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Abstract. The Helios voting scheme is well studied including formal
proofs for verifiability and ballot privacy, but it does not provide partic-
ipation privacy (i.e. it reveals who participated in the election). Kulyk,
Teague and Volkamer proposed an extension to Helios that is claimed
to provide ballot privacy as well as participation privacy while providing
stronger verifiability than Helios. However, the authors did not prove
their claims. Our contribution is to provide a formal definition for par-
ticipation privacy and to prove that their claims hold.

1 Introduction

The Helios voting scheme [1] and its use in IACR elections has led to a large
field of research into formal notions of security such as ballot privacy [7, 6] and
verifiability [10, 20]. One open issue of Helios is a lack of particpation privacy (i.e.
the public available election information should not reveal whether a honest voter
cast a vote or abstained). Correpsondingly, no formal definition for participation
privacy has been proposed, yet.

Kulyk, Teague and Volkamer proposed an extension to Helios [21] (henceforth
referred to as KTV-Helios) that adds participation privacy to the Helios voting
scheme while, at the same time, it still allows everyone to verify that only eligible
voters cast a vote. KTV-Helios claims to achieve both security properties at the
same time by introducing posting trustees who can cast dummy ballots for any
voter, that do not contribute to the election result. Furthermore, KTV-Helios
makes use of a public-key infrastructure (PKI): voters have signing keys and
ballots contain zero-knowledge proofs that they have either been signed by an
eligible voter or they contain a dummy vote. The authors of [21] did not prove
that the KTV-Helios scheme actually provides the security properties it aims to
achieve, i.e. participation privacy and verifiability as well as ballot privacy.

Our contributions. In order to evaluate these claims, we first provide a for-
mal definition for probabilistic participation privacy. Furthermore, we apply the
proposed definition to prove that KTV-Helios ensures probabilistic participation
privacy and propose an algorithm to compute the adversarial advantage depend-
ing on the election parameters. In addition, we prove that KTV-Helios ensures
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ballot privacy according to the definition in [6] in the random oracle model. We
further prove that the KTV-Helios scheme provides verifiability against mali-
cious bulletin board based on the definition in [10], which is a stronger form of
verifiability compared to the level of verifiability proven to hold for Helios in
[10]. With this, the claims of the KTV-Helios security in [21] are evaluated and
substantiated.

Verifiability: The system should provide for every honest4 voter the pos-
sibility to verify that their ballot is properly stored on the bulletin board. It
further should enable everyone to verify that only ballots from the eligible vot-
ers are included in the tally, and that each ballot cast by eligible voters on the
bulletin board is correctly processed during tallying. These verifications should
not require any security assumptions other that the register of eligible voters
and the PKI is trustworthy.

Ballot privacy: Given the public data of the election (incl. the election re-
sult), the adversary should be incapable of gaining more information about an
individual honest voter’s vote than is leaked by the election result. This should
not require further security assumptions othat that the following ones: (1) a ma-
jority of entities responsible for tallying does not divulge their secret key shares
to the adversary; (2) the honest voter does not divulge private information used
for encrypting her vote to the adversary; (3) the bulletin board acts according
to its specification by not removing the ballots submitted to it.

Participation privacy: Given the public data of the election, the adversary
should be incapable to tell, whether a given honest voter has cast her ballot in
the election. Participation privacy should be ensured given only the following
security assumptions: (1) the majority of entities responsible for the tallying
do not divulge their secret key shares to the adversary, (2) the adversary is
incapable of observing the communication channel between the voter, posting
trustees and the voting system, (3) at least one of the posting trustees does
not divulge private information to the adversary, (4) the bulletin board acts
according to its specification, (5) The honest voters decide to participate or to
abstain in the election independently from each other.

Overview of this paper. In Section 2 we provide a formal description of
KTV-Helios. Next we provide definitions of existing security properties and prove
them for KTV-Helios, verifiability in Section 3 and ballot privacy in Section 4. In
Section 5 we define participation privacy and prove it for KTV-Helios, showing
how to compute the privacy level for given election parameters.

2 Description of the KTV-Helios scheme

In this section, we provide a formal description of the KTV-Helios scheme. For
this, we rely on the description in [21], while providing some additional specifica-
tions and minor modifications. As such, we specify the procedure for the posting
trustees for determining the number and time of casting of dummy ballots for

4 We refer to a voter as honest, if she is not under adversarial control, and corrupted
otherwise.
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each voter. An additional modification that we make is in the well-formedness
proof for the ballot: in the original paper, the authors suggested that the vot-
ers prove the knowledge of their DSA secret key, if the DSA-based PKI is used
for the election. This, however, can lead to practicability and security issues5.
In order to avoid these issues we suggest that voters prove the knowledge of a
signature on their encrypted vote instead by using the techniques outlined in [3].

2.1 Overview

The KTV-Helios scheme involves the following entities:

– Election organizers, responsible for setting up the bulletin board and pub-
lishing the general information for the election, incl. the voting options.

– Registration authority, responsible for keeping the list of eligible voters,
– Bulletin board (BB), acting as a reliable broadcast channel,
– Posting trustees, responsible for adding dummy ballots for the voters,
– Tabulation tellers, responsible for anonymising the ballots and decrypting

the election result.

For the sake of simplicity, we assume a single tabulation teller and a single post-
ing trustee. Then, the KTV-Helios scheme can be described as follows: Before
the election, the PKI with digital signatures for the voters and voting system
entities is established6 by the registration authority, and the pair of asymmetric
keys using additively homomorphic cryptosystem for the election is generated
by the tabulation tellers. During the voting phase, the voter encrypts the chosen
voting option and submits it to the bulletin board together with the accompany-
ing well-formedness proof. In case she later wants to update her vote for option
v with the vote for another voting option v′, the voter submits another ballot
that encrypts v′−v. The ballots, composed of the encrypted vote and proof, are
published on the bulletin board next to the voter’s name.

During the whole voting phase, the posting trustee also casts a number of
dummy ballots on behalf of each voter, that are published next to that voter’s
name. Each dummy ballot consists of an encryption of 0 accompanied with
the well-formedness proof, that is constructed in the same way as the proofs
for non-dummy ballots. Before the tallying, for each voter the ballots that are
published next to the voter’s name are aggregated into the final ballot. Due to
the homomorphic property of the cryptosystem, and due to the fact that the
dummy ballots contain the encryption of 0, this final ballot encrypts the sum of
all non-dummy votes cast by the voter. The final ballots of all voters are being
further anonymised via shuffling. Afterwards, each anonymised ballot is assigned
to a valid voting option, or discarded without revealing its plaintext value.

5 If secure hardware, such as a tamper-resistant smartcard is used for implementing
the PKI, this hardware either has to be reprogrammed for the election in order to use
the secret key for the proofs, or simply divulge the secret key to the voting software.

6 Alternatively, an existing PKI can be used, such as eID smartcards.
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2.2 Building blocks of the KTV-Helios scheme

We now describe the building blocks of the KTV-Helios scheme in more details.
The scheme uses the following cryptographic primitives:

– Signed ElGamal [7], a NM-CPA secure encryption scheme (the same one
is used in Helios). Its algorithms are KeyGen,Enc,Dec. The encryption of a
message m ∈ Zq with a public key (g, h) ∈ G2 is ((gr, gmhr), πPoK) where
r←$Zq is randomly sampled and πPoK is a Schnorr proof of knowledge of
r. To decrypt a ciphertext ((c(1), c(2)), πPoK) with a secret key sk, first check
the PoK and if successful set m = c(2) · (c(1))(−sk).

– An existentially unforgeable digital signature scheme consisting of algorithms
SigKeyGen, Sign and Verify, for example Schnorr signatures.

– The Chaum-Pedersen NIZK proof EqProof(g1, g2, h1, h2) that proves the
equality of discrete logarithms logg1 h1 = logg2 h2 as described in [8]. This
proof can be simulated in the random oracle model, for which we write
SimEqProof(g1, g2, h

′
1, h
′
2) (see e.g. [6]).

– A NIZK disjunctive proof DisjProof(pkid, skid′ ∈ {skid, 0}, g1, g2, h1, h2, t)
that given (pkid, skid)←$ SigKeyGen and g1, g2, h1, h2 ∈ Gq and timestamp t
proves either the knowledge of s = Sign(sks, g1||g2||h1||h2||t)7, or the equality
of discrete logarithms logg1 h1 = logg2 h2.

– A re-encryption mix-net for ElGamal ciphertexts Mix(c1, ..., cN ), for example
the one of Wikström and Terelius [29].

– A plaintext equivalence test (PET) to decrypt ElGamal ciphertexts. On
input a ciphertext c, a secret key sk and a message m it creates a decryption
factor d that is 1 if c is an encryption of m under sk and random in Zq if
not. It also creates a proof πPET that it operated correctly (this is another
Chaum-Pedersen EqProof).

The task of the posting trustee is to cast a random number of dummy
ballots at random times next to each voter’s id. In order to specify the dummy
ballot casting algorithm for the posting trustee, we use two probability distri-
butions Pdummy and Pt. The first probability distrubition Pdummy is used to
sample a number of dummy ballots for each voter. This distribution therefore
has a support [x, y] with x, y as the minimal and maximal number of dummy
ballots that the posting trustee is going to cast for each voter (i.e., x ∈ N0,
y ∈ No ∪ {∞}). The parameters x and y, as well as the exact Pdummy needs to
be defined by the election authorities when setting up a corresponding system,
i.e. their optimal trade-off between security and efficiency. For further informa-
tion which influence the selection of Pdummy has to the level of security and
the efficiency of the tallying algorithms, see Section 5.2. The second probability
distribution Pt is used to determine the time to cast each dummy ballot. Thus,
this distribution has a support [Ts, Te] with Ts denoting the timestamp at the

7 Methods for proving the knowledge of a digital signatures via Σ-proof are described
by Asokan et al. [3] for common signature schemes; the general method of construct-
ing NIZK disjunctive proofs is described by Cramer et al. in [13].
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start of the voting phase, and Te the timestamp at the end of the voting phase.
In order to obfuscate the ballots cast by voters, Pt should be chosen so that this
distribution resembles the distribution of times at which the voters cast their
ballots. For this, e.g. the information from the previous elections could be used.

The plaintext tally function of the KTV-Helios scheme, that takes the plain-
text votes cast by voters and the posting trustee as input and outputs the election
result, is informally described in the following way: The valid votes cast by reg-
istered eligible voters are included in the tally. If the voter casts multiple votes,
they are added together to form a final vote before the final tally if the result of
this addition is a valid voting option, or replaced with a null vote otherwise. If
the voter abstains, their final vote is counted as a null vote8. The votes cast by
the posting trustee are not included in the result.

The formalised description of the plaintext tally function is as follows: Let Gq
be the plaintext space of (KeyGen,Enc,Dec). Then, let Vvalid = {o1, ..., oL} ⊂
GLq , 0 6∈ Vvalid be a set of valid voting options, so that the voter is allowed to

select one of these options as her vote. Let then ρ′ : (Vvalid ∪ {0})N → NL0 be
the function that, given the plaintext votes cast within the election, outputs a
vector of values with the sum of cast votes for each candidate and the number
of abstaining voters. Let I = {id1, ..., idN} be a set of registered eligible voters,

and îd 6∈ I denote the posting trustee. Further, let NT be the total number of
votes cast within the election. We define the tally function for the KTV-Helios
scheme ρ(Vcast) : (I ∪ {îd} ×Gq)∗ → R as follows:

1. Initialise a set Vfinal = {(id1, 0), ..., (idN , 0)}
2. For every (id, v) ∈ Vcast, if id ∈ I, replace the tuple (id, v′) ∈ Vfinal with

(id, v′ + v). If id = îd, discard the vote.
3. For every (idi, vi) ∈ Vfinal, if vi 6∈ Vvalid, replace (idi, vi) with (idi, 0)
4. Output ρ′(v1, ..., vN ).

The function ρ provides partial counting defined as follows: Given the sets

I1,...,Ik that partition I ∪ {īd}, define lists V(1)
cast, ...,V

(k)
cast ⊂ Vcast so that for

each (id, v) ∈ Vcast holds (id, v) ∈ V(i)
cast ⇐⇒ id ∈ Ii, i = 1, ..., k. Then it holds:

ρ(Vcast) =

k∑
i=1

ρ(V(i)
cast)

2.3 Formal Description of KTV-Helios

We are now ready to provide the specification of the functions that constitute the
formal description of the KTV-Helios scheme. This description is based upon the
syntax proposed in [6], adjusted where needed to the context of the KTV-Helios
scheme.

8 Note, that the function does not make a distinction between abstaining voters, and
voters that cast a null vote.
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– Register(1λ, id) is run by the registration authority. Given a register I of eli-
gible voters, the function returns a pair of keys (pkid, skid)←$SigKeyGen(1λ)
if id ∈ I and adds (id, pkid) to the list of registered voters’ public keys Ipk.

– Setup(1λ) is run by the tabulation teller. It runs (pk, sk) = KeyGen to create
the election keys and returns the public key pk.

– Vote((id′, skid′), id, v, t) creates a ballot b = (id, c, πPoK , π, t) for voter id ∈ I
and voting option v, that is cast at a timestamp9 t. If id = id′ (a voter
casting her own ballot) then it computes (c, πPoK) = Enc(pk, v) where c =
(c(1), c(2)) and π = DisjProof(pkid, skid′ , g, h, c

(1), c(2), t) using a signature

Sign(skid′ , g||h||c||t). If id′ = îd (the posting trustee is casting a ballot on
behalf of voter id) then skid′ is not required but v must be 0.

– Validate(b) parses the ballot b as (id, c = (c(1), c(2)), πPoK , π, t) and returns
1 if π and πPoK are valid proofs, id ∈ I and t ∈ [Ts, Te], and ⊥ otherwise.

– VerifyVote(BB, b) is used by the voter to ensure that her ballot b is properly
stored on the bulletin board. It outputs 1 if b ∈ BB and ValidateBB(BB)
holds, otherwise ⊥.

– VoteDummy(id) is used by the posting trustee to cast dummy ballots for a
given voter id. The posting trustee samples a random number m←$Pdummy
and random timestamps t1, ..., tm←$Pt, and returns a set of ballots

(Vote((îd, 0), id, 0, t1), ...,Vote((îd, 0), id, 0, tm))

– Valid(BB, b) is run by the board before appending a new ballot. It checks
that Validate(b) = 1 and that the ciphertext c in b does not appear in any
ballot already on the board. If this holds it returns 1, otherwise ⊥.

– ValidateBB(BB) checks that a board is valid. It is run by the tabulation
tellers as part of the tallying process and by voters verifying the board. It
creates an empty board B′ and for each ballot b ∈ BB runs “if Valid(B′, b)
then append b to B′”. If any ballot gets rejected it returns ⊥, otherwise 1.

– Tally(BB, sk) is used by the tabulation teller to calculate the election result.
It returns a tuple (R,Π) where R is the election result and Π is auxiliary
data (proofs of correct tallying). In more detail:

1. Run ValidateBB(BB) and return ⊥ if this fails.
2. Parse each ballot b ∈ BB as (id, c, πPoK , π, t).
3. For each id appearing in the ballots, set cid =

∏
c∈C(id) c where C(id) is

the set of ciphertexts c in ballots belonging to voter id.
4. Mix the ballots (c1, . . . , cN ) (where N is the number of distinct identities

who cast a ballot) to get a new list of ballots (c̄1, . . . , c̄N ) and a proof
πmix of correct mixing.

5. For each i ∈ {1, . . . , N} and each valid voting option v ∈ Vvalid, use the
PET to create a decryption factor di,v and proof πPET,i,v.

6. The result R is the number of times each voting option was chosen,
i.e. R(v) = |{i : di,v = 1}| for all v ∈ Vvalid. The auxiliary data Π

9 As the timestamp t denotes the time at which b is submitted to the bulletin board,
we assume that it is chosen in [Ts, Te].
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contains the mixing proofs πmix, the mixed ciphertexts (c̄1, . . . , c̄N ), the
decryption factors di,v and the PET proofs πPET,i,v for i ∈ {1, . . . , N}
and v ∈ Vvalid.

– ValidateTally(BB, (R,Π)) takes a bulletin board BB and the output (R,Π) of
Tally and returns 1 if ValidateBB(BB) = 1 and all the proofs πmix and πPET
are valid, otherwise ⊥. It is used to verify an election.

The election is then organized as follows:
Setup phase: The election organizers set up an empty bulletin board BB and

publish a set of valid non-null voting options Vvalid = (v1, ..., vL) with 0 6∈ Vvalid.
If there is no existing PKI encompassing the eligible voters, the eligible voters
from the voting register I are being registered via the registration authority
running Register(1λ, id) for each voter and publishing the list of registered voters
Ipk = {(id1, pkid1), ..., (idN , pkidN )}. The tabulation teller runs Setup(1λ).

Voting phase: The posting trustee runs VoteDummy(id) for each regis-
tered eligible voter id ∈ I. The posting trustee then submits each resulting
dummy ballot b = (id, c, πPoK , π, t) to the bulletin board at a time correspond-
ing to the timestamp t. The bulletin board appends b to BB. The voter id runs
Vote((id, skid), id, v, t) in order to cast her ballot for a voting option v at a time
denoted by timestamp t. The bulletin board appends b to BB. Then, the voter
can run VerifyVote(BB, b) to check whether her ballot is properly stored.

Tallying phase: The tabulation teller runs Tally(BB, sk) on the contents
of the bulletin board, and publishes the resulting output (R,Π). Everyone who
wants to verify the correctness of the tally runs ValidateTally(BB, (R,Π)).

3 Verifiability

Our goal was to prove that the scheme provides verifiability, i.e. cast as intended
and stored as cast verifiability is provided for every honest voter; and that ev-
eryone can verify that only ballots from the eligible voters are included in the
tally, and that each ballot cast by eligible voters is correctly tallied. It is hence
required, that a successful verification ensures, that the tally result consists of
the ballots of all the honest voters who run VerifyVote(BB, b), a subset of ballots
of honest voters who did not do this, and a subset of ballots of voters corrupted
by the adversary. Note, we accept the following assumptions: The register of
eligible voters and the PKI is trustworthy. Furthermore, honest voters’ secret
keys are not leaked to the adversary

For the actual proof, we rely on the ’verifiability against a malicious bul-
letin board’ framework definition for Helios alike schemes of [10] which matches
the verifiability definition in our introduction. We adjust the definition in [10]
to the KTV-Helios scheme by applying the following experiment Expver−bA,S : The
challenger runs the setup phase as outlined in Section 2.3 on behalf of the elec-
tion organizer and registration authority. The tabulation teller, which might be
controlled by the adversary, runs Setup(1λ). The challenger further initialises an
empty set IC and HVote, which would correspond to the set of corrupted voters
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and to the votes cast by honest voters correspondingly. The adversary is given
access to the following queries:

– OCast(b): appends the ballot b to the bulletin board BB.

– OVote(id′, id, v, t): If id ∈ I ∪ {îd} and id 6∈ IC , appends b to BB where
b = Vote((id′, skid′), id, v, t), and adds a tuple (id′, v, b) to HVote. Note, that
as opposed to the definition in [10], the tuples (id′, ∗, ∗) already present in
HVote are not removed, since the tally function takes all the valid cast ballots
as the input. Otherwise, the query returns ⊥.

– OCorrupt(id): if called for a corrupt voter identity id ∈ IC , the oracle imme-
diately returns ⊥.Otherwise, it adds id to IC and returns the voter’s secret
key skid to the adversary. In contrast to the definition in [10], we require
that each tuple (id, ∗, ∗) ∈ HVote is removed from HVote, meaning that the
previous ballots cast for the voter id using the OVote query no longer count
as ballots of an honest voter.

In addition to these queries, the adversary also has the capabilities of adding,
modifying and removing the ballots on the bulletin board. Additionally, a set
of voters Checked ⊂ I is defined, so that for each query OVote(id, id, v, t), it is
assumed that the corresponding voter id ∈ Checked has run VerifyVote(BB, b) on
the resulting ballot at the end of the election, and complained to the authorities
in case the verification result was negative. At the end of the experiment, the
adversary produces the tally output (R,Π). The experiment outputs Expver−bA,S =
0 if one of the following cases holds:

– There were no manipulation, i.e. the output result R corresponds to the
votes from honest voters who checked that their ballot is properly stored on
the bulletin board, a subset of votes from honest voters who did not perform
this check, and a subset of votes from corrupted voters: i.e.

R = ρ((idE,1, vE,1), ..., (idE,nE
, vE,nE

))

+ ρ((idA,1, vA,1), ..., (idA,nA
, vA,nA

))

+ ρ((idB,1, vB,1), ..., (idB,nB
, vB,nB

))

holds; while the list of tuples (idE,i, vE,i) were cast by honest voters (i.e.
(idE,i, vE,i, ∗) ∈ HVote for all i = 1, ..., nE ) who verified that their ballot
is properly stored on the bulletin board (i.e. idE,i ∈ Checked for all i =
1, ..., nE); the list of tuples {(idA,1, vA,1), ..., (idA,nA

, vA,nA
)} were cast by

honest voters (i.e. (idA,i, vA,i, ∗) ∈ HVote for all i = 1, ..., nA) but who
did not verify (i.e. idA,i 6∈ Checked for all i = 1, ..., nA); and the list of
tuples {(idB,1, vB,1), ..., (idB,nB

, vB,nB
)} represents those votes cast by the

adversary so that the number of unique IDs in a list {idB,1, ..., idB,nB
} is at

most the number of corrupted voters |IC |.
– A manipulation was detected, i.e either there were complains from the voters

who run the VerifyVote check with VerifyVote(BB, b) =⊥, or the tally output
does not pass the validity check: ValidateTally(BB, (R,Π)) = 0.
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The experiment Expver−bA,S serves as a basis for the definition of verifiability10

against a malicious bulletin board.

Definition 1. A voting scheme S ensures verifiability, if the success probability

Pr
[
Expver−bA,S = 1

]
is negligible for any PPT adversary.

We are now ready to prove the verifiability against a malicious bulletin board
for the KTV-Helios scheme.

Theorem 1. The voting scheme defined in Section 2.3 provides verifiability
against a malicious bulletin board.

The proof is based on similar ideas as the proof in [10]. We provide the proof
in Appendix C.

4 Ballot privacy

In this section we prove ballot privacy (BPRIV) for the KTV-Helios scheme fol-
lowing the defintion in [6]. Since the original definition also uses two auxiliary
properties called strong correctness and strong consistency, we prove these as
well. Together these definitions imply that an adversary does not get more in-
formation from an election scheme as they would from the election result alone.
Put differently, the election data — ballots on the board, proofs of correctness,
proofs of correct tallying — do not leak any information about the votes. We as-
sume like in [6] that both the tabulation teller and the bulletin board are honest,
which corresponds to our informal definition in the introduction of this paper.

4.1 Purpose and Definition of BPRIV

We adjust the definition proposed by Bernhard et al. [6] – more precisely the
definition in the random oracle model – to the KTV-Helios scheme by including
additional parameters required for casting a ballot. We also omit the Publish
algorithm as our boards do not store any non-public data (our Publish would be
the identity function). Recall that a scheme satisfies BPRIV [6] if there exists an
algorithm SimProof such that no adversary has more than a negligible chance
of winning the BPRIV game; the game itself uses the SimProof algorithm in the
tallying oracle.

The purpose of BPRIV is to show that one does not learn anything more from
the election data (including the bulletin board and any proofs output by the

10 Note, that the definition can be further cast into the verifiability framework by
Kuesters, Trudering and Vogt [23] in order to enable uniform treatment of verifia-
bility. The casting of the definition by Cortier et al. [10] has been described in [11].
Since the scheme and the security in [10] are similar to the KTV-Helios scheme and
the definition of verifability used in this paper, the casting into the framework can
also be done in a similar manner.

9



tallying process) than from the election result alone. In other words, the election
data does not leak information about the votes, at least in a computational
sense11. For example, if Alice, Bob and Charlie vote in an election and the result
is “3 yes” then the result alone implies that Alice must have voted yes, which
is not considered a privacy breach. But if Charlie votes yes and the result is “2
yes, 1 no” then Charlie should not, without any further information, be able to
tell whether Alice voted yes or no as this does not follow from the result.

The BPRIV notion is a security experiment with two bulletin boards, one of
which (chosen at random by sampling a bit β) is shown to the adversary. For
each voter, the adversary may either cast a ballot themselves or ask the voter
to cast one of two votes v0, v1 in which case a ballot for v0 is sent to the first
board and a ballot for v1 is sent to the second board. The adversary thus sees
either a ballot for v0 or a ballot for v1 and a scheme is BPRIV secure if no PPT
adversary has better than a negligible chance of distinguishing the two cases.
At the end of the election, the adversary is always given the election result for
the first board. This disallows trivial wins if the adversary makes the results on
the two boards differ from each other. If the first board was the one shown to
the adversary, it is tallied normally; if the adversary saw the second board but
the first result then the experiment creates fake tallying proofs to pretend that
the second board had the same result as the first one. This is the role of the
SimProof algorithm that must be provided as part of a BPRIV security proof.

The experiment Expbpriv,βA,S for the scheme S is formally defined as follows:
The challenger sets up two empty bulletin boards BB0 and BB1, runs the setup
phase as outlined in Section 2.3 and publishes the election public key pk. The
challenger also chooses a random β ∈ {0, 1}. The adversary can read the board
BBβ at any time and can perfomr the following oracle queries:

– OCast(b): This query lets the adversary cast an arbitrary ballot b, as long as
b is valid for the board BBβ that the adversary can see. If Valid(BBβ , b) = 1,
the challenger runs Append(BB0, b) and Append(BB1, b) to append the ballot
b to both bulletin boards.

– OVoteLR(id′, id, v0, v1, t): This lets the adversary ask a voter to vote for ei-
ther v0 or v1 depending on the secret β. First, if id ∈ I and id′ = id the chal-
lenger computes b0 = Vote((id, skid), id, v0, t) and b1 = Vote((id, skid), id, v1, t).

If id ∈ I and id′ = îd then the challenger computes two12 ballots b0 =
Vote((id′, skid′), id, 0, t) and b1 = Vote((id, skid), id, 0, t). If none of these
cases applies, the challenger returns ⊥.
Secondly, the challenger checks if Valid(BBβ , bβ) = 1 and returns ⊥ if not.
Finally the challenger runs Append(BB0, b0) and Append(BB1, b1).

11 In an information-theoretic sense, an encrypted ballot does of course contain infor-
mation about a vote, otherwise one could not tally it. But since ballots are encrypted,
they should not help anyone who does not have the election secret key to discover
the contained vote.

12 Vote is a randomised algorithm so the effect of calling it twice on the same inputs is
to create two distinct ballots.
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– OTally(): The adversary calls this to end the voting and obtain the results.
They may call this oracle only once and after calling it, the adversary may
not make any more OCast or OVoteLR calls.
The challenger computes a result and auxiliary data for BB0 as (R,Π) =
Tally(BB0, sk). If β = 1, the challenger also computes simulated auxiliary
data for BB1 as Π = SimProof(BB1, R), overwriting the previous auxiliary
data Π. The challenger then returns (R,Π) to the adversary.

At the end, the adversary has to output a guess g ∈ {0, 1}. We say that the
adversary wins an execution of the experiment if g = β.

Definition 2. A voting scheme S satisfies ballot privacy (BPRIV) if there exists
a PPT simulation function SimProof(BB, R) so that for any PPT adversary the
quantity

AdvbprivA,S :=
∣∣∣Pr
[
Expbpriv,0A,S = 1

]
− Pr

[
Expbpriv,1A,S = 1

]∣∣∣
is negligible (in the security parameter).

4.2 Proof for the KTV-Helios Scheme

The core of a BPRIV proof is a simulator SimTally that, when β = 1, takes as
input the board BB1 and the result R from BB0 and outputs simulated data Π
that the adversary cannot distinguish from real auxiliary data, such as proofs
of correct tallying. This proves that the auxiliary data Π does not leak any
information about the votes, except what already follows from the result.

Recall that the tallying process in KTV-Helios is as follows:

1. Remove any invalid ballots from the board using ValidateBB.
2. Homomorphically aggregate the ballots from each voter.
3. Shuffle the remaining ballots (one per voter) in a mix-net.
4. Match each shuffled ballot against each valid vote v ∈ V with a PET.
5. Compute the number of voters who chose each vote v ∈ V by counting the

successful PETs. This gives the election result R.
6. The auxiliary data Π comprises the proofs of correct mixing Πmix from stage

3 and the data and proofs ΠPET forming the PETs in stage 4.

The additional PET stage compared to (non-KTV) Helios actually makes
the ballot privacy proof easier. The simulator SimProof(BB, R) works as follows:

1. Remove any invalid ballots from the board BB using ValidateBB.
2. Homomorphically aggregate the ballots from each voter.
3. Shuffle the remaining ballots (one per voter) in a mix-net. Note, we do not

need to simulate the mix-net; we can just run a normal mix (and store the
auxiliary data Πmix that this creates).

4. Simulate the PETs (we will describe this in detail below) to get simulated
data Π′PET .

11



5. Return (Πmix,Π
′
PET ).

The following lemma is useful to construct the PET simulator.

Lemma 1. In any execution of the BPRIV game, if we tallied both boards then
with all but negligible probability, both boards would end up with the same number
of ballots.

Note that both the OVoteLR and the OCast oracles either add one ballot
to both boards each or do not add any ballots at all. Therefore we have the
invariant that the number of ballots before tallying is the same on both boards
with probability 1.

The first stage of the tallying algorithm runs ValidateBB to remove possibly
invalid ballots. On the visible board BBβ , since all ballots were already checked
in the oracles before placing them on the board, we conclude that ValidateBB
does not remove any ballots. On the invisible board BB(1−β), if any ballot b gets
removed then we consider the query (VoteLR or Cast) where it was created. The
only way a ballot b can get removed again is if at the time it was added, it was
valid on BBβ (or it would never have got added at all) but invalid on BB(1−β) (or
it would not get removed again later). But this means that the ciphertext c in the
ballot b in question must be a copy of an earlier ciphertext on BB(1−β) but not
on BBβ , as this is the only other case when Valid declares a ballot invalid, and
the only such ballots are those created by OVoteLR. Therefore we conclude that
either two ballots created by OVoteLR have collided, the probability of which
is certainly negligible, or the adversary has submitted in a OCast query a copy
of a ciphertext that OVoteLR previously placed on the invisible board BB(1−β).
Since the adversary never saw this ciphertext, and since the encryption scheme
is NM-CPA so ciphertexts must be unpredictable, the probability of this event
is negligible too. This concludes the proof of Lemma 1.

We now describe how to simulate the PET. Our inputs are a number n of
ballots (the output of the mix-net), a result R that was correctly computed on
a different board that also had n ballots (after stage 1 of tallying) by Lemma 1
and a set V of valid votes.

Since the PETs in a real tally are taken over ballots that have just come out
of a mix-netm the distribution of votes in these ballots is a uniformly random
permutation of votes subject to the tally being R. For example, if R indicates
that there was one vote for v = 1 and n− 1 votes for v = 2 then the probability
of the 1-vote being in the i-th ballot is 1/n, irrespective of the order in which the
ballots were cast (for example the adversary might know that the first person to
vote was the one that cast the 1-vote). This is because the ballots are uniformly
permuted in the mix-net.

Our simulation strategy is therefore to emulate this random permutation.
The result R gives us a mapping fR : V ∪{⊥} → {0, 1, . . . , n} where for example
fR(v) = 3 means that three voters voted for v and fR(⊥) is the number of voters
who cast an invalid vote. We have fR(⊥) +

∑
v∈V fR(v) = n, i.e. the number of

invalid votes plus the totals for each valid option sum to the number n of ballots
that came out of the mix-net. We simulate as follows:

12



1. Create a list L = (L1, . . . , Ln) such that each vote v ∈ V appears fR(v) times
in L and the symbol ⊥ appears fR(⊥) times. Then permute L randomly.

2. Create an n× |V | matrix d of PET results: if L[i] = v, which means that we
pretend voter i voted for v ∈ V , then set di,v = 1. Otherwise set di,v to be
a random element of Zq.

3. For each (i, v) pair create a simulated PET proof as follows. For each ci-

phertext ci = (c
(1)
i , c

(2)
i ) and each valid voting option v ∈ V pick a random

ri,v ←$Zq and set si,v = ((c
(1)
i )r, (c

(2)
i /v)r). Then compute proofs

πi,v = SimEqProof(g, s
(1)
i,v , h, s

(2)
i,v /di,v) ∪ EqProof(c

(1)
i , c

(2)
i /v, s

(1)
i,v , s

(2)
i,v )

4. Return the mix-net proofs Πmix and the PET proofs/data ΠPET consisting
of the values di,v, si,v and the associated proofs πi,v.

The EqProof part proves that the si,v are correct rerandomisations of the ci
for the votes v ∈ V , which they are. The SimEqProof are fake proofs that the
di,v are the decryptions of the si,v which is generally false since we chose the
di,v values randomly. As the encryption scheme in question is NM-CPA secure,
no PPT adversary has more than a negligible change of telling a correct d-value
from a false one without any proofs (indeed, this is why we have the proofs of
correct decryption in the real tally) and since the proofs are zero-knowledge,
we can assume that a PPT adversary cannot tell a real from a simulated proof.
Therefore the proofs πi,v do not help in distinguishing real from fake di,v either.

The adversary does know the result R (since the challenger in the BPRIV
game outputs that and SimTally cannot change it) but the simulated decryptions
di,v are consistent with R and follow the same distribution as the real ones.
Therefore we can claim that the output of the tallying oracle in case β = 1
is indistinguishable to PPT adversaries from the output in the case β = 0.
The other information that the adversary sees are the ballots on the board
(in particular the OVoteLR ones which have a dependency on β) but these are
ciphertexts in an NM-CPA secure encryption scheme so we can assume that
they are indistinguishable to PPT adversaries too. We therefore conclude that
KTV-Helios satisfies BPRIV and have proven the following.

Theorem 2. KTV-Helios satisfies the BPRIV security definition.

4.3 Strong Correctness and Strong Consistency

Together with BPRIV, [6] contains two auxiliary properties called strong correct-
ness and strong consistency that are also required for a voting scheme to guar-
antee privacy. We define and check these properties here for the KTV scheme.

The Valid algorithm can reject new ballots based on the information already
on the board (for example, it can reject a duplicate of an existing ballot). Strong
correctness ensures that the rejection algorithm is not too stong, in particular
that dishonest voters cannot manipulate the board to the point where it would
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prevent an honest voter from casting her ballot. To model this we let the adver-
sary choose a bulletin board and test if an honest ballot, for which the adversary
can choose all inputs, would get rejected from this board.

Since the original definition did not contain timestamps or a list of registered
voter identities, we adapt the syntax of the original definition [6, Def. 9] to
include these elements.

Definition 3. A voting scheme S has strong correctness if no PPT adversary
has more than a negligible probability of winning in the following experiment.

1. The challenger sets up the voting scheme and publishes the election public
key pk and the list of voter identities and public keys I.

2. The adversary generates a board BB, a voter identity id ∈ I, a vote v ∈ V
and a timestamp t ∈ [Ts, Te].

3. The challenger creates a ballot b = Vote((id, skid), id, v, t).
4. The adversary loses if there is already a ballot with timestamp t′ ≥ t on BB.
5. The adversary wins if Valid(BB, b) rejects the honest ballot b.

We have made the following changes compared to the original definition: we
have added identities id to match the syntax of our voting scheme and demanded
that the adversary choose an id ∈ I since otherwise the ballot b will quite
legitimately be rejected. We have also added timestamps and the restriction
that the adversary must choose a timestamp t satisfying both t ≤ Te and t > t′

for any timestamp t′ of a ballot already on the board BB. Otherwise one could
trivially stop any more ballots from being accepted by putting a ballot with
timestamp Te on the board.

Lemma 2. The voting scheme described in Section 2.3 satisfies strong correct-
ness.

Proof. If Valid(BB, b) fails on a ballot then one of two things must have happened:
Validate(b) = 0 or the ciphertext c in b is already on the board somewhere.

Validate(b) only fails if the identity id in b is not in I, one of the proofs in b
does not verify or the timestamp is out of its domain. Since we are considering
a honestly generated ballot b in the strong correctness experiment, correctness
of the proof schemes involved means that the proofs are correct.

Since the ballot b in question is created by Vote which picks a fresh random
r←$Zq, the probability of c colliding with a previous ciphertext (even an adver-
sarially created one) is negligible. (To be precise, since we are assuming a PPT
adversary, the board BB created by the adversary can only contain a polynomi-
ally bounded number of ciphertexts and since the probability of a collision with
any of these is negligible individually, so is the sum of these probabilities for a
union bound.) This proves Lemma 2. ut

The definition of strong correctness may seem tautological (and the proof
trivial) but it prevents the following counter-example from [6, Section 4.4]: an
adversary can set a particular bit in a ballot of its own that causes the board to
reject all further ballots. Assuming that either Alice wants to vote for (candidate)
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1 and Bob wants to vote for 2 or the other way round, in a private voting scheme
we would not expect the adversary to be able to tell who voted for 1. Without
strong correctness, the adversary could let Alice vote then submit their “special”
ballot to block the board, then ask Bob to vote. Since Bob’s ballot now gets
rejected, the result is exactly Alice’s vote, so the adversary discovers how she
voted.

Strong consistency prevents the Valid algorithm from leaking information
in scenarios such as the following: the adversary can submit a special ballot
that gets accepted if and only if the first ballot already on the board is a vote
for 1. Of course this is mainly of interest where Valid has access to non-public
information, either because it has access to a secret key or the board contains
non-public information.

Strong consistency formally says that the election result is a function of the
votes and that each valid ballot must be uniquely associated with a vote. In
particular, the vote in one ballot cannot depend on the other ballots on the
board.

Definition 4. A voting scheme has strong consistency relative to a result func-
tion ρ if there are two algorithms

– Extract(sk, b) takes an election secret key and a ballot and returns either a
pair (id, v) containing an identity id ∈ I and a vote v ∈ V , or the symbol ⊥
to denote an invalid ballot.

– ValidInd(pk, b) takes an election public key and a ballot and returns 0 (invalid
ballot) or 1 (valid ballot).

such that the following conditions hold.

1. The extraction algorithm returns the identity and vote for honestly created
ballots: for any election keypair (pk, sk) created by Setup, any voter registra-
tion list I and any ballot b created by Vote((id, skid), id, v, t) where id ∈ I,
t ∈ [Ts, Te] and v ∈ V we have Extract(sk, b) = (id, v).

2. Ballots accepted onto a board are also accepted by ValidInd: for any board
BB, if Valid(BB, b) holds then ValidInd(pk, b) holds too.

3. For any PPT adversary A, the probability of winning the following game is
negligible:

(a) Create an election keypair (pk, sk) with Setup and set up user registration
list I.

(b) Give A all public and secret keys of the election and the users and let A
return a board BB. Let n be the number of ballots on this board.

(c) A loses if there is any ballot b on the board BB for which ValidInd(b) = 0.
(d) Let (r1,Π) = Tally(sk,BB). The adversary loses if the tallying function

returns ⊥.
(e) Let ei = Extract(bi) for i = 1, . . . , n and the bi are the ballots on the

board BB. Let r2 = ρ(e1, . . . , en).
(f) The adversary wins if r1 6= r2.
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We prove that KTV-Helios satisfies strong consistency. This means that we
have to check that the tally function really counts the votes in the ballots.

For Extract(sk, b) we parse the ballot as b = (id, c, πPoK , π, t) and check the
two proofs; if either of them fail then we return ⊥. Then we decrypt c with
sk to get a vote v. If v ∈ V then we return (id, v) otherwise we return ⊥. For
ValidInd(pk, b) we just run Validate(b). We can assume that the list I of voter
identities and public keys is public. We check the three conditions:

1. This follows from correctness of the encryption and proof schemes. If we
encrypt a vote v ∈ V to get ciphertext c then we also get v back when we
decrypt c with the matching key and the correct voting algorithm produces
correct proofs too.

2. Since Valid runs Validate, it must hold that ballots accepted onto the board
are valid.

3. In fact the probability of an adversary winning this game is zero. Consider an
execution of the experiment in which r1 6= r2 in the last stage. We know that
Tally did not return ⊥ or we would not have got this far, therefore all ballots
on the board passed Validate individually and the board as a whole passed
ValidBB(BB). In particular ValidateBB did not cause tallying to abort.
In this case, by the definition of Tally, the result r1 is obtained by homomor-
phically adding the ciphertexts of each voter, mixing (which does not change
the votes) and then PET-decrypting the resulting ballots which for all valid
votes produces the same result as normal decryption whereas invalid ones
are discarded.
The extraction to get r2 on the other hand first decrypts each ciphertext
individually, then (to evaluate ρ) sums the decrypts for each voter, discards
invalid sums and then reports the number of votes for each option. By the
homomorphic property of the encryption scheme, these two methods of tal-
lying must return the same result r (strong consistency does not deal with
the proofs Π of correct tallying).

This concludes the proof of strong consistency. ut

5 Participation privacy

We first provide a cryptographic definition of probabilistic participation privacy
(see Section 5.1). The definition is inspired by the coercion resistance definition
in [22]. Similar to the notion of δ-coercion resistance in [22], we speak of δ-
participation privacy, where δ denotes the advantage of the adversary who tries
to tell whether a given voter has participated in the election. In Section 5.2, we
instantiate this definition for the KTV-Helios and provide the optimal value of
δ, so that KTV-Helios satisfies δ-participation privacy.

5.1 Defining δ-participation privacy

Let (N,nh, L, p) be the parameters characterising an election, so that N is a total
number of eligible voters, nh the number of honest voters, L the total number of
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valid voting options, and p a vector of probabilities p0, ..., pL. pi for i = 1, ..., L
denotes the probability that an honest voter cast a vote for a valid voting option
oi in this election. p0 denotes the probability that an honest voter abstained.

We define δ-participation privacy for a single honest voter idA (similar to the
authors of [22] who considered coercion of a single voter). δ-participation privacy
for all voters is then ensured if the individual voters’ decisions whether to cast
a vote or not are independent. Thus, knowing whether an honest voter idB

abstained, does not give the adversary any additional information on whether
the idA abstained.

We consider the following experiment Expppriv,βA,S,idA given the adversaryA ∈ CS ,
so that CS is a set of PPT adversaries, defined according the adversarial model
for a particular scheme. There are two bulletin boards BB0, BB1, which are filled
by the challenger modelling the voting phase. Let QS be a set of oracle queries,
the adversary has access to. Using these queries, the adversary fills both of the
bulletin boards with additional content, so that BB0 and BB1 contain the same
cast ballots except that BB1 also contains a ballot cast for the voter idA.

The experiment computes the tally result for BBβ (β = 0 if the voter idA

abstains and β = 1 otherwise) and provides it to the adversary together with
the public output of BBβ . The goal of the adversary is to guess whether the
provdided tally result corresponds to BB0 or to BB1, i.e. to output β.

The definition of δ-participation privacy is then as follows:

Definition 5. The voting scheme S in the election with the parameters (N,nh, L, p)
achieves δ-participation privacy given a subset of PPT adversaries CS, if for any
adversary A ∈ CS and an honest voter idA holds

Pr
[
Expppriv,0A,S,idA = 0

]
− Pr

[
Expppriv,1A,S,idA = 0

]
− δ

is negligible in the security parameter.

5.2 δ-participation privacy in the KTV-Helios scheme

In order to evaluate δ-participation privacy in the KTV-Helios scheme according
to the aforementioned definition, we first need to specify the adversary A ∈
CS we aim to protect against. Afterwards we consider the information sources
that would help the adversary A ∈ CS to correctly guess β at the end of the
experiment. This is done in order to determine the optimal value of δ, so that
the KTV-Helios scheme satisfies δ-participation privacy with A ∈ CS according
to Definition 5. We conclude the subsection by showing how to calculate this
optimal value of δ depending on the information leakage from those sources.

Specification of A ∈ CS. We make following assumptions regarding adver-
sarial capabilities: (1) the tabulation teller does not divulge her secret key to
the adversary, (2) the adversary is incapable of observing the communication
channel between the voter, the posting trustee and the voting system, (3) the
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posting trustee does not divulge private information to the adversary, (4) the
bulletin board acts according to its specification, (5) the honest voters decide to
participate or to abstain in the election independently from each other. Thus,
we asumme that the adversary is only able to cast dummy ballots on behalf of
any voter and non-dummy ballots on behalf of corrupted voters.

Hence, we define CS as a set of adversaries that are given access to the
queries QS = {OCast, OCastDummy, OVoteDummy, OTally} in the experiment

Expppriv,βA,S,idA . These queries are defined as follows:

– OCast(b): the adversary casts a ballot on behalf of a corrupted voter by
appending b to both of the bulletin boards BB0 and BB1. If the ballot b is
invalid (namely, ValidBB(BBβ , b) =⊥), the query terminates and returns ⊥.

– OCastDummy(id, t): the adversary casts a dummy vote next to a specified

id by computting b = Vote((îd, 0), id, 0, t), which is then appended to both
of the bulletin boards.

– OVoteDummy(v): the oracle appends a series of dummy ballots b1, ..., bm←$VoteDummy(idA)
to both of the bulletin boards next to the voter idA, with m sampled by the
oracle according to the probability distribution Pdummy defined as in Sec-
tion 2.2. Additionally, the oracle appends a ballot b′ = Vote((idA, skidA), idA, v, t′)
for the voter idA, with a random timestamp t′←$Pt. The adversary is al-
lowed to query OVoteDummy(v) only once.

– OTally: The oracle returns the tally result R with the validity proofs Π,
(R,Π) = Tally(BBβ , sk). The adversary is allowed to query OTally only once.

We now consider the sources of information that would help the adversary
A ∈ CS to correctly guess β at the end of the experiment Expppriv,βA,S,idA : The
first source of such information is the tally result that consists of a vector v =
(v0, v1, ..., vL), with v0 denoting the number of abstaining voters and vi as the
number of votes for each voting option oi. Given the vector p representing the
probabilities that an honest voter would abstain or vote for a particular voting
option, we denote by δideal the adversarial advantage, so that the ideal scheme,
that outputs only this vector v, is δideal-participation private, but is not δ′ideal-
participation private for any δ′ideal < δideal. The methods for calculating δideal
given the number of honest voters nh, the number of voting options L and the
probability vector p are given in [22]. Namely, δideal can be computed using the
formula for δ0min provided in [22].

The second source that can be used by the adversary is one additional
ballot on the bulletin board BB1 as the output of OVoteDummy(v). In or-
der to account for the adversarial advantage gained from the number of bal-
lots next to voter’s id on the bulletin board, we define the following exper-
iment Expnum,βA,Pdummy,Pt

: Again, the challenger sets β = 0 if the voter idA ab-
stains and β = 1 if she casts a ballot in the election. She then outputs the
number m + β, with m←$Pdummy, and the set of timestamps t1, ..., tm, tm+β

that are independently sampled from Pt to the adversary. The adversary out-
puts β. Let δnum,Pdummy,Pt denote an advantage in this experiment, so that
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Pr
[
Expnum,0A,Pdummy,Pt

= 0
]
− Pr

[
Expnum,1A,Pdummy,Pt

= 0
]
− δnum,Pdummy,Pt is negligi-

ble. This advantage δnum,Pdummy,Pt
can be calculated given the probability dis-

tribution Pdummy used by the posting trustee to determine a number of dummy
ballots for each voter. For the sake of brevity, we limit our analysis on a partic-
ular class of probability distributions Pdummy, namely, unimodal distributions
with support in N0, and show that δnum,Pdummy,Pt

equals the maximal value of
Pdummy.

Theorem 3. Let Pdummy be a discrete unimodal distribution with support [x,∞),
x ≥ 0, and Pt chosen such that it corresponds to the distribution of times at
which the voters cast their ballots. It holds, for the adversarial advantage in the
experiment δnum,Pdummy,Pt

= Expnum,βA,Pdummy,Pt
:

δnum,Pdummy,Pt
= P (X = mmax)

for X as a random variable X distributed in Pdummy, and mmax as the mode of
Pdummy (i.e. P (X = m′) ≤ P (X = m) for all m′ 6= mmax).

We give the proof of this theorem in Appendix E.

Determining the optimal value for δ. We are now ready to determine an
optimal value δ for the KTV-Helios scheme as δ = δideal and δnum,Pdummy,Pt .
Hence we show, that for such δ, the KTV-scheme achieves δ-participation pri-
vacy, but does not achieve δ′-participation privacy for any lower values of δ. We
do this by proving the following theorem.

Theorem 4. The voting scheme described in Section 2.3 that is instantiated
with the probability distributions Pdummy,Pt in the election characterised by
(N,nh, L, p) achieves δ-participation privacy given the subset of adversaries CS,
with δ = δnum,Pdummy,Pt

+ δideal. It further does not achieve δ′-participation pri-
vacy for any δ′ < δ.

We briefly sketch the proof idea (the detailed proof is provided in Ap-

pendix D): We prove, that the distinguishing advantage in Expppriv,βA,S,idA , defined
as is negligibly larger than δ. Namely, we prove, that the only sources of in-
formation available to the adversary for distinguishing between Expppriv,0A,S,idA and

Expppriv,1A,S,idA with non-negligible advantage are the ones described above: the elec-

tion result (characterised by the distinguishing advantage δideal) and the number
of ballot next to the voter idA (characterised by the distinguishing advantage

δnum,Pdummy,Pt). It holds, that the rest of the output of Expppriv,βA,S,idA provides only
negligible distinguishing advantage due to the ballot privacy property of the
KTV-Helios scheme. It follows that the distinguishing advantage of Expppriv,βA,S,idA is
negligibly larger than δ, hence, the KTV-Helios scheme achieves δ-participation
privacy, but not δ′-participation privacy for any δ′ < δ.

19



6 Related Work

Several concrete and abstract definitions of security requirements and underly-
ing assumptions have been developed applying various formalization approaches:
An overview of game-based ballot privacy definitions was proposed in [6], and a
framework that proposes a uniform treatment of the verifiability definitions from
[23, 5, 10, 18, 28] is described in [11]. Other approaches for defining and evaluat-
ing the security of voting schemes include applied pi-calculus [19, 4, 14], process
algebra [24] or k-resilience terms [27]. These appraoches have been applied to
evaluate various voting schemes [20, 2, 14, 27]. In particular, the formal security
analysis of Helios has been the topic of [6, 10, 20].

Due to its versatility, various extensions and modifications of the original
Helios scheme from [1] have been proposed: A modification has been proposed
by [7] to fix vulnerabilities in [1]. Zeus [30], Selene [26] or the work by Guasch et
al. [16] propose alternatives to the cast-as-intended mechanism used in Helios.
Improvements of various security properties were proposed in [15] (ensuring long-
term ballot privacy), in [10] (ensuring verifiability against malicious bulletin
board), in [9] (introducing threshold decryption for better robustness); and in [12]
(ensuring receipt-freeness). Other research focused on improving the usability of
the Helios system, in particular on making the cast as intended verification more
usable [25, 17].

7 Conclusion and future work

We have evaluated the security properties of the KTV-Helios extension proposed
in [21]. Namely, we have proven that the KTV-Helios extension satisfies ballot
privacy and verifiability against malicious bulletin board according to the defini-
tions from [6, 10] adjusted to the context of KTV-Helios. Furthermore, we have
proposed an abstract definition for participation privacy. Similar to the defini-
tion of coercion resistance in [22], we proposed a definition of δ-participation
privacy, with δ representing the adversarial advantage in distinguishing whether
a particular honest voter has cast her ballot in the election. We further proposed
an instantiation of the definition for KTV-Helios and determined the value of δ
as the adversarial advantage for the adversary.

Future work. Another security property that the KTV-Helios extension
proposes is receipt-freeness. This property is ensured in a similar way to partic-
ipation privacy: due to the dummy ballots that obfuscate the real ballots, the
voters have an option to deniably update their vote, thus making it impossible
to construct a receipt for voting for a particular voting option. However, none
of the existing definitions of receipt-freeness considers this case (as opposed to
the definitions of a stronger security property, coercion resistance), which like
δ-participation privacy depends on a (possibly non-negligible) factor δ that mod-
els the indistinguishability of real from dummy ballots. We aim to formalise and
prove this property for KTV-Helios in future work.

We further plan to extend the proofs for ballot privacy and verifiability for
the case where the tabulation teller and the posting trustee are implemented in a
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distributed way. In particular, we aim to prove that the aforementioned security
properties hold if the tallying is implemented via distributed decryption.
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A Multiple entities

In our proofs, we assumed that the tabulation teller and the posting trustee are
implemented as a single entity each.

We first consider the case with a total of Np > 1 posting trustees. We as-
sume that each of them acts independently from the others. Hence, the function
VoteDummy is run a total of Np times for each voter. As mentioned in the in-
troduction, our goal was to ensure participation privacy for the case, where at
most Np − 1 posting trustees are corrupted. In that case, in the experiment

Expppriv,βA defined Section 5, the query OVoteDummy corresponds to a remaining
honest posting trustee casting dummy ballots on behalf of the voter. Hence, the
definition and proofs from Section 5 still hold.

There are several ways to implement multiple tabulation tellers. In particular,
for the shuffling, each tabulation teller could act as a separate mix node, and
the decryption could be implemented in a threshold distributed way. Similar to
[6], the security proofs for such a case will be considered in future work.

B Proof of partial counting property

We show, that the plaintext tally function ρ described in Section 2.2 has the
partial counting property. Let I = {id1, ..., idN} be a set of voter ids, īd 6∈ I
the id denoting the posting trustee, {o1, ..., oL} ∈ Gq \ {0} a set of valid voting
options, and let Vcast be a set of tuples (id, v) with id ∈ I ∪ {īd} and v ∈ Gq.

Let I1, .., Ik be partitions of I∪{īd}, so that
⋃k
i=1 Ii = I∪{īd} and Ii∩Ij = ∅

for all i 6= j. We further define the lists V(i)
cast ⊂ Vcast as a list of all the tuples

(id, v) ∈ Vcast, for which holds id ∈ Ii.
The partial counting property means, that the tally on Vcast can be expressed

as a sum of tallies on all the lists V(i)
cast, i = 1, ..., k. Namely, it should hold
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ρ(Vcast) =

k∑
i=1

ρ(V(i)
cast)

In order to prove this, consider the output of ρ(V(i)
cast). Let ρ′ be the function,

that, given the list of plaintext votes v1, ..., vN outputs the number of votes for
each voting option o1, ..., oL and the number of abstaining voters. Namely, on the
input of v1, ..., vN ∈ ({o1, ..., oL} ∪ 0)L+1 ⊂ GL+1

q , ρ′ returns a vector of values

R ∈ NL+1
0 . It holds, that ρ′ supports partial counting. Namely, for two lists

S1 = (v1,1, ..., vN1,1) and S2 = (v2,1, ..., vN2,2) with S1, S2 ∈ ({o1, ..., oL}∪0)L+1,
it holds

ρ′(S1) + ρ′(S2) = ρ′(S1 ∪ S2)

As described in Section 2.2, with V as a set of tuples (id, v) ∈ I ∪ {īd}×G1,
the function ρ outputs R = ρ′(v1, ..., vN ) with vi, i = 1, ..., N being either the
sum of all votes cast by the voter idi ∈ I, or vi = 0 if there were no valid votes
from the voter idi in V (i.e. there is no tuple (idi, v) with v ∈ {o1, ..., oL} in V).

it follows that ρ(V(i)
cast) = ρ′(v1,i, ..., vN,i) with vj,i denoting the sum of all

cast votes by the voter idj if idj ∈ Ii, and vj,i = 0 if idj 6∈ Ii. Combined with
the partial counting property of ρ′ it follows that

ρ(Vcast) =

k∑
i=1

ρ(V(i)
cast)

ut

C Proof of verifiability for the KTV-Helios scheme

We proceed with the proof as follows: (1) We first prove that each well-formed
ballot b1, ..., bn on the bulletin board was either cast by an honest voter who
checked whether the ballot is properly stored on the bulletin board, by an honest
voter who did not check this, by a corrupted voter, or the ballot corresponds
to a null vote. (2) We then show that the plaintext tally result on all the votes
corresponding to these ballots together correspond to all the votes cast by honest
voters who checked that their vote is stored on the bulletin board, a subset of
honest voters who did no such checks, at most |IC | votes cast by the adversary
and the dummy votes. After this, we prove (3) that this plaintext tally result
corresponds to the result output by the tally function Tally, if this function is
applied according to its specification in Section 2.3. We conclude by proving
(4), that the adversary is incapable of producing a tally result that passes the
verification check, and yet is different from the tally result output by Tally.

Step 1. Let b = (id, c, πPoK , π, t) be a well-formed ballot (that passes Validate)
on the board. We prove that b belongs to one of the following lists with over-
whelming probability:
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– VHCcast := ((idE,1, vE,1), ..., (idE,nE
, vE,nE

)) the list of all tuples of honest vot-
ers and non-zero votes (i.e. ((idE,i, vE,i), ∗) ∈ HVote) who verified that their
vote is properly stored on the bulletin board (i.e. idE,i ∈ Checked).

– VHUcast := ((idA,1, vA,1), ..., (idA,nA
, vA,nA

)), the list of all tuples of honest
voters and non-zero votes (i.e. ((idA,i, vA,i), ∗) ∈ HVote) who did not verify
that their vote is properly stored on the bulletin board (i.e. idE,i 6∈ Checked).

– VCcast := ((idB,1, vB,1), ..., (idB,nB
, vB,nB

)), the list of all tuples of corrupted
voters with non-zero votes (i.e. idB,i ∈ IC) and their votes.

– VDcast := {(∗, 0)}nD : the list of all tuples that correspond to zero-votes.

From soundness of the proof π we conclude that the ciphertext c ballot b
is signed by the voter’s secret key or else c encrypts zero, in which case b is
a zero-ballot and (îd, 0) must be in VDcast. If b is signed, by unforgeability of
the signature scheme and the assumption that honest voters do not reveal their
signing keys, either b was cast by a corrupt voter and so (id, v) ∈ VCcast where v
is the vote in c or else b was cast by a honest voter and so (id, v) must lie in one
of the other two lists (depending on whether id ∈ Checked or not).

Step 2. We prove that applying the tally function ρ to the lists in step 1
inlclues all votes by honest voters who checked their ballots, at most IC votes
by corrupt voters and a subset of the remaining honest votes (by voters who did
not check).

If there were no complaints from the voters in Checked, which would have
caused the adversary to lose the security game, we know that all the ballots from
these voters must be on the board so all their votes are in VHCcast. The adversary’s
ballots are only the ones in VCcast whose identities are in IC so the number of
these ballots is at most |IC |. All the remaining ballots are in VHUcast and so must
have been cast by non-checking honest voters. Since ρ supports partial counting
as expained in Section 2.2 we conclude, for Vcast the list of all votes in ballots
on the board:

ρ(Vcast) = ρ(VHCcast) + ρ(VHUcast) + ρ(VCcast).

Step 3. We prove that applying Tally(BB, sk) to the ballots on the board
tallies them correctly, i.e. the result R corresponds to ρ(Vcast).

The homomorphic property of ElGamal means that the ciphertexts input to
the mix contain the sum of all votes cast under the name of each voter. The mix
does not change the encrypted values in the ciphertexts, it just permutes them
around. Since ElGamal is a correct encryption scheme and the PET is sound, the
decrypted values output in the PET correspond to the messages in the mixed
ciphertexts. It follows that the result output by Tally(BB, sk) corresponds to the
function ρ applied to the votes in the ballots on BB. (This step is essentially a
proof of correctness for the KTV scheme.)

Step 4. We prove that the adversary cannot output a result/proof pair
(R′,Π′) for a result R′ 6= R different from the result R that Tally would return,
which passes ValidateTally.

The homomorphic sum-ciphertexts for each voter are recomputed by ValidateTally
to be able to check the mix. The mix is protected by the proof πmix ∈ Π′ which
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is sound, so the mixed ciphertexts (c̄i) ∈ Π′ must be a valid permutation and
rerandomisation of those on the board. The PET decryptions too are protected
by a sound proof so the decryption factors d in Π must match the ballots on
the board. From these, the result R can be recomputed. Therefore, unless one of
the proofs in Π is invalid (which would contradict soundness) we conclude that
if ValidateTally(BB, (R′,Π′)) only outputs 1 when R is the correct result for BB.

Hence, the adversarial success probability Pr
[
Expver−bA,S = 1

]
is negligible.

This proves verifiability against malicious bulletin boards.
ut

D Proof of participation privacy for the KTV-Helios
scheme

We base our proof on the idea, that the aforementioned two sources of informa-
tion (i.e. the tally result and the number of ballots next to idA) are the only ones
that give advantage to the adversary. The rest of the public election data, as in
case of ballot privacy (as shown in Section 4), does not provide any advantage
to the adversary.

Our proof strategy is hence as follows. We consider a sequence of games,
starting from Expppriv,0A and ending with Expppriv,1A and show, that the adversary
A that is given access to the queries in QS distinguishes the transition through
all those games with the advantage of at most δnum + δideal. We define BB0,i as
the content of the bulletin board and (Ri,Πi) as the tally output at the end of
the game Gi, i = 1, ..., 4. We define the sequence as follows:
• G1. The first game G1 is equivalent to the experiment Expppriv,βA with β = 0

(hence, it is equivalent to the election where the voter idA abstains). Thus, the
content of BB0,1 and the tally output (R1,Π1) corresponds to the content of BB0

and the output of OTally at the end of Expppriv,0A .
• G2. The second game G2 is equivalent to the election, where the voter

idA cast a ballot with a null-vote. Thus, the content of the bulletin board BB0,2

is equivalent to the content of the bulletin board BB1 at the end of Expppriv,1A for
the adversary using the query OVoteDummy(v) with v = 0.

We prove, that the adversary has an advantage of δnum of distinguishing be-
tween the output of G1 and G2. The tally result does not change, hence the tally
output (R2,Π2) is equivalent to the tally output (R1,Π1). The only difference
between the contents of BB0,1 and BB0,2 is the presence of an additional ballot
with the encryption of 0 on BB0,2. Therefore, we conclude that the challenge in
distinguishing between the outputs of G1 and G2 is equivalent to the challenge
in distinguishing between the output of Expnum,0A and Expnum,1A , and therefore
the adversarial advantage of distinguishing between the output of G1 and G2 is
δnum,Pdummy,Pt .
• G3. The third game G3 is equivalent to the election, where the voter cast

a vote for a non-null voting option v 6= 0, however, the tally result R does not
include the vote of idA, and the tally validity proofs Π are simulated as described
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in Section 4. Namely, the content of the bulletin board BB0,3 is equivalent to the

content of the bulletin board BB1 at the end of Expppriv,1A for the adversary using
the query OVoteDummy(v) with v 6= 0. The tally output (R3,Π3) is calculated as
follows: let BB′0,3 contain the content of BB0,3 excluding the non-dummy ballot

next to idA. The tally output is calculated as (R3,Π) = Tally(BB′0,3, sk), and the
simulated proof of tally validity as Π3 = SimProof(BB0,3, R).

We now prove, that the adversarial advantage in distinguishing between the
output of G2 and G3 is negligible. Consider an adversary B in the ballot privacy
experiment (Section 4) Expbpriv,βA,S , who simulates the games G2 and G3 for the

adversary A. The adversary B returns the output of Expbpriv,βA for the queries
OCast and OTally. For simulating the output of OVoteDummy(v), B proceeds
as follows: first, she chooses a random value m←$Pdummy, and a set of and
random timestamps t1, ..., tm←$Pt, and computes a set of ballots b1, ..., bm with
bi = Vote((îd, 0), id, 0, ti). She then uses the query OVoteLR(idA, idA, 0, v, t) for

a random t ∈ Pt in Expbpriv,βA and returns its output together with the ballots
b1, ..., bm to A. At the end, B returns the value β output by A as the guess in
Expbpriv,βA,S . Thus, it follows that the adversarial advantage in distinguishing G2

from G3 is at most equal to the adversarial advantage in Expbpriv,βA , denoted as
δBPRIV .
• G4. The fourth game G4 is equivalent to the G3 except that this time the

real tally result is output (i.e. the result that includes the vote from idA). Thus,
the contents of BB0,4 are the same as of BB0,4, and the tally output result is
calculated as (R4,Π4) = Tally(BB0,4, sk). Hence, since the tally result is the only
difference in the output of the games G3 and G4, the adversary distinghuishes
between the outputs of two games with the same advantage as in the ideal
scheme, namely δideal.

It follows, that the in transition through the game sequence G1 → G2 →
G3 → G4, the outputs of each game are distinguished from the outputs of a
previous game with the advantage either δnum,Pdummy,Pt (for games G1 and G2),
δBPRIV (for games G2 and G3) and δideal (for games G3 and G4). Hence, the

adversary distinguishes between the output in Expppriv,βA with the advantage δ =
δideal+ δnum,Pdummy,Pt

+ δBPRIV , with δBPRIV negligible as proven in Section 4.
ut

E Proof of Theorem 3

In this section we prove Theorem 3.
Since probability distribution for times of casting the dummy ballots Pt is

chosen in such a way, that it corresponds to the distribution of times at which
the voters cast their ballots, the timestamps on the ballots do not provide any
additional information to the adversary. Hence, we only consider the adversary
seeing the total number of cast ballots next to the voter.

We consider the upper bound δnum of difference between the probability that
the adversary guesses correctly that the voter has abstained, and the probability
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that the adversary decides incorrectly that the voter has abstained (i.e. δnum =

Pr
[
Expnum,0A = 0

]
− Pr

[
Expnum,1A = 0

]
).

Let m denote the number of ballots cast next to the voter idA. It holds, that
either all m of them were cast by the oracle as dummy ballots (modelling the
posting trustee) if the voter idA has abstained (i.e. β = 0), or m−1 of them were
cast by the oracle as dummy ballots and one as the ballot by idA, if the voter
idA did not abstain (i.e. β = 1). Let Mc be the set of all values of m, so that the
adversary decides that the voter abstained from the election and outputs β = 0
at the end of the experiment. Then, it holds for the adversarial advantage, and
a random variable X distributed in Pθdummy:

δnum = Pr
[
Expnum,0A,Pdummy,Pt

= 0
]
−Pr

[
Expnum,1A,Pdummy,Pt

= 0
]

=
∑
m∈Mc

(Pr[X = m ]−Pr[X = m− 1])

Let M0 := {m ∈ [a,∞): Pr[X = m ] − Pr[X = m− 1] ≥ 0}. In particular,
for mmax as the mode of Pθdummy, it holds M0 = [x,mmax]; then,

(1)

δnum = Pr
[
Expnum,0A,Pdummy,Pt

= 0
]
− Pr

[
Expnum,1A,Pdummy,Pt

= 0
]

≤
mmax∑
m=x

Pr[X = m ]− Pr[X = m− 1]

= Pr[X = mmax ] =: δunum

Hence, the upper bound δu of δ, so that the KTV-Helios scheme ensures
δu-participation privacy, can be calculated as Pr[X = mmax ].

It further follows, that an adversary who is instructed to always output β = 1
if for the output value of m it holds that P (X = m) − P (X = m − 1) > 0,
guesses β correctly with an advantage of δu. Hence, the adversarial advantage
δnum,Pdummy,Pt

in Expnum,βA,Pdummy,Pt
equals δu and thus equals Pr[X = mmax ]. ut
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