-linearly polarized (45LP), 135◦-linearly polarized (135LP), left circularly

polarized (LCP), and right circularly polarized (RCP) states. The figures in each row
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Figure 3.2: The total PSF signal (1st column), PSF signal in x polarization channel
(2nd column) and y polarization channel (3rd column) for the point dipole emitter
located in the plane of Gaussian focus in XLP, YLP, 45LP, 135LP, LCP and RCP
states (from top to bottom).
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Figure 3.3: The total rotating PSF signals for emission of the point dipole with
s3 = 0 (1st row); s3 = 1 (2nd row); and s3 = −1 (3rd row). s0 is fixed to be 1. The
figures in each row from left to right display the PSFs corresponding to the values
-4m, 0, and 4m for δzO. We choose λ = 1µm, R=0.5 m, zO = 1000m.

from left to right display the spatial distribution of the total image intensity, and the

image intensities in the x polarization and y polarization channels. We see that the

total image intensities for emission states with different s3 are obviously different,

the total image intensities for the 4 linearly polarized emissions with s3 = 0 are the

same, but the signals in the two polarization channels can disambiguate the 4 states
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very well.

In Fig. 3.4, we display the rotation of the total PSF for changing value of δzO.

The three rows of figures refer, respectively, to the cases of s3 = 0, 1, and −1. For

purposes of illustration, we choose λ = 1µm, R = 0.5m, and zO = 1000m for the

rest of this chapter.
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Figure 3.4: The square root of the average variance of the reconstructed Stokes
parameters vs average total photon number for dipole at δzO = 0 emitting in XLP,
YLP, 45LP, 135LP, LCP, RCP, UP and PP (1, 0.5, 0.4, 0.3) states.

We formulated the inverse problem of simultaneously reconstructing the normal-

ized Stokes vector (s0 fixed at 1) and the 3D location of the point dipole from the

noisy image data under the Poisson shot-noise model as a minimization problem with
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respect to the 6 parameters, s1, s2, s3, δxO, δyO, and δzO. The maximum-likelihood

estimation with cost function similar to Eq. (2.31) is used. For each set of values of

the 6 parameters and each of the two linear polarization channels we generated 200

noisy data frames for each average total photon number.

In Fig. 3.5 we plot the square root of the average variance of the reconstructed

s1, s2 and s3 for point dipole at δzO = 0 emitting in XLP, YLP, 45LP, 135LP, LCP,

RCP, unpolarized (UP) and partially polarized (PP) states (we choose s1 = 0.5,

s2 = 0.4, s3 = 0.3 for the PP state). All the emission states are reconstructed with

good accuracy, but the perfectly polarized states have slightly better performances.

In Fig 3.6, we plot the standard deviation of each of the three coordinates of

the recovered 3D location of the dipole emitter in XLP state. The figure has nine

subplots, corresponding to the three coordinates and three different values of δzO,

namely −4m, 0, and +4m. The emitter is located at the image center, δxO =

δyO = 0, in the transverse plane at each value of the axial defocus. We see that the

transverse localization errors are much smaller than the error of axial localization.

This may have to do with the 1/NA vs 1/NA2 scaling of the lateral vs longitudinal

localization errors, particularly at small values of NA.

3.4 Conclusions

In this chapter we have proposed a novel 3D polarimetric imaging approach that

utilizes the process of SAM-OAM conversion in conjunction with the SPM-based

rotating PSF idea. In the low NA limit, the q-plate-modified imaging system with

separate x and y linear polarization channels can fully encode the polarization state

of a transversely polarized point dipole emitter and determine its 3D location in a

snapshot mode. Our approach may be extended to the 3D polarimetric imaging of

multiple point sources and extended sources.
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Figure 3.5: Standard deviation of the estimated δxO, δyO and δzO (top to bottom)
vs average total photon number for (left to right) δzO = −4m, 0, and +4m for the
x polarized state of emission, with λ = 1µm, R = 0.5m, zO = 1000m.
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Chapter 4

Achieving Quantum Limited 3D

Super-resolution

4.1 Introduction

Lord Rayleigh’s criterion [1] for resolving a pair of incoherent point sources has been

the theoretical bedrock of optical resolution since its formulation in 1879. It asserts

that it is essentially impossible to distinguish two incoherent point sources, when

they are separated from each other by a distance much smaller than the charac-

teristic width of the point spread function (PSF) of the optical system. Despite

its strong influence on several decades of work on the optical resolution possible in

imaging systems, this intuitive criterion developed mainly for the human eye is not

a fundamental limit. In the past few decades, advances in single-molecule optical

super-resolution techniques have enabled scientists to sidestep Rayleigh’s limit. The

approach is to turn the resolution problem into one of PSF fitting and localization of

single fluorophors by selective excitation in which two closeby fluorophors are not ra-

diating at the same time. Performing PSF fittings over individual sources one frame
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at a time from many such frames yield a composite superresolved image [2]-[7]. While

such techniques have achieved spectacular success, they require a careful control of

the emission, which is not always possible, especially for astronomical imaging.

It is also known that for two sources with overlapping radiations on the image

plane, computational image processing can beat Rayleigh’s criterion if sufficiently

large numbers of photons illuminate the image pixels [8]-[13], but the precision de-

teriorates dramatically at a fixed photon number, when Rayleigh’s criterion is vio-

lated. In classical estimation theory, the classical Fisher information (CFI) matrix

provides the inverse of the classical Cramér-Rao bound (CCRB), which furnishes a

lower bound on the variance of any unbiased estimator [14, 15]. For a given imaging

system and a fixed number of collected photons, the CFI carried by the intensity

distribution of the light in the image-plane falls to zero as the transverse separa-

tion between the sources becomes smaller than the Rayleigh’s limit [16, 17]. This

phenomenon was dubbed Rayleigh’s curse by Tsang, Nair and Lu [18]. It suggests

a fundamental limitation of the standard imaging protocol in resolving incoherent

point sources.

Tsang et al. [18] also revisited the problem of resolving two identical incoherent

point sources from the perspective of quantum metrology and quantum estimation

theory, in which the CFI matrix can be further maximized over all possible quan-

tum mechanically allowed measurements to yield what has been called the quantum

Fisher information (QFI) matrix. The inverse of QFI [19]-[23] matrix, called the

quantum Cramér-Rao bound (QCRB), provides the ultimate lower bound on the

variance of an unbiased estimation of the parameters superseding, in general, that

provided by the CFI matrix. The authors of Ref. [18] derived the QFI and QCRB for

estimating the separation of an incoherent source-pair in one transverse dimension,

which surprisingly turns out to be a finite constant independent of the separation

of the sources. They also showed that this ultimate quantum limit optimized over
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all possible measurements allowed by quantum mechanics, is in fact saturated by

classical phase-sensitive measurements. As a consequence, Rayleigh’s criterion turns

out no longer to be fundamental to the problem. Its relevance arises because stan-

dard direct imaging discards all the phase information contained in the field. This

ground-breaking result has been generalized and experimentally verified by a number

of groups [24]-[39]. While transverse spatial resolution can be significantly enhanced

by these methods, three-dimensional (3D) super-resolution of simultaneously emit-

ting closeby sources is still a challenging task. Researchers have proposed various

approaches, such as interferometric microscope [39, 40], engineered PSF [41]-[45],

and multiplane imager [46, 47], to achieve 3D single point source super-localization.

In spite of these advanced techniques, determining a small axial separation between

two simultaneously emitting incoherent point sources is still difficult. In this Chap-

ter we will treat the problem of estimating the full 3D separation vector for a pair

of incoherent, equally bright point sources, when the pair centroid is known and an

imager with a circular aperture is used. We will first calculate the 3 × 3 QFI ma-

trix w.r.t. the three components of the pair separation vector, and show that it is

constant and diagonal. We will also show that the pair-separation QFI is in fact iden-

tical to the source localization QFI, which underscores the fundamental importance

of photon-state localization as the basis for determining the ultimate estimation-

theoretic bound for both the source separation and localization problems. We will

next propose specific projective-measurement protocols that can attain the corre-

sponding QCRB in the cases of pure lateral and axial separations and in the limit of

small separations. Finally we will present simulations of an experimental proposal

to achieve quantum-limited 3D pair separation. The main work in this Chapter was

published in Ref. [48].
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4.2 QFI Matrix for 3D Pair Separation

We first set the stage for our model. When two mutually incoherent point sources

with equal intensities emits a photon that is subsequently transmitted through an

imaging aperture, the photon is described by the density operator

ρ̂ =
1

2
(|K+〉〈K+|+ |K−〉〈K−|) , (4.1)

in which |K±〉 are pure one-photon states passing through the aperture, correspond-

ing to individual emissions by the two sources located at 3D positions, ±(r⊥, rz).

The corresponding dimensionless transverse and axial semi-separations, l⊥ and

lz, are related to r⊥ and rz as

l⊥ = r⊥/σ0, lz = rz/ζ0, (4.2)

where σ0 = λzO/R and ζ0 = λz2
O/R

2 are the characteristic transverse and axial

resolution scales [49] corresponding to the optical wavelength λ of the point sources,

an aperture of radius R, and distance zO from the aperture to the pair centroid when

located at the on-axis and in-focus position w.r.t. the aperture.

Our analysis presented here is technically correct only under the paraxial propa-

gation conditions of a low-NA imager. However, for a high-NA imager, our results

still provide an approximate description of the fundamental precision with which a

pair of point sources may be resolved by the imager.

The coordinate representations, 〈s|K±〉, of the two states are the amplitude PSFs

in the image-plane. Their momentum-space representations are the wavefunctions

in the exit pupil of the imager [49],

〈u|K±〉 = exp(±iφ0)P (u) exp[∓i(2πl⊥ · u + πlzu
2)], (4.3)

in which the linear and quadratic phases of each wavefunction represent, respectively,

its tilt and curvature due to the off-axis, defocused location of the corresponding
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source, and P (u) denotes a general aperture function. For a clear aperture, P (u) is

simply 1/
√
π times its indicator function, corresponding to the Airy PSF, while in

its Gaussian form, it yields the Gaussian PSF. More generally, P (u) need only obey

the normalization condition,∫
d2u |P (u)|2 = 1, (4.4)

that follows from requiring 〈K±|K±〉 = 1.

The two non-zero eigenvalues, e±, and the associated orthonormal eigenstates,

|e±〉, of ρ̂ given by Eq. (4.1) are readily calculated to be

e± = (1±∆)/2; |e±〉 = [2(1±∆)]−1/2 (|K+〉 ± |K−〉) , (4.5)

where ∆ is the inner product, ∆ = 〈K−|K+〉, which we render real and positive by

a proper choice of the phase constant, φ0.

The QFI matrix [19, 20, 21] is defined to have elements (see Appendix D)

Hµν
def
= ReTr (ρ̂L̂µL̂ν), (4.6)

where Re denotes the real part, L̂µ is the symmetric logarithmic derivative (SLD) of

ρ̂ w.r.t. parameter lµ, defined by the relation,

∂µρ̂ =
1

2
(L̂µρ̂+ ρ̂L̂µ), (4.7)

where for brevity we denote ∂ρ̂/∂lµ as ∂µρ̂. By taking the matrix element of L̂µ

between the eigenstates |ei〉 and |ej〉 of ρ̂, with eigenvalues ei, ej, respectively, and

dividing both sides of the resulting expression by (ei + ej)/2, we obtain its matrix

elements in the eigenbasis of ρ̂,

〈ei|L̂µ|ej〉 =
2〈ei|∂µρ̂|ej〉

(ei + ej)
. (4.8)

Using expression (4.8) in the definition (4.6) of QFI and evaluating the trace in the

eigenbasis of ρ̂ immediately yields

Hµν = Re
∑
i∈R

∑
j

4ei
(ei + ej)2

〈ei|∂µρ̂|ej〉〈ej|∂ν ρ̂|ei〉, (4.9)
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where R denotes the set of values of the index that labels the eigenstates that span

the range space of ρ̂, or the subspace of non-zero eigenvalues of ρ̂.

By decomposing the j sum into a sum over the range space of ρ̂ and another

over its null space, j /∈ R, for which ej = 0, we may evaluate the latter sum via the

completeness relation, ∑
j /∈R

|ej〉〈ej| = Î −
∑
j∈R

|ej〉〈ej|.

We may thus express Hµν in Eq. (4.9) as

Hµν = Re
∑
i∈R

4

ei
〈ei|∂µρ̂∂ν ρ̂|ei〉

+ Re
∑
i∈R

∑
j∈R

[
4ei

(ei + ej)
2 −

4

ei

]
〈ei|∂µρ̂|ej〉〈ej|∂ν ρ̂|ei〉. (4.10)

For the two-state ρ̂ discussed here, the range space is two-dimensional, and the

general expression for the QFI matrix element reduces to the form,

Hµν = Re
∑
i=±

4

ei
〈ei|∂µρ̂∂ν ρ̂|ei〉

+ Re
∑
i=±

∑
j=±

[
4ei

(ei + ej)
2 −

4

ei

]
〈ei|∂µρ̂|ej〉〈ej|∂ν ρ̂|ei〉. (4.11)

We may simplify the derivatives in Eq. (4.11) by noting the eigenvector identity,

∂µ[(ρ̂− eiÎ)|ei〉] = 0, i.e.,

∂µρ̂|ei〉 = ∂µei|ei〉 − (ρ̂− eiÎ)∂µ|ei〉. (4.12)

Taking the inner product of Eq. (4.12) with 〈ej| and then using the eigenrelation,

〈ej|(ρ̂− ei) = (ej − ei)〈ej|, and the orthonormality of the eigenstates, we obtain one

of the needed matrix elements,

〈ej|∂µρ̂|ei〉 = δij∂µei + (ei − ej)〈ej|∂µ|ei〉. (4.13)
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Multiplying Eq. (4.12) by its adjoint, with µ in the former replaced by ν, we obtain

the following expression for the first of the matrix elements in Eq. (4.11):

〈ei|∂µρ̂∂ν ρ̂|ei〉 = ∂µei∂νei + ∂µ〈ei|(ρ̂− eiÎ)2∂ν |ei〉, (4.14)

with the eigenrelation, (ρ̂ − eiÎ)|ei〉 = 0, eliminating the other two terms in the

product. A substitution of relations (4.13) and (4.14) into Eq. (4.11) simplifies it,

particularly when the i = j terms in the double sum in Eq. (4.11) are combined with

its first sum and we note that in the remaining two, i 6= j terms of the double sum,

ei + ej = e+ + e− = 1, and e+ − e− = ∆. The QFI matrix element may thus be

expressed as

Hµν =
∑
i=±

1

ei
∂µei∂νei + 4Re

∑
i=±

1

ei
(∂µ〈ei|)(ρ̂− eiÎ)2∂ν |ei〉

+ 4∆2Re
∑
i 6=j

(
1

ei
− ei

)
〈ei|∂µ|ej〉〈ej|∂ν |ei〉. (4.15)

The first sum in expression (4.15) may be regarded as the classical part of QFI, the

second sum the contribution of quantum fluctuations of the photon state to QFI,

and the final sum an additional contribution from the pair cross-coherence, ∆ 6= 0.

From the specific forms of the eigenvalues and eigenvectors in (4.5), we see that

∂µ|e±〉 = ∓ ∂µ∆

2(1±∆)
|e±〉+

1√
2(1±∆)

(∂µ|K+〉 ± ∂µ|K−〉) . (4.16)

By successively taking the inner product of Eq. (4.16) with |e+〉 and |e−〉, we obtain

the matrix elements,

〈e+|∂µ|e+〉 =− ∂µ∆

2(1 + ∆)
+

1

2(1 + ∆)
(〈K+|+ 〈K−|)(∂µ|K+〉+ ∂µ|K−〉);

〈e−|∂µ|e+〉 =
1

2
√

1−∆2
(〈K+| − 〈K−|)(∂µ|K+〉+ ∂µ|K−〉). (4.17)

Since 〈K+|K+〉 is 1, by taking its derivative, we have

(∂µ〈K+|)|K+〉+ 〈K+|∂µ|K+〉 = 0. (4.18)
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Since the wavefunctions, 〈u|K±〉, have the form (4.3), we may express (∂µ〈K+|)|K+〉

as 〈K−|∂µ|K−〉, therefore

〈K+|∂µ|K+〉 = −〈K−|∂µ|K−〉. (4.19)

By taking the derivative of 〈K−|K+〉 = ∆, which is real due to the choice of the

phase constant φ0, we have (∂µ〈K−|)|K+〉 + 〈K−|∂µ|K+〉 = ∂µ∆. Because of the

form (4.3) of 〈u|K±〉, we have (∂µ〈K−|)|K+〉 = 〈K−|∂µ|K+〉, therefore

〈K−|∂µ|K+〉 = 〈K+|∂µ|K−〉 =
1

2
∂µ∆. (4.20)

By using (4.19) and (4.20), we may simplify the matrix elements (4.17) as,

〈e+|∂µ|e+〉 = 0; 〈e−|∂µ|e+〉 =
1√

1−∆2
〈K+|∂µ|K+〉. (4.21)

Due to the eigen-relation, ρ̂ = e+|e+〉〈e+|+e−|e−〉〈e−|, and the first relation in (4.21),

we may write

(ρ̂− e+Î)∂µ|e+〉 = e−|e−〉〈e−|∂µ|e+〉 − e+∂µ|e+〉. (4.22)

By taking the inner product of Eq. (4.22) with its adjoint, with µ in the former

replaced by ν, we obtain

(∂µ〈e+|)(ρ̂− e+Î)2∂ν |e+〉 = (e2
− − e−e+)〈e−|∂µ|e+〉∗〈e−|∂ν |e+〉

− e−e+(∂µ〈e+|)|e−〉〈e−|∂ν |e+〉+ e2
+(∂µ〈e+|)∂ν |e+〉

= −(e2
− − 2e−e+)〈e+|∂µ|e−〉〈e−|∂ν |e+〉

+ e2
+(∂µ〈e+|)∂ν |e+〉, (4.23)

in which we used the relations, (∂µ〈e+|)|e−〉 = ∂µ(〈e+|e−〉)−〈e+|∂µ|e−〉 and 〈e+|e−〉 =

0 to reach the last equality.

From formula (4.16), we may calculate (∂µ〈e+|)∂ν |e+〉 in Eq. (4.23) as
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(∂µ〈e+|)∂ν |e+〉 =

[
− ∂µ∆

2(1 + ∆)
〈e+|+

1√
2(1 + ∆)

(∂µ〈K+|+ ∂µ〈K−|)

]

×

[
− ∂ν∆

2(1 + ∆)
|e+〉+

1√
2(1 + ∆)

(∂ν |K+〉+ ∂ν |K−〉)

]
=− ∂µ∆ ∂ν∆

4(1 + ∆)2

+
1

2(1 + ∆)
(∂µ〈K+|+ ∂µ〈K−|) (∂ν |K+〉+ ∂ν |K−〉) , (4.24)

in which to arrive at the last equality we used expression (4.5) for the eigenstate |e+〉

and the first relation in Eq. (4.21) and its Hermitian adjoint to make the simplifica-

tions,

〈e+|(∂ν |K+〉+∂ν |K−〉) =
1√

2(1 + ∆)
∂ν∆; (∂µ〈K+|+∂µ〈K−|)|e+〉 =

1√
2(1 + ∆)

∂µ∆.

(4.25)

Interchanging e+ and e− everywhere in Eq. (4.23) yields the second matrix element

we need,

(∂µ〈e−|)(ρ̂−e−)2∂ν |e−〉 = −(e2
+−2e−e+)〈e−|∂µ|e+〉〈e+|∂ν |e−〉+e2

−(∂µ〈e−|)∂ν |e−〉,

(4.26)

in which the last of the matrix elements is given by replacing ∆ by −∆ and |K−〉 by

−|K−〉 in Eq. (4.24),

(∂µ〈e−|)∂ν |e−〉 = − ∂µ∆ ∂ν∆

4(1−∆)2
+

1

2(1−∆)
(∂µ〈K+| − ∂µ〈K−|) (∂ν |K+〉 − ∂ν |K−〉) .

(4.27)

Since K±(u) are mutually complex-conjugate phase exponentials over the aper-

ture, it follows that (∂µ〈K+|)∂ν |K−〉 = (∂µ〈K−|)∂ν |K+〉∗ and (∂µ〈K+|)∂ν |K+〉 =

(∂µ〈K−|)∂ν |K−〉∗, the latter being already real, the last part of expression (4.24)
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reduces further. Substituting the so-reduced from of this expression into relation

(4.23) and the resulting expression into form (4.15) for the QFI matrix element and

noting from relation (4.5) that ∂µei∂µei = (1/4)∂µ∆∂ν∆, i = ±, yields an exact

cancellation of all ∂µ∆∂ν∆ terms and yields the following simplified expression for

the QFI matrix element:

Hµν =− 4

e+

Re
{

(e2
− − 2e−e+)〈e+|∂µ|e−〉〈e−|∂ν |e+〉

}
− 4

e−
Re
{

(e2
+ − 2e−e+)〈e−|∂µ|e+〉〈e+|∂ν |e−〉

}
+ 4Re[(∂µ〈K+|)∂ν |K+〉] + 4∆2Re

∑
i 6=j

(
1

ei
− ei

)
〈ei|∂µ|ej〉〈ej|∂ν |ei〉.

(4.28)

The first two terms and the last term on the RHS of Eq. (4.28) may be combined

and simplified with the second identity in Eq. (4.21), and noting that e2
− − 2e+e− =

(e+− e−)2− e2
+ = ∆2− e2

+ and analogously e2
+−2e+e− = ∆2− e2

− to derive the more

compact result,

Hµν = 4 [(∂µ〈K+|)∂ν |K+〉+ 〈K+|∂µ|K+〉〈K+|∂ν |K+〉] . (4.29)

By using expression (4.3) for 〈u|K+〉, we may evaluate Eq. (4.29) in terms of the

gradient of the phase function,

Ψ(u; `) = 2πl⊥ · u + πlzu
2, (4.30)

independently of φ0 as

Hµν = 4 [〈∂µΨ∂νΨ〉 − 〈∂µΨ〉〈∂νΨ〉] , (4.31)

where angular brackets now denote averages over the modulus squared aperture

function, |P (u)|2.

Form (4.31) of QFI underscores the fundamental role of the correlations of the

wavefront gradient in the aperture in controlling the error of estimation of the pair
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separation. For a clear circular aperture, to which we restrict attention in the rest

of this chapter and for which |P (u)|2 is 1/π times its indicator function, simple

integrations yield the following averages:

〈ui〉 = 0; 〈uiuj〉 =
δij
4

; 〈u2〉 =
1

2
; 〈u4〉 =

1

3
; i, j = x, y, (4.32)

and thus the following purely diagonal form of the per-photon 3D QFI matrix:

H(lx, ly, lz) =


4π2 0 0

0 4π2 0

0 0
π2

3

 , (4.33)

which is independent altogether of the 3D pair-separation coordinates.

We next show that QFI for localizing a single source, say the one located at

+(l⊥, lz), is identical to that we have just obtained for 3D pair separation. For this

problem, only the middle term in expression (4.15) contributes, since ρ̂ = |K+〉〈K+|

has a single fixed non-zero eigenvalue, e+ = 1, with eigenstate |e+〉 = |K+〉, and

(ρ̂− Î)2 = Î − |K+〉〈K+|. In view of these relations and normalization, 〈K+|K+〉 =

1, which requires that (∂µ〈K+|)|K+〉 = −〈K+|∂µ|K+〉, the resulting QFI becomes

identical to Eq. (4.29) for QFI for source-pair separation. The equality of the QFI

matrices for source localization and pair separation shows that the general problem

is one of estimating the photon state, independent of the nature of its emitter.

4.3 Achieving QFI in Two Special Cases

In this section we show that QCRB is achievable via complete orthonormal wavefront

projections in two special cases of either a purely transversely separated or axially

separated source pair. For sources in the same transverse plane, for which lz = 0,

consider an orthonormal basis, A = {Amn(u)|m,n ∈ Z}, of states in the aperture
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plane obeying the condition, |〈K+|Amn〉| = |〈K−|Amn〉|, ∀m,n. Since 〈u|K+〉 =

〈u|K−〉∗, this condition is met by any real basis. The probability P
(A)
mn of detecting

the photon in Amn state, which is given by 〈Amn|ρ̂|Amn〉, may then be expressed as

P
(A)
mn = |〈K+|Amn〉|2, from which we have the CFI matrix elements,

Jµν [A] =
∑
m,n

∂µP
(A)
mn ∂νP

(A)
mn

P
(A)
mn

= 4
∑
m,n

∂µ|〈Amn|K+〉| ∂ν |〈Amn|K+〉|. (4.34)

If we assume further that the phases of 〈K+|Amn〉 have no l⊥ dependence, then

Eq. (4.34) reduces to

Jµν [A] = 4
∑
m,n

(∂µ〈K+|)|Amn〉〈Amn|∂ν |K+〉 = 4(∂µ〈K+|)∂ν |K+〉. (4.35)

with the second equality following from the completeness relation,

∑
m,n

|Amn〉〈Amn| = Î .

For µ, ν = x, y, Jµν [A] matches QFI in expression (4.29) since for the choice, φ0 = 0,

we make to render the phases of 〈K+|Amn〉 independent of l⊥, 〈K+|∂µ|K+〉, vanishes

identically for any inversion symmetric aperture.

The orthonormal sine-cosine Fourier basis states in polar coordinates, (u, φ),

CCmn(u) =
√

cmcn
π

cos(2πmu2) cosnφ, m, n = 0, 1, . . . ;

CSmn(u) =
√

cmcn
π

cos(2πmu2) sinnφ, m = 0, 1, . . . , n = 1, 2, . . . ;

SCmn(u) =
√

cmcn
π

sin(2πmu2) cosnφ, m = 1, 2, . . . , n = 0, 1, . . . ;

SSmn(u) =
√

cmcn
π

sin(2πmu2) sinnφ, m, n = 1, 2, . . . ;

(4.36)

with cn = 2 − δn0, constitute one such basis that achieves QFI for the case of pure

transverse pair separation as their overlap integrals with the photon wavefront of each

source can be readily shown in Appendix E to have phases that are independent of

that separation.
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For the source pair purely separated along the optical axis, i.e., l⊥ = 0, only the

n = 0 subset of the sine-cosine basis, as we need no angular localization, achieves

QCRB w.r.t. lz, as we show next. The relevant probability amplitudes are

〈Am0|K+〉 =
1√
π

∫ 1

0

du u exp(−iπlzu2)Am0(u)

=
1

2
√
π

exp

(
−iπ lz

2

)∫ 1/2

−1/2

dv cos(πlzv)Am0(
√
v + 1/2), (4.37)

with A = CC, SC. We used the variable transformation, v = u2 − 1/2, followed by a

symmetrization of the resulting integrand to reach the second equality in Eq. (4.37)

that involves a purely real integral. In view of the form (4.37), we have |〈Am0|K+〉| =

exp(iπlz/2)〈Am0|K+〉, which allows us, analogously to Eq. (4.34) with µ = ν = z, to

express FI w.r.t. lz as

Jzz[A] =4
∑
m

∣∣∂z|〈Am0|K+〉|
∣∣2

=4
∑
m

[
∂z(〈K+|)|Am0〉 − i(π/2)〈K+|Am0〉

]
×
[
〈Am0|∂z|K+〉+ i(π/2)〈Am0|K+〉

]
=4
[
∂z(〈K+|)|∂z|K+〉 − i(π/2)〈K+|∂z|K+〉

+ i(π/2)(∂z|K+)|K+〉+ (π/2)2
]

=4
[
∂z(〈K+|)|∂z|K+〉 − π2/4

]
=4
[
∂z(〈K+|)|∂z|K+〉+ 〈K+|∂z|K+〉2

]
(4.38)

in which we used the completeness of the |Am0〉 states over the aperture for φ-

invariant wavefunctions like 〈u|K+〉 characteristic of an axially separated source pair

and relations, 〈K+|∂z|K+〉 = (∂z〈K+|)|K+〉∗ = −iπ〈u2〉 = −iπ/2, to derive the

various expressions. We see from expression (4.29) that the {Am0|A = CC, SC, m =

0, 1, . . .} basis achieves QFI w.r.t. lz for an axially separated source pair. More

generally, any real basis of orthonormal projections, {|Bm〉}, for which the equality,

|〈Bm|K+〉| = |〈Bm|K−〉|, certainly holds, will achieve QFI.
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4.4 Achieving QFI in the Limit of Small Separa-

tions

In this section we show that projections that are well matched to the linear tilt and

quadratic defocus parts of the aperture phase function, Ψ(u), given by Eq. (4.30),

can achieve full 3D QFI in the limit of small separations, l⊥, lz << 1. Let us consider

aperture-plane wavefront projections into the first four Zernike basis functions [50],

Z1 =
1√
π
, Z2 =

2√
π
u cosφ, Z3 =

2√
π
u sinφ, Z4 =

√
3

π
(2u2 − 1). (4.39)

We see that Z2 and Z3 correlate perfectly with the tilt phases corresponding to the x

and y components of the transverse separation vector, l⊥, and may thus be regarded

as matched filters [51] for the latter. By contrast, Z1 and Z4 are both partially

matched to the quadratic pupil phase corresponding to the axial separation, lz, with

their probabilities remaining finite when lz → 0. The imperfect match of the latter

with a single projection mode, since each of Z1 and Z4 has a nonvanishing overlap

integral with the quadratic pupil phase function, causes striking differences, as we

shall see, in the estimation error bounds that are achievable in the limit of vanishing

separation.

The probability of detecting the photon in Zernike mode, Zn, may be expressed

as

Pn =

[∫
d2uP (u)Zn(u) cos Ψ

]2

+

[∫
d2uP (u)Zn(u) sin Ψ

]2

, (4.40)

for n =1, 2, 3, and 4, with the probability of finding it in the remaining, unmeasured

modes being

P̄ = 1− P1 − P2 − P3 − P4. (4.41)
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Figure 4.1: Plots of QFI (dashed line) and CFI w.r.t. lx(y) for ly(x) = 0.025 (lower
curve) and ly(x) = 0.25 (upper curve) and for lz = 0.025 (left panels) and lz = 0.25
(right panels).

For a clear circular aperture, for which P (u) is simply 1/
√
π times the indicator

function of the unit-radius aperture, and for small separation coordinates, l⊥, lz <<

1, we retain only the first two orders in the Taylor expansions of the sin Ψ and cos Ψ in

functions Eq. (4.40). Orthonormality of the Zernikes implies
∫
d2uP (u)Zn(u) = δn1,

from which it follows that up to the lowest two orders in Ψ and thus in `, Pn has the

form,

Pn =

 1− (〈Ψ2〉 − 〈Ψ〉2) n = 1

π
[
〈ZnΨ〉2 + 1

4
〈ZnΨ2〉2 − 1

3
〈ZnΨ〉〈ZnΨ3〉

]
n ≥ 2,

(4.42)
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Figure 4.2: Plots of QFI (dash line) and CFI w.r.t. lz, for four different values of l⊥,
namely 0.025, 0.05, 0.125, and 0.25.

in which angular brackets denote averages over the clear aperture. Using expressions

(4.30) for the wavefront phase, and the Zernike modes (4.39), we may easily evaluate

these averages to obtain the probabilities to two lowest significant orders in the

separation vector, `,

Pn =



1− π2(l2⊥ + l2z/12) +O(l4⊥, l
4
z) n = 1

π2l2x[1 +O(l2⊥, l
2
z)] n = 2

π2l2y[1 +O(l2⊥, l
2
z)] n = 3

π2l2z/12 +O(l4z , l
2
z l

2
⊥, l

4
⊥) n = 4

(4.43)

Since (∂xP2)2/P2 = (∂yP3)2/P3 = 4π2[1 +O(l2z)], we see that each reaches QFI in

the limit lz → 0. By contrast, the Z4 projection contributes to FI w.r.t. lz the term,

(∂zP4)2/P4, which is of form (π2/3){l2z/[l2z(1 + O(l2⊥)) + O(l4⊥)]} and vanishes in the
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limit lz → 0 if l⊥ 6= 0. The same form implies, however, that for l⊥ << 1, FI as a

function of lz rises to a value comparable to the QFI, π2/3, over an interval of order

l2⊥. All other contributions to the various matrix elements of FI are negligibly small

in the limit of vanishing `, so the inverse of the diagonal elements of FI determine

the corresponding CRBs to the most significant order in `.

In Figs. (4.1) and (4.2) we show the numerical evaluation of CFI matrix elements

for the proposed wavefront projection protocol with the first four Zernike modes. In

Fig. (4.1) we display the CFI for transverse separations of the source pair along the

x and y axes (top and bottom panels) for two values of their axial separation (left

and right panels) and two values of the other transverse coordinate (upper and lower

curves). In Fig. (4.2) we display the CFI for the axial separation of the source pair

for four values of their transverse separation. The corresponding diagonal elements

of the QFI matrix are shown in dashed line for comparison. Our earlier assertion

about the attainability of the QFI in small separation limit is clearly verified with

these two figures.

4.5 Maximum-Likelihood Estimation of Pair Sep-

aration

Paúr et al. showed that wavefront projections could be achieved by digital holo-

graphic techniques [28]. Let us consider encoding the sum,
∑N

n=1 Zn(u) cos(qn ·u),

as the distribution of the amplitude transmittance of a plate. Let the imaging wave-

front, which is an incoherent superposition of the photon wavefunctions 〈u|K±〉 and

carries M photons, be incident on such a plate that is placed in the aperture, and

then optically focused on a sensor. Let us note that cos(qn ·u) occurring in the plate

transmittance function may be expressed as 1/2 times the sum of two exponentials,

80



Chapter 4. Achieving Quantum Limited 3D Super-resolution

exp(±qn ·u). As a result, the plate will cause the M photons to divide into N pairs

of oppositely located spots, with the nth pair of spots corresponding to an obliquely

propagating wave pair that carries the Zn projection of the incident wavefront along

the spherical-angle pair, (θn,±φn), with θn = sin−1(qn/k), φn = tan−1(qny/qnx). The

numbers of photons detected at the central pixels of the spots taken pairwise furnish

estimates of the probabilities of the wavefront being in the corresponding modes. The

remaining photons that are not detected provide an estimate of the wavefront being

in the remaining states of a complete basis of which the subset, {Zn, n = 1, . . . , N},

defines the observed states. According to Appendix F, the probability of detecting

m1, . . . ,mN photons in the N projective channels is given by the multinomial (MN)

distribution, which for perfect quantum-efficiency detectors has the form

Prob(m̄, {mn}|{Pn}) = M !
P̄ m̄

m̄!

N∏
n=1

(Pn)mn

mn!
, (4.44)

in which m̄ = M−
∑N

n=1mn and P̄ = 1−
∑N

n=1 Pn are, respectively, the number and

probability of undetected photons. Here N = 4. Expressing the Pn in terms of the

separation coordinates, lx, ly, lz, we performed maximum-likelihood (ML) estimation

by numerically minimizing − ln Prob over the separation coordinates using Matlab’s

fminunc minimizer, for various separations, 20,000 noisy frames, each with M = 106

photons and generated with Matlab’s mnrnd code, our starting guess is always chosen

to be lx = ly = lz = 0.25.

In Fig. 4.3 we plot the per-photon CRBs w.r.t. lx (top panels) and ly (bottom

panels) for two different values of their axial separation, lz = 0.025 (left panels)

and 0.25 (right panels). In each plot, we chose two different values of the other

transverse coordinate, namely 0.025 and 0.25, displayed with two different curves in

each figure. Note that CRB w.r.t. each transverse-separation coordinate increases

with increasing value of the other coordinate due to a cross-talk between the two

transverse coordinates. Changing the longitudinal separation, however, has a less

pronounced effect on those curves. As the pair separation increases, using only the
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Figure 4.3: Plots of CRBs w.r.t. lx(y) for ly(x) = 0.025 (lower curve) and ly(x) = 0.25
(upper curve) and for lz = 0.025 (left panels) and lz = 0.25 (right panels). Variances
obtained from ML estimation are shown by different marker symbols. Image taken
from Ref. [48].

first four Zernikes is insufficient to estimate l⊥, which accounts in part for the rising

CRB curves. The discrete points identified by marker symbols are the results of the

sample-based variance (per photon) of the ML estimate of the separation coordinates

that we obtained in our numerical simulations. Note that the results of simulation

are consistently lower than the corresponding CRB curves, which is most discernible

in the left panels (lz = 0.025). This is because the ML estimates of the separation

coordinates are biased, particularly that for lz, and standard CRBs do not provide

the correct lower bounds without including bias-gradient based modifications [14, 15].
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In Fig. 4.4 we plot the per-photon CRBs w.r.t. lz for four different values of l⊥.

We observe divergent behavior as lz approaches zero, corresponding to the vanishing

of Jzz[Z] whenver l⊥ 6= 0 that we noted earlier. This behavior is quite in contrast

with the rather weak dependence on lz which we observed in Fig. 4.3 for the CRBs

w.r.t. l⊥. The cross-talk between the uncertainties in simultaneously estimating

the three pair-separation coordinates inherently present in the small set of Zernike

projections increases the CRB for the lz estimation as l⊥ increases. The simulated

values of the variance of the estimator of lz, indicated by marker symbols, agree well

with the theoretical CRB values.
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4.6 Conclusions

In this Chapter we have treated the fundamental limits in estimating the full 3D

separation vector of a balanced incoherent source pair with known centroid by cal-

culating the corresponding QFI matrix and proposing specific projection bases for

which the corresponding QCRB can be saturable in special cases of pure lateral and

axial separations and in the limit of small separations. We have also used maximum-

likelihood estimation with Zernike channels to confirm the predicted attainability of

the bounds. The fact that the QCRBs are saturated by purely classical measure-

ments using Zernike projections, while surprising, parallels previous results for 2D

pair super-resolution [27].
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Chapter 5

Quantum Limited 3D pair

Super-localization and

Super-resolution

5.1 Introduction

In the previous Chapter we extended the analysis of quantum limited estimation of

the separation of a pair of equally bright incoherent point sources from one and two

transverse dimensions to include the third, axial dimension, when the centroid of

the pair is well located in advance. The quantum limit on the variance of unbiased

estimation of the three-dimensional (3D) separation vector, as determined by the

inverse of the QFI matrix [1, 2, 3], can be simply expressed in terms of the correlation

of the wavefront phase gradients in the imaging aperture. Because of the linearity of

the wavefront phase with respect to (w.r.t) the pair-separation vector, the QFI matrix

and its inverse, QCRB, both have constant values independent of the separation of

the sources.
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In this Chapter we will extend our work further to the more realistic situation

that the 3D centroid location of the source pair along with their 3D separation are

both unknown and need to be estimated. We will calculate the 6×6 QFI matrix and

the corresponding QCRB for joint estimation of the 3D position of the centroid and

the separation of a pair of equally bright sources. We will then discuss the fundamen-

tal estimation-theoretic tradeoffs between the two tasks of centroid and separation

estimations. We will also discuss the impact of centroid localization uncertainty on

the classical wavefront projection approach to realize quantum limited estimation of

the pair separation vector. The main work in this Chapter was published in Ref. [4].

5.2 QFI for Jointly Estimating the Centroid and

the Separation of a Pair of Incoherent Point

Sources with Equal Brightness

As we saw in the previous Chapter, the QFI matrix, H, is defined to have elements

Hµν
def
= ReTr (ρ̂L̂µL̂ν), where the density operator ρ̂ has the form,

ρ̂ =
1

2

(
|K̃+〉〈K̃+|+ |K̃−〉〈K̃−|

)
, (5.1)

for a photon emitted by two incoherent point sources with equal brightness and

captured by the imaging aperture. The six parameters, lx, ly, lz and sx, sy, sz of

interest in this Chapter are the three Cartesian components of the normalized pair-

semi-separation and pair-centroid position vectors, ` and s, respectively. Here s is

defined in the same way as ` is in previous Chapter. The two pure single-photon

states, |K̃±〉, are emitted by the two point sources located at s±`, respectively. The

corresponding normalized wavefunctions have the following representations over the
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aperture (see Appendix G):

〈u|K̃±〉 = exp(±iφ0)P (u) exp(−i2πs⊥ · u− iπszu2)

× exp[∓iΨ(u; `)], (5.2)

in which P (u) is a general pupil function obeying the normalization condition,∫
d2u |P (u)|2 = 1, (5.3)

the phase function, Ψ(u; `), has the form,

Ψ(u; `) = 2πu · l⊥ + πu2lz, (5.4)

and the phase constant, φ0, is properly chosen to make the inner product, ∆
def
=

〈K̃−|K̃+〉, real, as before. In view of relations (5.2) and (5.4) for the wavefunction

and Ψ, this inner product may be expressed as

∆ = exp(−2iφ0)

∫
d2u |P (u)|2 exp(i4πl⊥ · u + i2πlzu

2), (5.5)

which like the phase constant, φ0, is independent of the centroid position vector, s.

For the clear, unit-radius circular aperture, P (u) is simply 1/
√
π times the indicator

function for the aperture.

The QFI matrix elements for only estimating the separation parameters, when

the centroid position is perfectly known in advance, were shown in the previous

Chapter to be,

H(ll)
µν = 4

[
〈∂(l)
µ Ψ∂(l)

ν Ψ〉 − 〈∂(l)
µ Ψ〉〈∂(l)

ν Ψ〉
]
, (5.6)

where angular brackets here denote weighted aperture averages, with |P (u)|2 being

the weight function.

The minimum error of simultaneously estimating ` and s is given by the inverse

of a 6× 6 QFI matrix of which H(ll) given by expression (5.6) may be regarded as a
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3 × 3 diagonal block. The full QFI matrix may be organized as a collection of four

3× 3 blocks,

H =

 H(ll) H(ls)

H(sl) H(ss)

 , (5.7)

with matrix elements defined as

H(ab)
µν = H(ba)

νµ

= ReTr (ρ̂L̂(a)
µ L̂(b)

ν ); a, b = l, s; µ, ν = x, y, z. (5.8)

The remaining matrix elements, H
(ls)
µν , H

(ss)
µν , follow from their general form,

H(ab)
µν =

∑
i=±

1

ei
∂(a)
µ ei∂

(b)
ν ei

+ 4Re
∑
i=±

1

ei
(∂(a)
µ 〈ei|)(ρ̂− eiÎ)2∂(b)

ν |ei〉

+ 4∆2Re
∑
i 6=j

(
1

ei
− ei

)
〈ei|∂(a)

µ |ej〉〈ej|∂(b)
ν |ei〉, (5.9)

in which ∂
(l)
µ

def
= ∂/∂lµ and ∂

(s)
µ

def
= ∂/∂sµ denote partial derivatives w.r.t. lµ and

sµ, respectively, and Î is the identity operator. The eigenvalues, e±, and associated

orthonormal eigenstates, |e±〉, are easily derived,

e± =
1±∆

2
, |e±〉 =

1√
2(1±∆)

(
|K̃+〉 ± |K̃−〉

)
. (5.10)

Since ρ̂ = e+|e+〉〈e+|+ e−|e−〉〈e−|, we may write

(ρ̂− e+Î)∂ν |e+〉 =e+[|e+〉〈e+|∂ν |e+〉 − ∂ν |e+〉]

+ e−|e−〉〈e−|∂ν |e+〉, (5.11)

in which ∂ν denotes a partial derivative w.r.t. any of the six parameters being

estimated. Multiplying Eq. (5.11) by its Hermitian adjoint (h.a.) on the left, with

ν replaced by µ in the latter, we reach one of the two inner products in the second
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sum of Eq. (5.9). Two of the nine terms of which this product is comprised vanish

due to the orthogonality relation, 〈e+|e−〉 = 0. Two other terms cancel out exactly,

and the remaining five combine neatly into a set of three distinct terms,

(∂µ〈e+|)(ρ̂− e+Î)2∂ν |e+〉 = −(e2
− − 2e+e−)〈e+|∂µ|e−〉

× 〈e−|∂ν |e+〉+ e2
+〈e+|∂µ|e+〉〈e+|∂ν |e+〉

+ e2
+(∂µ〈e+|)∂ν |e+〉. (5.12)

Noting that ρ̂ is formally invariant under an interchange of the + and − subscripts

in relation (5.12), we have

(∂µ〈e−|)(ρ̂− e−Î)2∂ν |e−〉 = −(e2
+ − 2e+e−)〈e−|∂µ|e+〉

× 〈e+|∂ν |e−〉+ e2
−〈e−|∂µ|e−〉〈e−|∂ν |e−〉

+ e2
−(∂µ〈e−|)∂ν |e−〉. (5.13)

Since ∆ does not depend on s, taking the partial derivative of |e+〉, given by

expression (5.10), w.r.t. any component of s, and taking the inner product of the

resulting expression with the bra 〈e±|, obtained by taking the h.a. of expression

(5.10), gives the identities:

〈e+|∂(s)
µ |e+〉 =

〈K̃+|∂(s)
µ |K̃+〉+ iIm〈K̃+|∂(s)

µ |K̃−〉
(1 + ∆)

;

〈e−|∂(s)
µ |e+〉 =

Re〈K̃+|∂(s)
µ |K̃−〉√

1−∆2
. (5.14)

To arrive at these identities, we utilized the relations, 〈K̃+|∂(s)
µ |K̃+〉 = 〈K̃−|∂(s)

µ |K̃−〉

and 〈K̃+|∂(s)
µ |K̃−〉 = −〈K̃−|∂(s)

µ |K̃+〉∗, that follow from form (5.2) of the states |K̃±〉.

The identities,

〈e+|∂(l)
µ |e+〉 = 0, 〈e−|∂(l)

µ |e+〉 =
1√

1−∆2
〈K̃+|∂µ|K̃+〉, (5.15)

proved similarly in the previous chapter, and four more obtained by the interchange of

|e+〉 and |e−〉 in Eqs. (5.14) and (5.15), which entails the substitutions |K̃±〉 → ±|K̃±〉
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and ∆→ −∆ according to expressions (5.10) for |e±〉, namely

〈e−|∂(s)
µ |e−〉 =

〈K̃+|∂(s)
µ |K̃+〉 − iIm〈K̃+|∂(s)

µ |K̃−〉
(1−∆)

;

〈e+|∂(s)
µ |e−〉 = −Re〈K̃+|∂(s)

µ |K̃−〉√
1−∆2

, (5.16)

and

〈e−|∂(l)
µ |e−〉 = 0, 〈e+|∂(l)

µ |e−〉 =
1√

1−∆2
〈K̃+|∂µ|K̃+〉, (5.17)

comprise the full set of identities that can simplify expression (5.9) for the elements

of the blocks H(sl) and H(ss).

5.2.1 Vanishing of the Off-diagonal QFI Block, H(sl)

Since e± are independent of s, it follows that the first sum on the right hand side

in expression (5.9) vanishes identically, while the other two sums may be combined

into one in view of expressions (5.12) and (5.13) for the two terms of the second

sum. Using the identities, e2
∓ − 2e+e− = ∆2 − e2

±, we may thus obtain the following

expression for the matrix elements of the off-diagonal block H(sl):

H(sl)
µν = 4(1−∆2)Re

∑
i 6=j

ei〈ei|∂(s)
µ |ej〉〈ej|∂(l)

ν |ei〉+4Re
∑
i=±

ei(∂
(s)
µ 〈ei|)∂(l)

ν |ei〉. (5.18)

From identities (5.14)-(5.17), we see that 〈e±|∂(s)
µ |e∓〉 are real, while 〈e±|∂(l)

ν |e∓〉

are purely imaginary, since 〈K̃+|∂(l)
µ |K̃+〉 is purely imaginary due to the form (5.2)

of the wavefunctions. Consequently, the first term in expression (5.18) vanishes

identically.

Using form (5.10) of the eigenstates and noting that ∆ is independent of the
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centroid position vector s, we have

∂(s)
µ 〈e±| =

1√
2(1±∆)

(
∂(s)
µ 〈K̃+| ± ∂(s)

µ 〈K̃−|
)

;

∂(l)
ν |e±〉 =∓ ∂

(l)
ν ∆

2(1±∆)
|e±〉+

1√
2(1±∆)

(
∂(l)
ν |K̃+〉 ± ∂(l)

ν |K̃−〉
)
. (5.19)

Taking the inner product of the above two states, multiplying the product by e± =

(1 ± ∆)/2, and then adding the two terms that result corresponding to the upper

and lower signs, we may express the second sum in Eq. (5.18), as∑
i=±

ei(∂
(s)
µ 〈ei|)∂(l)

ν |ei〉 =
1

2

[
(∂(s)
µ 〈K̃+|)∂(l)

ν |K̃+〉+ (∂(s)
µ 〈K̃−|)∂(l)

ν |K̃−〉
]

− ∂
(l)
ν ∆

4

[
(∂(s)
µ 〈e+|)|e+〉 − (∂(s)

µ 〈e−|)|e−〉
]
, (5.20)

where the terms inside the second bracket follow from the expression for ∂
(s)
µ 〈e±|

given in Eq. (5.19). From the form of the wavefunctions (5.2), it follows that the two

terms inside the first bracket on the RHS of Eq. (5.20) are exactly negative of each

other, so their sum vanishes, which simplifies Eq. (5.20) to the form

∑
i=±

ei(∂
(s)
µ 〈ei|)∂(l)

ν |ei〉 = −∂
(l)
ν ∆

4

[
(∂(s)
µ 〈e+|)|e+〉 − (∂(s)

µ 〈e−|)|e−〉
]
. (5.21)

Since 〈e±|e±〉 = 1, we have the identity, ∂
(s)
µ (〈e±|e±〉) = 0, which from the product

rule of differentiation is equivalent to the relation,

(∂(s)
µ 〈e±|)|e±〉 = −〈e±|∂(s)

µ |e±〉. (5.22)

Using the complex-conjugation property of the inner product, we may write the left-

hand side of Eq. (5.22) as 〈e±|∂(s)
µ |e±〉∗, which when equated to its RHS implies that

(∂
(s)
µ 〈e±|)|e±〉 is purely imaginary. Consequently, expression (5.21) is purely imagi-

nary, and thus H
(sl)
µν , which is the proportional to its real part, vanishes identically,

H(sl)
µν = 0. (5.23)
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There is no increase of the minimum error of unbiased joint estimation of the pair

centroid-location and separation vectors over that of unbiased independent estima-

tion of the two vectors.

5.2.2 Pair-centroid-localization QFI

The matrix elements of the centroid-localization QFI, H(ss), are given by replacing

all ∂(l) by ∂(s) in Eq. (5.18) and then adding the sum,
∑

i=± ei〈ei|∂
(s)
µ |ei〉〈ei|∂(s)

ν |ei〉,

arising from the non-vanishing second terms on the RHS of Eqs. (5.12) and (5.13),

H(ss)
µν =4(1−∆2)Re

∑
i 6=j

ei〈ei|∂(s)
µ |ej〉〈ej|∂(s)

ν |ei〉

+4Re
∑
i=±

ei
[
〈ei|∂(s)

µ |ei〉〈ei|∂(s)
ν |ei〉+ (∂(s)

µ 〈ei|)∂(s)
ν |ei〉

]
. (5.24)

The matrix elements, 〈e+|∂(s)
µ |e±〉 and 〈e−|∂(s)

µ |e±〉, were already evaluated earlier

in Eqs. (5.14) and (5.16). The remaining matrix elements, (∂
(s)
µ 〈e±|)∂(s)

ν |e±〉, are

obtained by taking appropriate derivatives |e±〉 in terms of the pure emission states

and noting that ∆ is independent of all centroid-location coordinates. These matrix

elements may thus be expressed as

(∂(s)
µ 〈e±|)∂(s)

ν |e±〉 =
1

2(1±∆)

(
∂(s)
µ 〈K̃+| ± ∂(s)

µ 〈K̃−|
)(

∂(s)
ν |K̃+〉 ± ∂(s)

ν |K̃−〉
)
. (5.25)

Since e± = (1/2)(1±∆), substituting the last of the matrix elements in Eqs. (5.14)

and (5.16) into the first sum in Eq. (5.24) reduces it to the form,

4(1−∆2)Re
∑
i 6=j

ei〈ei|∂(s)
µ |ej〉〈ej|∂(s)

ν |ei〉 = −4Re〈K̃+|∂(s)
µ |K̃−〉Re〈K̃+|∂(s)

ν |K̃−〉. (5.26)

Substituting the first of the matrix elements in Eqs. (5.14) and (5.16) into the first

part of the second sum on the RHS of Eq. (5.24) and then taking its real part
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evaluates it to the form,

4Re
∑
i=±

ei〈ei|∂(s)
µ |ei〉〈ei|∂(s)

ν |ei〉

=− 2

1 + ∆

(
Im〈K̃+|∂(s)

µ |K̃+〉+ Im〈K̃+|∂(s)
µ |K̃−〉

)(
Im〈K̃+|∂(s)

ν |K̃+〉+ Im〈K̃+|∂(s)
ν |K̃−〉

)
− 2

1−∆

(
Im〈K̃+|∂(s)

µ |K̃+〉 − Im〈K̃+|∂(s)
µ |K̃−〉

)(
Im〈K̃+|∂(s)

ν |K̃+〉 − Im〈K̃+|∂(s)
ν |K̃−〉

)
=− 4

1−∆2

(
Im〈K̃+|∂(s)

µ |K̃+〉 Im〈K̃+|∂(s)
ν |K̃+〉+ Im〈K̃+|∂(s)

µ |K̃−〉 Im〈K̃+|∂(s)
ν |K̃−〉

)
+

4∆

1−∆2

(
Im〈K̃+|∂(s)

µ |K̃+〉 Im〈K̃+|∂(s)
ν |K̃−〉+ Im〈K̃+|∂(s)

ν |K̃+〉 Im〈K̃+|∂(s)
µ |K̃−〉

)
,

(5.27)

in which we used the fact that 〈K̃±|∂(s)
µ |K̃±〉 are purely imaginary quantities. Finally,

substituting the matrix element (5.25) into the second part of the second sum in

Eq. (5.24) also simplifies it,

4Re
∑
i=±

ei(∂
(s)
µ 〈ei|)∂(s)

ν |ei〉 =2
[
(∂(s)
µ 〈K̃+|)∂(s)

ν |K̃+〉+ (∂(s)
µ 〈K̃−|)∂(s)

ν |K̃−〉
]

=4(∂(s)
µ 〈K̃+|)∂(s)

ν |K̃+〉, (5.28)

in which we used the fact that the matrix elements, (∂
(s)
µ 〈K̃±|)∂(s)

ν |K̃±〉, are both real

and equal to each other as both wavefunctions 〈u|K̃±〉 are pure exponential phase

functions over the aperture, with an identical dependence on the centroid location

vector, s. Substituting expressions (5.26)-(5.28) into Eq. (5.24) generates the final
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expression for the centroid-localization QFI, H(ss),

H(ss)
µν = 4

[
(∂(s)
µ 〈K̃+|)∂(s)

ν |K̃+〉

− Re〈K̃+|∂(s)
µ |K̃−〉Re〈K̃+|∂(s)

ν |K̃−〉
]

− 4

1−∆2

(
Im〈K̃+|∂(s)

µ |K̃+〉Im〈K̃+|∂(s)
ν |K̃+〉

+ Im〈K̃+|∂(s)
µ |K̃−〉Im〈K̃+|∂(s)

ν |K̃−〉
)

+
4∆

1−∆2

(
Im〈K̃+|∂(s)

µ |K̃+〉Im〈K̃+|∂(s)
ν |K̃−〉

+ Im〈K̃+|∂(s)
ν |K̃+〉Im〈K̃+|∂(s)

µ |K̃−〉
)
. (5.29)

In Eq. (5.29), all matrix elements involving only |K̃+〉 and its derivatives, but not

|K̃−〉, are easily evaluated as simple aperture averages of powers of aperture coor-

dinates, while the matrix element 〈K̃+|∂(s)
µ |K̃−〉 may be evaluated in the aperture

plane using the wavefunctions (5.2) and ∆ given by relation (5.5),

〈K̃+|∂(s)
µ |K̃−〉 = −exp(−i2φ0)

2π

∫
A

d2u

× ∂(l)
µ [exp(4iπu · l⊥ + 2iπu2lz)]

=−
∆
∫
A
d2u ∂

(l)
µ [exp(4iπu · l⊥ + 2iπu2lz)]

2
∫
A
d2u exp(4iπu · l⊥ + 2iπu2lz)

. (5.30)

Eq. (5.29) for the QFI matrix elements for estimating the centroid location

coordinates alone is independent of those coordinates. This is fundamentally a con-

sequence of the global translational invariance of a shift-invariant imager, as the

centroid location vector, s, can be changed by an arbitrary additive constant vec-

tor by a mere change of the origin of the coordinate system, under which the pair

separation vector, `, is invariant. Physically speaking, an axial refocusing and a

transverse alignment of the imager are all that are needed to place the pair centroid

at the origin in the source space, an action that cannot affect the fidelity with which

the centroid can be estimated. This QFI depends only on ` through ∆ and certain

aperture integrals.
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The off-diagonal elements of the H(ss) block do not vanish, which reflects the

interdependence of the errors of estimating the three coordinates of the pair centroid

location when estimating them simultaneously. This is in sharp contrast to the three

components of the pair-separation vector, which can be estimated independently of

each other.

Since the overall QFI matrix (5.7) is block diagonal, its inverse is obtained by

inverting each diagonal block,

H−1 =

 (
H(ll)

)−1
0

0
(
H(ss)

)−1

 , (5.31)

in which
(
H(ll)

)−1
has the value,

(
H(ll))−1 =


1

4π2 0 0

0 1
4π2 0

0 0 3
π2

 . (5.32)

5.3 Numerical Evaluation of Pair-Centroid QCRB

For the case of clear circular aperture, we numerically evaluated the elements (5.29)

of the QFI matrix H(ss) and then inverted it to compute the values of QCRB for

estimating the centroid location coordinates. In Fig. 5.1, we plot QCRB for esti-

mating sx vs lx for a number of different values of the other transverse component

of the pair-separation vector, namely ly. The curves start out close to the source-

localization QCRB of 1/(4π2) ≈ 0.0253 when the two sources are close to each other

and thus approximate a single source. They also asymptote toward the same QCRB

value for large separations, since in this limit sources can be localized individually

and their centroid thus determined to the same precision as their individual posi-

tions. For intermediate values of lx, the minimum error variance for estimating sx
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is increased due to the image blur caused by a finite aperture size when the sources

are transversely not well separated on the Abbe-Rayleigh scale, l⊥ . 0.25. Changing

lz, the axial separation of the pair, from a small value of 0.025 to 0.25 does not

improve the sx estimation error significantly, as seen in the small difference between

the curves in the left and right panels. Because of perfect x ↔ y symmetry for a

circular aperture, an identical behavior was confirmed by our numerical evaluation

of QCRB for the estimation of sy vs. ly.

Figure 5.1: Plots of QCRB for sx vs. lx for various values of ly and for two different
values of lz, namely 0.025 (left panel) and 0.25 (right panel). Image taken from Ref.
[4].

In Fig. 5.2, we display QCRB for estimating sx vs. ly. As expected, with in-

creasing ly, the minimum error variance for estimating sx decreases as the sources

get farther apart in the orthogonal direction. Once again, as the sources get well
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separated, when either lx or ly or both become large, the minimum error variance for

locating the pair centroid in the transverse plane approaches the localization QCRB,

namely 0.0253. The relative vertical positions of the curves for different values of lx

are consistent with the peaks seen in Fig. 5.1.

Figure 5.2: Plots of QCRB for sx vs. ly for two different values of lz, namely 0.025
(left panel) and 0.25 (right panel). Image taken from Ref. [4].

In Fig. 5.3, we plot QCRB for estimating sz, the axial coordinate of the pair

centroid, as a function of lz, the axial component of the pair-separation vector. The

intrinsic imprecision of estimating the axial coordinate, as reflected in the larger

axial-localization QCRB of 3/π2 ≈ 0.304 than the transverse-localization QCRB of

0.0253, is seen in the larger scatter, at the two ends of small and large axial separa-

tions, among plots for different values of l⊥, the transverse separation. Interestingly,

there are multiple values of lz for which QCRB for estimating sz has minima at the
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localization QCRB of 0.304 with increasing lz. The larger QCRB for sz than that

for sx or sy has to do with the quadratic, rather than linear, dependence of the aper-

ture phase on axial coordinates, which implies a lower overall first-order differential

sensitivity of wavefront projections to them. This fact also accounts for why the

horizontal scale of the plots for axial-coordinate estimation is larger than that for

transverse-coordinate estimation plotted in previous figures.

Figure 5.3: Plots of QCRB for sz vs. lz for five different values of l⊥. Image taken
from Ref. [4].
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5.4 Maximum-Likelihood Estimation of Pair Sep-

aration in the Presence of Centroid-Localization

Error

For small pair separations, the pair centroid can be localized in full 3D by image

based methods to a precision comparable to the corresponding QCRB, but coherent

wavefront projections are necessary to attain quantum limited estimation of the pair

separation. We envisage a two-arm hybrid experimental approach, similar to that

proposed by Tsang et al. [5], in which a beam splitter (BS) directs a fraction of

photons into one arm in which a 3D localization imager like a rotating-PSF imager

[6, 7, 8, 9], an astigmatic imager [10], a multiplane imager [11], or a radial shearing

interferometer [12] is placed to simultaneously determine the 3D centroid location

of the source pair. The remaining photons pass through a second arm with the

same holographic aperture-plane filter as that described in previous Chapter, namely∑
n Zn(u) cos qn · u, in which Zn denotes the nth Zernike polynomial [13] and qn is

the transverse offset wavevector of the nth mode.

We show results of a partial simulation of this approach to estimate the pair sepa-

ration using the maximum-likelihood (ML) estimator described in previous Chapter,

subject to a certain centroid localization error achieved in the centroid localization

arm and a fixed number, M , of photons in the holographic filter arm. The pho-

tons divide into the various pure-Zernike channels according to the probabilities,

{Pn
def
= 〈Zn|ρ̂|Zn〉 | n = 1, . . . , N}, and into the unmeasured channels with probabil-

ity, P̄ = 1 −
∑N

n=1 Pn, to yield a multinomial distribution of observed counts from

which the ML estimator can extract the separation vector. According to Appendix

H, the classical FI matrix elements per photon [14, 15] for estimating the three pair-

separation coordinates from the multinomial distribution of counts are given by the
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sum,

J (ll)
µν /M =

N∑
n=1

(∂
(l)
µ Pn) (∂

(l)
ν Pn)

Pn
+

(∂
(l)
µ P̄ ) (∂

(l)
ν P̄ )

P̄
, (5.33)

which was numerically evaluated for N = 4.
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Figure 5.4: (a) Plot of variance of estimation of lx with changing values of lx (shown
by marker symbols), with the other two l coordinates being equal to 0.025, for
σsx = σsy = 0.005; σsz = 0.01; (b) Same as (a) except lx → lz. Plots of CRBs w.r.t.
lx(z) are also shown for comparison. Image taken from Ref. [4].

In Fig. 5.4 (a), we plot the variance of the ML estimation of lx obtained from

a sample of 40 draws of s from a product-Gaussian statistical distribution with

zero means and standard deviations, σ
(s)
x = σ

(s)
y = 0.005, σ

(s)
z = 0.01, with 400

multinomial data frames for each such s sample and with 106 photons per frame.

The mean and standard deviation of these estimation variances over the 40 s draws

are denoted by the square symbols and error bars through them.

The classical CRB, which is the xx diagonal element of the inverse of the FI
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matrix (5.33), when averaged over the 40 s draws, is shown by the dot-dash curve

and that for s = 0 by the solid curve in the figure. The results of our ML estimation

track well the last curve, since we take s = 0 when extracting the estimates of `

from simulated data. The divergence of the dot-dash curve in the limit lx → 0 is

due to the fact that for sx 6= 0, neither Z2 nor another pure Zernike mode is an

exclusively matched filter [16] for lx in the limit lx → 0. For most of the range of

lx away from 0, however, the four Zernike projections furnish excellent convergence

of the variance of the separation estimate based on them to QCRB. Because of the

azimuthal symmetry of the optical system and our choice of the Zernikes, the same

results as shown in Fig. 5.4 (b) also hold for the estimation of ly.

In Fig. 5.4 (b), we display analogous curves for estimating the axial separation,

lz. An important difference from the estimation of lateral separation is that all

classical CRB curves diverge in the limit lz → 0, since no Zernike mode provides an

exclusively matched filter for the azimuthally symmetric defocus phase, as we noted

in previous Chapter. All CRB curves asymptote toward the QCRB line, however, as

lz grows.

5.5 Conclusions

In this Chapter we have calculated the fundamental quantum bounds represented by

QCRB for jointly estimating the centroid location and the separation of a balanced

incoherent point source pair in full 3D, extending the analysis of a pure 3D resolution

problem with known centroid in previous Chapter.

For a well corrected spatially invariant imaging system, we have shown that the

fundamental bounds for estimating the 3D pair-centroid location depend only on

pair-separation vector, not the centroid location vector. The quantum bounds for

separation estimation remains of the same constant form. By contrast, the quan-
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tum bound on the variance for estimating the centroid coordinates is given by a

complicated expression that can only numerically be evaluated. These two sets of

quantum-estimation bounds - one for the pair centroid coordinates and the other for

the pair separation vector - turn out, as we showed, to be statistically independent.

This is seen via the block-diagonal form of the QFI for the two sets of coordinates.

We have shown that the classical bounds for estimating the pair separation with

wavefront projection, which can saturate the quantum bounds in small separation

limits for the case of known centroid, are affected by the uncertainty in the centroid

coordinates. We have also presented simulation results for the wavefront-projection

approach with Zernike channels for maximum-likelihood estimation of the source

separation vector in the presence of finite errors of the pair centroid location. We

have seen from these simulations that the quantum-limited minimum error bounds

are achievable.
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Chapter 6

Work in Progress, Conclusions and

Future Directions

6.1 Work in Progress

6.1.1 Towards More Realistic Quantum Limited 3D Super-

localization and Super-resolution: the Unequal Bright-

ness Problem

Our very recent work in progress is to generalize the quantum Fisher information

based 3D source-pair super-localization and super-resolution analysis in the last two

Chapters to a more realistic scenario that the two incoherent point sources have

unequal intensities. The 1D unbalanced source-pair super-localization and super-

resolution problem has been discussed by Rehacek et al. with real-valued PSF [1,

2]. A careful analysis of this problem is important for any successful attempts to

generalize the pair super-resolution problem to super-resolution imaging of extended

objects with spatial intensity variations.
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The density operator for a photon emitted by an incoherent pair of unequally

bright point sources and passing through an imaging aperture is

ρ̂ = p+|K̃+〉〈K̃+|+ p−|K̃−〉〈K̃−|, (6.1)

where p+ + p− = 1. The photon wavefunctions are still given by Eq. (5.2) and the

phase constant, φ0, is again chosen to make the inner product, ∆
def
= 〈K̃−|K̃+〉, real

and positive.

To find the two non-zero eigenvalues e±, and the associated orthonormal eigen-

states, |e±〉, of ρ̂, we write |e±〉 in terms of the nonorthogonal states |K̃±〉 as

|e±〉 = α±|K̃+〉+ β±|K̃−〉. (6.2)

Since ρ̂|e±〉 = e±|e±〉, from (6.1) and (6.2) we have

p+(α± + β±∆)|K̃+〉+ p−(α±∆ + β±)|K̃−〉 = e±α±|K̃+〉+ e±β±|K̃−〉, (6.3)

p+(α± + β±∆) = e±α±, p−(α±∆ + β±) = e±β±. (6.4)

We look for the eigenvalues e± such that∣∣∣∣∣∣ p+ − e± p+∆

p−∆ p− − e±

∣∣∣∣∣∣ = 0. (6.5)

Expanding the determinant and solving for e± we find

e± =
1

2
(1± δe), δe =

√
1− 4p+p−(1−∆2). (6.6)

From the orthonormality relations of the eigenvectors, 〈e±|e±〉 = 1 and 〈e±|e∓〉 = 0,

we have

α2
± + β2

± + 2α±β±∆ = 1, (6.7)

α−α+ + β−β+ + (α−β+ + α+β−)∆ = 0. (6.8)
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The coefficients α± and β± have complicated forms but can be found with (6.4), (6.6)

and (6.7).

The 6 × 6 QFI matrix for estimating the three Cartesian components of the

normalized pair-separation and pair-geometrical-centroid position vectors defined in

the previous chapter has the general form:

H(ab)
µν =

∑
i=±

1

ei
∂(a)
µ ei∂

(b)
ν ei

+ 4Re
∑
i=±

1

ei
(∂(a)
µ 〈ei|)(ρ̂− eiÎ)2∂(b)

ν |ei〉

+ 4δe2Re
∑
i 6=j

(
1

ei
− ei

)
〈ei|∂(a)

µ |ej〉〈ej|∂(b)
ν |ei〉, (6.9)

which is simply the formula (5.9) for the equal brightness problem with ∆2 re-

placed by δe2, since (e+ − e−)2 = δe2 here. Noting that the relations (5.12) and

(5.13) still hold for ∂µ〈e±|(ρ̂ − e±Î)2∂ν |e±〉 in (6.9) and from relation (6.6) that∑
i=± ∂µei∂νei/ei = ∂µ(δe)∂ν(δe)/(1 − δe2), yield the following expression for the

QFI matrix element

H(ab)
µν =

∂
(a)
µ (δe)∂

(b)
ν (δe)

1− δe2
+ 4(1− δe2)Re(〈e+|∂(a)

µ |e−〉〈e−|∂(b)
ν |e+〉)

+ 4e+Re(〈e+|∂(a)
µ |e+〉〈e+|∂(b)

ν |e+〉) + 4e−Re(〈e−|∂(a)
µ |e−〉〈e−|∂(b)

ν |e−〉)

+ 4e+Re[(∂(a)
µ 〈e+|)∂(b)

ν |e+〉] + 4e−Re[(∂(a)
µ 〈e−|)∂(b)

ν |e−〉], (6.10)

in which the relation 〈e−|∂(l)
µ |e+〉 = −〈e+|∂(l)

µ |e−〉∗ was used.

We first consider the first diagonal block H(ll) of the full QFI matrix. Taking the

partial derivative of |e±〉, given by expression (6.2), w.r.t. any component of `, we

have

∂(l)
µ |e±〉 = ∂(l)

µ α±|K̃+〉+ ∂(l)
µ β±|K̃−〉+ α±∂

(l)
µ |K̃+〉+ β±∂

(l)
µ |K̃−〉. (6.11)

Taking the inner product of the expression (6.11) with the bra 〈e±| generates

〈e±|∂(l)
µ |e±〉 = (α2

± − β2
±)〈K̃+|∂(l)

µ |K̃+〉, (6.12)
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which is purely imaginary. To arrive at Eq. (6.12), we also used Eq. (6.7) and the

relation,

〈K̃+|∂(l)
µ |K̃+〉 = −〈K̃−|∂(l)

µ |K̃−〉. (6.13)

Taking the inner product of ∂
(l)
µ |e+〉 with the bra 〈e−|, we have

〈e−|∂(l)
µ |e+〉 = α−∂

(l)
µ α+ + β−∂

(l)
µ β+ + α−∂

(l)
µ β+∆ + β−∂

(l)
µ α+∆

+
1

2
(α−β+ + α+β−)∂(l)

µ ∆ + (α+α− − β+β−)〈K̃+|∂(l)
µ |K̃+〉, (6.14)

in which we used the relation

〈K̃±|∂(l)
µ |K̃∓〉 =

1

2
∂(l)
µ ∆. (6.15)

Multiplying Eq. (6.11) by its adjoint, with µ in the former replaced by ν, then taking

the real part, and noting the relations (6.13) and (6.15), we obtain the following

expression:

Re[(∂(l)
µ 〈e±|)(∂(l)

ν |e±〉)] =
1

2
[∂(l)
µ (α±β±)∂(l)

ν ∆ + ∂(l)
µ ∆∂(l)

ν (α±β±)]

+ ∂(l)
µ α±∂

(l)
ν α± + ∂(l)

µ β±∂
(l)
ν β±

+ (∂(l)
µ α±∂

(l)
ν β± + ∂(l)

µ β±∂
(l)
ν α±)∆

+ (α2
± + β2

±)(∂(l)
µ 〈K̃+|)∂(l)

ν |K̃+〉

+ 2α±β±Re[(∂(l)
µ 〈K̃+|)∂(l)

ν |K̃−〉], (6.16)

in which we used the relations that (∂
(l)
µ 〈K̃+|)∂(l)

ν |K̃+〉 = (∂
(l)
µ 〈K̃−|)∂(l)

ν |K̃−〉, which is

already real, and (∂
(l)
µ 〈K̃+|)∂(l)

ν |K̃−〉 = (∂
(l)
µ 〈K̃−|)∂(l)

ν |K̃+〉∗. With expressions (6.12),

(6.14) and (6.16) we can numerically evaluate the first diagonal block H(ll).

The other blocks of the QFI matrix should be less cumbersome to calculate,

since ∆ does not depend on s. We are currently in the process of calculating these

other blocks in order to complete the evaluation of the full 6× 6 QFI matrix for the

estimation of the 3D separation and centroid coordinates of an unbalanced source

pair.
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6.2 Conclusions and Future Directions

In the first part of this dissertation we have advanced two different approaches to

perform joint polarimetry and 3D localization of point dipole emitters, one that uti-

lizes the high NA of a high-resolution microscope whose imaging aperture is outfitted

with a generalized spiral phase structure, and the other that utilizes the process of

SAM-OAM conversion in conjunction with the spiral phase structure. Unlike more

conventional polarimetric imagers [3, 4], neither of these two approaches to rotating-

PSF-based polarimetric imaging requires specialized sensing elements to sense both

the 3D locations and emitted polarization states of point sources.

In the second part of this dissertation we have treated the fundamental error in

estimating the full 3D separation and centroid location vectors for an incoherent pair

of equally bright point sources by calculating the corresponding QCRB and proposing

specific projection bases for which the separation QCRB is attainable. Simulations

using the Zernike basis confirm our theoretical assertions. The achievability of such

quantum error bounds on estimating the separation of closely spaced point sources

in all three dimensions bodes well for the optical super-resolution of point sources at

dramatically reduced power levels than possible with the more conventional image-

based techniques.

The generalization of the second part of this dissertation to a more realistic

scenario that the two incoherent point sources have unequal intensities is currently

underway. In future work, we plan to extend our current study of 3D super-resolution

and super-localization with QCRB and wavefront projections to multi-color and ex-

tended sources.
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Appendix A

Vector Diffraction Formula for

Large Apertures and Propagation

Distances

We may express the mononchromatic field in the image plane in terms of its angular

spectrum of plane waves,

~E(~r) =

∫
~a(~s⊥) exp[ik(~s⊥ · ~ρ+ szz)]d2s⊥, (A.1)

where ŝ = (~s⊥, sz) is the unit vector along the propagation vector of the correspond-

ing plane wave. By assuming s⊥ ≤ 1, we ignore any evanescent waves, as they are

attenuated over distances comparable to the wavelength and thus do not affect the

field far away from the aperture boundaries. Further, we only include plane waves

propagating in the forward half solid angle, i.e., sz = +(1 − s2
⊥)1/2. The angular

spectrum vector, ~a(~s⊥), will be taken to be oriented transverse to the propagation

vector, ~a(~s⊥) · ŝ = 0.

The field in the plane of the diffracting aperture, here the exit pupil located,

say, at z = 0, is given by setting z = 0 in (A.1). The resulting relation is a two-
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dimensional Fourier transform, which may be inverted to yield the angular spectrum

as

~a(~s⊥) =

(
k

2π

)2 ∫
d2ρ′ ~E(~ρ ′, 0) exp(−ik~s⊥ · ~ρ ′), (A.2)

where ~ρ′ is just the 2D position vector in the plane of the aperture. Substituting this

relation into (A.1) gives the vector field at the downstream plane a distance z away

from the aperture. By interchanging the order of the ~ρ ′ and ~s⊥ integrations in the

result allows us to express the electric field at plane z in terms of that in the plane

of the aperture as

~E(~r) =

(
k

2π

)2 ∫
d2ρ′ ~E(~ρ ′, 0)G(~ρ− ~ρ′, z), (A.3)

where the propagator G is given by the double integral

G(X, Y, z) =

∫ ∫
dsxdsy exp

[
− ik(sxX + syY −

√
1− s2

x − s2
yz)
]
, (A.4)

where the 2D integral is written out explicitly over the Cartesian components of

~s⊥ and extended to the full (sx, sy) plane from the interior of the unit disk, s2
x +

s2
y ≤ 1, the latter corresponding to propagating plane waves. In the limit of large

apertures and propagation distances, as we noted earlier, this extension to include

evanescent waves does not entail much error, as can be shown by a stationary-phase

approximation to the integral (A.4), performed originally by Wolf [1].

With the extension of the integral (A.4) over the full sx, sy plane, it may be eval-

uated exactly by means of Weyl’s angular-spectrum representation of the diverging

spherical wave, namely [2]

exp(ikr)

r
=
ik

2π

∫ ∫
dsxdsy

exp[−ik(sxX + syY −
√

1− s2
x − s2

y|z|)]√
1− s2

x − s2
y

, (A.5)

in which the square root is to interpreted as being positive imaginary outside the

unit disk in the sx, sy plane and r is defined as (X2 +Y 2 +z2)1/2. A partial derivative
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of this identity w.r.t. z, for z > 0, evaluates the propagator (A.4) as

G(X, Y, z) = −2π

k2

∂

∂z

exp
(
ik
√
X2 + Y 2 + z2

)
√
X2 + Y 2 + z2

. (A.6)

Under conditions of large propagation distance, k
√
X2 + Y 2 + z2 >> 1, which we

assume here, the derivative on the RHS is well approximated by the formula

G(X, Y, z) = −2iπ

k

exp
[
ik
√
X2 + Y 2 + z2

]
√
X2 + Y 2 + z2

cos θ′, (A.7)

where θ′ is the angle the ray from the aperture point ~ρ ′ to the observation point ~r

makes with the z axis, as given by

cos θ′ = z/
√
X2 + Y 2 + z2.

Substitution of this result in (A.3), followed by a simple relabeling of the inte-

gration variable over the exit-pupil plane, yields the needed diffraction formula for

observation points ~rI in the image plane,

~E(~rI) =
k

2iπ

∫
d2ρ ~E(~ρ, 0)

exp(ik|~rI − ~r|)
|~rI − ~r|

cos θ′, (A.8)

where ~r = (~ρ, 0) is the position vector in the aperture plane and the obliquity factor,

cos θ′, is equal to zI/|~rI − ~r|.

The specific obliquity factor, cos θ′, present in the diffraction formula (A.4),

also occurs in the Rayleigh-Sommerfeld formulation of the Fresnel-Kirchhoff scalar-

diffraction theory based on the Dirichlet boundary condition for a planar aperture [3].

This formulation thus seems to extend more rigorously [4] than other scalar diffrac-

tion formulas to the vector diffraction theory, at least in the limit of large apertures

and long propagation distances for which the diffraction formula (A.8) is accurate.

It is also worth noting that the approximate expression (A.7) for the propagator may

also be derived, as shown by Wolf, by means of a stationary-phase approximation of

the integral (A.4).

The work in this Appendix was published in Ref. [5].
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Appendix B

Flux Conservation

Substituting Eq. (2.24) for Φ(~r, ~rI) into (2.22) yields the following explicit form of

the image-plane electric field in terms of the source dipole moment:

~EI(~rI) = C
√
zOzI

∫
d2ρP (ρ)

exp[iΩ + ikk̂I · (~rI − ~rI0)]

(r|~rI − ~r|)3/2

× JMLMOp, (B.1)

where Ω is the sum of the engineered and source-location-dependent phases in the

pupil, namely

Ω(~r) = Ψ(u, φ)− knOr̂ · ~r0, (B.2)

use was also made of the relations, cos θ = zO/r and cos θ′ = zI/|~rI−~r|. The complex

constant C is given by

C =
k3n

5/2
O

8iπ2ε0
exp[ik(nOzO + zI)].

Since for each image-space ray the associated magnetic field vector is related, by

Faraday’s law, to the corresponding electric field vector in the radiation zone as

~H(~rI) =
k

µ0ω
k̂I × ~E(~rI), (B.3)
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where k̂I is given by Eq. (2.25), we may write for the total magnetic field vector the

integral

~HI(~rI) =
Ck
√
zOzI

µ0ω

∫
d2ρ′P (ρ′)

exp[iΩ′ + ikk̂′I · (~rI − ~rI0)]

(r′|~rI − ~r ′|)3/2
×(k̂′I×JM′

LM′
O p), (B.4)

where the use of the prime superscript on the various quantities is a short-hand

notation for their dependence on the primed pupil coordinates over which the integral

is to be performed.

The projection of the Poynting vector along the optical axis, when integrated

over the image plane, yields the total optical flux, WI , incident on the image plane,

WI =
1

2
Re

∫
( ~EI × ~H∗I ) · ẑ d2rI . (B.5)

Substituting (B.1) and the complex conjugate of (B.4) into this equation and inte-

grating over the image plane yields, among other quantities, the 2D δ-function∫
d2rI exp[ik(k̂I − k̂′I) · (~rI − ~rI0)] =

(
2π

k

)2

δ(2)(~kI⊥ − ~k′I⊥), (B.6)

where ~kI⊥ and ~k′I⊥ are the projections of the unit vectors k̂I and k̂′I on the 2D image

plane,

~kI⊥ = − ~ρ√
ρ2 + z2

I

, ~k′I⊥ = − ~ρ ′√
ρ′2 + z2

I

. (B.7)

Noting that the equality of these two vectors imposed by the δ function in (B.6)

requires ~ρ = ~ρ ′, we may also express the δ function as

δ(2)(~kI⊥ − ~k′I⊥) =
δ(2)(~ρ− ~ρ ′)
|J|

, (B.8)

where |K| is the determinant of the Jacobian matrix for the 2D transformation

between ~kI⊥ and ~ρ in the pupil plane, namely

|K| = det


∂

∂x

x√
x2 + y2 + z2

I

∂

∂y

x√
x2 + y2 + z2

I
∂

∂x

y√
x2 + y2 + z2

I

∂

∂y

y√
x2 + y2 + z2

I

 . (B.9)
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The elements of this matrix are easily evaluated, with the diagonal elements being

equal to

y2 + z2
I

(x2 + y2 + z2
I )

3/2
,

x2 + z2
I

(x2 + y2 + z2
I )

3/2
, (B.10)

and both the off-diagonal elements being equal to

−xy
(x2 + y2 + z2

I )
3/2
. (B.11)

The determinant |K| is thus easily verified to be z2
I/|~rI −~r|4, so from (B.8) it follows

that

δ(2)(~kI⊥ − ~k′I⊥) =
|~rI − ~r|4

z2
I

δ(2)(~ρ− ~ρ ′) (B.12)

The presence of the δ-function (B.12) allows us to perform one of the two pupil-

plane integrations, say that over the primed vector ~ρ ′, in the expression obtained

on the RHS of (B.5) after the image-plane integration that produced the δ-function.

Such integration replaces all primed variables by their unprimed counterparts, and

the following expression for WI may be obtained after such tedious but straightfor-

ward algebra:

WI = |C|2 2π2zO
µ0ωkzI

∫
[(JMLMO p)× (k̂I × J∗M∗

LM∗
Op
∗)] · ẑ× |~rI − ~r|

r3
d2ρ (B.13)

Since k̂I is orthogonal to the ray polarization vector, k̂I ·MLMOp, and since k̂I · ẑ =

cos θI = zI/|~rI − ~r|, the following simpler expression is obtained for WI :

WI = |C|2 2π2zO
µ0ωk

∫
d2ρ

(JMLMOp) · (J∗M∗
LM∗

0p
∗)

r3
, (B.14)

which, by recognizing that the scalar product of a column vector, u, and its complex

conjugate is the row-column matrix product, u†u, simplifies to the form

WI = |C|2 2π2zO
µ0ωk

∫
d2ρ

p†M†
OM†

LJ†JMLMOp

r3
, (B.15)
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This expression can be reduced further by noting the hermiticity and idempotence

of the polarization matrix, J, and from (2.12) and (2.14) that MLMO = ML, as r̂ is

orthogonal to φ̂ and θ̂,

WI = |C|2 2π2zO
µ0ωk

∫
d2ρ

p†M†
LJMLp

r3
. (B.16)

When the beam polarization is not analyzed, J is simply the identity matrix, in

which case the product, M†
LML, simplifies, since φ̂ and θ̂ are mutually orthogonal

and have unit magnitude. From (2.14) thus

M†
LML =φ̂ φ̂

T
+ |φ̂× k̂I |2θ̂ θ̂

T

=φ̂ φ̂
T

+ θ̂ θ̂
T

=I− r̂ r̂T , (B.17)

where the fact that φ̂× k̂I = π̂I has unit magnitude was used to arrive at the second

equality and the completeness of the three orthonormal basis vectors of the spherical

coordinate system to arrive at the last equality. In view of these simplifications, the

optical flux incident on the image plane, given by (B.15), reduces to

WI = |C|2 2π2

µ0ωk

∫
d2ρ
|~p|2 − |~p · r̂|2

r2
cos θ, (B.18)

which is exactly the optical flux, WO, incident on the pupil.

The work in this Appendix was published in Ref. [1].
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Appendix C

Detailed Expression for ẑ × ~EI(~rI)

We now evaluate the product JML(~r)MO(r̂)p by substituting the definitions (2.12),

(2.14), and (2.17) into it. Since σ̂ and π̂, being the angular basis vectors, θ̂ and φ̂,

of the spherical coordinate system are both orthogonal to its radial basis vector, r̂,

it follows that

ML(~r)MO(r̂) = ML(~r) (C.1)

and

x̂T σ̂ =− sinφ;

ŷT σ̂ = cosφ;

x̂T π̂′ = cosφ[sin θ sin(θ + θ′) + cos θ cos(θ + θ′)]

= cosφ cos θ′; and

ŷT π̂′ = sinφ[sin θ sin(θ + θ′) + cos θ cos(θ + θ′)]

= sinφ cos θ′, (C.2)

in which relation (2.15) was employed to express π̂′ in terms of the spherical basis

vectors to arrive at the last two equalities. In view of relations (C.1) and (C.2), we
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Appendix C. Detailed Expression for ẑ × ~EI(~rI)

may thus write JML(~r)MO(r̂)p more explicitly as

JML(~r)MO(r̂)p = [−α sinφx̂ φ̂
T

+β cosφŷ φ̂
T

+α cosφ cos θ′x̂ θ̂
T

+β sinφ cos θ′ŷ θ̂
T

]p.

(C.3)

Using the relation between the Cartesian and spherical basis vectors, we may express

the scalar products involving p = (px, py, pz)
T on the RHS of (C.3) as

φ̂
T
p =− px sinφ+ py cosφ and

θ̂
T
p = cos θ(px cosφ+ py sinφ)− pz sin θ. (C.4)

It then follows from (C.3) that

JML(~r)MO(r̂)p =α{sinφ(−px sinφ+ py cosφ) + cosφ cos θ′

× [cos θ(px cosφ+ py sinφ)− pz sin θ]}x̂

+β{cosφ(−px sinφ+ py cosφ) + sinφ cos θ′

× [cos θ(px cosφ+ py sinφ)− pz sin θ]}ŷ, (C.5)

where the underbars from the Cartesian basis vectors are omitted . Since we assume

that the image-side NA is vanishingly small, we may set cos θ′ equal to 1 in (C.5).

Then using the identities, 2 sinφ cosφ = sin 2φ, 2 sin2 φ = 1− cos 2φ, and 2 cos2 φ =

1 + cos 2φ for (C.5), taking the cross product of (C.5) with ẑ, and regrouping terms,

we arrive at expression (2.30) for ẑ× ~EI , with the explicit form (2.31) for the vector

field ~F (θ, φ).

The work in this Appendix was published in Ref. [1].
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Appendix D

Derivation of QFI

The Cramér-Rao inequality

V ar(θ̂) ≥ 1

MF (θ)
, (D.1)

provides a lower bound on the variance of an unbiased estimator of the parameter

θ. In Eq. (D.1) M is the number of measurements and F (θ) is the classical Fisher

Information (CFI) given by

F (θ) =

∫
dxp(x|θ)

[∂lnp(x|θ)
∂θ

]2

=

∫
dx

1

p(x|θ)

[∂p(x|θ)
∂θ

]2

, (D.2)

where p(x|θ) denotes the conditional probability of obtaining the value x when the

parameter has the value θ.

According to the Born rule in quantum mechanics, we have p(x|θ) = Tr [Ôxρ̂θ],

where {Ôx} are the elements of a positive operator-value measure (POVM), and ρ̂θ

is the density operator parametrized by the parameter we want to estimate. Let us

introduce the Symmetric Logarithmic Derivative (SLD) L̂θ as the Hermitian operator

(L̂†θ = L̂θ) implicitly defined by the relation

∂ρ̂θ
∂θ

=
1

2
(L̂θρ̂θ + ρ̂θL̂θ). (D.3)
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Note that

∂θp(x|θ) =∂θTr {Ôxρ̂θ} = Tr [Ôx∂θρ̂θ]

=Tr
{
Ôx

( L̂θρ̂θ + ρ̂θL̂θ
2

)}
=

1

2
Tr {ÔxL̂θρ̂θ}+

1

2
Tr {Ôxρ̂θL̂θ}

=
1

2
Tr {ÔxL̂θρ̂θ}+

1

2
Tr {(Ôxρ̂θL̂θ)

†}∗

=
1

2
Tr {ÔxL̂θρ̂θ}+

1

2
Tr {L̂θρ̂θÔx}∗. (D.4)

By using the cyclic property of the trace, we have

∂θp(x|θ) = Re(Tr {ρ̂θÔxL̂θ}). (D.5)

The classical Fisher information can then be written as

F (θ) =

∫
dx

Re(Tr {ρ̂θÔxL̂θ})2

Tr {ρ̂θÔx}
(D.6)

For a given quantum measurement, i.e. a POVM {Ôx}, Eqs. (D.2) and (D.6) estab-

lish the classical bound on precision, which may be achieved by a proper processing.

In order to evaluate the ultimate bounds to precision we have to maximize the

Fisher information over the quantum measurements. Following Refs. [1,2,3] we have

F (θ) =

∫
dx

Re(Tr {ρ̂θÔxL̂θ})2

Tr {ρ̂θÔx}

≤
∫
dx
|Tr {ρ̂θÔxL̂θ}|2

Tr {ρ̂θÔx}

=

∫
dx
|Tr {(

√
ρ̂θ
√
Ôx)(

√
ÔxL̂θ

√
ρ̂θ)}|2

Tr {ρ̂θÔx}
. (D.7)

By using the Schwartz inequality,

|Tr (A†B)|2 ≤ Tr (A†A)Tr (B†B), (D.8)
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we have

|Tr {(
√
Ôx

√
ρ̂θ)
†(

√
ÔxL̂θ

√
ρ̂θ)}|2 ≤Tr {(

√
Ôx

√
ρ̂θ)
†(

√
Ôx

√
ρ̂θ)}

×Tr {(
√
ÔxL̂θ

√
ρ̂θ)
†(

√
ÔxL̂θ

√
ρ̂θ)}

=Tr {ρ̂θÔx}Tr {L̂θÔxL̂θρ̂θ}. (D.9)

By using Eq. (D.9) in Eq. (D.7), we have

F (θ) ≤
∫
dxTr {L̂θÔxL̂θρ̂θ} = Tr {(

∫
dxÔx)L̂θρ̂θLθ}. (D.10)

Since
∫
dxÔx = Î, where Î is the identity operator, we have

F (θ) ≤ Tr {ρ̂θL̂2
θ}. (D.11)

We see that the CFI of any quantum measurement is ultimately bounded by the

so-called quantum Fisher information (QFI) H(θ),

F (θ) ≤ H(θ) ≡ Tr {ρ̂θL̂2
θ}. (D.12)

For multi-parameter problem, the density operator ρθ depends on a set of param-

eters θ = {θµ}, µ = 1, ..., N , the relevant object in the estimation problem is given

by the QFI matrix, whose elements are defined as

Hµν
def
= Tr (ρ̂

L̂µL̂ν + L̂νL̂µ
2

) = ReTr (ρ̂L̂µL̂ν). (D.13)
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Appendix E

Some Properties of Sine and

Cosine States

E.0.1 Orthonormaility and Completeness

These states were defined as

CCmn(u) =
√

cmcn
π

cos(2πmu2) cosnφ, m, n = 0, 1, . . . ;

CSmn(u) =
√

cmcn
π

cos(2πmu2) sinnφ, m = 0, 1, . . . , n = 1, 2, . . . ;

SCmn(u) =
√

cmcn
π

sin(2πmu2) cosnφ, m = 1, 2, . . . , n = 0, 1, . . . ;

SSmn(u) =
√

cmcn
π

sin(2πmu2) sinnφ, m, n = 1, 2, . . . ;

(E.1)

in which the normalization constant, cn, has the value, cn = 2 − δn0. Denoting

the most general of these basis functions simply as Amn(u) = 〈u|Amn〉, we can, by

standard trigonometric integrations, easily prove their orthonormality over the unit

disk,

∫ 1

0

du u

∫ 2π

0

dφA∗mn(u)Am′n′(u) = δmm′δnn′ . (E.2)
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Their completeness,

∞∑
m,n=0

∑
A=CC,

CS,SC,SS

A∗mn(u)Amn(w) = δ(2)(u−w), (E.3)

follows from the Poisson summation formulas involving sums over non-negative in-

teger values of m,n,

∑
m

cm cos 2πm(v − w)= δ(v − w);
∑
n

cn cosn(φ− ψ) = 2πδ(φ− ψ); (E.4)

valid over the unit disk, 0 ≤ v, w ≤ 1; 0 ≤ φ, ψ < 2π.

E.0.2 The Overlap Integrals 〈Amn|K±〉, A = CC,CS, SC, SS

The overlap integrals, 〈Amn|K±〉, for a transversely separated source pair, l⊥ 6=

0, lz = 0, are given by

〈Amn|K±〉 =
1√
π

∫ 1

0

du u

∮
dφ exp(∓i2πu · l⊥)Amn(u). (E.5)

Since u · l⊥ = u l⊥ cos(φ − φl), in which φl is the polar angle of l⊥, the following

integral identities are easily proved using the Bessel-function generating function

formula:

∮
dφ exp[∓iz cos(φ− φl)] cosnφ =(∓i)n2π cosnφl Jn(z),∮
dφ exp[∓iz cos(φ− φl)] sinnφ =(∓i)n2π sinnφl Jn(z), (E.6)

in which Jn(z) denotes the ordinary Bessel function of order n. Use of these identities

allows us to perform the φ integral in Eq. (E.5), We thus reduce all of the probabilities
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to simple integrals over a single convenient radial variable, v = u2,

〈CCmn|K±〉 =(∓i)n
√
cmcn cosnφl

∫ 1

0

dv cos(2πmv)Jn(2πl⊥
√
v);

〈CSmn|K±〉 =(∓i)n
√
cmcn sinnφl

∫ 1

0

dv cos(2πmv)Jn(2πl⊥
√
v);

〈SCmn|K±〉 =(∓i)n
√
cmcn cosnφl

∫ 1

0

dv sin(2πmv)Jn(2πl⊥
√
v);

〈SSmn|K±〉 =(∓i)n
√
cmcn sinnφl

∫ 1

0

dv sin(2πmv)Jn(2πl⊥
√
v); (E.7)

which are all real integrals whose phases are either 0 or π (mod 2π), which are con-

stants independent of l⊥, and whose magnitudes satisfy the relation, |〈Amn|K+〉| =

〈Amn|K−〉|, A = CC,CS, SC, SS. Because of these two properties, this complete basis

achieves QFI for a transversely separated source pair.

The work in this Appendix was published in Ref. [1].
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Appendix F

Likelihood Function for Photon

Division into N Channels

Let us consider the problem of dividing M photons into N channels, with Pk being

the probability of a photon going into the kth channel. If nk is the number of photons

transmitted into the kth channel in a statistical realization of this process, then the

probability of this process is given by the multinomial (MN) distribution,

Prob({nk}|M) = M !
N∏
k=1

P nk
k

nk!
, (F.1)

in which all photon numbers, n1, . . . , nN and n̄ are non-negative and thus each

bounded above by M . Let η be the quantum efficiency (QE) of detection of the trans-

mitted photons in each channel, then the probabilty of detection of mk photons in the

kth channel , k = 1, . . . , N , conditioned on the knowledge that {nk, k = 1, . . . , N}

photons were transmitted into the various channels, is given by a product of binomial

distributions,

Prob({mk}|{nk},M) =
N∏
k=1

nk!

mk!(nk −mk)!
ηmk(1− η)nk−mk . (F.2)
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The probability of jointly detecting mk photons in the kth channel, with k =

1, 2, . . . , N , is then given by the composition rule,

Prob({mk}|M) =
∑

{nk∈(mk,...,M)}∑
k nk=M

Prob({mk}|{nk},M)Prob({nk}|M)

=M !
∑

{nk∈(mk,...,M)}∑
k nk=M

N∏
k=1

[
P nk
k (1− η)nk

(nk −mk)!

ηmk(1− η)−mk

mk!

]

=M !

[
N∏
k=1

(ηPk)
mk

mk!

]
N∏
k=1∑

k δk=M−
∑

kmk

[
M−mk∑
δk=0

[Pk(1− η)]δk

δk!

]
,

(F.3)

in which the transformation, δk = nk −mk, was used to replace the sum over nk to

that over δk. The latter product of the sums, with the restriction that the sum of

the values of the indices δk be constrained to be a fixed number, can be performed

by using the following identity involving the product of exponentials:

exp

[
(1− η)

N∑
k=1

Pk

]
=

N∏
k=1

exp[(1− η)Pk)]

=
N∏
k=1

∞∑
δk=0

[Pk(1− η)]δk

δk!
, (F.4)

and noting that its left-hand side may be expanded in powers of (1− η). Comparing

the (1 − η)δ term on both sides of the resulting identity then yields the needed

relation,

N∏
k=1∑
k δk=δ

[
M−mk∑
δk=0

[Pk(1− η)]δk

δk!

]
=

[∑N
k=1 Pk(1− η)δ

]
δ!

=
(1− η)δ

δ!
, (F.5)

since the probabilities Pk sum to 1 over all N channels. When relation (F.5), with

δ replaced by M −
∑

kmk, is substituted into expression (F.3), we can simplify the
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latter to the form,

Prob({mk}|M) = M !
(1− η)M−

∑
kmk

(M −
∑

kmk)!

[
N∏
k=1

(ηPk)
mk

mk!

]
, (F.6)

which has a very compelling interpretation that non-unit QE provides yet another

channel, the (N + 1)th channel, which “captures” the undetected counts, while the

other channels capture photons at the compounded probabilities, ηPk, per photon

for the kth channel, with k = 1, . . . ,M .

Note that for a given set of detected counts, {m1, . . . ,mN}, the probability (F.6)

reduces to a product of a fixed η dependent factor and another that depends on the

per-photon channel probabilities Pk, k = 1, . . . , N . This implies that the maximum-

likelihood estimation of the latter probabilities from the likelihood function (F.6) is

independent of η. For this reason, there is no loss of generality in choosing η = 1.

We must also interpret the N modes in expression (F.6) as including the 4

Zernikes modes into which the wavefront is projected as well as the remaining modes

into which the wavefront is not projected, with the latter to be regarded as a single

undetected mode, which we denote by an overhead bar. In other words, for η = 1,

one must modify that expression to the form,

Prob({mk}|M) = M !
P̄ m̄

m̄!

[
N∏
k=1

(ηPk)
mk

mk!

]
, (F.7)

with P̄ = 1−
∑N

k=1 Pk and m̄ = M −
∑N

k=1mk.

The work in this Appendix was published in Ref. [1].
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Appendix G

Photon wavefunction in the pupil

plane

Consider a thin-lens imager of aperture radius R for which the reference source

plane is the xy coordinate plane, and the pupil and image planes are, resepctively,

distances zO and zO + zI away from that coordinate plane. Then under paraxial

optical propagation in the Fresnel-diffraction approximation, the complex amplitude

of the imaging wavefront is given by the following integral over the pupil plane:

〈rI |K±〉 =

∫
d2ρ P̃ (ρ ) exp

[
− i2π

λ
ρ ·
(rI
zI

+
rO ± δrO

zO + ζO ± δζO

)
+ i

π

λ

(
1

zO + ζO ± δζO
− 1

zO

)
ρ2

]
, (G.1)

where (rO ± δrO, ζO ± δζO), (ρ , zO), and (rI , zO + zI) label the point-source, pupil-

plane, and image-plane position vectors, respectively. The pupil function, P̃ (ρ ), is

restricted only by the normalization condition,∫
d2ρ |P̃ (ρ )|2 = 1, (G.2)
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and a complex quadratic phase factor dependent on object and image coordinates

alone has been suppressed on the RHS of Eq. (G.1).

If we assume that the axial source coordinates, ζO ± δζO, are small in magnitude

compared to the pupil and image plane distances, zO and zI , and their 2D position

vectors, rO ± δrO, are also comparably small in magnitude, conditions that surely

hold for high-numerical-aperture microscopy, then correct to the linear order in these

small quantities we may express Eq. (G.1) as

〈rI |K±〉 =

∫
d2uP (u) exp[− i2πs⊥ · u− iπszu2

∓ iΨ(`,u)− i2πu · v], (G.3)

in which we have used normalized source, pupil, and image plane coordinates defined

as

u =
ρ

R
, v =

rI
λzI/R

, (s⊥, l⊥) =
(rO, δrO)

λzO/R
,

(sz,lz) =
(ζO, δζO)

λz2
O/R

2
(G.4)

in which M = −zI/zO is the image magnification, and the pupil phase function,

Ψ(`,u), which depends only on the pair-separation and pupil coordinates, has the

form,

Ψ(`,u) = 2πu · l⊥ + πu2lz. (G.5)

The pupil function in normalized coordinates is defined by the relation, P (u) =

R2P̃ (ρ ).

Since exp(−i2πu ·v) is the complex Fourier exponential connecting the pupil and

image planes, we may regard the rest of the integrand as the pupil-plane wavefunction

of a single imaging photon emitted by the incoherent point source at position (rO ±

δrO, ζO ± δζO) and transmitted through the imager. In other words, apart from an
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Appendix G. Photon wavefunction in the pupil plane

arbitrary overall phase factor, we may write

〈u|K±〉 = P (u) exp[−i2πs⊥ · u− iπszu2 ∓ iΨ(`,u)]. (G.6)

The work in this Appendix was published in Ref. [1].
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Appendix H

CFI for Multinomial Distribution

For (N + 1) projection channels, with per-photon probabilities being P1, . . . , PN+1,

in which PN+1
def
= P̄ = 1−

∑N
n=1 Pn, the probability, P (m1, . . . ,mN+1), of detecting

m1, . . . ,mN+1 photons in those channels when a total of M photons are incident on

the projection system is given by the multinomial distribution (MND),

P (m1, . . . ,mN+1) = M !
N+1∏
n=1

Pmn
n

mn!
Θ(m1, . . . ,mN+1), (H.1)

with Θ denoting the indicator function for the discrete space of constraints defined

as

N+1∑
n=1

mn = M, m1, . . . ,mn = 0, 1, . . . ,M. (H.2)

The channel probabilities, P1, . . . , PN , depend on the parameters being estimated.

Taking the logarithm of expression (H.1) and the partial derivatives of the re-

sulting expression with respect to the µth and νth parameters successively, then

multiplying the resulting expressions with each other, and finally taking the expec-

tation of their product over MND yields the following form for the µν matrix element
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Appendix H. CFI for Multinomial Distribution

of the associated CFI:

Jµν =
N+1∑
n=1

N+1∑
l=1

〈mnml〉(∂µ lnPn) (∂ν lnPl)

= M(M − 1)
N+1∑
n=1

N+1∑
l=1

PnPl(∂µ lnPn) (∂ν lnPl) +M
N+1∑
n=1

Pn(∂µ lnPn) (∂ν lnPn)

= M(M − 1)

[
N+1∑
n=1

Pn(∂µ lnPn)

][
N+1∑
l=1

Pl(∂ν lnPl)

]

+M
N+1∑
n=1

Pn(∂µ lnPn) (∂ν lnPn)

= M
N+1∑
n=1

(∂µPn) (∂νPn)

Pn
, (H.3)

in which we used the well known formula for the second moment of MND,

〈mnml〉 = M(M − 1)PnPl +MPnδnl, (H.4)

to reach the second line and the fact that since
∑N+1

n=1 Pn = 1, any partial derivative

of it vanishes,

N+1∑
n=1

Pn(∂µ lnPn) = 0, (H.5)

to arrive at the final expression.

The work in this Appendix was published in Ref. [1].
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