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Area delle Scienze 53/A, I-43124 Parma, Italy

ANITA PASOTTI
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Abstract. In this paper we define a new class of partially filled arrays, called relative

Heffter arrays, that are a generalization of the Heffter arrays introduced by Archdeacon

in 2015. Let v = 2nk + t be a positive integer, where t divides 2nk, and let J be the
subgroup of Zv of order t. A Ht(m,n; s, k) Heffter array over Zv relative to J is an m× n

partially filled array with elements in Zv such that: (a) each row contains s filled cells and

each column contains k filled cells; (b) for every x ∈ Zv \ J , either x or −x appears in the
array; (c) the elements in every row and column sum to 0. Here we study the existence

of square integer (i.e. with entries chosen in ±
{

1, . . . ,
⌊
2nk+t

2

⌋}
and where the sums are

zero in Z) relative Heffter arrays for t = k, denoted by Hk(n; k). In particular, we prove

that for 3 ≤ k ≤ n, with k 6= 5, there exists an integer Hk(n; k) if and only if one of the
following holds: (a) k is odd and n ≡ 0, 3 (mod 4); (b) k ≡ 2 (mod 4) and n is even; (c)
k ≡ 0 (mod 4). Also, we show how these arrays give rise to cyclic cycle decompositions of

the complete multipartite graph.
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1. Introduction

An m × n partially filled (p.f., for short) array on a set Ω is an m × n matrix whose
elements belong to Ω and where we also allow some cells to be empty. An interesting class of
p.f. arrays, called Heffter arrays, has been introduced by Dan Archdeacon in [3].

Definition 1.1. A Heffter array H(m,n; s, k) is an m×n p.f. array with elements in Z2nk+1

such that

(a) each row contains s filled cells and each column contains k filled cells;
(b) for every x ∈ Z2nk+1 \ {0}, either x or −x appears in the array;
(c) the elements in every row and column sum to 0 (in Z2nk+1).

Trivial necessary conditions for the existence of an H(m,n; s, k) are ms = nk, 3 ≤ s ≤ n
and 3 ≤ k ≤ m. Hence if the Heffter array is square, namely if m = n, then s = k; such
an array will be denoted by H(n; k). A Heffter array is called integer if Condition (c) in
Definition 1.1 is strengthened so that the elements in every row and in every column, viewed
as integers in {±1, . . . ,±nk}, sum to zero in Z.

Heffter arrays are considered interesting and worthy of study in their own right together
with their vast variety of applications. In fact, there are some recent papers in which they
are investigated since they allow to obtain new biembeddings (see [3, 15, 17, 19]), while other
ones completely solve the existence problem of square Heffter arrays (see [4, 5, 12, 14, 20]).
In particular, in [5, 20] the authors verify the existence of a square integer Heffter array for
all admissible orders, proving the following theorem.

Theorem 1.2. There exists an integer H(n; k) if and only if 3 ≤ k ≤ n and nk ≡ 0, 3
(mod 4).

In this paper we introduce a new class of p.f. arrays, which is a natural generalization of
Heffter arrays.

Definition 1.3. Let v = 2nk+ t be a positive integer, where t divides 2nk, and let J be the
subgroup of Zv of order t. A Ht(m,n; s, k) Heffter array over Zv relative to J is an m × n
p.f. array with elements in Zv such that:

(a1) each row contains s filled cells and each column contains k filled cells;
(b1) for every x ∈ Zv \ J , either x or −x appears in the array;
(c1) the elements in every row and column sum to 0 (in Zv).
If Ht(m,n; s, k) is a square array, it will be denoted by Ht(n; k). Clearly, if t = 1, namely

if J is the trivial subgroup of Z2nk+1, we find again the classical concept of Heffter array. A
relative Heffter array is called integer if Condition (c1) in Definition 1.3 is strengthened so
that the elements in every row and in every column, viewed as integers in ±

{
1, . . . ,

⌊
2nk+t

2

⌋}
,

sum to zero in Z. The support of an integer Heffter array A, denoted by supp(A), is defined
to be the set of the absolute values of the elements contained in A. It is immediate to see
that an integer H2(n; k) is nothing but an integer H(n; k), since in both cases the support is
{1, 2, . . . , nk}.
Example 1.4. The following are integer relative Heffter arrays H16(4; 4) and H32(4; 4),
respectively.

1 −7 −16 22

23 2 −8 −17

−13 19 4 −10

−11 −14 20 5

1 −9 −21 29

31 3 −11 −23

−17 25 5 −13

−15 −19 27 7
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Here we investigate the existence problem of this new class of arrays in the square integer
case. In Section 2 we will describe the relationship between relative Heffter arrays and relative
difference families, see [1], which are very useful tools to obtain regular graph decompositions.
In fact, many known results about regular decompositions of the complete graph and of the
complete multipartite graph have been obtained thanks to difference families and to relative
difference families, respectively. From this relationship it follows that starting from a relative
Heffter array it is possible to construct a pair of orthogonal cyclic cycle decompositions of
the complete multipartite graph, as we will explain in details in the same section. In Section
3 we will determine some necessary conditions for the existence of an integer relative Heffter
array Ht(n; k). In Section 4 we will present a result which reduces the existence problem of an
integer Hk(n; k) to the case 3 ≤ k ≤ 6, then in Section 5 we will present direct constructions
for these basic cases. The results of these two sections allow us to present an almost complete
result which can be summarized as follows.

Theorem 1.5. Let 3 ≤ k ≤ n with k 6= 5. There exists an integer Hk(n; k) if and only if one
of the following holds:

• k is odd and n ≡ 0, 3 (mod 4);
• k ≡ 2 (mod 4) and n is even;
• k ≡ 0 (mod 4).

Furthermore, there exists an integer H5(n; 5) if n ≡ 3 (mod 4) and it does not exist if n ≡ 1, 2
(mod 4).

Note that for k = 5 we solved the existence problem of integer relative Heffter arrays
H5(n; 5) only for n ≡ 3 (mod 4), leaving the case n ≡ 0 (mod 4) open. In Section 6 we prove
Theorem 1.5 and the result about orthogonal decompositions obtained thanks to the arrays
constructed in previous sections. Hence, in this paper we focus on the construction of relative
Heffter arrays Hk(n; k). Further constructions for integer Ht(n; k) will be given in [23]. We
have to point out that relative Heffter arrays, as well as the classical ones, are useful to obtain
biembeddings of orthogonal cyclic cycle decompositions. This relationship is investigated in
[18].

2. Relation with relative difference families and decompositions of the
complete multipartite graph

Firstly, we recall some basic definitions about graphs and graph decompositions. Given a
graph Γ, by V (Γ) and E(Γ) we mean the vertex set and the edge set of Γ, respectively, and
by λΓ the multigraph obtained from Γ by repeating each edge λ times. We will denote by
Kv the complete graph of order v and by Kq×r the complete multipartite graph with q parts,
each of size r. Obviously Kq×1 is nothing but the complete graph Kq. The cycle of length k,
also called k-cycle, will be denoted by Ck.

The following are well known definitions and results which can be found in [7]. Let Γ be a
subgraph of a graph K. A Γ-decomposition of K is a set D of subgraphs of K isomorphic to Γ
whose edges partition E(K). If the vertices of Γ belong to an additive group G, given g ∈ G,
the graph whose vertex set is V (Γ) + g and whose edge set is {{x+ g, y+ g} | {x, y} ∈ E(Γ)}
will be denoted by Γ + g. An automorphism group of a Γ-decomposition D of K is a group of
bijections on V (K) leaving D invariant. A Γ-decomposition D of K is said to be regular under
a group G or G-regular if it admits G as an automorphism group acting sharply transitively
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on V (K). Here we consider cyclic cycle decompositions, namely Γ-decompositions which are
regular under a cyclic group where Γ is a cycle.

Proposition 2.1. Given an additive group G, a Γ-decomposition D of a graph K is G-regular
if and only if, up to isomorphisms, the following conditions hold:

• V (K) = G;
• B ∈ D ⇒ B + g ∈ D for all g ∈ G.

One of the most efficient tools applied for finding regular decompositions is the difference
method. Here, in particular, we are interested in relative difference families over graphs,
introduced in [9] (see also [10]).

Definition 2.2. Let Γ be a graph with vertices in an additive group G. The multiset

∆Γ = {±(x− y) | {x, y} ∈ E(Γ)}
is called the list of differences from Γ.

More generally, given a set W of graphs with vertices in G, by ∆W one means the union
(counting multiplicities) of all multisets ∆Γ, where Γ ∈ W.

Definition 2.3. Let J be a subgroup of an additive group G and let Γ be a graph. A
collection F of graphs isomorphic to Γ and with vertices in G is said to be a (G, J,Γ, λ)-
difference family (briefly, DF) if each element of G \ J appears exactly λ times in ∆F , while
no element of J appears there.

One speaks also of a difference family over G relative to J . If J = {0} one simply says that
F is a (G,Γ, λ)-DF. If Γ is a complete graph we find again the concept introduced by Buratti
in [8]. If J = {0} and Γ is a complete graph, then we obtain the classical concept of difference
family, see [1]. If t is a divisor of v, by writing (v, t,Γ, λ)-DF one means a (Zv, vtZv,Γ, λ)-DF,
where v

tZv denotes the subgroup of Zv of order t. We point out that the most interesting (and
the most difficult) case is with λ = 1. The relationship between relative difference families
and regular decompositions of the complete multipartite graph is explained in the following
result.

Theorem 2.4. [9, Proposition 2.6] If F = {B1, . . . , B`} is a (G, J,Γ, λ)-DF, then the collec-
tion of graphs B = {Bi + g | i = 1, . . . , `; g ∈ G} is a G-regular Γ-decomposition of λKq×r,
where q = |G : J | and r = |J |. Thus, in particular, a (G,Γ, λ)-DF gives rise to a G-regular
Γ-decomposition of λK|G|.

Results about regular cycle decompositions of the complete multipartite graph via relative
difference families can be found in [9, 11, 22, 25].

Now, in order to present the connection between relative Heffter arrays and relative differ-
ence families, we have to introduce the concept of simple ordering.

Henceforward, given two integers a ≤ b, we denote by [a, b] the interval containing the
integers {a, a + 1, . . . , b}. If a > b, then [a, b] is empty. Given an m × n p.f. array A, the
rows and the columns of A will be denoted by R1, . . . , Rm and by C1, . . . , Cn, respectively.
We will denote by E(A) the list of the elements of the filled cells of A. Analogously, by E(Ri)
and E(Cj) we mean the elements of the i-th row and of the j-th column of A, respectively.
Given a finite subset T of an abelian group G and an ordering ω = (t1, t2, . . . , tk) of the

elements in T , let si =
∑i
j=1 tj , for any i ∈ [1, k], be the i-th partial sum of T . The ordering
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ω is said to be simple if sb 6= sc for all 1 ≤ b < c ≤ k. If sk = 0, this is equivalent to
require that no proper subsequence of consecutive elements of ω sums to 0. Note that if ω
is a simple ordering then also ω−1 = (tk, tk−1, . . . , t1) is simple. We point out that there are
several interesting problems and conjectures about distinct partial sums: see, for instance,
[2, 6, 16, 21, 24]. Given an m × n p.f. array A, by ωRi

and ωCj
we will denote an ordering

of E(Ri) and of E(Cj), respectively. If for any i ∈ [1,m] and for any j ∈ [1, n], the orderings
ωRi

and ωCj
are simple, we define by ωr = ωR1

◦ . . . ◦ ωRm
the simple ordering for the rows

and by ωc = ωC1
◦ . . . ◦ ωCn

the simple ordering for the columns. A p.f. array A on a group
G is said to be simple if there exists a simple ordering for each row and each column of A.
Clearly if k ≤ 5, then every relative Heffter array is simple. Note that if we have a simple
Ht(n; k) we can construct 2n simple orderings ωr for the rows and 2n simple orderings ωc for
the columns, since the inverse of a simple ordering of a row (or a column) is still a simple
ordering.

Proposition 2.5. If A is a simple Ht(m,n; s, k), then there exist a (2ms + t, t, Cs, 1)-DF
and a (2nk + t, t, Ck, 1)-DF.

Proof. By hypothesis A is simple, hence there exists a simple ordering ωi for the i-th row
of A with i ∈ [1,m]. So, from each row of A we can construct an s-cycle whose vertices in
Z2ms+t are the partial sums of ωi. Let Fs be the set of m s-cycles constructed this way using
the rows of A. Clearly, ∆Fs = ±E(A). On the other hand, since A is a Ht(m,n; s, k) we have
±E(A) = Z2ms+t \ 2ms+t

t Z2ms+t. Hence Fs is a (2ms+ t, t, Cs, 1)-DF.
An analogous reasoning can be done on the columns of A obtaining a (2nk+t, t, Ck, 1)-DF,

say Fk similarly. �

Remark 2.6. Let Fs and Fk be the relative difference families constructed in the previous
proposition. Note that for any Cs ∈ Fs and any Ck ∈ Fk, we have |∆Cs ∩∆Ck| ∈ {0, 2}.

Example 2.7. Starting from the array A = H16(4; 4) given in Example 1.4 we construct two
(48, 16, C4, 1)-DFs. Since k = 4 < 6 every ordering is simple. Set, for instance:

ω1 = (1,−7,−16, 22), ν1 = (−11,−13, 23, 1),

ω2 = (23, 2,−8,−17), ν2 = (−7, 2, 19,−14),

ω3 = (−10, 4, 19,−13), ν3 = (20, 4,−8,−16),

ω4 = (−11,−14, 20, 5), ν4 = (5,−10,−17, 22).

The ωi’s and the νi’s are simple orderings for the rows and the columns of A, respectively.
Starting from these orderings we obtain the following 4-cycles:

Cω1 = (1,−6,−22, 0), Cν1 = (−11,−24,−1, 0),

Cω2 = (23, 25, 17, 0), Cν2 = (−7,−5, 14, 0),

Cω3 = (−10,−6, 13, 0), Cν3 = (20, 24, 16, 0),

Cω4 = (−11,−25,−5, 0), Cν4 = (5,−5,−22, 0).

Set Fω4 = {Cωi | i ∈ [1, 4]} and Fν4 = {Cνi | i ∈ [1, 4]}; by the construction of the cycles it
immediately follows that ∆Fω4 = ∆Fν4 = Z48\3Z48. Hence Fω4 and Fν4 are two (48, 16, C4, 1)-
DFs.

We recall the following definition, see for instance [13].
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Definition 2.8. Two Γ-decompositions D and D′ of a simple graph K are said to be orthog-
onal if for any B of D and any B′ of D′, B intersects B′ in at most one edge.

Proposition 2.9. Let Ht(m,n; s, k) be simple with respect to the orderings ωr and ωc. Then:

(1) there exists a cyclic s-cycle decomposition Dωr
of K 2ms+t

t ×t;

(2) there exists a cyclic k-cycle decomposition Dωc
of K 2nk+t

t ×t;

(3) the cycle decompositions Dωr
and Dωc

are orthogonal.

Proof. (1) and (2) follow from Theorem 2.4 and Proposition 2.5. Then (3) follows from
Remark 2.6. �

3. Necessary conditions for the existence of square integer Ht(n; k)

Here we determine some necessary conditions for the existence of square integer Ht(n; k).
We recall that, by definition, t divides 2nk.

Proposition 3.1. Suppose that there exists an integer Ht(n; k).

(1) If t divides nk, then

nk ≡ 0 (mod 4) or nk ≡ −t ≡ ±1 (mod 4).

(2) If t = 2nk, then k must be even.
(3) If t 6= 2nk does not divide nk, then

t+ 2nk ≡ 0 (mod 8).

Proof. Given an integer Ht(n; k), in order for each row to sum to zero, each row must contain
an even number of odd numbers. In particular, the entire array contains an even number of
odd numbers. The support of Ht(n; k) is the set S =

[
1, nk +

⌊
t
2

⌋]
\ T , where T consists of

the multiples of 2nk+t
t , i.e.,

T =

{
2nk + t

t
, 2

2nk + t

t
, . . . ,

⌊
t

2

⌋
2nk + t

t

}
.

Note that the interval
[
1, nk +

⌊
t
2

⌋]
contains exactly

⌊
nk+b t

2c+1

2

⌋
odd numbers. Now, if

2nk+t
t is odd (i.e., if t divides nk), then T contains

⌊
b t

2c+1

2

⌋
odd numbers. It follows that⌊

nk +
⌊
t
2

⌋
+ 1

2

⌋
−

⌊⌊
t
2

⌋
+ 1

2

⌋
is necessarily even, giving case (1).

If 2nk+t
t is even (i.e., if t does not divide nk), then T contains no odd numbers. Hence⌊

nk+b t
2c+1

2

⌋
must be even. In particular, if t = 2nk, then T contains all the even numbers of

[1, 2nk], and so S consists only of odd numbers. It follows that k must be even, giving case
(2). We are left to consider case (3). If t 6= 2nk does not divide nk, then t must be even and⌊

2nk + t+ 2

4

⌋
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is necessarily even. Hence 2nk + t ≡ 0, 6 (mod 8). Now we will show that 2nk + t ≡ 6
(mod 8) leads to a contradiction. Since we are in the hypothesis that t is even, we can set
t = 2m with nk = mh. From 2nk + t ≡ 6 (mod 8) we obtain 2mh+ 2m ≡ 6 (mod 8) which
implies m(h+ 1) ≡ 3 (mod 4). In particular this implies that h is even which contradicts the
hypothesis that t = 2m does not divides nk = mh. Hence (3) follows. �

We have to point out that the necessary conditions of the previous proposition are not
sufficient. In fact, for k = 3 we have also found two non-existence results. In order to present
them we need some definitions.

Given an m× n p.f. array A, by A[i, j] we mean the element of A in position (i, j). Also,
we define the skeleton of A, denoted by skel(A), to be the set of the filled positions of A. In
case A and B are m× n p.f. arrays such that skel(A) ∩ skel(B) = ∅, we define the union of
A and B to be the m× n p.f. array filled with both the entries of A and B.

Let A be an m × n p.f. array with no empty rows and no empty columns. Let R be an
r× n subarray of A and C be an m× c subarray of A. We say that the r× c subarray R∩ C
of A is closed if skel(R ∩ C) = skel(R) ∪ skel(C). We say that a closed subarray is minimal
if it is minimal with respect to the inclusion.

Example 3.2. Consider the following p.f. array A, where a filled cell is represented by a •:
• •

• •
• • •

• • •
• • •

• •

Let R be the subarray consisting of the rows 1, 3, 5 of A and let C be the subarray consisting
of the columns 1, 2, 4. Then R∩ C is a minimal closed subarray of A.

Lemma 3.3. There is no integer H3n(n; 3) for n ≥ 3.

Proof. By contradiction, suppose that A is an integer H3n(n; 3), hence by Proposition 3.1 we
have n ≡ 0 (mod 4). Then, supp(A) =

[
1, 9n2

]
\
{

3, 6, . . . , 9n2
}

. Fix any row of A and consider
its three elements. Since they sum to zero in Z and each of them cannot be congruent to zero
modulo 3, these elements must belong to the same residue class modulo 3. The same clearly
holds also for any column of A. So, considering alternatively rows and columns, one obtains
that, for any minimal closed subarray B of A, all the elements of E(B) belong to the same
residue class modulo 3. It is easy to see that if we change all the signs of the elements of a
closed subarray of A, we still obtain an integer H3n(n; 3). Hence, there would exist an integer
H3n(n; 3), say A′, such that all its elements belong to the same residue class modulo 3 and,
without loss of generality, we can suppose that this residue class modulo 3 is 1, namely that

E(A′) =

{
1,−2, 4,−5, 7,−8, . . . ,

9n− 4

2
,−9n− 2

2

}
.

Now, it is evident that the elements of E(A′) cannot sum to zero in Z, giving a contradiction.
�

Lemma 3.4. There is no integer H8(4; 3).

Proof. Assume, by way of a contradiction, that A is an integer H8(4; 3), hence supp(A) =
[1, 16] \ {4, 8, 12, 16}. We divide the proof into two cases.
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Case 1. Suppose that each row of A contains an element equivalent to 0 modulo 3. Clearly
we can assume without loss of generality that 3 ∈ supp(R1), 6 ∈ supp(R2), 9 ∈ supp(R3),
15 ∈ supp(R4). It follows that

supp(R1) ∈ {{3, 1, 2}, {3, 2, 5}, {3, 7, 10}, {3, 10, 13}, {3, 11, 14}};
supp(R2) ∈ {{6, 1, 5}, {6, 1, 7}, {6, 5, 11}, {6, 7, 13}};
supp(R3) ∈ {{9, 2, 7}, {9, 1, 10}, {9, 2, 11}, {9, 5, 14}};
supp(R4) ∈ {{15, 1, 14}, {15, 2, 13}, {15, 5, 10}}.

A simple direct check shows us that these conditions are compatible with supp(A) = [1, 16] \
{4, 8, 12, 16} only if:

(3.1)
supp(R1) = {3, 10, 13}; supp(R2) = {6, 5, 11};
supp(R3) = {9, 2, 7}; supp(R4) = {15, 1, 14}.

We can also assume, up to permutations of the columns and changing signs, that E(R4) =
(15,−14,−1) and that the cell (4, 4) is empty. Since −14 ∈ C2, we have that E(C2) ∈
{{3, 11,−14}, {5, 9,−14}}. We consider these two cases separately:

(a) A =

3
11

15 −14 −1

; (b) A =
5
9

15 −14 −1

.

(a) Since the cell (4, 4) is empty it follows that the cell (1, 4) is not empty and that
A[1, 4] ∈ {10,−13}. It is easy to see that if A[1, 4] = 10 then it is not possible to
complete the column C4. Hence A[1, 4] = −13 which implies E(C4) = {−13, 6, 7},
but now there is no possible way to complete the row R2.

(b) Using (3.1), it is not hard to see that E(C1) = {−13,−2, 15} and E(C3) = {3,−2,−1},
which clearly is a contradiction.

Case 2. Suppose now that there is a row Ri of A such that each of its elements is equivalent
to ±1 modulo 3. Clearly, we can assume without loss of generality that Ri = R1, hence
{3, 6, 9, 15} ⊂ supp(R2) ∪ supp(R3) ∪ supp(R4). Because of the pigeonhole principle there
exists a row Rj , with j 6= 1, whose support contains at least two elements among {3, 6, 9, 15}.
We can assume that j = 2 and that the filled positions of R2 are (2, 1), (2, 2) and (2, 3).
Since the sum of the elements of R2 is zero, we have that |supp(R2) ∩ {3, 6, 9, 15}| = 3; let
us denote by x the element of {3, 6, 9, 15} that is not contained in supp(R2). It follows that
x ∈ supp(C4), otherwise we would have a column with exactly two elements equivalent to 0
modulo 3, but this implies that the sum of this column is not zero. Therefore each column of
A contains an element equivalent to 0 modulo 3. Now reasoning as in the first case (on the
columns instead of the rows) we obtain a contradiction. �

In this paper we investigate the existence of an integer Hk(n; k). Note that in this special
case the necessary conditions given in Proposition 3.1 can be written in a simpler way. In
fact, we are in case (1) with t = k and hence we obtain the following result.

Corollary 3.5. If there exists an integer Hk(n; k), then necessarily one of the following holds:

(1) k is odd and n ≡ 0, 3 (mod 4);
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(2) k ≡ 2 (mod 4) and n is even;
(3) k ≡ 0 (mod 4).

4. Extension theorem

Firstly we introduce notations and definitions useful to present the main result of this
section which allows us to obtain an integer Hk+h(n; k+h) starting from an integer Hk(n; k),
for suitable even h. Above all, this result plays a crucial role in the paper.

Definition 4.1. A square p.f. array A with entries in Z is said to be shiftable if every row
and every column contains an equal number of positive and negative entries.

Let A be a shiftable array and x a non-negative integer. Let A± x be the array obtained
adding x to each positive entry of A and −x to each negative entry of A.

Remark 4.2. If A is shiftable then the row and column sums of A± x are exactly the row
and column sums of A.

If A is an n× n p.f. array, for i ∈ [1, n] we define the i-th diagonal

Di = {(i, 1), (i+ 1, 2), . . . , (i− 1, n)}.

Here all the arithmetic on the row and the column indices is performed modulo n, where
the set of reduced residues is {1, 2, . . . , n}. We say that the diagonals Di, Di+1, . . . , Di+k are
k + 1 consecutive diagonals.

Definition 4.3. Let k ≥ 1 be an integer. We will say that a square p.f. array A of size
n ≥ k is cyclically k-diagonal if the non empty cells of A are exactly those of k consecutive
diagonals.

Definition 4.4. We call cyclically (s, k)-diagonal every p.f. array S obtained as follows.
Take a cyclically k-diagonal n× n p.f. array A and replace each cell of A with an s× s array
which is totally empty if the corresponding cell of A is empty. Denote by B the sn×sn array
so obtained and let C1, . . . , Csn be its columns. Let S be any array whose ordered columns
are Ci, Ci+1, . . . , Csn, C1, . . . , Ci−1, with i ∈ [1, sn].

Example 4.5. The following is a cyclically (2, 3)-diagonal array of size 8.

4 36 −28 −33 21
8 −27 39 20 −40

−22 13 3 −35 41
12 −29 7 42 −32

26 −37 1 −14 24

−38 19 5 25 −11

15 −10 23 −30 2

−9 18 −31 16 6

Remark 4.6. Each cyclically k-diagonal p.f. array of even size n with k odd can be viewed
as a cyclically

(
2, k+1

2

)
-diagonal p.f. array.

Example 4.7. The following p.f. array is a cyclically 3-diagonal integer H3(12; 3) whose
filled diagonals are D12, D1, D2. This array can be also viewed as a cyclically (2, 2)-diagonal.
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−5 18 −13
−32 1 31

−19 2 17

−33 3 30

−20 4 16
−34 12 22

−28 7 21
−29 −6 35

−15 −8 23

−27 −9 36

−14 −10 24

37 −26 −11

Theorem 4.8. Suppose there exists an integer Hk(n; k), say A, and an n × n shiftable p.f.
array B such that:

(1) each row and each column of B contains h filled cells;
(2) supp(B) =

[
1, h2 (2n+ 1)

]
\ T where:

T =

{{
(2n+ 1), 2(2n+ 1), . . . , h2 (2n+ 1)

}
if k is even;{

(n+ 1), (n+ 1) + (2n+ 1), . . . , (n+ 1) + h−2
2 (2n+ 1)

}
if k is odd;

(3) the elements in every row and column of B sum to 0;
(4) skel(A) ∩ skel(B) = ∅.

Then there exists an integer Hk+h(n; k + h).

Proof. Note that since B is shiftable then h is even. We divide the proof into two cases
according to the parity of k.

Case 1: k is even. Since A is an integer Hk(n; k), we have that:

supp(A) =

[
1,
k

2
(2n+ 1)

]
\
{

(2n+ 1), 2(2n+ 1), . . . ,
k

2
(2n+ 1)

}
.

Since B is shiftable, by Remark 4.2 and by (3), the rows and columns of B = B ± k
2 (2n+ 1)

still sum to zero. Moreover, because of hypothesis (2), we also have that:

supp(B) =

[
k

2
(2n+ 1) + 1,

k + h

2
(2n+ 1)

]
\
{
k + 2

2
(2n+ 1), . . . ,

k + h

2
(2n+ 1)

}
.

It follows from hypotheses (1) and (4) that the union of A and B is an integer Hk+h(n; k+h).
Case 2: k is odd. We proceed in a similar way. Here we have that:

supp(A) =

[
1,
k(2n+ 1)− 1

2

]
\
{

(2n+ 1), . . . ,
k − 1

2
(2n+ 1)

}
.

Since B is shiftable, by Remark 4.2 and by (3), the rows and columns of B = B ± k(2n+1)−1
2

still sum to zero. Moreover, because of hypothesis (2), we have that the support of B is:[
k(2n+ 1) + 1

2
,

(k + h)(2n+ 1)− 1

2

]
\
{
k + 1

2
(2n+ 1), . . . ,

k + h− 1

2
(2n+ 1)

}
.

It follows from hypotheses (1) and (4) that the union of A and B is an integer Hk+h(n; k +
h). �
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A B C D

A B C D

A B C D

A B C D

D A B C

X X A B

B X X A

Figure 1. Scheme of construction with n = 7.

Many of the constructions we will present are based on filling in the cells of a set of
diagonals. In order to describe these constructions we use the same procedure introduced in
[20]. In an n× n array A the procedure diag(r, c, s,∆1,∆2, `) installs the entries

A[r + i∆1, c+ i∆1] = s+ i∆2 for i ∈ [0, `− 1].

The parameters used in the diag procedure have the following meaning:

• r denotes the starting row,
• c denotes the starting column,
• s denotes the entry A[r, c],
• ∆1 denotes the increasing value of the row and column at each step,
• ∆2 denotes how much the entry is changed at each step,
• ` is the length of the chain.

We will write [a, b](W ) to mean supp(W ) = [a, b].
Here we provide some direct constructions of shiftable p.f. arrays that satisfy the hypothe-

ses of Theorem 4.8.

Proposition 4.9. There exists a shiftable, integer, cyclically 4-diagonal H4(n; 4) for n ≥ 4.

Proof. We construct an n× n array A using the following procedures labeled A to D:

A : diag(1, 1, 1, 1, 1, n); B : diag(1, 2,−(n+ 1), 1,−1, n);

C : diag(1, 3,−(2n+ 4), 1,−1, n− 2); D : diag(1, 4, 3n+ 4, 1, 1, n− 2).

We also fill the following cells in an ad hoc manner:

A [n− 1, 1] = −(2n+ 2), A [n− 1, 2] = 3n+ 2,

A [n, 2] = −(2n+ 3), A [n, 3] = 3n+ 3.

We now prove that the array constructed above is an integer H4(n; 4). To aid in the proof
we give a schematic picture (see Figure 1) of where each of the diagonal procedures fills cells.
We have placed an X in the ad hoc cells. It is easy to see that A is shiftable and cyclically
4-diagonal. We now check that the elements in every row sum to 0 (in Z).

Row 1 to n− 2: Notice that for any row r = 1 + i, where i ∈ [0, n− 3], from the A, B,
C and D diagonal cells we get the following sum:

(1 + i)− (n+ 1 + i)− (2n+ 4 + i) + (3n+ 4 + i) = 0.

Row n− 1: This row contains two ad hoc values, the (n−1)-th element of the A diagonal
and the (n− 1)-th element of the B diagonal. The sum is

−(2n+ 2) + (3n+ 2) + (n− 1)− (2n− 1) = 0.
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Row n: This row contains two ad hoc values, the last of the A diagonal and the last of
the B diagonal. The sum is

−2n− (2n+ 3) + (3n+ 3) + n = 0.

So we have shown that all row sums are zero. Next we check that the columns all add to
zero.

Column 1: There is an ad hoc value plus the first of the A diagonal as well as the last
elements of the D and B diagonals. The sum is

1 + (4n+ 1)− (2n+ 2)− 2n = 0.

Column 2: There are two ad hoc values plus the first of the B diagonal as well as the
second of the A diagonal. The sum is

−(n+ 1) + 2 + (3n+ 2)− (2n+ 3) = 0.

Column 3: There is an ad hoc value plus the first of the C diagonal, the second of the
B diagonal and the third of the A diagonal. The sum is

−(2n+ 4)− (n+ 2) + 3 + (3n+ 3) = 0.

Column 4 to n: For every column c, write c = 4 + i, where i ∈ [0, n− 4]. From the D,
C, B and A diagonal cells we get the following sum:

(3n+ 4 + i)− (2n+ 5 + i)− (n+ 3 + i) + (4 + i) = 0.

So we have shown that each column sums to 0. Now we consider the support of A:

supp(A) = [1, n](A) ∪ [n+ 1, 2n](B) ∪ {2n+ 2, 2n+ 3} ∪ [2n+ 4, 3n+ 1](C)∪
{3n+ 2, 3n+ 3} ∪ [3n+ 4, 4n+ 1](D)

= [1, 4n+ 1] \ {2n+ 1}.

Thus, A is a shiftable, integer, cyclically 4-diagonal H4(n; 4) for n ≥ 4. �

Example 4.10. Following the proof of Proposition 4.9 we obtain the integer H4(7; 4) below.

1 −8 −18 25

2 −9 −19 26

3 −10 −20 27

4 −11 −21 28

29 5 −12 −22

−16 23 6 −13

−14 −17 24 7

Proposition 4.11. For every n ≥ 4, there exists an n × n shiftable, cyclically 4-diagonal,
p.f. array B such that:

(1) supp(B) = [1, 4n+ 2] \ {n+ 1, 3n+ 2};
(2) the elements in every row and column of B sum to 0.

Proof. We construct an n× n array B using the following procedures labeled A to D:

A : diag(1, 1, 1, 1, 1, n); B : diag(1, 2,−(n+ 2), 1,−1, n);

C : diag(1, 3,−(2n+ 4), 1,−1, n− 2); D : diag(1, 4, 3n+ 5, 1, 1, n− 2).
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We also fill the following cells in an ad hoc manner:

B [n− 1, 1] = −(2n+ 2), B [n− 1, 2] = 3n+ 3,

B [n, 2] = −(2n+ 3), B [n, 3] = 3n+ 4.

To aid in the proof we give a schematic picture of where each of the diagonal procedures fills
cells (see Figure 1). We have placed an X in the ad hoc cells. Note that B is shiftable and
cyclically 4-diagonal, so we only need to prove that the array constructed above satisfies the
properties (1) and (2) of the statement. We now check that the elements in every row sum
to 0 (in Z).

Row 1 to n− 2: Notice that for any row r = 1 + i, where i ∈ [0, n− 3], from the A, B,
C and D diagonal cells we get the following sum:

(1 + i)− (n+ 2 + i)− (2n+ 4 + i) + (3n+ 5 + i) = 0.

Row n− 1: This row contains two ad hoc values, the (n−1)-th element of the A diagonal
and the (n− 1)-th element of the B diagonal. The sum is

−(2n+ 2) + (3n+ 3) + (n− 1)− 2n = 0.

Row n: This row contains two ad hoc values and the last elements of the A and B

diagonals. The sum is

−(2n+ 1)− (2n+ 3) + (3n+ 4) + n = 0.

So we have shown that all row sums are zero. Next we check that the columns all add to
zero.

Column 1: There is an ad hoc value plus the first of the A diagonal as well as the last
elements of the D and B diagonals. The sum is

1 + (4n+ 2)− (2n+ 2)− (2n+ 1) = 0.

Column 2: There are two ad hoc values plus the first of the B diagonal as well as the
second of the A diagonal. The sum is

−(n+ 2) + 2 + (3n+ 3)− (2n+ 3) = 0.

Column 3: There is an ad hoc value plus the first of the C diagonal, the second of the
B diagonal and the third of the A diagonal. The sum is

−(2n+ 4)− (n+ 3) + 3 + (3n+ 4) = 0.

Column 4 to n: Notice that for every column c = 4 + i, where i ∈ [0, n− 4], from the
D, C, B and A diagonal cells we get the following sum:

(3n+ 5 + i)− (2n+ 5 + i)− (n+ 4 + i) + (4 + i) = 0.

So we have shown that each column sums to 0. Now we consider the support of B:

supp(B) = [1, n](A) ∪ [n+ 2, 2n+ 1](B) ∪ {2n+ 2, 2n+ 3}∪
[2n+ 4, 3n+ 1](C) ∪ {3n+ 3, 3n+ 4} ∪ [3n+ 5, 4n+ 2](D)

= [1, 4n+ 2] \ {n+ 1, 3n+ 2}.
Hence we obtain the result. �

Example 4.12. Here we have the 7 × 7 array obtained following the proof of Proposition
4.11.
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1 −9 −18 26

2 −10 −19 27

3 −11 −20 28

4 −12 −21 29

30 5 −13 −22

−16 24 6 −14

−15 −17 25 7

Proposition 4.13. There exists a shiftable, integer, cyclically (2, 2)-diagonal H4(n; 4) for
any even n ≥ 4.

Proof. We set n = 2m. Let us consider the arrays Ei =
1 + 4i −2− 4i
−3− 4i 4 + 4i

and Fi =

−2− 4i 3 + 4i
4 + 4i −5− 4i

. Now, let B be the 2m× 2m array so defined:

E0 Fm
E1 Fm+1

E2 Fm+2

. . .
. . .

. . .
. . .

Em−2 F2m−2
F2m−1 Em−1

Clearly B is shiftable and cyclically (2, 2)-diagonal; its support is given by:

supp(B) =
⋃m−1
i=0 supp(Ei) ∪

⋃2m−1
i=m supp(Fi)

= [1, 4m] ∪ [4m+ 2, 8m+ 1] = [1, 4n+ 1] \ {2n+ 1}.

It is also easy to check that each row and each column of B sums to zero and thus B is a
H4(n; 4) that satisfies the required properties. �

Example 4.14. Following the proof of Proposition 4.13 we obtain the integer H4(8; 4) below:

1 −2 −18 19
−3 4 20 −21

5 −6 −22 23
−7 8 24 −25

9 −10 −26 27

−11 12 28 −29

−30 31 13 −14

32 −33 −15 16

Given a cyclically (2, 3)-diagonal p.f. array, we call strip Si the union of two consecutive
rows R2i+1 and R2i+2.

Proposition 4.15. Let n ≡ 0 (mod 4) with n ≥ 8. Then there exists an n × n shiftable,
cyclically (2, 3)-diagonal, p.f. array B such that:

(1) supp(B) = [1, 6n+ 3] \ {n+ 1, 3n+ 2, 5n+ 3} ;
(2) the elements in every row and column of B sum to 0.
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Proof. Consider the following three 2× 6 arrays:

U =
−1 5 2 −7 −9 10
3 −4 −6 8 11 −12

,

V5 =
−1 10 7 −12 4 −8
3 −9 −11 13 −2 6

,

V9 =
−1 5 2 −7 13 −12
3 −4 −6 8 −11 10

.

Note that supp(U) = [1, 12], supp(V5) = [1, 4] ∪ [6, 13] and supp(V9) = [1, 8] ∪ [10, 13]. Also,
U , V5 and V9 are shiftable matrices whose rows sum to 0 and whose columns have the
following sums: (2, 1,−4, 1, 2,−2). As consequence, every cyclically (2, 3)-diagonal p.f. array
constructed strip by strip using 2× 6 arrays of the form W ±x, where W ∈ {U, V5, V9} and x
is a non-negative integer, has rows and columns that sum to 0. We have to distinguish three
cases.

If n = 12m, let B be a cyclically (2, 3)-diagonal n × n p.f. array whose strips Si are as
follows:

Si =


U ± 12i if i ∈ [0,m− 1],
U ± (1 + 12i) if i ∈ [m, 3m− 1],
U ± (2 + 12i) if i ∈ [3m, 5m− 1],
U ± (3 + 12i) if i ∈ [5m, 6m− 1].

We obtain

supp(B) =
⋃m−1
i=0 [1 + 12i, 12 + 12i] ∪

⋃3m−1
i=m [2 + 12i, 13 + 12i]∪⋃5m−1

i=3m [3 + 12i, 14 + 12i] ∪
⋃6m−1
i=5m [4 + 12i, 15 + 12i]

= [1, 12m] ∪ [12m+ 2, 36m+ 1] ∪ [36m+ 3, 60m+ 2]∪
[60m+ 4, 72m+ 3].

If n = 12m+ 4, let B be a cyclically (2, 3)-diagonal n× n p.f. array whose strips Si are:

Si =



U ± 12i if i ∈ [0,m− 1],
V5 ± 12i if i = m,
U ± (1 + 12i) if i ∈ [m+ 1, 3m],
U ± (2 + 12i) if i ∈ [3m+ 1, 5m],
V9 ± (2 + 12i) if i = 5m+ 1,
U ± (3 + 12i) if i ∈ [5m+ 2, 6m+ 1].

It follows that

supp(B) =
⋃m−1
i=0 [1 + 12i, 12 + 12i] ∪ [12m+ 1, 12m+ 4]∪

[12m+ 6, 12m+ 13] ∪
⋃3m
i=m+1[2 + 12i, 13 + 12i]∪⋃5m

i=3m+1[3 + 12i, 14 + 12i] ∪ [60m+ 15, 60m+ 22]∪
[60m+ 24, 60m+ 27] ∪

⋃6m+1
i=5m+2[4 + 12i, 15 + 12i]

= [1, 12m+ 4] ∪ [12m+ 6, 36m+ 13] ∪ [36m+ 15, 60m+ 22]∪
[60m+ 24, 72m+ 27].
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If n = 12m + 8 with m ≥ 0, let B be a cyclically (2, 3)-diagonal n × n p.f. array whose
strips Si are:

Si =



U ± 12i if i ∈ [0,m− 1],
V9 ± 12i if i = m,
U ± (1 + 12i) if i ∈ [m+ 1, 3m+ 1],
U ± (2 + 12i) if i ∈ [3m+ 2, 5m+ 2],
V5 ± (2 + 12i) if i = 5m+ 3,
U ± (3 + 12i) if i ∈ [5m+ 4, 6m+ 3].

It follows that

supp(B) =
⋃m−1
i=0 [1 + 12i, 12 + 12i] ∪ [12m+ 1, 12m+ 8]∪

[12m+ 10, 12m+ 13] ∪
⋃3m+1
i=m+1[2 + 12i, 13 + 12i]∪⋃5m+2

i=3m+2[3 + 12i, 14 + 12i] ∪ [60m+ 39, 60m+ 42]∪
[60m+ 44, 60m+ 51] ∪

⋃6m+3
i=5m+4[4 + 12i, 15 + 12i]

= [1, 12m+ 8] ∪ [12m+ 10, 36m+ 25] ∪ [36m+ 27, 60m+ 42]∪
[60m+ 44, 72m+ 51].

In all three cases, we have supp(B) = [1, 6n+ 3] \ {n+ 1, 3n+ 2, 5n+ 3} as required. �

Example 4.16. Following the proof of Proposition 4.15 we obtain the following 12× 12 p.f.
array B:

−1 5 2 −7 −9 10

3 −4 −6 8 11 −12

−14 18 15 −20 −22 23

16 −17 −19 21 24 −25

−26 30 27 −32 −34 35
28 −29 −31 33 36 −37

−39 43 40 −45 −47 48
41 −42 −44 46 49 −50

−59 60 −51 55 52 −57
61 −62 53 −54 −56 58

65 −70 −72 73 −64 68
−69 71 74 −75 66 −67

Theorem 4.17. If there exists:

(1) an integer cyclically k-diagonal Hk(n; k) with n ≥ k + 4, then there exists an integer
cyclically (k + 4)-diagonal Hk+4(n; k + 4);

(2) an integer cyclically (2, d)-diagonal H2d(n; 2d) with n ≥ 2d + 4, then there exists an
integer cyclically (2, d+ 2)-diagonal H2d+4(n; 2d+ 4);

(3) an integer cyclically (2, d)-diagonal H2d−1(n; 2d− 1) with n ≡ 0 (mod 4), n ≥ 2d+ 6,
then there exists an integer cyclically (2, d+ 3)-diagonal H2d+5(n; 2d+ 5).

Proof. (1) Let A be an integer cyclically k-diagonal Hk(n; k) with n ≥ k + 4. Let B be
the cyclically 4-diagonal array of size n constructed in Proposition 4.9 if k is even and in
Proposition 4.11 if k is odd. Since n ≥ k + 4, starting from B it is possible to construct
a cyclically 4-diagonal array B̃ such that skel(A) ∩ skel(B̃) = ∅ and A ∪ B̃ is cyclically
(k + 4)-diagonal. Hence the result follows by Theorem 4.8.

(2) Let A be an integer cyclically (2, d)-diagonal H2d(n; 2d) with n ≥ 2d + 4. Let B be
the cyclically (2, 2)-diagonal array constructed in Proposition 4.13. Reasoning as in case (1),
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since n ≥ 2d + 4 we can take B̃ such that skel(A) ∩ skel(B̃) = ∅ and A ∪ B̃ is cyclically
(2, d+ 2)-diagonal. Hence the result follows by Theorem 4.8.

(3) Let A be an integer cyclically (2, d)-diagonal H2d−1(n; 2d− 1) with n ≡ 0 (mod 4) and
n ≥ 2d + 6. Let B be the cyclically (2, 3)-diagonal array constructed in Proposition 4.15.

Reasoning as in case (1), since n ≥ 2d + 6 we can take B̃ such that skel(A) ∩ skel(B̃) = ∅
and A ∪ B̃ is cyclically (2, d+ 3)-diagonal. Hence the result follows by Theorem 4.8. �

Example 4.18. We consider case (3) of previous theorem for n = 12 and d = 2. Taking the
integer cyclically (2, 2)-diagonal H3(12; 3) of Example 4.7 and the cyclically (2, 3)-diagonal ar-
ray B of Example 4.16, we obtain an integer cyclically (2, 5)-diagonal H9(12; 9). The elements

in bold are those of B̃ ± 37.
−5 18 −38 42 39 −44 −46 47 −13

−32 1 31 40 −41 −43 45 48 −49
−19 2 17 −51 55 52 −57 −59 60

−33 3 30 53 −54 −56 58 61 −62
72 −20 4 16 −63 67 64 −69 −71
−74 −34 12 22 65 −66 −68 70 73

−82 −84 85 −28 7 21 −76 80 77

83 86 −87 −29 −6 35 78 −79 −81
92 89 −94 −96 97 −15 −8 23 −88
−91 −93 95 98 −99 −27 −9 36 90

−101 105 102 −107 −109 110 −14 −10 24

37 103 −104 −106 108 111 −112 −26 −11

5. Direct constructions of Hk(n; k)

In this section we give direct constructions of integer Hk(n; k) with k = 3, 5, 6, since the
case k = 4 has been already considered in Proposition 4.9.

Proposition 5.1. There exists an integer cyclically 3-diagonal H3(n; 3) for n ≡ 3 (mod 4).

Proof. We construct an n× n array A using the following procedures labeled A to J:

A : diag
(
2, 2, 1, 1, 1, n−32

)
; B : diag

(
n+3
2 , n+3

2 ,−n+1
2 , 1,−1, n−12

)
;

C : diag
(
2, 1,− 5n+3

2 , 2,−1, n+1
4

)
; D : diag

(
3, 2,− 3n+3

2 , 2,−1, n−34

)
;

E : diag
(
1, 2, 3n+1

2 , 2,−1, n+1
4

)
; F : diag

(
2, 3, 5n+1

2 , 2,−1, n−34

)
;

G : diag
(
n+1
2 , n+3

2 , 7n+3
4 , 2, 1, n+1

4

)
; H : diag

(
n+3
2 , n+5

2 , 11n+7
4 , 2, 1, n+1

4

)
;

I : diag
(
n+3
2 , n+1

2 ,− 9n+5
4 , 2, 1, n+1

4

)
; J : diag

(
n+5
2 , n+3

2 ,− 5n+1
4 , 2, 1, n+1

4

)
.

We also fill the following cells in an ad hoc manner:

A [1, 1] = −n−12 , A
[
n+1
2 , n+1

2

]
= n.

We now prove that the array constructed above is an integer cyclically 3-diagonal H3(n; 3).
To aid in the proof we give a schematic picture of where each of the diagonal procedures fills
cells (see Figure 2). We have placed an X in the ad hoc cells. Note that each row and each
column contains exactly 3 elements. We now check that the elements in every row sum to 0
(in Z).

Row 1: There is an ad hoc value plus the first of the E diagonal as well as the last of
the J diagonal. The sum is

−n− 1

2
+

3n+ 1

2
− (n+ 1) = 0.
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X E J

C A F

D A E

C A F

D A E

C X G

I B H

J B G

I B H

J B G

H I B

Figure 2. Scheme of construction with n = 11.

Row 2 to n−1
2 : There are two cases depending on whether the row r is even or odd. If

r is even, then write r = 2i + 2 where i ∈
[
0, n−74

]
. Notice that from the C, A and F

diagonal cells we get the following sum:(
−5n+ 3

2
− i
)

+ (1 + 2i) +

(
5n+ 1

2
− i
)

= 0.

If r is odd, then write r = 2i + 3 where i ∈
[
0, n−74

]
. From the D, A and E diagonal

cells we get the following sum:(
−3n+ 3

2
− i
)

+ (2 + 2i) +

(
3n− 1

2
− i
)

= 0.

Row n+1
2 : We add the last value of the C diagonal, an ad hoc value and the first of the

G diagonal:

−11n+ 3

4
+ n+

7n+ 3

4
= 0.

Row n+3
2 to n: Note that n+3

2 is odd. There are two cases depending on whether the

row r is odd or even. If r is odd, then write r = n+3
2 + 2i where i ∈

[
0, n−34

]
. Notice

that from the I, B and H diagonal cells we get the following sum:(
−9n+ 5

4
+ i

)
+

(
−n+ 1

2
− 2i

)
+

(
11n+ 7

4
+ i

)
= 0.

If r is even, then write r = n+5
2 + 2i where i ∈

[
0, n−74

]
. Notice that from the J, B

and G diagonal cells we get the following sum:(
−5n+ 1

4
+ i

)
+

(
−n+ 1

2
− 2i

)
+

(
7n+ 3

4
+ i

)
= 0.

So we have shown that all row sums are zero. Next we check that the columns all add to
zero.

Column 1: There is an ad hoc value plus the first of the C diagonal as well as the last
of the H diagonal. The sum is

−n− 1

2
− 5n+ 3

2
+ (3n+ 1) = 0.
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Column 2 to n−1
2 : There are two cases depending on whether the column c is even or

odd. If c is even, then write c = 2i+ 2 where i ∈
[
0, n−74

]
. Notice that from the E, A

and D diagonal cells we get the following sum:(
3n+ 1

2
− i
)

+ (1 + 2i) +

(
−3n+ 3

2
− i
)

= 0.

If c is odd, then write c = 2i + 3 where i ∈
[
0, n−74

]
. From the F, A and C diagonal

cells we get the following sum:(
5n+ 1

2
− i
)

+ (2 + 2i) +

(
−5n+ 5

2
− i
)

= 0.

Column n+1
2 : We add the last value of the E diagonal, an ad hoc value and the first of

the I diagonal:
5n+ 5

4
+ n− 9n+ 5

4
= 0.

Column n+3
2 to n: Note that n+3

2 is odd. There are two cases depending on whether

the column c is odd or even. If c is odd, then write c = n+3
2 + 2i where i ∈

[
0, n−34

]
.

Notice that from the G, B and J diagonal cells we get the following sum:(
7n+ 3

4
+ i

)
+

(
−n+ 1

2
− 2i

)
+

(
−5n+ 1

4
+ i

)
= 0.

If c is even, then write c = n+5
2 + 2i where i ∈

[
0, n−74

]
. Notice that from the H, B

and I diagonal cells we get the following sum:(
11n+ 7

4
+ i

)
+

(
−n+ 3

2
− 2i

)
+

(
−9n+ 1

4
+ i

)
= 0.

So we have shown that each column sums to 0. Now we consider the support of A:

supp(A) =
[
1, n−32

]
(A)
∪ {n−12 } ∪

[
n+1
2 , n− 1

]
(B)
∪ {n} ∪

[
n+ 1, 5n+1

4

]
(J)
∪[

5n+5
4 , 3n+1

2

]
(E)
∪
[
3n+3

2 , 7n−14

]
(D)
∪
[
7n+3

4 , 2n
]
(G)
∪[

2n+ 2, 9n+5
4

]
(I)
∪
[
9n+9

4 , 5n+1
2

]
(F)
∪
[
5n+3

2 , 11n+3
4

]
(C)
∪[

11n+7
4 , 3n+ 1

]
(H)

= [1, 3n+ 1] \ {2n+ 1}.
Thus, A is an integer cyclically 3-diagonal H3(n; 3) for n ≡ 3 (mod 4). �

Example 5.2. Following the proof of Proposition 5.1 we obtain the integer H3(11; 3) below.

−5 17 −12

−29 1 28

−18 2 16

−30 3 27

−19 4 15

−31 11 20

−26 −6 32

−14 −7 21

−25 −8 33

−13 −9 22

34 −24 −10

Proposition 5.3. There exists an integer cyclically 3-diagonal H3(n; 3) for n ≡ 0 (mod 4).
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X E G

C A F

D A E

C A F

D A E

C X X

X X X

X X I

G B J

H B I

G B J

I H B

Figure 3. Scheme of construction with n = 12.

Proof. We construct an n× n array A using the following procedures labeled A to J:

A : diag
(
2, 2, 1, 1, 1, n−42

)
; B : diag

(
n+6
2 , n+6

2 ,−n+4
2 , 1,−1, n−42

)
;

C : diag
(
2, 1,− 5n+4

2 , 2,−1, n4
)

; D : diag
(
3, 2,− 3n+2

2 , 2,−1, n−44

)
;

E : diag
(
1, 2, 3n2 , 2,−1, n4

)
; F : diag

(
2, 3, 5n+2

2 , 2,−1, n−44

)
;

G : diag
(
n+6
2 , n+4

2 ,− 5n
4 , 2, 1,

n
4

)
; H : diag

(
n+8
2 , n+6

2 ,− 9n
4 , 2, 1,

n−4
4

)
;

I : diag
(
n+4
2 , n+6

2 , 11n+8
4 , 2, 1, n4

)
; J : diag

(
n+6
2 , n+8

2 , 7n+8
4 , 2, 1, n−44

)
.

We also fill the following cells in an ad hoc manner:

A [1, 1] = −n−22 , A
[
n
2 ,

n
2

]
= n, A

[
n
2 ,

n+2
2

]
= 7n+4

4 ,

A
[
n+2
2 , n2

]
= − 9n+4

4 , A
[
n+2
2 , n+2

2

]
= n+2

2 , A
[
n+2
2 , n+4

2

]
= 7n

4 ,

A
[
n+4
2 , n+2

2

]
= − 9n+8

4 , A
[
n+4
2 , n+4

2

]
= −n2 .

We now prove that the array constructed above is an integer H3(n; 3). To aid in the proof
we give a schematic picture of where each of the diagonal procedures fills cells (see Figure
3). We have placed an X in the ad hoc cells. Note that each row and each column contains
exactly 3 elements. We now check that the elements in every row sum to 0 (in Z).

Row 1: There is an ad hoc value plus the first of the E diagonal as well as the last of
the G diagonal. The sum is

−n− 2

2
+

3n

2
− (n+ 1) = 0.

Row 2 to n−2
2 : There are two cases depending on whether the row r is even or odd. If

r is even, then write r = 2i+ 2 where i ∈
[
0, n4 − 2

]
. Notice that from the C, A and F

diagonal cells we get the following sum:(
−5n+ 4

2
− i
)

+ (1 + 2i) +

(
5n+ 2

2
− i
)

= 0.

If r is odd, then write r = 2i+ 3 where i ∈
[
0, n4 − 2

]
. From the D, A and E diagonal

cells we get the following sum:(
−3n+ 2

2
− i
)

+ (2 + 2i) +

(
3n− 2

2
− i
)

= 0.
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Row n
2 : We add the last value of the C diagonal with two ad hoc values:

−11n+ 4

4
+ n+

7n+ 4

4
= 0.

Row n+2
2 : This row contains 3 ad hoc values. The sum is

−9n+ 4

4
+
n+ 2

2
+

7n

4
= 0.

Row n+4
2 : There are two ad hoc values plus the first of the I diagonal. The sum is

−9n+ 8

4
− n

2
+

11n+ 8

4
= 0.

Row n+6
2 to n: Note that n+6

2 is odd. There are two cases depending on whether the

row r is odd or even. If r is odd, then write r = n+6
2 +2i where i ∈

[
0, n4 − 2

]
. Notice

that from the G, B and J diagonal cells we get the following sum:(
−5n

4
+ i

)
+

(
−n+ 4

2
− 2i

)
+

(
7n+ 8

4
+ i

)
= 0.

If r is even, then write r = n+8
2 + 2i where i ∈

[
0, n4 − 2

]
. Notice that from the H, B

and I diagonal cells we get the following sum:(
−9n

4
+ i

)
+

(
−n+ 6

2
− 2i

)
+

(
11n+ 12

4
+ i

)
= 0.

So we have shown that all row sums are zero. Next we check that the columns all add to
zero.

Column 1: There is an ad hoc value plus the first of the C diagonal as well as the last
of the I diagonal. The sum is

−n− 2

2
− 5n+ 4

2
+ (3n+ 1) = 0.

Column 2 to n−2
2 : There are two cases depending on whether the column c is even or

odd. If c is even, then write c = 2i+ 2 where i ∈
[
0, n4 − 2

]
. Notice that from the E,

A and D diagonal cells we get the following sum:(
3n

2
− i
)

+ (1 + 2i) +

(
−3n+ 2

2
− i
)

= 0.

If c is odd, then write c = 2i+ 3 where i ∈
[
0, n4 − 2

]
. From the F, A and C diagonal

cells we get the following sum:(
5n+ 2

2
− i
)

+ (2 + 2i) +

(
−5n+ 6

2
− i
)

= 0.

Column n
2 : We add the last value of the E diagonal with two ad hoc values:

5n+ 4

4
+ n− 9n+ 4

4
= 0.

Column n+2
2 : This column contains 3 ad hoc values. The sum is

7n+ 4

4
+
n+ 2

2
− 9n+ 8

4
= 0.
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Column n+4
2 : There are two ad hoc values plus the first of the G diagonal. The sum is

7n

4
− n

2
− 5n

4
= 0.

Column n+6
2 to n: There are two cases depending on whether the column c is odd or

even. If c is odd, then write c = n+6
2 + 2i where i ∈

[
0, n4 − 2

]
. Notice that from the

I, B and H diagonal cells we get the following sum:(
11n+ 8

4
+ i

)
+

(
−n+ 4

2
− 2i

)
+

(
−9n

4
+ i

)
= 0.

If c is even, then write c = n+8
2 + 2i where i ∈

[
0, n4 − 2

]
. Notice that from the J, B

and G diagonal cells we get the following sum:(
7n+ 8

4
+ i

)
+

(
−n+ 6

2
− 2i

)
+

(
−5n− 4

4
+ i

)
= 0.

So we have shown that each column sums to 0. Now we consider the support of A:

supp(A) =
[
1, n−42

]
(A)
∪
{
n−2
2 , n2 ,

n+2
2

}
∪
[
n+4
2 , n− 1

]
(B)
∪ {n}∪[

n+ 1, 5n4
]
(G)
∪
[
5n+4

4 , 3n2
]
(E)
∪
[
3n+2

2 , 7n−44

]
(D)
∪
{

7n
4 ,

7n+4
4

}
∪[

7n+8
4 , 2n

]
(J)
∪
[
2n+ 2, 9n4

]
(H)
∪ { 9n+4

4 , 9n+8
4 } ∪

[
9n+12

4 , 5n+2
2

]
(F)

∪
[
5n+4

2 , 11n+4
4

]
(C)
∪
[
11n+8

4 , 3n+ 1
]
(I)

= [1, 3n+ 1] \ {2n+ 1}.
Thus, A is an integer cyclically 3-diagonal H3(n; 3) for n ≡ 0 (mod 4). �

The integer H3(12; 3) obtained following the proof of Proposition 5.3 is given in Example
4.7.

Proposition 5.4. Let n ≡ 3 (mod 4) with n ≥ 7. Then there exists an integer cyclically
5-diagonal H5(n; 5).

Proof. We construct an n× n array A using the following procedures labeled A to N.

A : diag
(
3, 3, n−32 , 2,−1, n−52

)
; B : diag

(
4, 4,−(n− 2), 2, 1, n−32

)
;

C : diag
(
3, 2, 2n+ 2, 2, 2, n−12

)
; D : diag

(
4, 3, 2n− 1, 2,−2, n−32

)
;

E : diag
(
2, 3,−2n, 2, 2, n−12

)
; F : diag

(
3, 4,−(2n+ 3), 2,−2, n−32

)
;

G : diag
(
3, 1,− 15n+7

4 , 4, 1, n−34

)
; H : diag

(
4, 2,−(3n+ 4), 4,−1, n+1

4

)
;

I : diag
(
5, 3,− 19n−1

4 , 4, 1, n−34

)
; J : diag

(
6, 4,−(4n+ 3), 4,−1, n−34

)
;

K : diag
(
1, 3, 17n+9

4 , 4, 1, n−34

)
; L : diag

(
2, 4, 5n, 4,−1, n+1

4

)
;

M : diag
(
3, 5, 13n+17

4 , 4, 1, n−34

)
; N : diag

(
4, 6, 4n+ 1, 4,−1, n−34

)
.

We also fill the following cells in an ad hoc manner:

A [1, 1] = n, A [1, 2] = −3n, A [1, n] = n+ 1,

A [2, 1] = n+ 2, A [2, 2] = n− 1, A [2, n] = −(5n+ 1),

A [n− 2, n− 2] = −n−12 , A [n− 2, n] = 5n+ 2, A [n, 1] = −(3n+ 1),

A [n, 2] = 3n+ 3, A [n, n− 2] = −(3n+ 2), A [n, n] = 1.

We now prove that the array constructed above is an integer H5(n; 5). To aid in the proof
we give a schematic picture of where each of the diagonal procedures fills cells (see Figure
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X X K H X

X X E L X

G C A F M

H D B E N

I C A F K

J D B E L

G C A F M

H D B E N

I C A F K

J D B E L

G C A F M

H D B E N

I C X F X

L J D B E

X X X C X

Figure 4. Scheme of construction with n = 15.

4). We have placed an X in the ad hoc cells. Note that each row and each column contains
exactly 5 elements. We now check that the elements in every row sum to 0 (in Z).

Row 1: We add three ad hoc values and the first of the K diagonal with the last of the
H diagonal:

n− 3n+
17n+ 9

4
− 13n+ 13

4
+ (n+ 1) = 0.

Row 2: There are three ad hoc values plus the first of the E diagonal as well as the first
of the L diagonal. The sum is

(n+ 2) + (n− 1)− 2n+ 5n− (5n+ 1) = 0.

Row 3 to n− 3: Consider the row r, there are four cases according to the congruence
class of r modulo 4. If r ≡ 3 (mod 4) write r = 3 + 4i where i ∈

[
0, n−74

]
. Notice

that from the G, C, A, F and M diagonal cells we get the following sum:(
−15n+ 7

4
+ i

)
+ (2n+ 2 + 4i) +

(
n− 3

2
− 2i

)
− (2n+ 3 + 4i) +

(
13n+ 17

4
+ i

)
= 0.

If r ≡ 0 (mod 4) write r = 4 + 4i where i ∈
[
0, n−74

]
. Notice that from the H, D, B, E

and N diagonal cells we get the following sum:

−(3n+ 4 + i) + (2n− 1− 4i)− (n− 2− 2i)− (2n− 2− 4i) + (4n+ 1− i) = 0.

If r ≡ 1 (mod 4) write r = 5 + 4i where i ∈
[
0, n−114

]
. Notice that from the I, C, A,

F and K diagonal cells we get the following sum:(
−19n− 1

4
+ i

)
+ (2n+ 4 + 4i) +

(
n− 5

2
− 2i

)
− (2n+ 5 + 4i) +

(
17n+ 13

4
+ i

)
= 0.

If r ≡ 2 (mod 4) write r = 6 + 4i where i ∈
[
0, n−114

]
. Notice that from the J, D, B,

E and L diagonal cells we get the following sum:

−(4n+ 3 + i) + (2n− 3− 4i)− (n− 3− 2i)− (2n− 4− 4i) + (5n− 1− i) = 0.
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Row n− 2: This row contains two ad hoc values, the last of the I diagonal, the n−3
2 -th

element of the C diagonal and the last of F diagonal. The sum is

−9n+ 3

2
+ (3n− 3)− n− 1

2
− (3n− 2) + (5n+ 2) = 0.

Row n− 1: We add the last elements of the L, J, D, B and E diagonals:

19n+ 3

4
− 17n+ 5

4
+ (n+ 4)− n+ 1

2
− (n+ 3) = 0.

Row n: This row contains four ad hoc values and the last of C diagonal. The sum is

−(3n+ 1) + (3n+ 3)− (3n+ 2) + (3n− 1) + 1 = 0.

So we have shown that all row sums are zero. Next we check that the columns all add to
zero.

Column 1: We add three ad hoc values and the first of the G diagonal with the last of
the L diagonal:

n+ (n+ 2)− 15n+ 7

4
+

19n+ 3

4
− (3n+ 1) = 0.

Column 2: There are three ad hoc values plus the first of the C diagonal as well as the
first of the H diagonal. The sum is

−3n+ (n− 1) + (2n+ 2)− (3n+ 4) + (3n+ 3) = 0.

Column 3 to n− 3: Consider the column c, there are four cases according to the con-
gruence class of c modulo 4. If c ≡ 3 (mod 4) write c = 3 + 4i where i ∈

[
0, n−74

]
.

Notice that from the K, E, A, D and I diagonal cells we get the following sum:(
17n+ 9

4
+ i

)
− (2n− 4i) +

(
n− 3

2
− 2i

)
+ (2n− 1− 4i)−

(
19n− 1

4
− i
)

= 0.

If c ≡ 0 (mod 4) write c = 4 + 4i where i ∈
[
0, n−74

]
. Notice that from the L, F, B, C

and J diagonal cells we get the following sum:

(5n− i)− (2n+ 3 + 4i)− (n− 2− 2i) + (2n+ 4 + 4i)− (4n+ 3 + i) = 0.

If c ≡ 1 (mod 4) write c = 5 + 4i where i ∈
[
0, n−114

]
. Notice that from the M, E, A,

D and G diagonal cells we get the following sum:(
13n+ 17

4
+ i

)
− (2n− 2− 4i) +

(
n− 5

2
− 2i

)
+ (2n− 3− 4i)−

(
15n+ 3

4
− i
)

= 0.

If c ≡ 2 (mod 4) write c = 6 + 4i where i ∈
[
0, n−114

]
. Notice that from the N, F, B,

C and H diagonal cells we get the following sum:

(4n+ 1− i)− (2n+ 5 + 4i)− (n− 3− 2i) + (2n+ 6 + 4i)− (3n+ 5 + i) = 0.

Column n− 2: This column contains two ad hoc values, the last of the M diagonal, the
n−3
2 -th element of the E diagonal and the last of D diagonal. The sum is

7n+ 5

2
− (n+ 5)− n− 1

2
+ (n+ 4)− (3n+ 2) = 0.

Column n− 1: We add the last elements of the H, N, F, B and C diagonals:

−13n+ 13

4
+

15n+ 11

4
− (3n− 2)− n+ 1

2
+ (3n− 1) = 0.



A GENERALIZATION OF HEFFTER ARRAYS 25

Column n: This column contains four ad hoc values and the last of E diagonal. The
sum is

(n+ 1)− (5n+ 1) + (5n+ 2)− (n+ 3) + 1 = 0.

So we have shown that each column sums to 0. Now we consider the support of A:

supp(A) = {1} ∪ [2, n−32 ](A) ∪ {n−12 } ∪ [n+1
2 , n− 2](B)∪

{n− 1, n, n+ 1, n+ 2} ∪ [n+ 3, 2n](E,D) ∪ [2n+ 2, 3n− 1](C,F)∪
{3n, 3n+ 1, 3n+ 2, 3n+ 3} ∪ [3n+ 4, 13n+13

4 ](H)∪
[ 13n+17

4 , 7n+5
2 ](M) ∪ [ 7n+7

2 , 15n+7
4 ](G) ∪ [ 15n+11

4 , 4n+ 1](N)∪
[4n+ 3, 17n+5

4 ](J) ∪ [ 17n+9
4 , 9n+1

2 ](K) ∪ [ 9n+3
2 , 19n−14 ](I)∪

[ 19n+3
4 , 5n](L) ∪ {5n+ 1, 5n+ 2}

= [1, 5n+ 2] \ {2n+ 1, 4n+ 2}.
Thus, A is an integer cyclically 5-diagonal H5(n; 5) for n ≡ 3 (mod 4). �

Example 5.5. Following the proof of Proposition 5.4 we obtain the integer H5(15; 5) below.
15 −45 66 −52 16
17 14 −30 75 −76

−58 32 6 −33 53
−49 29 −13 −28 61

−71 34 5 −35 67
−63 27 −12 −26 74

−57 36 4 −37 54
−50 25 −11 −24 60

−70 38 3 −39 68
−64 23 −10 −22 73

−56 40 2 −41 55
−51 21 −9 −20 59

−69 42 −7 −43 77
72 −65 19 −8 −18

−46 48 −47 44 1

Proposition 5.6. There exists an integer cyclically (2, 3)-diagonal H6(n; 6) for every even
n ≥ 6.

Proof. Let U , V5 and V9 be the three 2 × 6 arrays defined in the proof of Proposition 4.15.
Also here we have to distinguish three cases.

If n = 6m, let A be a cyclically (2, 3)-diagonal n× n p.f. array whose strips Si are:

Si =

 U ± 12i if i ∈ [0,m− 1],
U ± (1 + 12i) if i ∈ [m, 2m− 1],
U ± (2 + 12i) if i ∈ [2m, 3m− 1].

We obtain

supp(A) =
⋃m−1
i=0 [1 + 12i, 12 + 12i] ∪

⋃2m−1
i=m [2 + 12i, 13 + 12i]∪⋃3m−1

i=2m [3 + 12i, 14 + 12i]

= [1, 12m] ∪ [12m+ 2, 24m+ 1] ∪ [24m+ 3, 36m+ 2].

If n = 6m+ 2, let A be a cyclically (2, 3)-diagonal n× n p.f. array whose strips Si are:

Si =


U ± 12i if i ∈ [0,m− 1],
V5 ± 12i if i = m,
U ± (1 + 12i) if i ∈ [m+ 1, 2m− 1],
V9 ± (1 + 12i) if i = 2m,
U ± (2 + 12i) if i ∈ [2m+ 1, 3m].
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It follows that

supp(A) =
⋃m−1
i=0 [1 + 12i, 12 + 12i] ∪ [12m+ 1, 12m+ 4]∪

[12m+ 6, 12m+ 13] ∪
⋃2m−1
i=m+1[2 + 12i, 13 + 12i]∪

[24m+ 2, 24m+ 9] ∪ [24m+ 11, 24m+ 14]∪⋃3m
i=2m+1[3 + 12i, 14 + 12i]

= [1, 12m+ 4] ∪ [12m+ 6, 24m+ 9] ∪ [24m+ 11, 36m+ 14].

If n = 6m+ 4, let A be a cyclically (2, 3)-diagonal n× n p.f. array whose strips Si are:

Si =


U ± 12i if i ∈ [0,m− 1],
V9 ± 12i if i = m,
U ± (1 + 12i) if i ∈ [m+ 1, 2m],
V5 ± (1 + 12i) if i = 2m+ 1,
U ± (2 + 12i) if i ∈ [2m+ 2, 3m+ 1].

It follows that

supp(A) =
⋃m−1
i=0 [1 + 12i, 12 + 12i] ∪ [12m+ 1, 12m+ 8]∪

[12m+ 10, 12m+ 13] ∪
⋃2m
i=m+1[2 + 12i, 13 + 12i]∪

[24m+ 14, 24m+ 17] ∪ [24m+ 19, 24m+ 26]∪⋃3m+1
i=2m+2[3 + 12i, 14 + 12i]

= [1, 12m+ 8] ∪ [12m+ 10, 24m+ 17] ∪ [24m+ 19, 36m+ 26].

In all three cases, we have

supp(A) = [1, 6n+ 2] \ {2n+ 1, 4n+ 2}

and so the associated p.f. array A we constructed is an integer H6(n; 6). �

Example 5.7. Following the proof of Proposition 5.6 we obtain the integer H6(10; 6) below.

−1 5 2 −7 −9 10

3 −4 −6 8 11 −12

−13 17 14 −19 25 −24

15 −16 −18 20 −23 22

−26 30 27 −32 −34 35

28 −29 −31 33 36 −37

41 −45 −38 47 44 −49

−39 43 40 −46 −48 50

52 −57 −59 60 −51 55

−56 58 61 −62 53 −54

6. Conclusions

Now we are ready to prove our main result.

Proof of Theorem 1.5. We split the proof into 4 cases according to the congruence class of k
modulo 4.

Case 1. Let k ≡ 3 (mod 4). An integer cyclically 3-diagonal H3(n; 3) for n ≡ 3 (mod 4)
and n ≡ 0 (mod 4) has been constructed in Proposition 5.1 and in Proposition 5.3, respec-
tively. The result follows applying inductively Theorem 4.17(1).
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Case 2. Let k ≡ 0 (mod 4). An integer cyclically 4-diagonal H4(n; 4) for any n ≥ 4
has been constructed in Proposition 4.9. As before, the result follows applying inductively
Theorem 4.17(1).

Case 3. Let k ≡ 1 (mod 4). If n ≡ 3 (mod 4) an integer cyclically 5-diagonal H5(n; 5)
has been constructed in Proposition 5.4. As before, the result follows applying inductively
Theorem 4.17(1). If n ≡ 0 (mod 4) and n > k ≥ 9, by Case 1, there exists an integer
cyclically (k − 6)-diagonal Hk−6(n; k − 6), which can be viewed also as an integer cyclically
(2, k−52 )-diagonal Hk−6(n; k − 6) by Remark 4.6. Since n ≡ 0 (mod 4) and n ≥ k + 1, the
result follows applying Theorem 4.17(3).

Case 4. Let k ≡ 2 (mod 4). An integer cyclically (2, 3)-diagonal H6(n; 6) for n even
with n ≥ 6 has been constructed in Proposition 5.6. The result follows applying inductively
Theorem 4.17(2). �

As already remarked in Section 1 we leave open the existence problem of an integer Hk(n; k)
only for k = 5 and n ≡ 0 (mod 4). For this class we have two examples: an integer cyclically
(2, 3)-diagonal H5(8; 5) is given in Example 4.5, while an integer cyclically (2, 3)-diagonal
H5(16; 5) is given below.

8 −65 81 55 −79

16 82 −58 −80 40

60 −77 −6 −38 61

−78 53 −14 62 −23

21 −31 −5 57 −42

−32 22 −13 −41 64

−69 51 7 −17 28

50 −76 15 29 −18

45 −67 3 39 −20

−68 30 11 −19 46

56 −70 2 −24 36

−71 49 10 37 −25

−48 27 1 −54 74

26 −63 9 75 −47

−34 43 59 −72 4

44 −35 −73 52 12

Our existence result about relative Heffter arrays implies the existence of new pairs of
orthogonal cycle decompositions. To describe how this result is obtained, we first recall the
following conjecture.

Conjecture 6.1. [16, Conjecture 3] Let (G,+) be an abelian group. Let A be a finite subset of
G\{0} such that no 2-subset {x,−x} is contained in A and with the property that

∑
a∈A a = 0.

Then there exists a simple ordering of the elements of A.

Proposition 6.2. For n ≥ k, there exist two orthogonal cyclic k-cycle decompositions of
K(2n+1)×k in each of the following cases:

(1) k = 3, 7, 9 for n ≡ 0, 3 (mod 4);
(2) k = 5 for n ≡ 3 (mod 4);
(3) k = 4, 8 for every n;
(4) k = 6 for every even n.

Proof. In [16], we verified Conjecture 6.1 for any set of size less than 10. Hence for k ≤ 9 all
the Hk(n; k) here constructed are simple for any n. The result follows from Theorem 1.5 and
Proposition 2.9. �

If Conjecture 6.1 were true we would have two orthogonal cyclic k-cycle decompositions of
K(2n+1)×k for any pair (n, k) for which we have constructed an integer Hk(n; k).
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