

ASHESI UNIVERSITY

AUTOGRADING AND DETECTING PLAGIARISM IN STUDENT

PROGRAMMING ASSIGNMENTS

APPLIED PROJECT

B.Sc. Computer Science

Alex Waweru

2019

Page | 1

Branding and Identity Guide

The Ashesi brand and logo are integral parts of our worldwide image and identity. We must be

careful of how and where the Ashesi is used to ensure we maintain the integrity of our

organization.

This guide has been developed to help you clearly understand our policies towards the use of

the Ashesi logo in a variety of mediums, as well as type faces and a color palate to help you

produce materials that maintain the brand’s integrity. We would request that you seek

approval from the Ashesi University College Marketing Committee before creating any media

that reproduces the Ashesi logo.

Contents
The Logo .. 2

Using the Logo .. 3

Clear Space and Logo Design .. 5

Unacceptable Logo Uses ... 6

The Ashesi Seal .. 7

Color Palette ... 8

Fonts.. 8

Mission Statement .. 9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ashesi Institutional Repository

https://core.ac.uk/display/270093281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ASHESI UNIVERSITY

Autograding and detecting plagiarism in student programming

assignments

APPLIE PROJECT

Applied Project submitted to the Department of Computer Science, Ashesi

University College in partial fulfilment of the requirements for the award of

Bachelor of Science degree in Computer Science

Alex Waweru

April 2019

i

DECLARATION

I hereby declare that this [capstone type] is the result of my own original work and that no

part of it has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

……………………………………………………………………………………………

Candidate’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

I hereby declare that preparation and presentation of this [capstone type] were supervised in

accordance with the guidelines on supervision of [capstone type] laid down by Ashesi

University College.

Supervisor’s Signature:

……………………………………………………………………………………………

Supervisor’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

ii

ACKNOWLEDGEMENT

I would like to express my profound gratitude to all who assisted me in diverse ways to

complete this project.

Special gratitude to my supervisor, Mr. Francis Gatsi, for his valuable input without which

this project would not have completed successfully.

iii

ABSTRACT

In computer science, practical assignments ensure that students put the theory they

learn in class into practice by writing computer programs to solve problems. Practical

assignments also play a critical role in assessing students’ understanding of course materials.

For course facilitators, grading programming assignments is a time-consuming task. The

course facilitators must run each student’s submission. Moreover, some students copy the

code from their friends and change the lexicon and structure. This makes it nearly

impossible for the course facilitators to detect plagiarism. A possible solution to these

problems is a system that allows course facilitators to write tests that apply automatically to

all students’ submissions and consequently allocate grades based on test results. To curb the

plagiarism issue, the system should have a component that calculates the peer plagiarism

index and flags students’ submissions that may have plagiarism issues. This applied project

is an attempt to develop, test and evaluate such a system. While designing the system, it

became apparent that running students’ submission and instructors’ tests on the server

would pose a security threat to the server. After evaluating possible workaround for the

issue, we decided to run the submissions and tests on a docker sandbox within a virtual

machine. The plagiarism index is calculated by quantifying the lexical and structural

similarities. To integrate the two components, we developed an API. To test and

demonstrate the workings of the system, we developed a frontend client to consume the

critical endpoints of the API. This project is proof of concept that the solution for the

problem can be developed and successfully deployed.

iv

TABLE OF CONTENT

Contents
DECLARATION .. i

ACKNOWLEDGEMENT .. ii

ABSTRACT .. iii

Chapter 1: Introduction ... 1

1.1 Background context of the Problem ... 1

1.2 The significance of the Problem... 2

1.3 Proposed Solution ... 2

1.3 Related Work .. 3

Chapter 2: Requirements ... 5

2.1 Overview... 5

2.2 Scope... 5

2.3 System Components and Functionalities .. 5

2.3.1 Submittal Component ... 5

2.3.2 Grading Component .. 6

2.3.3 Plagiarism Check Component .. 6

2.4 User Roles and Responsibilities ... 7

2.4.1 Course Instructors ... 7

2.4.2 Students ... 7

2.5 Requirements Gathering ... 8

2.6 Requirements Analysis .. 9

2.7 Requirements Organization and Specification ... 10

2.7.1 Functional Requirements .. 11

2.7.2 Non-Functional Requirements ... 13

2.8 Users .. 14

2.8.1 Admin user class ... 14

2.8.2 Instructor user class .. 14

2.8.3 Student user class .. 15

Chapter 3: Architecture and Design... 17

3.1 Overview.. 17

3.2 System Overview ... 17

3.3 System Architecture .. 18

3.3.1 Front-end Client.. 19

v

3.3.2 HTTP Server (API) .. 19

3.3.3 Database ... 20

3.3.4 File System .. 20

3.3.5 Plagiarism Detection Service ... 21

3.3.6 Auto-grading service .. 21

3.4 Component Diagram ... 21

3.5 Activity Diagrams .. 22

3.5.1 Admin ... 22

3.5.2 Course Facilitator ... 22

3.5.3 Student ... 24

3.6 Extended Entity Relational Diagram .. 24

3.7 Database Architecture .. 25

3.8 File System ... 26

Chapter 4: Implementation ... 28

4.1 Overview ... 28

4.2 Tools ... 28

4.2.1 JavaScript .. 28

4.2.2 Node.js ... 28

4.2.3 HTML ... 28

4.2.4 Shell Script .. 28

4.3 Libraries .. 29

4.3.1 Bcrypt.. 29

4.3.2 Nodemon .. 29

4.3.3 Vision .. 29

4.3.4 Apollo-Server-Hapi ... 29

4.3.5 Hapi-Swagger ... 29

4.3.6 Mongoose ... 30

4.4 Frameworks .. 30

4.4.1 MongoDB ... 30

4.4.2 Hapi.Js ... 30

4.5 Description of components .. 30

4.5.1 Database API .. 30

4.5.2 Auto-grading Service .. 33

4.5.3 Plagiarism Component .. 36

4.6 Implementation Techniques ... 38

Chapter 5: Tests and Results.. 39

vi

5.1 Overview.. 39

5.2 Unit Testing ... 39

5.3 Component Testing ... 42

5.4 System Testing ... 44

Chapter 6: Recommendations, Future Work and Conclusion 45

6.1 Recommendations .. 45

6.2 Future Work .. 45

6.3 Conclusion .. 46

BIBLIOGRAPHY ... 47

vii

LIST OF FIGURES

Figure 1: 2.8.1 Use case for the admin user class .. 14

Figure 2: 2.8.2 Use case for the instructor user class ... 15

Figure 3: 2.8.3 Use case for student user class .. 16

Figure 4: 3.2 High level system architecture ... 18

Figure 5: 3.3 System architecture .. 18

Figure 6: 3.4 Component diagram ... 21

Figure 7: 3.5.1 Admin activity diagram... 22

Figure 8: 3.5.2 Instructor activity diagram .. 23

Figure 9: 3.5.3 Student activity diagram ... 24

Figure 10: 3.6 Extended Entity Related Diagram .. 25

Figure 11: 3.7 database architecture .. 26

Figure 12: 3.8 File System .. 27

Figure 13: 4.5.1 MongoDB Atlas online portal ... 31

Figure 14: 4.5.1 API documentation ... 31

Figure 15: 4.5.1 API documentation ... 32

Figure 16: 4.5.1 API documentation ... 32

Figure 17: 4.5.1 API documentation ... 32

Figure 18: 4.5.1 sample API call ... 33

Figure 19: 4.5.1 sample API call ... 33

Figure 20: 4.5.2 Testing language support .. 36

Figure 21: 2.5.2 Testing language support .. 36

Figure 22: 4.5.3 Plagiarism index from the 2 files ... 37

Figure 24: 5.3 Testing the autograding component .. 43

Figure 25: 5.3 Testing the API component .. 44

viii

LIST OF TABLES

Table 1: 2.7.1 Requirements in categories ... 10

Table 2: 2.7.1 Requirements in categories ... 10

1

Chapter 1: Introduction

1.1 Background context of the Problem

Programming assignments are generally hectic to grade because in most cases the

course facilitator must run each student's submission and check for correctness as well as

completeness. In some cases, a course facilitator may need to test for good design and

documentation. This means that they would need to read each students source code. This

can be a daunting and time-consuming job.

The hectic grading process that follows a programming assignment affects the

quality and complexity of programming assignments. Course facilitators shy away from

assignments that are too complex or too tedious to grade.

According to Coughlin, “Hugely facilitated by computers and the Internet,

plagiarism by students threatens the educational quality and professional ethics worldwide

though those same technologies can be used to teach correct practices and detect

transgressions” [1]. The internet and computers have made code plagiarism an easy task. It

is almost impossible for facilitators to detect source code plagiarism among students. When

students change the structure and the lexicon of the copied code, often than not it passes as

genuine to the facilitator [2].

According to research conducted by Zurich and Dragan in the University of

Banjaluka in Bosnia, lexical source code modification includes but not limited to [2]

modification of comments, identifiers, variables, and modifiers. Structural code

modification includes [2] includes but is not limited to modifying the control structures and

loops, changing the order of variables and code blocks, addition of redundant statements,

and modification of data structures.

2

1.2 The significance of the Problem

I conducted a qualitative research to gain insight into why there has been efforts to

automate the grading of programming assignments at Ashesi University. The study

involved seven interviews with seven faculty which facilitate core computer science

courses. All interviewed facilitators acknowledged that code plagiarism was very hard to

detect unless it was apparent. Some facilitators feared that the existing auto-grading tools

such as VPL and REPL are not flexible enough to provide multiple language support and

testing techniques. No facilitator has considered the need for auto-grading and plagiarism

detection tools because the status quo has always been manual grading.

Various studies [1][2][3] show that automating the testing process is trivial in theory

but complicated in application. In practice, the system must be secure enough for running

untrusted student code, scalable to large classes, flexible enough to accommodate different

forms of assignments and robust in the face of bugs in the students’ programs. If possible,

the system should have the ability to grade threaded and distributed programs.

1.3 Proposed Solution

As a solution to the manual grading system and lack of plagiarism detection in

programming assignments, a web application is proposed whereby course facilitators can

design programming assignments and tests, and students source code solutions to the

assignments. The tests are applied to each student’s submission and the grade calculated

from the test results. The students' submissions are run through a plagiarism checker and

their pair-wise plagiarism index calculated. An index above a certain threshold is flagged

as plagiarism.

3

1.3 Related Work

1.3.1 Autograding

 A study conducted by David Kay et al. [3] reveals that a system built to grade

students programming assignments automatically must be robust and secure in the face of

malicious submissions from students. The system must also be scalable to handle large

class sizes. A similar study by David Malan [5] shows that security is the most significant

threat to such a system. Running code submissions on the server makes the entire system

vulnerable. A simple shell program could delete all the files on the server or shut it down

entirely. To overcome this challenge, this literature and related literature [6] recommend

the use of a constrained sandbox where computer programs can run securely. Examples of

such sandboxes include virtual machines and Docker containers. David Malan, a professor

at Harvard University, [5] implemented a similar solution for an introductory computer

science course at Harvard University. The solution uses Docker containers to create the

sandbox. David Malan [5] points out that virtual machines provide more security since they

run entirely on a different operating system. The trade-off, however, is the start-up time

that virtual machines need every time you need to run a program. Susilo Veri [9],

investigated the viability of building a code analyzer and its contributions in improving the

teaching and learning process of computer science courses. The analyzer, like code

analyzers found in most text editors, would be used by students to reveal logical, lexical

and structural bugs without running the code. Her results showed that such a system would

save students and instructors time in writing and reviewing source codes. The downside is

the analyzer was language specific and could not be used for any language.

4

1.3.2 Plagiarism Detection

 In a technical paper, Georgina Cosmo [7], describes PlaGate, a tool that can be

integrated into existing systems to improve performance. According to Georgina, PlaGate

also provides graphical evidence of plagiarism which indicates the relative importance of

the given source code fragments. This technique of attaching relative importance to

different fragments of the source code creates different categories of plagiarisms. In a

similar study, Stephen Burrows [8], uses local alignment and lexical similarities to in source

codes to detect plagiarism. This method is identical to what is used in detecting plagiarism

in other writings. This simplicity of the technique makes it highly scalable to large class

sizes as compared to more complicated techniques such as the JPlag and MOSS. Zorac

Duric et al. [2] conducted a study into the most common occurrences in source code

plagiarism. Zorac Duric et al. [2] found out that all source code plagiarism was either in the

form of lexical modification of original source code or structural modification of the source

code. Therefore, techniques and algorithms for plagiarism detection must focus on

detecting both lexical alteration and structural modification.

5

Chapter 2: Requirements

2.1 Overview

This section outlines the requirements of the proposed system. The details of the

functionalities and intended features of the system are also discussed in depth. The chapter

also provides a detailed overview of the functional requirements, functional requirements

elicitation, system requirements, external interface requirements, and non-functional

requirements.

2.2 Scope

The system intends to replace the manual grading of programming assignments by

course facilitators at Ashesi University. The current scope for this system is Ashesi

University Computer Science and Engineering departments. The system will serve to

reduce time spent by course instructors grading programming assignments. This will allow

course instructors more time for other rewarding activities. Ultimately, the system will

improve the quality of experience for both instructors and students.

2.3 System Components and Functionalities

The system is divided into various components that are intended to be developed

into microservices. Below is a list of the major parts and their anticipated/intended

functionalities.

2.3.1 Submittal Component

This component of the system will:

 Allow instructors to set up assignments and create submission slots for various

requirements of the assignments,

6

 Allow students to submit multiple source code as solutions to a programming

assignment,

 Allow students to submit ancillary files related to a programming assignment.

Such files include but are not limited to documentation files, output results, and

students’ test,

 Allow students to submit the assignment multiple times as long as the deadline

is not passed. The submission timestamp of the last submission is recorded in

case of late submission,

 Compile the submitted source files, and

 Run compiled source code against the published test cases.

2.3.2 Grading Component

This component of the system will:

 Allow course instructors to write tests and provide test cases for various

assignments,

 Run the compiled student source code against the tests specified by the course

instructor(s), and

 Collect the results of each student tests and publish them to the database.

It is important to note that the system mainly checks for correctness and

completeness and may not be able to assign grades on sound design and documentation.

2.3.3 Plagiarism Check Component

This component of the system will:

 Generate an intermediate representation of the submitted source codes,

 Look for plagiarized material in the source code and compare similarity, and

7

 Alert the course instructor in case there is any two source codes are flagged as

similar.

A plagiarism index above the threshold may not always indicate a case of

plagiarism; the facilitator will have to go through similar source codes and make a judgment

call.

2.4 User Roles and Responsibilities

This section describes how different stakeholders will interact with the system and

what kind of activities the system is required to support:

2.4.1 Course Instructors

Course instructors will use the system to create new assignments and open

submission slots for all submission requirements. Submission requirements may include

one or multiple source codes, documentation, and output results. For each requirement, the

instructor will create a different submission slot. The instructor will also write tests that

will be applied to the student’s submissions. An instructor may write a test for the source

codes to determine whether they display the intended behavior. An instructor may also

write tests to be applied to the students’ output results to check whether the output results

are as intended. The system will help automate the check for correctness and plagiarism,

but it does not check for good design and good documentation. The lecturer may need to

through the students’ source code to check for good design and documentation.

2.4.2 Students

Students will use the system to submit programming assignments. A student may

submit multiple times given that the submission deadline has not passed. Students will see

8

the results of the published test cases soon after they present. The results of the rest of the

test cases will appear only after the submission deadline.

2.5 Requirements Gathering

To gather requirements a mixed research approach that involved both qualitative and

quantitative research was explored. Interviews, observation, and emersion were the main

tools employed. Emersion included job shadowing a programming course facilitator at

Ashesi University. The system stakeholders, i.e., students, lecturers, and school

administrators were the correspondents of the research. The information sort after these

stakeholders includes but is not limited to:

 How does a course facilitator grade a typical programming assignment?

 How much time does it take a facilitator to grade a typical programming

assignment?

 Does the facilitator detect plagiarism in programming assignments?

 How does the facilitator detect plagiarism in programming assignments?

 How does a facilitator track development and progress for each student?

 How do students submit programming assignments?

 Do students get feedback from their facilitator after a programming assignment?

 What Integrated Development Environments (IDE) do most students prefer?

 What tools are available for automatic code submission?

 Why has Ashesi not adopted any of the available tools?

 What kind of data will this system be dealing?

9

2.6 Requirements Analysis

Analyzing input from the stakeholders, and notes from observation and emersion

revealed the following needs:

 Facilitators should invite students to course,

 An administrator should invite lecturer to register in the system,

 Only Ashesi email format can register in the system,

 Facilitators should create courses,

 Courses facilitator should create assignments,

 Students should view assignments,

 The system should check for correctness and completeness,

 The system should check for good design and documentation,

 The system should be safe to run students untrusted code,

 The system should support multithreaded applications,

 Students should be able to submit multiple source files,

 Students should be able to submit ancillary files alongside the source code,

 Students should be able to submit multiple times before the deadline,

 There should be a real-time scoreboard that shows students’ scores under their

pseudocodes,

 The system should be scalable to large classes,

 The system should be fast enough and reliable,

 The system should be able to detect both lexical and structural plagiarism,

 The system should be able to report on student progress,

 The student should be pluggable into school management systems.

10

2.7 Requirements Organization and Specification

In organizing the requirements from the research participants, we identified

themes and classified all their needs into the following categories:

Table 1: 2.7.1 Requirements in categories

Submission Plagiarism

Checker

Auto-grading Authentication

and Sessions

 Submit

multiple

source

files

 Submit

ancillary

files

 Submit

multiple

times

before the

deadline

 Scalable for

a large class

 Fast and

reliable

 Detect

lexical and

structural

plagiarism

 Check for

correctness and

completeness

 Check for good

design and

documentation

 Run students’

untrusted code

 Support

multithreaded

programs

 Real-time

scoreboard

 Scalable for a

large class

 Fast and

reliable

 Admin

resisters

facilitators

 Facilitators

create

courses

 Facilitators

create

assignments

in courses

 Only

Ashesi

email

format is

accepted

 Students

can view all

courses

 Students

can view all

assignments

in course

Table 2: 2.7.1 Requirements in categories

Students  Course

Facilitators

Admin System

 Can view all

courses they

are registered

in

 Can view all

assignments in

courses they

are registered

in

 Can create

courses

 Can create

assignments

and write

tests

 Can view all

students

progress

 Can invite

facilitators

to register



 Scalable

 Fast

 Reliable

 Robust

 Flexible

 Pluggable

on other

systems

11

 Should be able

to submit

multiple source

code files

 Should be able

to submit

ancillary files

 Should see

their progress

 See their

results on the

live scoreboard

 Can invite

students to

register

2.7.1 Functional Requirements

Functional requirements for an administrator include:

 Login/Register: The administrator should have secure access to their account. An

email and password combination would be required to grant the administrator

access. In case the administrator forgets their password, they can recover it through

their emails.

 Faculty invites: The administrator can send email invites to new faculties to join the

platform.

 Approve course creation: When a faculty creates a course, the status of the course

will be pending, and no student can join the course unless the facilitator approves

it.

 Approve students course registration: When students join a course their join status

will be pending until the administrator approves them.

 Unregister faculty: The administrator can unregister a faculty from the platform in

case the faculty is no longer with the institution.

 Unregister student: The administrator can unregister a student from the platform in

case the student is no longer with the student.

12

 Access to all courses’ records: The administrator has view access to all courses’

records.

 Access to all students’ records: The administrator has view access to all the

students’ records.

Functional requirements for a course facilitator include:

 Login/Register: The course should have secure access to their account. An email

and password combination would be required to grant them access. In case the

facilitator forgets their password, they can recover it through their emails.

 Create a course: The course facilitator has the right to create a new course on the

platform with the approval of the administrator.

 Create an assignment: The course facilitator can create a new assignment in the

course that they facilitate.

 Write tests: For an assignment, the course facilitator can write tests that will be

applied to the students’ submissions.

 Receive plagiarism notifications: After the deadline, the system computes the peer

plagiarism index for every students’ submission. If for a student, the plagiarism

index is above a certain threshold, the system notifies the course facilitator.

 View students’ plagiarism index: The course facilitator has view access to the

computed plagiarism index of all the students registered to a course.

Functional requirements for a student include:

 Login/Register: The student should have secure access to their account. An email

and password combination would be required to grand the student’s access. In

case the student forgets their password, they can recover it through their emails.

 Register in a course: Students can register to a course with the approval of the

administrator.

13

 Upload assignments: A student can submit source code files for an assignment

multiples times before the deadline. Submission after the deadline is accepted but

the submission timestamp will be recorded.

 View Assignments score: Students can view their scores after an assignment’s

deadline.

 Lodge complain: If a student suspects that their assignment grade is faculty, they

can submit a complaint that will be viewed by the course’s facilitator.

 View assignments plagiarism index: Students can view their plagiarism index

after an assignment’s submission deadline.

 View course progress: Students can view a graph of their grades.

2.7.2 Non-Functional Requirements

 Flexibility: The system must be flexible enough to accommodate different forms

of assignments

 Performance: The functional components of the system must run in a reasonable

amount of time

 Robustness: The system should be robust in the face of bugs in the students’

source codes

 Scalability: The system should be able to accommodate a class size of up to 1000

students without breaking.

 Security: The system should be able to run code in isolated safe mode in case of

malicious source codes

14

2.8 Users

2.8.1 Admin user class

Use case:

Figure 1: 2.8.1 Use case for the admin user class

Scenario:

Head of the computer science department at Ashesi University wants computer

sciences faculties to use the system for programming assignments. To do this, the head of

computer science departments will register an administrator account and invite other

faculties to join the system through emails. If a faculty leaves the school the head of the

computer science department will unregister them from the platform. The administrator can

view all courses on the platform, and all students progress reports.

2.8.2 Instructor user class

Use case:

15

Figure 2: 2.8.2 Use case for the instructor user class

Scenario:

A data structures lecturer at Ashesi University gets an email invite from the Head

of Department to register on the platform. After registration, he/she will create the Data

Structures course on the platform. The lecturer will create an assignment and write tests

that will be applied to students’ submissions. After the assignment deadline, the facilitator

will view the assignment scores. The lecturer will also receive notifications in case any

student’s code has been flagged as plagiarised.

2.8.3 Student user class

Use Case:

16

Figure 3: 2.8.3 Use case for the student user class

Scenario:

A student registered on the platform through the Ashesi email will be able to register

to the Data Structures course. The students will see all due assignments and be able to

submit the course code files and ancillary files multiple times before the deadline. After the

deadline, the student will get to view the assignments score and plagiarism index. The

student will also view a graph of his scores.

17

Chapter 3: Architecture and Design

3.1 Overview

This section provides a summary of the architecture and design of the proposed

application. A high-level design which satisfies the requirements specified earlier will be

provided in this section.

3.2 System Overview

The web application has the following components:

 Three users (administrator, course facilitators, and student),

 A front-end client that allows each user to have a different view

 Authentication service that allows each user to access their account

 A plagiarism detection service that checks the plagiarism index for each student’s

submissions

 An auto-grading service that applies the facilitators' tests on the students'

submissions and computes the scores

 Database for the persistence of data in the system

 File system for storing students submissions

18

Figure 4: 3.2 High-level system architecture

3.3 System Architecture

Figure 5: 3.3 System architecture

19

3.3.1 Front-end Client

The front-end client of this application will consist of the home page and views for

each user. The purpose of the front-end client is to consume a few critical endpoints of the

API just to allow for integration testing and demonstration of the working of the system.

3.3.2 HTTP Server (API)

Although the application architecture is Micro-Services Architecture, the HTTP server

acts as the controller and the link between the front-end client and all the services. The

HTTP server will consist of the following services:

 login user: This service will authenticate the users and redirect them to their

dashboards

 register user: This service will register new users and redirect them to their

dashboards

 update user: This service will update user details

 delete user: This service will delete a user from the system

 create course: This service will create a new course on the platform

 update course: This service will update course details

 delete course: This service will delete the course from the system

 join course: This service will add a student into a course

 leave course: This service will remove a student from a course

 submit file: This service will upload a file into the file system

 delete file: This service will delete a file from the file system

 test: This service will apply the facilitators test to the students’ submissions

 check plagiarism: This service will run the plagiarism checker on all student

submissions

20

 create complain: This service will create a new complain

 delete complain: This service will delete a complain

 close complain: This service will close a complain

 create assignment: This service will create a new assignment

 delete assignment: This service will delete the assignment

 submit assignment: This service will submit call ‘submit file’ service in order to

upload the assignment files

3.3.3 Database

The database will contain the following primary entities:

 Admin: This entity will store all registered admins’ details

 Faculty: This entity will store all registered faculties’ details

 Student: This entity will store all registered students’ details

 Course: This entity will store all registered courses’ details

 Assignment: This entity will store all registered assignments’ details

The database will contain the following secondary entities:

 Assignment Submission: This entity will store all assignment submissions’ details

 Course Enrolment: This entity will store all courses’ enrolment details

 Complaints: This entity will store all complaints lodged by students

3.3.4 File System

The filesystem will store all the files uploaded into the system.

21

3.3.5 Plagiarism Detection Service

The plagiarism checker will determine whether students have plagiarised among

each other and return each students plagiarism index.

3.3.6 Auto-grading service

The auto grading service will apply the tests to each student’s source code and

return the results for each student in a JSON format. The auto-grading service will run in

an isolated environment to provide protection against malicious programs.

3.4 Component Diagram

The diagram below shows the main components of the system and the relationship

between them.

Figure 6: 3.4 Component diagram

22

3.5 Activity Diagrams

3.5.1 Admin

 An administrator will require to be authenticated to access their accounts. If the

admin has an account, they will log in into the system; otherwise, they will need to be

registered through an existing admin. Once authenticated, the admin can send an invite to

an unregistered faculty. If any faculty has created a course, the admin may decide to

approve it or decline the course creation. If there is a faculty that has recently resigned the

admin can unregister them from the system.

Figure 7: 3.5.1 Admin activity diagram

3.5.2 Course Facilitator

 A course facilitator will require to be authenticated to access their account. If the

faculty is not registered, they would need to ask the admin to send them an invite. Once

23

authenticated, a facilitator can create a new course and wait for the admin to approve it.

Once the course creation is approved, the facilitator can create an assignment within the

course. All students who have joined the course will view the assignment and submit the

source code as well as the ancillary files. After the deadline, the tests will be applied to the

source codes and results computed. The faculty can view students results. The plagiarism

indices will also be computed after the deadline and the results stored on the database. The

faculty can also view the results. The faculty will receive notifications for cases that are

flagged as plagiarism.

Figure 8: 3.5.2 Instructor activity diagram

24

3.5.3 Student

 An authenticated student can join a course. After the administrator has approved the

join request, the student can view and submit assignments within the course. After the

assignment deadline, the scores and the plagiarism indices will be computed by the auto-

grader and plagiarism checker respectively. The students may view the results for both. The

student can also view their grades graphically.

Figure 9: 3.5.3 Student activity diagram

3.6 Extended Entity Relational Diagram

The diagram below shows the relationships of all entities in the system and their

relationships.

25

Figure 10: 3.6 Extended Entity Related Diagram

3.7 Database Architecture

Below is a description of the database tables and their relationships:

 Admin: The admin table has the adminid as its primary key.

 Student: The student table has the studentid as its primary key. The studentid is a

foreign key in the Complaint, Assignment Submission, and Course Enrolment

tables.

 Faculty: The faculty table has the facultyid as its primary key. The facultyid is a

foreign key in the Complaint table.

 Course: The course table has a courseid as its primary key. The courseid is a

foreign key in the Assignments table.

 Assignment: The assignment table has assignmentid as its primary key.

26

 Complaint: The complaint table has complaintid as its primary key.

 Assignment submission: The assignment submission table has the submissionid as

its primary key.

 Course Enrolment: The course enrolment table has the enrolmentid as its primary

key.

Figure 11: 3.7 database architecture

3.8 File System

A lot of the system data involves files that will be stored in the file system as

designed below. The directory and files naming convections are as displayed on the

diagram below.

27

Figure 12: 3.8 File System

28

Chapter 4: Implementation

4.1 Overview

This section describes the tools and technologies used in the development of the

system. It also describes the implementation techniques and algorithms used in the

implementation of the system.

4.2 Tools

4.2.1 JavaScript

It is an object-oriented programming language mostly used to render interactive

web applications. Recently, JavaScript has gained prominence as a server-side scripting

language. In this project, JavaScript is used for both services. It is used in the backend

because it allows for asynchronous IO.

4.2.2 Node.js

Node.js is an open source, cross-platform JavaScript run-time environment that

executes JavaScript code outside the browser. It is used in this project because it allows the

entire application to be written in a single language, JavaScript.

4.2.3 HTML

HTML is an acronym that stands for Hyper Text Mark-up Language. HTML is

used in this project to design and create the frontend client.

4.2.4 Shell Script

Shell Script is a program designed to be run by the Unix shell. Shell scripts are used

in this project as wrappers, to set up the docker sandbox and run student source code on the

docker containers.

29

4.3 Libraries

4.3.1 Bcrypt

Bcrypt is a library used to hash passwords based on the Blowfish cipher. Bcrypt is

available in different languages but this project employs the npm bcrypt library. This library

is used to hash passwords and all sensitive information.

4.3.2 Nodemon

Nodemon is a npm library used to monitor the application script during

development. It allows for live changes in the application without necessarily having to

restart the server. Nodemon is used in the development of this project.

4.3.3 Vision

Vision is a npm library for template rendering plugin support for hapi.js, a Node.js

framework. Vision enables applications developed using hapi.js framework to render

dynamic templates and dynamic contexts and helpers.

4.3.4 Apollo-Server-Hapi

This library integrates the Apollo Server into the hapi.js framework. The Apollo

server is an open-source GraphQL server.

4.3.5 Hapi-Swagger

This is a plugin library for the hapi.js framework that is used to document the API

interface in a project. This library is used in this project to document the database API

interface.

30

4.3.6 Mongoose

Mongoose is a MongoDB object modelling library designed to work in an

asynchronous environment. It provides built-in typecasting, validation, query building, and

business logic hooks. It is used in this project to connect to an online MongoDB database,

validate data before insertion and build and execute queries.

4.4 Frameworks

4.4.1 MongoDB

MongoDB is a cross-platform document-oriented database. MongoDB was used in

this project as the main database technology.

4.4.2 Hapi.Js

Hapi.js is a framework for building applications and services using JavaScript as

the server-side scripting language and Node.Js as the run-time environment. Hapi.js

focusses on writing reusable application logic.

4.5 Description of components

The most significant components and sub-components to the general functionality of the

system are described and analyzed below.

4.5.1 Database API

This component handles all the processes that involve accessing information from the

database or making insertions or deletion on the database. The frontend client makes API

calls in the form of HTTP and https requests to this component to access the database.

Below is an image of the online database.

31

Figure 13: 4.5.1 MongoDB Atlas online portal

Below are illustrations of the Database API documentation.

Figure 14: 4.5.1 API documentation

32

Figure 15: 4.5.1 API documentation

Figure 16: 4.5.1 API documentation

Figure 17: 4.5.1 API documentation

Examples of API calls:

33

Figure 18: 4.5.1 sample API call

Figure 19: 4.5.1 sample API call

4.5.2 Auto-grading Service

This component creates a secure environment to run unsafe student code. The

environment is used to run facilitator's test on students' source code as well. The results of

34

the student code or the results of the facilitator's test, when applied to students' code, is used

to grade the student. To create a secure environment, a docker container is started from an

ubuntu image with pre-installed compilers and interpreters. The Ubuntu operating system

container creates a sandbox for running each student's code securely.

Below is the Docker file that creates the ubuntu image.

FROM chug/ubuntu14.04x64

Update the repository sources list

RUN echo "deb http://archive.ubuntu.com/ubuntu trusty main

universe" > /etc/apt/sources.list

RUN apt-get update

#Install all the languages/compilers we are supporting.

RUN apt-get install -y gcc

RUN apt-get install -y g++

RUN apt-get install -y php5-cli

RUN apt-get install -y ruby

RUN apt-get install -y python

RUN apt-get install -y mono-xsp2 mono-xsp2-base

RUN apt-get install -y mono-vbnc

RUN apt-get install -y npm

RUN apt-get install -y golang-go

RUN apt-get install -y nodejs

RUN apt-get install -y clojure1.4

#prepare for Java download

RUN apt-get install -y python-software-properties

RUN apt-get install -y software-properties-common

#grab oracle java (auto accept licence)

RUN add-apt-repository -y ppa:webupd8team/java

RUN apt-get update

RUN echo oracle-java8-installer shared/accepted-oracle-license-

v1-1 select true | /usr/bin/debconf-set-selections

RUN apt-get install -y oracle-java8-installer

RUN apt-get install -y gobjc

RUN apt-get install -y gnustep-devel && sed -i 's/#define

BASE_NATIVE_OBJC_EXCEPTIONS 1/#define

BASE_NATIVE_OBJC_EXCEPTIONS 0/g'

/usr/include/GNUstep/GNUstepBase/GSConfig.h

RUN apt-get install -y scala

RUN apt-get install -y mysql-server

http://archive.ubuntu.com/ubuntu

35

RUN apt-get install -y perl

RUN apt-get install -y curl

RUN mkdir -p /opt/rust && \

 curl https://sh.rustup.rs -sSf | HOME=/opt/rust sh -s -- --

no-modify-path -y && \

 chmod -R 777 /opt/rust

RUN apt-get install -y sudo

RUN apt-get install -y bc

RUN echo "mysql ALL = NOPASSWD: /usr/sbin/service mysql start" |

cat >> /etc/sudoers

Shell Script to create the docker sandbox.

#!/bin/sh

###########################

Docker SETUP #

###########################

sudo apt-get update

sudo apt-get install -y docker.io

echo "Docker Setup complete"

###########################

NodeJS setup #

###########################

sudo apt-get update

sudo apt-get install -y nodejs

sudo apt-get install -y npm

echo "NodeJS setup Complete"

###########################

Start Docker #

###########################

sudo chmod 777 ../API/DockerTimeout.sh

sudo chmod 777 ../API/Payload/script.sh

sudo chmod 777 ../API/Payload/javaRunner.sh

sudo chmod 777 update_docker.sh

sudo systemctl unmask docker.service

sudo systemctl unmask docker.socket

sudo systemctl start docker.service

./update_docker.sh

Testing the sandbox with hello program.

https://sh.rustup.rs/

36

Figure 20: 4.5.2 Testing language support

Figure 21: 2.5.2 Testing language support

4.5.3 Plagiarism Component

This component is in caters for finding the peer plagiarism index between students

who have submitted the same assignments.

37

Sample source codes and their plagiarism index:

file1.txt

def bubbleSort(arr):

 n = len(arr)

 # Traverse through all array elements

 for i in range(n):

 # Last i elements are already in place

 for j in range(0, n-i-1):

 # traverse the array from 0 to n-i-1

 # Swap if the element found is greater

 # than the next element

 if arr[j] > arr[j+1] :

 arr[j], arr[j+1] = arr[j+1], arr[j]

Driver code to test above

arr = [64, 34, 25, 12, 22, 11, 90]

bubbleSort(arr)

print ("Sorted array is:")

for i in range(len(arr)):

 print ("%d" %arr[i])

file2.txt

def bubbleSort(alist):

 for passnum in range(len(alist)-1,0,-1):

 for i in range(passnum):

 if alist[i]>alist[i+1]:

 temp = alist[i]

 alist[i] = alist[i+1]

 alist[i+1] = temp

alist = [54,26,93,17,77,31,44,55,20]

bubbleSort(alist)

print(alist)

Figure 22: 4.5.3 Plagiarism index from the 2 files

38

4.6 Implementation Techniques

During the implementation, the software system was broken down into four

services, namely, the database API, the autograder service, the plagiarism-checker service,

and the frontend client.

The database API is decomposed into model, controllers, and routes. The model

contains the schema that models the application data. The controllers on the other side

control the query logic and validation. The routes create the routes that would be used to

expose the controller logic through http methods such as GET, POST, PATCH, and

DELETE.

The autograder service is decomposed into two independent sub-systems. The first

sub-system is the docker setup system that prepares the ubuntu image and pre-installs all

the compilers and interpreters before running a docker container. The second sub-system

is the autograding API that runs students code and facilitators' tests on the docker container.

The plagiarism checker contains a single route that takes two files as inputs and

returns the plagiarism index between the two files. This component contains functions that

calculate the structural and lexical similarity between two source codes.

These services allow for modular and independent development of each service.

The frontend client brings the three other services together through API calls and http

requests.

39

Chapter 5: Tests and Results

5.1 Overview

 This chapter presents the various tests applied to the units and components of the

system to establish that it satisfies the requirements of the intended system. The testing is

divided into three categories; unit testing, component testing and system testing. The tests

results are compared against the expected results and behaviour to establish if they pass the

requirements.

5.2 Unit Testing

 In unit testing, object classes are tested to establish that they produce the expected

results or display the intended behaviour. In order to establish satisfactorily that the auto

grading component supports the intended languages and it compiles them correctly we

needed to write tests to be applied on the units in charge of language support and

compilation. Below is a figure showing the results of the language support tests, database

integrity tests and file operation tests.

Python file was saved!

Input file was saved!

/home/alexwaweru/autograder/docker-api/API/DockerTimeout.sh 20s -

u mysql -e 'NODE_PATH=/usr/local/lib/node_modules' -i -t -

v "/home/alexwaweru/autograder/docker-

api/API/temp/38aa187bd0de0aaf8438":/usercode virtual_machine

/usercode/script.sh python file.py

DONE

ATTEMPTING TO REMOVE: temp/38aa187bd0de0aaf8438

Error file:

Main File

Hello!

-COMPILEBOX::ENDOFOUTPUT- .06

40

Time:

 .06

Data: received: Hello!

[sudo] password for alexwaweru: Clojure file was saved!

C/C++ file was saved!

C# file was saved!

Java file was saved!

Input file was saved!

/home/alexwaweru/autograder/docker-api/API/DockerTimeout.sh 20s -

u mysql -e 'NODE_PATH=/usr/local/lib/node_modules' -i -t -

v "/home/alexwaweru/autograder/docker-

api/API/temp/e1dcf15a2d241f76e315":/usercode virtual_machine

/usercode/script.sh clojure file.clj

Input file was saved!

/home/alexwaweru/autograder/docker-api/API/DockerTimeout.sh 20s -

u mysql -e 'NODE_PATH=/usr/local/lib/node_modules' -i -t -

v "/home/alexwaweru/autograder/docker-

api/API/temp/08093a26b6dc36324c50":/usercode virtual_machine

/usercode/script.sh 'g++ -o /usercode/a.out' file.cpp

/usercode/a.out

Input file was saved!

/home/alexwaweru/autograder/docker-api/API/DockerTimeout.sh 20s -

u mysql -e 'NODE_PATH=/usr/local/lib/node_modules' -i -t -

v "/home/alexwaweru/autograder/docker-

api/API/temp/206993939f5629590960":/usercode virtual_machine

/usercode/script.sh gmcs file.cs 'mono /usercode/file.exe'

Go file was saved!

Nodejs file was saved!

Input file was saved!

/home/alexwaweru/autograder/docker-api/API/DockerTimeout.sh 20s -

u mysql -e 'NODE_PATH=/usr/local/lib/node_modules' -i -t -

v "/home/alexwaweru/autograder/docker-

api/API/temp/01492a9c5a58706f742e":/usercode virtual_machine

/usercode/script.sh javac file.java './usercode/javaRunner.sh'

Input file was saved!

/home/alexwaweru/autograder/docker-api/API/DockerTimeout.sh 20s -

u mysql -e 'NODE_PATH=/usr/local/lib/node_modules' -i -t -

v "/home/alexwaweru/autograder/docker-

api/API/temp/5a57c14953baba551e6b":/usercode virtual_machine

/usercode/script.sh 'go run' file.go

Input file was saved!

/home/alexwaweru/autograder/docker-api/API/DockerTimeout.sh 20s -

u mysql -e 'NODE_PATH=/usr/local/lib/node_modules' -i -t -

v "/home/alexwaweru/autograder/docker-

api/API/temp/17b72acc60dbf5f86b9b":/usercode virtual_machine

/usercode/script.sh nodejs file.js

DONE

ATTEMPTING TO REMOVE: temp/08093a26b6dc36324c50

41

Error file:

Main File

Hello*-COMPILEBOX::ENDOFOUTPUT-* .61

Time:

 .61

Data: received: Hello

DONE

ATTEMPTING TO REMOVE: temp/17b72acc60dbf5f86b9b

Error file:

Main File

Hello

-COMPILEBOX::ENDOFOUTPUT- .17

Time:

 .17

Data: received: Hello

DONE

ATTEMPTING TO REMOVE: temp/206993939f5629590960

Error file:

Main File

Hello

-COMPILEBOX::ENDOFOUTPUT- 1.23

Time:

 1.23

Data: received: Hello

DONE

ATTEMPTING TO REMOVE: temp/5a57c14953baba551e6b

Error file:

Main File

Hello*-COMPILEBOX::ENDOFOUTPUT-* 1.19

Time:

 1.19

Data: received: Hello

DONE

ATTEMPTING TO REMOVE: temp/e1dcf15a2d241f76e315

Error file:

Main File

42

Hello

-COMPILEBOX::ENDOFOUTPUT- 3.61

Time:

 3.61

Data: received: Hello

DONE

ATTEMPTING TO REMOVE: temp/01492a9c5a58706f742e

Error file:

Main File

Hello

-COMPILEBOX::ENDOFOUTPUT- 3.28

Time:

 3.28

Data: received: Hello

5.3 Component Testing

 A component is a logical module made up of various unit objects integrated together

to perform a task. In component testing, the individual units are not tested but rather the

emergent behaviour of the entire component. Component testing reveals integration errors

between the various units. Below are a few test cases.

Test case: Running a python program from the front-end client.

 Precondition: A python program that calculates the average between three numbers.

In this case the numbers are 10, 20 and 30.

 Expected results: The program should compile and print 20.

 Results: The front-end client should have 20 printed on the output box and backend

should show a log of the details in compiling the program.

43

Figure 23: 5.3 Testing the autograding component

Below is the backend log of the front-end operation:

Input file was saved!

/home/alexwaweru/autograder/docker-api/API/DockerTimeout.sh 20s -

u mysql -e 'NODE_PATH=/usr/local/lib/node_modules' -i -t -

v "/home/alexwaweru/autograder/docker-

api/API/temp/d02a22f276e64baf4788":/usercode virtual_machine

/usercode/script.sh python file.py

DONE

ATTEMPTING TO REMOVE: temp/d02a22f276e64baf4788

Error file:

Main File

20

-COMPILEBOX::ENDOFOUTPUT- .02

Time:

 .02

Data: received: 20

Test case: Making API call to view all assignments

 Precondition: Make an API call from the browser to display all assignments.

44

 Expected results: A list of assignments available.

 Results: The figure shows the results from the API call

Figure 24: 5.3 Testing the API component

5.4 System Testing

 The API is the integration interface of the entire system. It contains endpoints that

expose all the components and their functionalities. It exposes the database functionalities

such as insertion and deletion as well as auto grading functionalities and the plagiarism

checker. To test the system a front-end client was developed to consume a few of the API

endpoints.

45

Chapter 6: Recommendations, Future Work and Conclusion

6.1 Recommendations

Below are a few suggestions that could improve the various components and the overall

system.

 Use Machine learning to train a model for detecting source code plagiarism.

The implemented plagiarism checker uses lexical and structural similarities

between a pair of source codes to detect plagiarism. This method is ineffective for

a large class size between it applies combinations to form the pairs. A better method

would be to use pre-trained model to detect plagiarism. The model would require a

lot of training and testing data which is hard to come by for this problem.

 A desktop client that tests the source on the students’ machines. Running each

students source code takes a lot of server time and it might stall other process. A

solution to this is to create a distributed desktop application that runs the source

code and tests on the students’ machine and send the results to the server.

6.2 Future Work

Below are few requirements that we not completed within the time frame of the

project and would therefore be implemented in a future version:

 The front-end client. Currently the front-end client consumes only about five

endpoints of the API. In the future a more robust front-end client would be

implemented to consume all the endpoints of the integration API.

 Migrate the system to a cloud service. Students generally submit assignments

around the scheduled deadline. At that time the system will be resource intensive.

To cater for the peak hour a lot of resources that are otherwise not in use most of

the time will be needed. It is therefore much more economical to rent resources in

46

the cloud whenever you need them and release them whenever you do not.

Migrating to the cloud will also allow the system to scale without having to

purchase physical resources to cater for the scaling.

 Test the efficiency of the Plagiarism checker. Due to lack of data we could test

the plagiarism checker to establish its accuracy. Currently, we rely on the

algorithmic nature of the checker to check for correctness of the checker.

6.3 Conclusion

 This project is an attempt to create a system that grades programming assignments

as well as detects any plagiarism in the source code. To build the system, we divided into

logical components, namely; autograding component, plagiarism component and the

database. We created an API to integrate all these components together. The autograding

component is built on top of a Docker container to provide a secure sandbox. The

plagiarism component implements an algorithm that quantifies the lexical and structural

similarities between pair of source code. The API is build using Node.js and documented

using the Swagger npm module. Finally, to demonstrate the functionalities of the system a

front-end client that consumes a sample of the API endpoints is built. This project is a proof

that we can automate the grading of programming assignments as well as check for source

code plagiarism.

47

BIBLIOGRAPHY

[1] Peter E. Coughlin. 2015. Plagiarism in five universities in Mozambique:

Magnitude, detection techniques, and control measures. International Journal

for Educational Integrity 11, 1 (June 2015), 2.

[2] Zoran Đurić and Dragan Gašević. 2012. A Source Code Similarity System for

 Plagiarism Detection. The Computer Journal 56, 1 (March 2012), 70–86.

 DOI:https://doi.org/10.1093/comjnl/bxs018

[3] David Kay, Terry Scott, Peter Isaacson, and Kenneth Reek. Automated Grading

 Assistance For Student Programs. Retrieved from

 https://www.researchgate.net/profile/Kenneth_Reek/publication/221537823_Auto

 mated_grading_assistance_for_student_programs/links/0c96052e35a97e73210000

 00/Automated-grading-assistance-for-student-programs.pdf

[4] Alan Parker and James O. Hamblen. 1989. Computer Algorithms for Plagiarism

Detection. IEEE Transactions on Education, 32(1), (Jan. 1989).

[5] David J. Malan. 2013. CS50 sandbox: secure execution of untrusted code.

In Proceeding of the 44th ACM technical symposium on Computer science

education (SIGCSE '13). ACM, New York, NY, USA, 141-146. DOI:

https://doi.org/10.1145/2445196.2445242

[6] Fatima Abu Deeb and Timothy Hickey. 2015. The Spinoza code tutor: faculty

poster abstract. J. Comput. Sci. Coll. 30, 6 (June 2015), 154-155.

[7] Georgina Cosma and Mike Joy. 2012. An Approach to Source-Code Plagiarism

Detection and Investigation Using Latent Semantic Analysis. IEEE Transactions on

Education, 61(3), (Mar. 2012).

https://doi.org/10.1093/comjnl/bxs018
https://www.researchgate.net/profile/Kenneth_Reek/publication/221537823_Auto%09mated_grading_assistance_for_student_programs/links/0c96052e35a97e73210000%0900/Automated-grading-assistance-for-student-programs.pdf
https://www.researchgate.net/profile/Kenneth_Reek/publication/221537823_Auto%09mated_grading_assistance_for_student_programs/links/0c96052e35a97e73210000%0900/Automated-grading-assistance-for-student-programs.pdf
https://www.researchgate.net/profile/Kenneth_Reek/publication/221537823_Auto%09mated_grading_assistance_for_student_programs/links/0c96052e35a97e73210000%0900/Automated-grading-assistance-for-student-programs.pdf
https://doi.org/10.1145/2445196.2445242

48

[8] Stephen Burrows, S. M. M. Tahaghoghi and Justin Zobel. 2007. Efficient

Plagiarism Detection for large code repositories. Wiley InterScience 37, (Sept.

2007), 151-175. DOI: 10.1002/spe.750

[9] Susilo V. Yulianto and Inggriani Liem. 2014. Automatic Grader for Programming

Assignment Using Source Code Analyzer. IEEE, 14, (Mar. 2014), .

DOI: 10.1109/ICODSE.2014.7062687

https://doi.org/10.1109/ICODSE.2014.7062687

