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ARTICLE INFO ABSTRACT

Keywords: Developing plants from in vitro culture of microspores or immature pollen grains (androgenesis) is a highly
Albinism genotype-dependent process whose effectiveness in cereals is significantly reduced by occurrence of albino re-
Amyloplast generants. Here, we examined a hypothesis that the molecular differentiation of plastids in barley microspores
Androgenesis

prior to in vitro culture affects the genotype ability to regenerate green plants in culture. At the mid-to-late
uninucleate (ML) stage, routinely used to initiate microspore culture, the expression of most genes involved in
plastid transcription, translation and starch synthesis was significantly higher in microspores of barley cv.
‘Mercada’ producing 90% albino regenerants, than in cv. ‘Jersey’ that developed 90% green regenerants. The ML
microspores of cv. ‘Mercada’ contained a large proportion of amyloplasts filled with starch, while in cv. ‘Jersey’
there were only proplastids. Using additional spring barley genotypes that differed in their ability to regenerate
green plants we confirmed the correlation between plastid differentiation prior to culture and albino re-
generation in culture. The expression of GBSSI gene (Granule-bound starch synthasel) in early-mid (EM) micro-
spores was a good marker of a genotype potential to produce green regenerants during androgenesis. Initiating
culture from EM microspores that significantly improved regeneration of green plants may overcome the pro-

Doubled haploids
Hordeum vulgare

Pollen grain development
Starch synthesis

blem of albinism.

1. Introduction

The microspores released from the tetrad undergo micro-
gametogenesis to form mature pollen grains [1]. First, the vacuolisation
of microspores and the nucleus displacement to an acentric position
occur, indicating the stages of the microspore progress from the early
uninucleate microspores in which the nucleus is localised in the centre
to the late uninucleate microspores with a peripheral position of en-
larged nucleus [2]. Microspore development is followed by the first
pollen mitosis, which results in the formation of two unequal-sized
daughter cells — a vegetative and a generative cell [3]. The mature
pollen grain consists of two sperm cells enclosed in a vegetative cell that
accumulates starch deposited in the starch grains [1].

The microspores of cereals contain proplastids — undifferentiated,
colourless, small plastids that do not play any metabolic function but
they give rise to all types of plastids [4]. During the progression of
pollen development, the plastids in the vegetative cell differentiate into
amyloplasts and serve as storage for starch needed for the germination

of pollen grains and pollen tube growth [5,6]. In cereals, the differ-
entiation of proplastids into amyloplasts occurs in the vacuolated mi-
crospores [7,8], however, little is known about the molecular me-
chanisms that underlie this process. The molecular aspects of
amyloplast formation, including gene expression and proteomic ana-
lyses, have only been reported for the endosperm tissue of rice and
wheat [9-12] and potato tubers [13-15]. Initiation of amyloplast dif-
ferentiation requires transcriptional and translational activity within
the plastids, which serve as a checkpoint of proplastid to amyloplast
transition and a plastid-to-nucleus retrograde signal [16]. The retro-
grade signalling controls the induction of amyloplast development by
activating the nuclear-located genes encoding the starch biosynthesis
enzymes such as glucose-1-phosphate adenylyltransferase (Agp),
granule-bound starch synthase (GBSS), starch synthase (SS) and starch-
branching enzyme (Sbe) [17-19]. However detailed mechanisms of the
signal transduction and the stage of plastid differentiation during pollen
development remain unclear.

By treating vacuolated microspores with stress factors such as high

Abbreviations: E, early; BN, immature binucleate pollen; EM, early-mid; ML, mid-to-late; P, mature pollen grain; ptDNA, plastid DNA; TEM, transmission electron
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or low temperatures or starvation, it is possible to change their devel-
opmental pathway from a gametophytic into a sporophytic one and to
induce microspore embryogenesis [20]. Developing plants from in vitro
culture of male gametophytes (androgenesis) is the most effective
method of producing doubled haploids (DH) [21-23]. Doubled hap-
loidy is the essential technology utilised to accelerate the development
of new cultivars in breeding programmes [24-26]. Therefore, an ef-
fective protocol for producing DH is the main concern of androgenetic
studies.

Among many factors that affect the efficiency of androgenesis, the
stage of microspore development is crucial because of the narrow re-
programming window [27]. It was demonstrated that the mid-to-late
uninucleate (ML) stage of microspore development is the most effective
stage to induce androgenesis in most crops [21]. However, androgen-
esis is a highly genotype-dependent process whose effectiveness in
cereals is severely limited by the regeneration of albino plants that lack
the chlorophyll in normally green tissues. The high level of albino
plants among androgenic regenerants, sometimes reaching 100%, has
been reported for all major cereals including barley [28,29], triticale
[30], wheat [31,32] and rice [33]. For this reason, albinism often limits
the use of agronomically important genotypes in the breeding pro-
grammes that utilise doubled haploidy.

Deletions in the plastid DNA of albino plants have been suggested as
the main cause of altered plastid formation in wheat [34-36], rice
[37,38], barley [35,39,40] and triticale [36]. Studies of chloroplast
development in anther culture of winter barley cv. ‘Igri’ that mostly
regenerates green plants and spring cultivars that mostly produce al-
bino plants indicated that the degradation of the plastid genome was
the cause of albino formation [41-43]. However, in wheat anther cul-
tures only a part of the examined albino regenerants contained altered
plastid DNA, although all of them showed changed transcriptome
profiles compared to the green plants [44]. In barley, a microarray
analysis of pretreated anthers derived from DH lines that differed in
their green/albino plant ratio identified 21 genes related to albino
formation [45]. Additionally, the QTLs for the level of green re-
generants have been identified in barley [46,47] and triticale [48].

The possible impact of plastid differentiation during pollen devel-
opment in vivo on the formation of albino plants in vitro has not yet been
the subject of androgenic studies. Despite the many ultrastructural and
molecular aspects that have been covered by research, the primary
mechanism that underlies the formation of albino plants during an-
drogenesis has not yet been revealed. Additionally, the genotype-de-
pendence of the albino plant phenomenon remains unexplained.

In this study, we addressed the question of whether the genotype-
dependent frequency of albino regenerants in barley microspore cul-
tures in vitro is the consequence of plastid differentiation during pollen
development in vivo. To verify this hypothesis we performed a detailed
analysis of plastid differentiation during the successive stages of pollen
development in spring barley cultivars that differed in their ability to
regenerate green plants during androgenesis. Based on the analysis of
expression profiles of genes involved in transcription, translation and
starch biosynthesis in microspore plastids, together with observations
of the plastid morphology using light microscopy and TEM, we de-
monstrate that the early activation of starch biosynthesis genes during
microspore development in vivo is associated with the high rate of al-
bino plants among in vitro regenerants. Our results show that initiating
cultures from an earlier stage of microspore development, before
amyloplast formation, might increase the contribution of green plants
in isolated microspore cultures and thus overcome the problem of al-
binism in barley.

2. Material and methods
2.1. Plant material and growth conditions

Ten spring barley cultivars with divergent pedigrees were used:
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‘Argento’ (Denmark), ‘Bordo’ (Poland), ‘Bruce’ (Canada), ‘Chevallier’
(Great Britain), ‘Jersey’ (Netherlands), ‘Justina’ (Germany), ‘Larker’
(USA), ‘Loosdorfer’ (Austria), ‘Mercada’ (Germany) and ‘Tamparkorn’
(Great Britain). Except for the six-row cvs. ‘Bruce’, ‘Larker’ and
‘Tamparkorn’, the rest of cultivars are two-row. Among these geno-
types, ‘Argento’, ‘Bruce’, ‘Justina’ and ‘Mercada’ are used as fodder,
whereas ‘Bordo’, ‘Chevallier’, ‘Jersey’, ‘Larker’, ‘Loosdorfer’, and
‘Tamparkorn’ are malting cultivars.

The donor plants for the in vitro culture and in vivo analyses were
sown and grown at 18/16 °C for three weeks in a growth room with
light intensity of 200 uM s’ m? and then transferred to a growth
chamber under controlled conditions at a day/night temperature of 17/
14 °C, illumination 480-500 pM s m photon flux density and 16/8 h
photoperiod. To initiate the in vitro culture, spikes containing micro-
spores at the mid-to-late uninucleate (ML) stage of development were
collected. To perform the experiments during the in vivo pollen devel-
opment, microspores at the stages: early uninucleate (E), early-mid
uninucleate (EM) and mid-to-late uninucleate (ML) as well as immature
binucleate pollen (BN) and mature pollen grains (P) were used
(Supplementary Data Fig. S1).

2.2. Isolated microspore culture

Tillers with spikes containing microspores at the ML developmental
stage were collected when the distance between the flag and the pe-
nultimate leaf was 6 —8 cm, depending on the genotype. The distance
was determined experimentally and confirmed for each batch of spikes
by acetocarmine staining of anthers excised from the middle part of one
spike. Tillers were surface sterilised with 70% ethanol. The microspores
were freshly isolated according to Coronado et al. [49]. Briefly, eight to
ten spikes were homogenised in 20 ml 0.4 M mannitol using a Waring
Variable-Speed Laboratory Blender (Waring Laboratory Science) twice
for 20 s. The homogenate was filtered through 100 um nylon mesh and
the remaining spike tissue was re-blended and then re-filtered. The
microspores were collected via centrifugation (110 X g; 10 min; 4 °C), re-
suspended in 5ml 0.55M maltose overlaid with 2ml 0.4 M mannitol
and centrifuged (110 x g; 10 min; 4 °C) once more. The microspores
present in the interphase were collected and pretreated in SMB1
medium at 25 °C for 48 h, after adjustment of their density to 100,000
microspores per 1 ml in Petri dish. All media (Supplementary Data
Table S1) were prepared according to Coronado et al. [49] and Kum-
lehn et al. [50]. The medium was then exchanged for KBP induction
medium and cultures were incubated at 25°C in the dark for seven
days, followed by the addition of another 1 ml of fresh KBP medium.
The incubation of the culture was then continued under the same
conditions on a rotary shaker at 65rpm. The developed multicellular
structures were transferred onto KBPD differentiation medium for two
weeks, then the microspore-derived embryos were placed on K4NB
regeneration medium and cultured at 25°C in the dark for five days,
after which they were exposed to 100 uM s m™ of light with a 16/8 h
photoperiod. The number of green and albino plants were counted after
four weeks and the number of both types of regenerants per 100,000
microspores (one induction Petri dish) was estimated. At least three
independent isolations of microspores were performed to initiate the in
vitro culture for each cultivar.

For isolation of EM microspores, tillers showing 2—3 cm distance
between the flag and the penultimate leaf were collected. The EM mi-
crospores for the in vitro cultures were isolated with some modifications
because of their higher sensitivity to mechanical damage. The spikes
were blended twice in 20ml 0.4 M mannitol at a very low speed
(Waring blender speed set between two and three on a ten-speed scale)
for 30s. The microspores were collected via centrifugation at 120 x g,
and the viable microspores were collected at 130 x g.
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2.3. Preparation of samples and extracting the nucleic acids

Microspores (E, EM, ML) from five-six spikes were isolated by
blending (Waring Laboratory Science) them twice for 30s at a low
speed in 0.4 M mannitol followed by filtering through 100 um nylon
mesh. To isolate immature binucleate (BN) and mature pollen (P)
grains, the florets and anthers, respectively, were excised and slowly
blended in 0.4 M mannitol and then filtered. The suspension was cen-
trifuged at 110 X g for 10 min in order to collect the microspores and
pollen grains. The total RNA was isolated by grinding samples in a
frozen mortar using a RNAqueous™ Total RNA Isolation Kit (Invitrogen)
according to the manufacturer’s instructions, in three independent
biological repetitions. One biological repetition was represented by
microspores isolated from approx. six spikes. To extract DNA, samples
containing freshly isolated microspores, immature and mature pollen
grains were homogenised in liquid nitrogen with glass beads (Sigma
Aldrich) using a FastPrep Instrument (MP Biochemicals). DNA from
freshly isolated microspores at the E, EM and ML stages and immature
pollen grains (BN) were extracted using the C-TAB method [51]. The
DNA from mature pollen grains was isolated according to Torres et al.
[52]. The isolated DNA was treated with 10 ug of RNase at 37 °C for
45 min. The concentration and purity of the isolated samples (three
biological repetitions, with microspores from approx. six spikes per
repetition) were evaluated using an ND-1000 spectrophotometer
(Thermo Fisher Scientific).

2.4. RT-qPCR and qPCR

One pg of total RNA per sample was treated with RQ1 RNase-Free
DNase (Promega) and reverse transcribed in a 20 pl reaction volume
using a RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher
Scientific) with random primers, according to the manufacturer’s in-
structions. The obtained ¢cDNA was diluted five-fold with water and
used at a volume of 2.5 pl in RT-qPCR. In qPCR, 50 ng of DNA was used
as the template to quantify the gene copy number. Both analyses were
carried out in a 10 pl volume using a LightCycler® 480 SYBR Green I
Master (Roche) in two technical repeats. The primers used in the ana-
lyses were designed with Primer3 [53] and are listed in Supplementary
Data Table S2 (RT-qPCR) and Supplementary Data Table S3 (qPCR).
Analyses were performed using a LightCycler 480 (Roche) under the
following reaction conditions: initial denaturation 5min at 95 °C, fol-
lowed by 10s at 95°C, 20s at a temperature specific for the primers,
10s at 72°C, repeated in 40 cycles. Denaturation for the melt curve
analysis was conducted for 5s at 95 °C, followed by 1 min at 65 °C and
heating up to 98 °C (0.1 °C/s for the fluorescence measurement). The Ct
values and the value of the qPCR efficiency were obtained from Lin-
RegPCR [54].

2.5. Determining the relative expression level

The relative expression level was calculated using the AACt method
[55] and calibrated to the early uninucleate stage (E) of microspore
development of cv. ‘Jersey’. As an internal control, two genes, TMA7
and SERF were used in the experiments with the cultivars ‘Jersey’ and
‘Mercada’, while the genes SERF and H2A were used as the references
for the experiments with all ten cultivars (Supplementary Data Table
S2). The stability of expression of the reference genes was evaluated
using NormFinder [56] and BestKeeper [57] and was found to be
adequate for all of them.

2.6. Semi-quantitative RT-PCR

The validation of the GBSSI gene expression level using a semi-
quantitative RT-PCR with the H2A gene as the internal control was
performed for ten barley cultivars listed above. RNA from the EM mi-
crospores (500 ng/sample) was used to synthesise cDNA as previously
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described. The reaction was prepared in a 20 pl volume with 1 X Pol
Buffer B (EURx); 0.25 mM of each dNTP (Promega); 0.5 uM forward
and 0.5 pM reverse primer; 0.5 U Color Taq DNA Polymerase (EURx)
and 3 pl of cDNA. The amplifications were performed as follows: 95 °C
for 5 min followed by 94 °C for 40's, 58 °C for 30 s and 72 °C for 30 s and
repeated in 30 cycles, followed by a final elongation for 5 min at 72 °C.
The products of the reactions were visualised in 1.8% agarose gel.

2.7. Plastome copy number

The plastid DNA copy number was evaluated as the number of
plastid genes per haploid genome using the qPCR method, according to
Lutz et al. [58]. The plastid genes were quantified in relation to two
single copy nuclear genes: ARF1 and EF1 (Supplementary Data Table
S2). The plastome copy number was presented as the average value of
the quantification of the plastid genes that were localised within a
plastid genome as followed: psbA, matK, psbD, atpl, clpP, infA in LSC;
ndhB, 16S, ndhH in IR and ndhF in SSC (Supplementary Data Table S2).
LSC and SSC cover the long and short single copy region, respectively,
whereas IR refers to the inverted repeat region in a plastome that
contains two copies of the plastome genes.

2.8. Light and transmission electron microscope (TEM) analysis

Anthers containing microspores at various developmental stages
were removed from freshly harvested spikes, followed by fixation and
preparation according to Schumann et al. [59]. An electron microscopic
analysis using a Tecnai Sphera G2 (FEI Company) was performed based
on a previously described protocol [60]. Briefly, the plant material was
fixed by immersion for 6 h at RT in a 50 mM cacodylate buffer (pH 7.2)
containing 0.5% (v/v) glutaraldehyde and 2.0% (v/v) formaldehyde,
washed in a cacodylate buffer and twice in distilled water. Next, the
samples were fixed in 1.0% (v/v) osmium tetroxide for 1h at RT, wa-
shed twice in distilled water, dehydrated by passage through an acetone
series (20-100%) and infiltrated with Spurr resin (Sigma Aldrich) in-
itially 33%, then 66% and finally 100%. Semi-thin (2 pm) cross sections
were cut from the embedded samples and stained for 2 min at 60 °C
with 1% (w/v) methylene blue and 1% (w/v) Azur II in 1% (w/v)
aqueous borax, followed by Lugol's iodine treatment for 10 min at RT.
After washing and drying, the prepared cross sections were examined
using a Zeiss Axiocam camera in a Zeiss Axiovert 135 microscope
(Zeiss).

The analysis was performed in three independent biological re-
petitions with at least 100 microspores (at E, EM, ML stage) per re-
petition. The types of plastids were recognised according to the
common description as proplastids and amyloplasts [5]. However, we
also distinguished two different phases of proplastids that occurred in
the microspores: initial undifferentiated proplastids and differentiating
proplastids.

2.9. Statistical analysis

To estimate the significant differences (at P < 0.05) between the
compared samples, the One Way Analysis of Variance followed by
Tukey’s HSD test was applied unless otherwise noted. The relationship
between the different features was estimated using Pearson's correla-
tion coefficient, followed by determining the P-value to verify the sta-
tistical significance of a correlation.

3. Results
3.1. The androgenic response of the tested cultivars
First, we evaluated ten spring barley cultivars of different origins for

their ability to regenerate green plants from isolated microspore cul-
ture. All of the tested cultivars showed a high induction and
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Fig. 1. The androgenic response of cultivars in isolated microspore culture.

(A) The total number of all regenerated plants per 100,000 isolated microspores. (B) The percentage of green plants among regenerants. (C-D) Petri dishes of cv.
‘Jersey’ (C) and ‘Mercada’ (D) after 21 days in regeneration medium. Given values present mean of n > 3 with SD. Different letters indicate a significant difference
between cultivars according to Tukey’s HSD test (P < 0.05). (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article).

regeneration potential in microspore culture with an average rate of
116.7 plants regenerated per 100,000 cultured microspores and a range
of 63.9-165.9 regenerants (Fig. 1A). However, the cultivars revealed a
much higher variation in the proportion of green regenerants among
the regenerated plants, which differed from 11.0%-97.5% of the green
regenerants (Fig. 1B). Based on the Tukey’s HSD test (P < 0.05), five
groups of cultivars could be distinguished in regards to their ability to
regenerate green plants, with the cvs. ‘Tamparkorn’ and ‘Jersey’ ex-
pressing the highest green plant rate and the cvs. ‘Argento’ and ‘Mer-
cada’ the lowest. Among these four cultivars, ‘Jersey’ and ‘Mercada’ had
a similar regeneration efficiency (85-100 regenerated plants per
100,000 microspores), while they showed an extreme difference in the
ratio of green to albino regenerants (Fig. 1C,D). The cv. ‘Tamparkorn’
had a similar regeneration capacity and green/albino ratio as ‘Jersey’,
but it was a six-row cultivar, while ‘Jersey’ and ‘Mercada’ were two-
row. Taking all the above into consideration, these two genotypes were
selected for further studies whose aim was to characterise plastid dif-
ferentiation at the molecular and ultrastructure levels during pollen
development in vivo.

3.2. Expression profiles of genes involved in plastid biogenesis during pollen
development in barley cultivars ‘Jersey’ and ‘Mercada’

To evaluate whether the cultivars that displayed different green
plant regeneration levels during androgenesis exhibited any differences
in plastid development, we analysed the expression of the genes related
to transcription and translation in the microspore and pollen plastids
(Supplementary Data Table S2). At the early (E) stage of microspore
development, the analysed genes (except for RpoTp) exhibited a similar
expression level in both cultivars (Fig. 2; Supplementary Data Fig. S2).

However, as pollen development progressed, divergent profiles of gene
expression were observed between the cultivars. In cv. ‘Jersey’, which
produced mostly green regenerants, the plastid-localised genes rpoA,
rpoB, rpoC1 and rpoC2, encoding the subunits of RNA polymerase PEP
(plastid-encoded RNA polymerase) and the translation-related genes
(16S, 23S rRNA, rps2, rps7, rps8, rps15, rpl2, rpl16, infA) encoding rRNA,
plastid-specific ribosomal proteins and translation initiation factor
showed a common expression profile: the highest level at the early-mid
(EM) stage, a rapid decline at the mid-to-late (ML) stage and an increase
at the binucleate (BN) stage. Conversely, the expression of the majority
of the analysed genes remained at the same level throughout the E to
ML stages in cv. ‘Mercada’, which regenerated mostly albino plants. At
the ML stage, which is the stage of initiating microspore culture, the
expression level of the plastome-encoded genes was significantly higher
(2 to 16x) in the microspores of cv. ‘Mercada’ than in cv. ‘Jersey’.
Moreover, at this stage, a significantly higher expression of many nu-
clear-encoded genes engaged in plastid transcription and translation,
was observed in cv. ‘Mercada’ compared to cv. ‘Jersey’. Among these
genes were two sigma factor encoding genes that are essential for the
PEP activity (Supplementary Data Fig. S2A). The genes encoding factors
involved in the initiation, elongation or termination of translation had
the most heterogeneous expression, although they still had divergent
patterns between the compared cultivars and a higher expression level
at the ML stage in the ‘Mercada’ microspores (Supplementary Data Fig.
S2B). The differences in the expression profiles of the examined genes
suggested various dynamics of plastid differentiation during the early
stages of in vivo pollen development in both cultivars. During pollen
maturation, however, both genotypes had a similar, strong reduction in
the expression of all of the analysed genes (Fig. 2; Supplementary Data
Fig. $2).
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Fig. 2. Expression profiles of plastid-localised genes involved in plastid biogenesis during pollen development in ‘Jersey’ and ‘Mercada’ cultivars.

(A) Genes involved in transcription in plastids: rpoA, rpoB, rpoC1, rpoC2 encoding subunits of PEP (plastid-encoded polymerase). (B-D) Genes involved in translation,
encoding: (B) components of small ribosomal subunit: 16S rRNA, rps2, rps8, rps7, rps15, (C) large ribosomal subunit: 23S rRNA, rpl2, rpl16 and (D) infA encoding
translation initiation factor in plastids. Graphs show mean values of n = 3 with SEM, normalised to early (E) microspores of cv. ‘Jersey’. An asterisk presents a
significant difference between cultivars at a certain stage of pollen development. A hash indicates a value significantly different from the preceding stage of
development within each cultivar (Tukey’s test, P < 0.05). Stages of pollen development: E — early uninucleate, EM — early-mid uninucleate, ML — mid-to-late

uninucleate, BN - immature binucleate pollen, P — mature pollen grain.

In addition to the gene expression analysis, we counted the density
of the plastids in the microspores at different stages of development
based on the microscopic observations. Both cultivars had a similar
density of plastids in the E and EM microspores (Fig. 3A). In cv. ‘Jersey’,
however, the number of plastids significantly increased at the ML stage,
whereas it remained unchanged in cv. ‘Mercada’. At the ML stage, when
plant material is usually collected for culture, the density of plastids in
the ‘Jersey’ microspores was 32% higher than in the microspores of
‘Mercada’. In accordance with this data, the expression of the PDRI
gene encoding a plastid-dividing ringl protein involved in plastid di-
visions increased gradually from the E to ML stage in cv. ‘Jersey’ and
reached the highest level in the ML microspores. The transcript level of
PDRI in cv. ‘Mercada’ reached the highest level at the EM stage and

decreased by 30% at the ML stage (Fig. 3B). In both cultivars, the PDR1
expression declined by 90% in the immature BN pollen grains.

3.3. Amyloplast formation during pollen development in ‘Jersey’ and
‘Mercada’ cultivars

Considering the differences in plastid biogenesis between ‘Jersey’
and ‘Mercada’, we performed a detailed analysis of plastid differentia-
tion during pollen development. Microscopic observations in TEM en-
abled three types of plastids to be distinguished during microspore and
pollen development: initial undifferentiated proplastids, differentiating
proplastids (referred to proplastids) and amyloplasts accumulating
starch (Fig. 3C-E). The undifferentiated proplastids were characterised
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(E), only undifferentiated initial proplastids were observed in both
cultivars (Fig. 3F). The microspores of cv. ‘Mercada’ had a faster dif-
ferentiation of proplastids, as in the EM microspores the initial
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Fig. 3. Plastid development in ‘Jersey’ and ‘Mercada’ cultivars during microgametogenesis.

(A) Density of plastids in microspores at the succeeding developmental stages. (B) The relative expression level of PDRI gene (Plastid-dividing ringl). (C-E)
Ultrastructure of different types of plastids identified during pollen development including (C) initial proplastid, (D) proplastid and (E) mature amyloplast. (F)
Density and types of plastids observed in both cultivars during successive stages of microspore development. (G) Overview of plastids present on 25 um? of cytoplasm
in cv. ‘Jersey’ and (H) ‘Mercada’ in microspore at the ML stage. (I) Plastome copy number per cell. (J) The relative profile of Poll (Organellar DNA polymerasel)
expression during pollen development. Values in (A) and (F) present mean of at least n= 300 microspores with SD. Graphs in (B), (I) and (J) show mean values of n
= 3 with SD in (I) and SEM in (B) and (J). Relative expression level normalised to E microspores of cv. ‘Jersey’. An asterisk presents a value significantly different
between cultivars at a certain stage of pollen development. A hash indicates a value significantly different from the preceding stage within cultivar (Tukey’s test,
P < 0.05). IP - initial proplastid, P — proplastid, A- amyloplast. Stages of pollen development: E — early uninucleate, EM — early-mid uninucleate, ML — mid-to-late

uninucleate, BN — immature binucleate pollen, P — mature pollen grain.

proplastids and proplastids were present in similar numbers. Moreover,
during the progression of microspore development, at the ML stage a
high number of amyloplasts was observed in addition to an equal
amount of proplastids and only a few initial proplastids. Conversely, no
differentiation of proplastids occurred at the EM stage in cv. ‘Jersey’,
which resulted in the initial proplastids being the main group of plastids
in the EM microspores. Hence, at the next stage of development (ML),
the microspores of cv. ‘Jersey’ contained mostly differentiating pro-
plastids, a few initial proplastids and no amyloplasts. This analysis
showed that at the ML stage, cv. ‘Mercada’ contained amyloplasts that
were filled with starch grains, while in cv. ‘Jersey’ there were only
undifferentiated and differentiating proplastids. In cv. ‘Jersey’, amylo-
plasts occurred in the BN pollen grains in a comparable numbers with
proplastids, whereas at this stage we observed four times more amy-
loplasts than proplastids in cv. ‘Mercada’.

Together with the observations of the progression of plastid differ-
entiation, the plastome copy number was assessed using qPCR (Fig. 3I).
In cv. ‘Jersey’, the plastome copy number was unchanged from the E to
ML stage and significantly decreased in the immature BN pollen. In cv.
‘Mercada’, a gradual decrease in the plastome copy number was ob-
served throughout all stages of pollen development. At the E stage, cv.
‘Mercada’ had ca. 40% more plastid genomes than ‘Jersey’, while at the
ML the results were reverse — the average plastome copy number in
‘Mercada’ was two-fold lower than in ‘Jersey’ (Fig. 3I). This data in-
dicates a faster degradation of the plastid genomes in cv. ‘Mercada’. The
significant deviation between the copy numbers of individual plastid
genes that was observed in the ‘Mercada’ microspores as early as the E
stage supports this hypothesis (Supplementary Data Fig. S3). Ad-
ditionally, the expression profile of the Poll gene encoding the DNA
polymerase responsible for plastome replication differed between the
cultivars (Fig. 3J). At the E stage of microspore development, the Poll
expression was two-fold higher in cv. ‘Mercada’ than in ‘Jersey’, after
which it decreased progressively, similar to the plastome copy number
in this genotype. The observed difference in plastome copy number
between ‘Jersey’ and ‘Mercada’ at the time of initiating in vitro culture
(ML stage) may indicate a relationship between the stability of plastid
DNA and the progress of amyloplast formation.

In parallel to cytological observations, we determined the relative
expression level of six genes located in the nuclear genome
(Supplementary Data Table S2), which are engaged in starch bio-
synthesis during microspore and pollen development in vivo. At the
early stage (E), the expression of the starch biosynthesis genes was very
low in both cultivars. At the next stage (EM), most of the analysed genes
showed the same expression level as earlier in cv. ‘Jersey’, while in cv.
‘Mercada’, their transcription increased significantly and was from 4 to
150 times higher than in ‘Jersey’ (Fig. 4). In both cultivars, the ex-
pression of all genes increased even further until the BN pollen stage;
however, in ‘Mercada’, most genes (except for AgpL and Dpe2) reached
the highest transcriptional activity as early as the ML stage. It should be
noted that at this stage, the relative transcription level of all starch
synthesis-related genes was three to nine times higher in the micro-
spores of ‘Mercada’ compared to ‘Jersey’. These results, together with
the microscopic observations of the high number of amyloplasts in the
ML ‘Mercada’ microspores indicate an earlier activation of the starch
synthesis genes in this genotype. The most pronounced increase in

transcription activity between the E and ML microspores was observed
for the GBSSI gene encoding an enzyme involved in the elongation of
the amylose chain (280x for ‘Jersey’ and 2500x for ‘Mercada’). The
expression level of this gene in the EM and ML microspores can be used
as an indicator of plastid differentiation in developing microspores.

3.4. Plastid differentiation during pollen development in other spring barley
cultivars

To confirm the hypothesis that early amyloplast formation during
microspore development in vivo is associated with the high ratio of
albino regenerants during androgenesis, we analysed the expression
profiles of the starch synthesis-related genes and plastid differentiation
among other barley cultivars. The ten tested genotypes represented
different abilities for regenerating green plants in microspore culture,
which ranged from 10% to almost 100% (Fig. 1). Of the starch synthesis
genes that were analysed in ‘Jersey’ and ‘Mercada’ cultivars, we se-
lected Shel, Dpe2 and GBSSI due to their significantly increased ex-
pression during microspore development. The expression level of Shel
(encoding starch branching enzymel) increased as early as in the EM
microspores of all genotypes compared to the preceding E stage
(Fig. 5A). Moreover, an analysis of the Dpe2 and GBSSI expression in the
EM microspores permitted two groups of genotypes to be distinguished:
1) the cultivars, which, similar to ‘Jersey’, had the same Dpe2 and GBSSI
transcription level in the E and EM microspores and 2) the group of
cultivars that had a highly increased expression of these genes in the
EM microspores, similar to ‘Mercada’. The first group of genotypes
demonstrated a high ability to regenerate green plants in microspore
culture (more than 60% green regenerants), while in the second group,
albino plants comprised the majority of regenerants (Fig. 1).

An even more clear difference between these two groups of geno-
types was revealed by the cytological observations of the plastids in the
microspores at the ML stage, which are used to initiate the cultures. In
the ML microspores of cultivars that produced a low percentage of
green plants, the presence of starch-accumulating plastids was detected
during the microscopic observations (Fig. 6). The majority of those
cultivars had a similar number of amyloplasts and differentiating pro-
plastids, whereas in the cultivars with a high ability to regenerate green
plants, no amyloplasts were detected in the ML microspores. Ad-
ditionally, an increase in the number of plastids between the EM and
ML stages was detected in cvs. ‘Jersey’, ‘Tamparkorn’, ‘Chevallier’ and
‘Loosdorfer’, which produced more than 60% green regenerants during
androgenesis (Supplementary Data Fig. S4). A simple staining of starch
with Lugol’s solution permitted the starch grains in the ML microspores
of these cultivars to be visualised (Fig. 6B), which supported the pre-
vious observations. The level of albino plants regenerated from mi-
crospore culture and the amyloplast number in the ML microspores had
a very strong positive correlation (r-value = 0.94). Additionally, the
number of differentiating proplastids was strongly negatively correlated
with the regeneration of albino plants (Fig. 7A).

The activation of the Dpe2 and GBSSI genes involved in starch
synthesis was detected as early as in the EM microspores of the group of
cultivars that produced mostly albino regenerants. A statistical analysis
revealed a very strong and strong positive correlation between the ex-
pression level of the Dpe2 (r-value = 0.85), GBSSI (r-value = 0.86),
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Sbel (r-value = 0.76) genes in the EM microspores and the density of
the starch-accumulating plastids in the cytoplasm of ML microspores
(Fig. 7B-D). The analysis also showed a very strong and strong positive
correlation between the expression level of the Dpe2, GBSSI and Sbel
genes in the EM microspores and the rate of regenerated albino plants
in the in vitro culture (r-value = 0.82, 0.85 and 0.67, respectively,
Fig. 7B-D). Taking into account the obtained data, we assume that the
faster conversion of proplastids into amyloplasts, which results in a
high proportion of amyloplasts in the ML microspores, leads to the
formation of albino plants during androgenesis.

The expression level of the GBSSI gene in the EM microspores was
also observed in a semi-quantitative PCR, in which only the cultivars
that produced less than 60% of green plants had a strong visible am-
plification of the GBSSI transcript (Fig. 5B). Therefore, we consider that
the expression of this gene in EM microspores can serve as a marker of
amyloplast differentiation, and as a result, as an indicator of the gen-
otypes that will produce mostly albino regenerants in isolated micro-
spore culture.

3.5. The microspore developmental stage at the initiation of culture
influences the regeneration of green plants

Based on the positive correlation between the amyloplast

differentiation and albino plant regeneration, we assumed that using an
earlier stage of microspore development for in vitro culture should in-
fluence the number of green regenerants. Therefore, we performed a
preliminary study to compare the green plant regeneration in cultures
that had been initiated from microspores at the early-mid uninucleate
(EM) and mid-to-late uninucleate (ML) developmental stages. We used
five cultivars that had a differential level of green regenerants in a
microspore culture initiated from ML microspores. The ‘Jersey’ and
‘Loosdorfer’ cultivars produced more than 60%, whereas ‘Bordo’,
‘Justina’ and ‘Mercada’ regenerated less than 25% green plants.

In the isolated microspore cultures of cvs. ‘Bordo’, ‘Justina’ and
‘Mercada’, the stage of microspore development did not influence the
overall number of regenerants (Fig. 8A). However, in the ‘Mercada’
culture that had been initiated from EM microspores, the number of
green plants increased more than four-fold compared to the ML stage,
which enabled ca. 60 plants per 100,000 microspores to be obtained
(Fig. 8B). The proportion of green plants among all regenerants in-
creased from 12.6% to 46.6%. An even more striking improvement was
achieved for the ‘Bordo’ and ‘Justina’ cultivars in which the percentage
of green regenerants increased from ca. 20% to 84% of the total number
of regenerated plants. In cvs. ‘Jersey’ and ‘Loosdorfer’, the regeneration
capacity decreased in the cultures that had been initiated from EM
microspores compared to the ML stage (Fig. 8A). Nevertheless, the
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(A) The relative expression level of genes during successive stages of microspores development. Graphs show mean values of n = 3 with SEM of relative expression
level normalised to E microspores of cv. ‘Jersey’. A hash demonstrates a value significantly different from the preceding stage within cultivar (Tukey’s test, P < 0.05).
Stages of pollen development: E - early uninucleate, EM - early-mid uninucleate, ML — mid-to-late uninucleate. (B) Semi-quantitative analysis of GBSSI gene
expression in EM microspores of 10 cultivars, with gradient chart of green to albino plants ratio. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article).

contribution of green plants among the regenerants did not differ be-
tween the cultures initiated using EM or ML microspores for these
genotypes (Fig. 8B).

These results indicate that initiating culture from microspores at an
earlier stage of development, prior to amyloplast differentiation, sig-
nificantly improves the regeneration of green plants and overcomes the
problem of albinism during barley androgenesis.

4. Discussion

Androgenesis, which is the most effective method of DH production,
is widely used in barley breeding programmes. Although barley is an
easily inducible species, its genotype-dependent response, which results
in a large number of albino regenerants, often limits the effective ap-
plication of this DH system [61,62]. To date, studies on the mechanisms
that lead to the formation of albino plants in cereal androgenesis have
primarily focused on plastid development during in vitro cultures. In

barley, ultrastructural analyses of plastids in microspore-derived em-
bryos and regenerated plants have been performed for several spring
cultivars that produce mostly albino regenerants and for the winter cv.
‘Igri’, which regenerates almost exclusively green plants [42,43]. The
green regenerants of cv. ‘Igri’ contained regular chloroplasts with well-
developed grana and thylakoids, and a low content of accumulated
starch grains. These plants originated from microspore-derived embryos
whose plastids had intensified divisions and a high DNA content.
Conversely, the plastids of albino regenerants of the spring cultivars
displayed few divisions, a high content of starch grains and a limited
thylakoid and DNA content. The authors concluded that the develop-
ment of albino plants was not initiated at the time of regeneration but
that it had begun earlier during the androgenetic process [43].

Here, we demonstrate that the ratio of green to albino regenerants
in isolated microspore culture of spring barley cultivars is determined
by the state of plastid differentiation in the microspores at the stage of
culture initiation. The cultivars that produced mostly albino
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regenerants showed a high activation of the starch-biosynthesis genes
as early as in the EM stage, which preceded the collection of micro-
spores for an in vitro culture, and the formation of amyloplasts in the ML
microspores that are used to initiate a culture. Conversely, the cultivars
that produced mostly green plants had differentiating proplastids in
their ML microspores, which were characterised by a few internal
membranes and a dense matrix. The Pearson’s correlation coefficient
indicated a very strong positive association between the number of
amyloplasts in the ML microspores and the level of regenerated albino
plants. An increase in the expression level of the GBSSI, Dpe2 and Shel
genes was positively associated with the presence of amyloplasts in the
ML microspores and with the regeneration rate of albino plants. Studies
on Bright Yellow-2 (BY-2) cultured tobacco cells exhibiting non-
photosynthetic, highly prolific properties indicated that the activation
of the expression of GBSSI, Dpe2 and Sbel genes is required for starch

10

biosynthesis and the deposition of starch granules within a plastid is
required to form an amyloplast [16,19]. It should be pointed out that
plastid differentiation at the early stages of microspore development in
barley has not previously been described.

The expression level of the GBSSI gene can easily be detected in
semi-quantitative PCR and may serve as a system to identify the gen-
otypes that predominantly produce albino regenerants prior to in-
itiating in vitro culture. Furthermore, a qPCR analysis permits the cul-
tivars that produce a moderate (30-60%) and high (75-90%) number of
albino plants to be distinguished. The possibility of indicating the
genotypes that have a low potential for regenerating green plants en-
ables them to be excluded from breeding programmes in which the
production of a high number of DH lines from F; hybrids is required.
Alternatively, when such genotypes are the source of desirable genes for
breeding programmes, the information about their possible
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performance in androgenesis would be very useful for determining a significant decrease in the plastome copy number estimated by qPCR.
sufficient number of donor plants to initiate culture and to produce the The degradation of plastomes during starch deposition is a well-docu-
required number of DH lines. mented process in the vegetative cell of pollen grains [63,64]. In our
During the progression of pollen development, we observed a experiments, a decrease in plastid DNA copy number occurred as early
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as in the EM microspores in the cultivar that produced more albino
plants. This indicates that the rate of plastid differentiation during
pollen development has an impact on the plastome copy number, as-
sociated with the progression of amyloplast formation.

Many studies have attempted to increase the frequency of the re-
generation of green plants by changing the culture conditions such as
pretreatment [65-69] or media composition [70-73]. However, the
influence of pretreatment, media and culture conditions modifications
remain highly genotype-dependent. Moreover, studies on the effects of
external factors on the efficiency of androgenesis indicate that the re-
generation capacity does not correlate with the occurrence of green and
albino plants. Apart from expanding the overall plant regeneration rate,
no external factor that has been introduced into in vitro culture has
overcome the problem of albinism [65,66,69]. The high number of
albino plants produced by the cultivars that contained amyloplasts in
the ML microspores suggests that modifications of the in vitro culture
procedure, including pretreatment, cannot reverse the differentiation of
proplastids into amyloplasts that occurs during microgametogenesis.
Analysis of plastid development in vivo enables the true capability of
different cultivars to regenerate green plants during androgenesis to be
revealed. Moreover, the proposed marker (GBSSI expression) can be
used to investigate and verify the potential of genotypes before in-
itiating a culture. We showed that using microspores at a stage of de-
velopment earlier than ML, which is usually recommended for culture
initiating, while technically more demanding, can increase the number
of green plants among the regenerants from isolated microspore culture
in barley. This improvement is clearly connected with a lack of pro-
plastid differentiation into amyloplasts in the early microspores of the
high albino-producing genotypes.

5. Conclusions

The study provides new insights into the phenomenon of genotype-
dependent regeneration of albino plants during androgenesis in barley.
Genotypes that have a similar regeneration potential, but differ in the
ratio of green to albino regenerants, exhibit divergent expression pro-
files of genes involved in transcription, translation and starch bio-
synthesis in microspore plastids. Cultivars producing mostly albino
regenerants in androgenesis show early activation of starch synthesis
genes, differentiation of proplastids into amyloplasts and degradation
of plastomes during microspore development in vivo. The expression of
the GBSSI gene (encoding a granule-bound starch synthasel) may serve
as a marker of genotype potential to produce green regenerants during
androgenesis. We demonstrated that initiating culture from micro-
spores at the early-mid stage of development, before amyloplast dif-
ferentiation, significantly improves the regeneration of green plants and
may overcome the problem of albinism in barley microspore embry-
ogenesis.
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