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Abstract. In this paper wave scattering from an asymmetrical change of cross-sectional area in 

a beam is numerically studied. Incident symmetric and antisymmetric Lamb waves are 

considered and multiple wave mode conversion due to interaction with the discontinuity are 

investigated up to high frequency (above the cut-off of the second symmetric Lamb wave mode, 

S2). Results are presented in terms of transmission power coefficients, kinetic energy, and energy 

velocity. These are evaluated using the Wave Finite Element method to predict the wave modes 

from FE cross-sectional nodal displacements and nodal forces. It is shown that the methodology 

proposed can give an insight into wave scattering and multiple converted Lamb wave modes, 

which can be useful in Structural Health Monitoring. 

Keywords: finite element, wave scattering, damage detection, structural health monitoring 

1.  Introduction 

Ultrasonic guided waves are used in Structural Health Monitoring (SHM) for damage detection [1]. The 

effectiveness of proper strategies for damage diagnosis and detection using this technique strongly rely 

on the prediction of wave propagation and wave scattering behaviour. 

In this paper wave scattering in a beam with asymmetric variations of the cross-sectional area (notch) 

is numerically investigated. This situation can be representative of general defects, open cracks, or 

damage due to corrosion in one-dimensional waveguides. Several authors have investigated the problem 

at different frequency ranges and by different approaches/methodologies. Lamb wave interaction with 

notches in a plate was studied in [2] and at low frequency in [3, 4] using Finite Element Analysis. In [5] 

a hybrid Boundary Element Method was applied to investigate wave scattering caused by elliptical shape 

defects in plates, while symmetric and asymmetric step discontinuities in plates were studied in [6] using 

the same method and in [7] using an analytical approach. A numerical approach based on the Scaled 

Boundary Finite Element Method was also presented in [8], where wave interaction with defects in 

plates was predicted. Asymmetrical notches were studied in [9], where a technique to separate the 

fundamental wave mode contribution in the scattered waves at low frequency was proposed.   

Amongst other methods, the Wave Finite Element (WFE) [10, 11] has been recently applied for the 

prediction of wave scattering in [12-16]. The method is applied in the present work to find the scattering 

matrix from a notch in beams assuming pure antisymmetric A0 and symmetric S0 fundamental Lamb 
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wave mode excitation. The scattering problem is formulated modelling the damaged beam in three parts: 

undamaged, damaged, undamaged. Each of these parts is considered as an infinite waveguide whose 

wave characteristics, wave modes and dispersion curves, are easily obtained using the WFE method. 

Nodal displacements and nodal forces are approximated using these wave modes as a basis. The 

undamaged and damaged parts are then coupled using continuity of displacement and force equilibrium 

as in [17]. The methodology, exploiting standard FE discretisation of a small segment of the waveguide, 

can be applied to one-dimensional waveguides with complex cross-sectional characteristic with the 

same degree of difficulty.  

The paper is organised as follows. In the first section, the method is outlined, and the main steps to 

obtain the scattering matrix, power coefficients, kinetic energy and energy velocity are given. In section 

2 numerical results are shown and the method is then used to determine power coefficients and 

transmitted kinetic energy from a notch in an isotropic beam assuming pure antisymmetric A0 and 

symmetric S0 Lamb wave mode excitation. Numerical results are shown for a wide frequency range - 

above the cut-off of the second symmetric Lamb wave mode (S2). The effect of the depth variation of 

the notch is then investigated in terms of scattered kinetic energy and energy velocity. In particular, 

wave mode conversion is investigated evaluating the component in the horizontal and vertical direction 

of the kinetic energy and the energy velocity. The main results are finally summarised in Section 3. 

2.  Wave scattering from thickness variation using the WFE discretisation 

 

 

Figure 1. Schematic representation of a damaged waveguide with 

wave reflection and transmission at the discontinuities. 

 

Figure 1 shows a schematic representation of the damaged waveguide, where x is propagation direction 

and the variation of the thickness is modelled as two subsequent step discontinuities between 

waveguides A and C and waveguides C and B. According to this, the right- and left-going incident 

waves at the discontinuities are grouped into vectors 
1[ ]T 

a c   and 
2[ ]T 

c b  , and the resulting left- 

and right-going scattered waves in 
1[ ]T 

a c   and 
2[ ]T 

c b  .  

The wave amplitudes at the two discontinuities in waveguide C can be related by a transfer matrix 

 C Cdiag exp i L   T k , that is  

 - 1 -

2 1 1 2

   c T c c T cC C,    (1) 

For each waveguide, nodal displacements 
qΦ  (wave modes), nodal forces fΦ , and dispersion 

curves ( , )k  are obtained using the WFE method [10-12]. These are grouped into positive and negative 

going waves including all the evanescent and complex wave modes: for example 

 , ,, , [ , ]T    
q f

k Φ Φ ΦA A A A  and  A A ,A ,A, , [ , ]T    
q f

k Φ Φ Φ  for waveguide A and using a 

similar notation for waveguides C and B. 
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The discontinuities in Fig. 1(a) are described using a state vector consisting of a vector of nodal 

displacements q and nodal internal forces f. These can be described in the wave domain as  

 

1,2

1,2

, , , , , , 1,2

, , , , , , 1,2

,

      

       

                  
                

                 

+
q q q q q q

f f f f f f

qq qΦ Φ Φ Φ Φ Φ ca b
= = =

f fΦ Φ Φ Φ f Φ Φ ca b

CA BA A B B C C

A BA A B B C C C

,   (2) 

 

where the subscripts f and q correspond to the wave mode matrices 


fΦ  and 


q
Φ , and the subscripts 

A and B and C indicate the waveguide. A reduced wave basis can be used to describe displacements 

and internal forces. However, the choice of the modes to describe the displacement and give a correct 

representation of the scattering is not a trivial task. The number of waves retained can be different at 

different frequencies and is related to the model size. All propagating waves (pure real wavenumbers) 

must be retained. Evanescent (pure imaginary wavenumber) and attenuating waves (complex 

wavenumbers) contribute to the energy redistribution amongst modes and they must be included since 

they give fundamental contributions in most of the scattering problems. Since the discontinuities are 

conservative, all the propagating modes are considered while the number of evanescent and complex 

modes is estimated by the convergence of the sum of the absolute value of the reflected and transmitted 

power coefficients, see Eq. (8), to 1+ , where   is a small error. This corresponds to choosing the 

number of modes that gives the minimum difference between the sum of the total reflected and 

transmitted energy flow, and the incident energy flow. 

In order to obtain the scattering matrix, the continuity of displacement and equilibrium of nodal 

forces at 1 and 2 can be written using a general matrix formulation as 

 
1 1 1 1

2 2 2 2

Q q = Q q F f = F f

Q q = Q q F f = F f

A A C C A A C C

C C B B C C B B

,   

,   
 (3) 

The use of Eqs. (2) and (3), enables the wave amplitudes at the discontinuities to be obtained as 

 

-

1 1 2 22 2

1 1 1 1 2 2

,
 

   

          
          

          

+a R T a R Tc c
= =

c T R c T Rb b

AA AC CC CB

CA CC BC BB
   (4) 

Eq. (1) and Eqs. (4) are then further combined in order to give the total scattering matrix for the 

waveguide, that is  

 
     
    
     

- +

+ -

a R T a
=

b T R b

AA AB

BA BB
 (5) 

Without loss of generality, it can be assumed that incident waves are coming from waveguide A, that 

is 
+

a  is assumed to be given and known while 0 b . In this case, combining Eq. (1) and Eqs. (4), the 

vector of reflected waves 


a  and the vector of transmitted waves 


b  are given by 

 
 

 

-1
-1

1 1 2 1 2 1

-1
-1 -1

2 1 2 1

;

;

 

 

   

  

a R a R R T T I T R T R R T T

b T a T T T I T R T R T

AA AA AA AC CC CC CC CA

C C C C

BA BA BC CC CC CA

C C C

   

   

 (6) 

where I is the identity matrix.  
From Eq. (1), the displacement and forces associated with the incident, reflected and transmitted 

waves are therefore evaluated as  
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AA BA

I , R , T ,

AA BA

I , R , T ,

;   ;   

;    ;    

    

    

  

  

+

q q q

+

f f f

q Φ a q Φ R a q Φ T a

f Φ a f Φ R a f Φ T a

A A B

A A B

 (7) 

where subscripts I, R, T, refer to the incident, reflected and transmitted waves. From Eq. (7), the 

incident reflected and transmitted time-averaged energy flows can be evaluated by  I I IIm
2

H
  f q

,  R R RIm
2

H
  f q  and  T T TIm

2

H
  f q  [10], where H denotes Hermitian transpose, while the 

reflection and transmission power coefficients are given by ratios  

  
 
 

 
 

R R T TR T

I II I I I

Im Im
,    

Im Im

H H

H H
 

 
   
 

f q f q

f q f q
 (8) 

One of the important aspects of Lamb wave scattering problems is the evaluation of the contribution 

of single wave modes when multimode scattering is involved. This is particularly important when mode 

conversion occurs due to asymmetric discontinuities since it leads to a better investigation of the 

scattering and the possibility of sizing the defect. When multi-wave modes are scattered, and in 

particular at high frequency when energy is redistributed amongst several higher order modes, prediction 

of the change in the time of flight of the reflected and transmitted wave field, together with the level of 

mode conversion, can be assessed evaluating the reflected and transmitted energy velocities and the 

directional components of the time-averaged kinetic energy. The latter can also give important 

information about the frequency range in which the scattered displacement signal has a maximum 

amplitude. 

The time-averaged kinetic energies for the incident, reflected and transmitted wave fields are given 

by 

 

 
   

 
   

 
   

2

I

2

R

2

T

Re ;
4

Re ;
4

Re
4

H

H

H

i

i

i







 
  

 
  

 
  

q q

q q

q q

= Φ a M Φ a

= Φ R a M Φ R a

= Φ T a M Φ T a

+ + + +

,A A ,A

- AA + - AA +

,A A ,A

+ BA + + BA +

,B B ,B

     

  (9) 

The expressions in Eq. (9) are here evaluated assuming a sufficient distance from the discontinuity 

in order to satisfy a far-field scattering condition. Therefore, only propagating modes with real 

wavenumber are taken into account in Eq. (9) (it should be noted that the scattering matrix must be 

evaluated considering the contribution of propagating, complex and nearfield as described previously). 

The energy velocity is calculated as the ratio between the time-averaged energy flow and the time 

average total energy density per unit length, [10]. For example, the expression of the energy velocity of 

the incident wave field is  

 
 

 
       

I I

I 2

Im
2

1
Re Re

4 4

H

e
H H

c
i






   
       

q q q q

f q

Φ a M Φ a Φ a K Φ a
+ + + + + + + +

,A A ,A ,A A ,A

      (10) 
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with similar expressions for the reflected and transmitted energy velocities. For dispersive uniform 

lossless waveguides, this equals the group velocity, which is cinematically defined as 
g d dc k . 

However, when damped structures and spatially attenuated wave modes are of concern, the group 

velocity can yield non-physical solutions. Therefore, the energy velocity seems to be more appropriate 

to quantify the velocity of energy transport.  

3.  Numerical results 

An isotropic steel waveguide with an asymmetric notch of length L is considered. Figure 2 shows a 

schematic model of the WFE discretisation of the damaged waveguide, where a small segment of length 

  for each waveguide is discretised using FE plane elements in plane strain.  

 

 

Figure 2. Schematic representation of the WFE 

discretisation of the damaged waveguide. 

 

An investigation into the scattered waves has shown that, even when a pure mode is excited, a number 

of other modes are generated by the interaction of the excited wave with the asymmetric defects 

according to the waveguide characteristics and the frequency range of interest. Moreover, evanescent 

and complex modes cannot be neglected since they account for energy distribution of the scattering. 

Attention must be paid to the number of modes included in the analysis. Therefore, the prediction of the 

complex dispersion curves of the structure including higher order modes is essential in the investigation 

of reflected and transmitted wave characteristics. 

Figure 3 shows the complex dispersion curves of the waveguide obtained applying the WFE method 

when the depth of the notch is assumed to be 40% of the waveguide thickness. The non-dimensional 

parameters k    and cut-off    are introduced, where k is the wavenumber, 
56 10   m is 

the length of the WFE segment in the x-direction, and cut-off  is the cut-off frequency of the first 

antisymmetric Lamb mode (A1) of the thicker waveguide. The length of the damage is assumed to be 

L=
333.4 10   while the percentage of damage refers to the ratio  s d d , where s is the thickness 

of the waveguide (waveguide A and B) and d is the thickness of the damaged waveguide (waveguide 

C) as in Fig. 2. It can be seen that cut-off frequencies occur at  1; 1.75; 1.89 and 2.02 for waveguide 

A and B, and at  1.68 for waveguide C. It is also clear from Fig. 3 that the number of wave modes 

to be considered in the wave mode expansion in Eq. (2), must change according to the frequency range 

under analysis. 
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Figure 3. Dispersion curves, 40% of damage: a) waveguide A and B; b) waveguide C.  

propagating modes; : evanescent modes; : complex modes (note that complex modes 

occur as a pair of complex conjugate modes, and only one of the pairs with positive real and negative 

imaginary parts are shown here). The vertical lines correspond to cut-off frequencies. 

 

Figs. 4 and 5 show the scattering behaviour, assuming that the first symmetric S0 and antisymmetric A0 

Lamb wave modes are selectively excited to propagate in waveguide A.  The figures show the power 

coefficients and time-averaged kinetic energy component in the horizontal and vertical directions, i.e., 

the x and y-directions for the models in Figs. 1 and 2. The time-averaged kinetic energy was evaluated 

assuming a sufficient distance from the discontinuity in order to satisfy a far-field scattering condition, 

that is only propagating modes with real wavenumber are considered – it should be noted that the 

scattering matrix must be evaluated considering the contribution of propagating, complex and nearfield 

waves as described in the previous section.  

Fig 4(a) and 5(a) show the time-averaged energy flow of the scattered waves. At low frequency, the 

power coefficients show similar behaviour and most of the energy is transmitted in both cases below the 

first cut-off frequency. The behaviour of the power coefficients become more complicated at higher 

frequencies with maxima and minima at the higher cut-off frequencies, where new propagating modes 

with in-plane and out-of-plane displacements start propagating. In particular, a change in behaviour 

occurs at the first cut-off due to the energy redistribution through the A1 wave mode in the thicker 

waveguide. Above this frequency, the behaviour changes significantly for the case of the A0 incident 

wave mode at the first cut-off frequency for waveguide C,  1.68 as shown in Fig. 4(a). The nearfield 

transverse mode in waveguide C starts to propagate, and there is a significant increase in the reflected 

power with a commensurate decrease in the transmitted power. At  1.68 all the energy is reflected, 

which then decreases to a local minimum at  2.02 due to the cut-off frequency of a new higher mode 

in the thicker waveguide. Above the fourth cut-off frequency, about 60% of the energy is transmitted 

and 40% is reflected. This does not happen in Fig 5(a) due to the different nature of the incident wave 

mode, although local maxima and minima follow the same trend at the cut-off frequencies.  

 

a) b) 
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Figure 4. Incident A0 mode, 40% of damage. (a) 

Magnitude of the power coefficients:  

reflected power coefficient (  );  

transmitted power coefficient (  ); (b)-(c) 

incident and transmitted kinetic energy:  

kinetic energy in the y-direction;  kinetic 

energy in the x-direction. The vertical lines 

correspond to cut-off frequencies. 

 

Figs. 4(b) and 5(b) show the time-averaged kinetic energy of the incident wave in the x and y-directions 

compared to the total incident kinetic energy, showing the nature of the cross-sectional displacement 

under the passage of the wave. In can be seen that for the A0 incident wave mode, greater than 90% of 

the energy is in the y-direction and the mode maintains its main transverse characteristics for all 

frequencies. This is not the case for the incident S0  mode. The energy in the x-direction is above 90% at 

low frequency, then it gradually decreases to less than 10% with a corresponding gradually increase of 

the energy in the y-direction up to 90%.  The two components show the same value at  1.423. This 

change in the behaviour of mode S0 can be identified by examining the dispersion curves in Fig. 3.  

Evaluation of the components of the transmitted kinetic energy can give an insight into the level 

asymmetry of the damage. In the case of a symmetric damage, the components of the kinetic energy of 

the incident and scattered waves are similar in nature, since mode conversion occurs only between wave 

modes with the same characteristics, which does not hold for the asymmetric defect.  

 

a) b) 

c) 
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Figure 5. Incident S0 mode, 40% of damage. (a) 

Magnitude of the power coefficients:  

reflected power coefficient (  );  

transmitted power coefficient (  ); (b)-(c) 

incident and reflected time-averaged kinetic 

energy:  kinetic energy in the y-

direction;  kinetic energy in the x-

direction. The vertical lines correspond to cut-

off frequencies. 

 

 

Figs. 4(c) and 5(c) show that, for both A0 and S0 incident waves, the effect of the asymmetric defect 

in terms of mode conversion is particularly significant in the transmitted kinetic energy above the first 

cut-off frequency. However, in general, the behaviour in both cases becomes more complicated above 

the first cut-off frequency, where higher order modes are reflected and transmitted, and mode conversion 

of the incident wave field becomes significant. Below the first cut-off frequency, the main directional 

components of the kinetic energy associated to the incident mode, which are the y component for the 

incident A0 wave and the x component for the incident S0 wave, decrease almost monotonically to reach 

the same value, so that at  1 the kinetic energy is equally distributed in the x and y-directions. Above 

this frequency the behaviour changes. In the case of the asymmetric incident wave, which is illustrated 

in Fig. 4(c), the component in the y-direction increases, and above the fourth cut-off more than 90% of 

the energy is transmitted in the y-direction. For the S0 incident wave, above  1 the component in the 

x-direction increases up to a local maximum, then decreases to a minimum at  1.68, which 

corresponds to the cut-off of the A1 wave mode in waveguide C. It can be seen that at  1.423 the two 

components have the same value which is the same as the incident mode as can be seen in Fig. 5(b). 

Above the fourth cut-off frequency, the displacement in the y-direction is greater than that in the x-

direction.  

The effects of the variation of the thickness of the damage on the transmitted waves are shown in 

Fig. 6. Although the A0 wave mode is dispersive at low frequency, it becomes less dispersive at higher 

frequencies compared to the S0 wave mode. Moreover, its characteristics remain similar throughout the 

whole frequency range. More than 90% of the amplitude of the cross-sectional displacement of the 

incident mode is in the y-direction, which is not the case for the S0 mode as shown previously. Therefore, 

the A0 mode is preferred as the selectively excited wave to propagate as an incident mode. In all the 

cases the incident wavelength is comparable with the size of the notch 

 

a) b) 

c) 
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Figure 6. A0 incident mode. a) Transmitted kinetic energy component in the y-directions for different 

depth of the damage; b) transmitted energy velocity over the incident energy velocity for different 

depth of the damage. The vertical lines correspond to cut-off frequencies in the thicker waveguide A. 

 

Fig. 6(a) shows the transmitted kinetic energy components in the y-direction with respect to the 

overall level.  It can be seen that in the case of 20% of notch depth, the behaviour of the transmitted 

kinetic energy has similar characteristics to the incident one shown in Fig. 4(b), apart from a minimum 

at the first cut-off frequency. Therefore, most of the energy is transmitted with the displacement in the 

y-direction. The y component of the transmitted displacement decreases with increasing of the damage 

size and has a lower minimum at the first cut-off frequency for a depth of the damage equal to 40%.  

Above this level, the differences become more significant due to the mode conversion caused by 

increasing loss of symmetry with respect to the neutral axis of the structure. In particular, when the 

damage reaches 60% and 80% with respect to the beam thickness, the minima occur below the first cut-

off frequency with an abrupt decrease to almost a zero of the component in the y-direction. At these 

minima, the x component of the transmitted displacement is comparable with that of an S0 mode even if 

a pure A0 wave mode is incident. Above the fourth cut-off frequency, the y component of the transmitted 

wave increases up to a plateau at high frequency, with more than 80% of the cross-sectional 

displacement in the y-direction. This is independent of the thickness variation of the beam. As expected, 

the case of 80% of damage shows a more complicated behaviour with local maxima and minima due to 

significant mode conversion. 

Fig. 6(b) shows the transmitted energy velocity ceT with respect to the incident energy velocity 

ceI. In the figure, values close to unity have a velocity of the transmitted waves similar to that of the 

incident wave, showing no significant mode conversion. On the other hand, values significantly different 

from unity exhibit mode conversion and energy redistribution amongst different modes. The behaviour 

confirms the trend depicted in Fig. 6(a). Significant changes in the transmitted energy velocity with 

respect to that of the incident wave occur at the first cut-off frequency. These changes increase according 

to the loss of symmetry of the damaged part with respect to the neutral axis of the original waveguide. 

In particular, for a percentage of damage equal to 60% and 80%, a maximum occurs below the cut-off 

frequency for the thicker waveguide due to the greater energy velocity of the S0 mode, which becomes 

predominant, compared to that of the incident mode. Again, at higher frequencies, most the energy is 

transmitted with a velocity close to the incident energy velocity.  

4.  Conclusions 

In this work, a Wave Finite Element method has been applied to an investigation of Lamb wave 

transmission from a notch in beams up to high frequency. Although the method described, which 

exploits standard FE discretisation of the waveguide through the cross-section, can be easily applied to 

more complicated waveguides, numerical results have been given for an isotropic case to show some 

mode conversion characteristics. 

a) b) 
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It has been shown that even when a pure wave mode is excited, a number of other modes are 

generated by the interaction of the excited wave with the asymmetric defect. This phenomenon is known 

as mode conversion and it was investigated by the transmitted time-averaged kinetic energy in terms of 

its component in the vertical and horizontal direction. These, together with the energy velocity, have 

given insight into the complicated mode scattering when multi-modes are involved. Numerical results 

have been shown up to high frequency for different notch depths. It was seen that wave mode conversion 

depends not only upon the size of the damage (depth of the notch) and the level of asymmetry with 

respect to the neutral axis of the waveguide, but also on the thickness of the waveguide and the damaged 

part. This is due to the cut-off frequencies of symmetric and asymmetric modes according to the 

frequency range of interest.  

When the incident wavelength is comparable with the size of the notch, reflection and transmission 

typically showed similar behaviour below the first cut-off frequency. However, at this frequency, the 

scattering behaviour changed drastically due to the cut-off frequency of the A1 Lamb wave mode. Above 

the first cut-off frequency, there are also changes in the S0 wave mode which is affected in terms of the 

directional component of the transmitted displacement and the energy velocity. Close to the cut-off 

frequencies of higher order modes, reflection and transmission become more complicated due to 

complex energy redistribution between the wave modes.  
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