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1 Introduction

The first indirect hints of the existence of Dark Matter (DM) were reported more than 80

years ago [1] (see [2] for a historical account). Over the years, confirmations from different

sources have established the existence of DM. Still, as of today, these are all indirect

evidences and all based on gravitational effects. Therefore, it may come as a surprise that

today the discussion on the properties of DM is about particles which is a consequence of

the findings from astronomy and cosmology. Direct, indirect and collider searches for DM
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refer in most cases to particles belonging to some extension of the Standard Model (SM),

and all experimental data from the different sources favour a weakly interacting massive

particle (WIMP) with a velocity of the order of 200 km/s. That is, DM is non-relativistic.

Many experiments have been proposed for the direct detection of DM on Earth. It was

shown in ref. [3] that DM particles that undergo coherent scattering with nuclei, i.e. spin-

independent scattering, are the ones with larger scattering rates, and therefore they can be

detected more easily. The scattering rates depend on the material of the detector, on the

underlying cosmological model through the assumption of an approximately constant DM

density, ρ0 = 0.3 GeV/cm3, on the DM velocity and finally on the DM-nucleon cross section.

Although there are uncertainties associated with the determination of all the parameters,

the need for an increased precision in the DM-nucleon cross section calculation has led

several groups to invest in the calculation of higher-order corrections, both strong and

electroweak, to the scattering cross section [4–13].

Although the hypothesis of DM as a particle is now the strongest and most intensely

studied conjecture to explain the data, there are no hints on the exact nature of the particle

itself. Among the several possibilities, in this study we will focus on a minimal model with

a vector DM candidate. The model is a very simple extension of the SM where a dark

vector χµ with a gauged U(1)χ symmetry and a complex SM-gauge singlet S are added

to the SM field content. We end up with a vector DM (VDM) candidate χµ and a new

CP-even scalar that mixes with the SM scalar field coming from the doublet.

The electroweak corrections to the coherent scattering of the DM candidate χµ first

require the renormalisation of the VDM model and second, the extraction of the spin-

independent contributions from the loop corrections to the effective couplings of the La-

grangian, Leff , which couple two DM particles and two quarks. These will then constitute

the corrections to the tree-level effective couplings from Leff .

The paper is organised as follows: in section 2 we present the VDM model and in

section 3 we describe its renormalisation. In section 4 we discuss the scattering of scalar DM

off nuclei at leading order (LO) while in section 5 we calculate the electroweak corrections

to the cross section. In section 6 we present and discuss our results. In the conclusions,

section 7, we summarise our findings. Feynman rules and technical details are left to

the appendices.

2 The vector dark matter model

The VDM model discussed in this work is an extension of the SM, where a complex SM-

gauge singlet S is added to the SM field content [14–21]. The model has a new U(1)χ
gauged symmetry, under which solely the gauge singlet S is charged. As the symmetry is

gauged, a new vector boson appears in the theory, which is denoted by χµ.

In order to obtain a stable VDM candidate we assume a Z2 symmetry. The dark gauge

boson χµ and the scalar field S transform under the Z2 symmetry as follows

χµ → −χµ and S → S∗ , (2.1)
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and the SM particles are all even under Z2, which precludes kinetic mixing between the

gauge bosons from U(1)χ and the SM U(1)Y . As the singlet S is charged under the dark

U(1)χ, its covariant derivative reads

DµS = (∂µ + igχχµ)S , (2.2)

where gχ is the gauge coupling of the dark gauge boson χµ.

The most general Higgs potential invariant under the SM and the Z2 symmetries can

be written as

V = −µ2
H |H|2 + λH |H|4 − µ2

S |S|2 + λS |S|4 + κ|S|2|H|2 , (2.3)

in terms of the squared mass parameters µ2
H , µ2

S and the quartic couplings λH , λS and κ.

The neutral component of the Higgs doublet H and the real part of the singlet field each

acquire a vacuum expectation value (VEV) v and vS , respectively. The expansions around

their VEVs can be written as

H =

(
G+

1√
2

(v + ΦH + iσH)

)
and S =

1√
2

(vS + ΦS + iσS) , (2.4)

where ΦH and ΦS denote the CP-even field components of H and S. The CP-odd field

components σH and σS do not acquire VEVs and are therefore identified with the neutral

SM-like Goldstone boson G0 and the Goldstone boson Gχ for the gauge boson χµ, respec-

tively, while G± are the Goldstone bosons of the W bosons. The minimum conditions of

the potential yield the tadpole equations〈
∂V

∂ΦH

〉
≡ TΦH

v
=

(
κv2

S

2
+ λHv

2 − µ2
H

)
, (2.5)〈

∂V

∂ΦS

〉
≡ TΦS

vS
=

(
κv2

2
+ λSv

2
S − µ2

S

)
, (2.6)

which allow the scalar mass matrix to be expressed as

MΦhΦS =

(
2λHv

2 κvvS
κvvS 2λSv

2
S

)
+

(
TΦH
v 0

0
TΦS
vS

)
. (2.7)

The treatment of the tadpole contributions in the mass matrix will be discussed in section 3

while describing the renormalisation of the tadpoles. The mass eigenstates h1 and h2 are

obtained through the rotation with the orthogonal matrix Rα as(
h1

h2

)
= Rα

(
ΦH

ΦS

)
≡

(
cosα sinα

− sinα cosα

)(
ΦH

ΦS

)
. (2.8)

The diagonalisation of the mass matrix yields the mass values mh1 and mh2 of the two scalar

mass eigenstates. The mass of the VDM particle will be denoted as mχ. The parameters

of the potential equation (2.3) can then be expressed in terms of the physical parameters

mh1 ,mh2 ,mχ , α , v , gχ , TΦH , TΦS , (2.9)

– 3 –
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using the relations

λH =
m2
h1

cos2 α+m2
h2

sin2 α

2v2
, (2.10)

κ =

(
m2
h1
−m2

h2

)
cosα sinα

vvS
, (2.11)

λS =
m2
h1

sin2 α+m2
h2

cos2 α

2vS
, (2.12)

vS =
mχ

gχ
. (2.13)

The SM VEV v ≈ 246 GeV is fixed by the W boson mass. The mixing angle α can be

chosen without loss of generality to be

α ∈
[
−π

2
,
π

2

)
. (2.14)

The requirement of the potential to be bounded from below is translated into the follow-

ing conditions

λH > 0, λS > 0, κ > −2
√
λHλS . (2.15)

3 Renormalisation of the VDM model

In order to calculate the electroweak (EW) corrections to the scattering process of the

VDM particle with a nucleon we need to renormalise the VDM model. There are four new

independent parameters relative to the SM that need to be renormalised. We choose them

to be the non-SM-like scalar mass, mh2 , the rotation angle α, the coupling gχ and the

DM mass mχ.1 In the following, we will present the renormalisation of the VDM model

including the gauge and Higgs sectors.

Having chosen the complete set of free parameters in the theory, we start by replacing

the bare parameters p0 with the renormalised ones p according to

p0 = p+ δp , (3.1)

where δp is the counterterm for the parameter p. Denoting a general scalar or vector field

by Ψ, the renormalised field is expressed in terms of the field renormalisation constant

ZΨ as

Ψ0 =
√
ZΨΨ , (3.2)

where Ψ0 stands for the bare and Ψ for the renormalised field, respectively. In case of

mixing field components,
√
ZΨ is a matrix.

Gauge Sector: Since we have an extended gauge sector compared to the SM we will

give all counterterms explicitly. Due to the imposed Z2 symmetry under which only the

dark gauge boson χµ is odd, kinetic mixing between the gauge bosons of the U(1)χ and to

U(1)Y is not possible. This means that there is no interaction between the gauge sector of

1Note that in our notation h1 corresponds to the SM-like Higgs boson, while we attribute h2 to the

non-SM-like scalar.
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the SM and the new dark gauge sector. Since this symmetry is only broken spontaneously,

gauge bosons from the two sectors will not mix at any order of perturbation theory and

therefore the field renormalisation constants are defined independently in each sector. We

choose to renormalise the theory in the mass basis. The replacement of the parameters in

the two gauge sectors reads

m2
W → m2

W + δm2
W , (3.3a)

m2
Z → m2

Z + δm2
Z , (3.3b)

m2
χ → m2

χ + δm2
χ , (3.3c)

e→ e+ δZe e , (3.3d)

g → g + δg , (3.3e)

gχ → gχ + δgχ , (3.3f)

where mW and mZ are the masses of the electroweak charged and neutral gauge bosons

W± and Z, respectively, e is the electric coupling constant, and g the weak SU(2) coupling.

The gauge boson fields are renormalised by their field renormalisation constants δZ,

χ→
(

1 +
1

2
δZχχ

)
χ , (3.4a)

W± →
(

1 +
1

2
δZWW

)
W± , (3.4b)(

Z

γ

)
→

(
1 + 1

2δZZZ
1
2δZZγ

1
2δZγZ 1 + 1

2δZγγ

)(
Z

γ

)
. (3.4c)

The on-shell (OS) conditions yield the following expressions for the mass counterterms of

the gauge sector

δm2
W = Re ΣT

WW

(
m2
W

)
, δm2

Z = Re ΣT
ZZ

(
m2
Z

)
and δm2

χ = Re ΣT
χχ

(
m2
χ

)
, (3.5)

where T denotes the transverse part of the self-energies Σii (i = W,Z, χ). Expressing the

electric charge in terms of the Weinberg angle θW

e = g sin θW , with cos θW =
mW

mZ
, (3.6)

and using OS conditions for the renormalisation of the electric charge allows for the deter-

mination of the counterterm δg in terms of the mass counterterms δmW , δmZ and δZe,
2

δZe =
1

2

∂ΣT
γγ(p2)

∂p2

∣∣∣∣
p2=0

+
sW
cW

ΣT
γZ(0)

m2
Z

, (3.7)

δg

g
= δZe +

1

2

1

m2
Z −m2

W

(
δm2

W − c2
W δm

2
Z

)
. (3.8)

2We use the shorthand notation sin θW = sW and cos θW = cW .
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The wave function renormalisation constants guaranteeing the correct OS properties are

given by

δZχχ = −Re
∂Σ2

χχ(p2)

∂p2

∣∣∣∣
p2=m2

χ

, δZWW = −Re
∂Σ2

WW (p2)

∂p2

∣∣∣∣
p2=m2

W

, (3.9)

(
δZZZ δZZγ
δZγZ δZγγ

)
=


−Re

∂ΣTZZ(p2)

∂p2

∣∣∣∣
p2=m2

Z

2
ΣTZγ(0)

m2
Z

−2
ΣTZγ(0)

m2
Z

−Re
∂ΣTγγ(p2)

∂p2

∣∣∣∣
p2=0

 . (3.10)

As for the gauge coupling from the dark sector, gχ, since there is no obvious physical

quantity to fix the renormalisation constant, we will renormalise it using the MS scheme,

which will be described in detail in section 3.1.

Higgs Sector: In the VDM model we have two scalar fields which mix, namely the real

component ΦH of the Higgs doublet and the real component ΦS of the singlet, yielding the

mass eigenstates h1 and h2. This mixing has to be accounted for in the field renormalisation

constants (see equation (3.2)) so that the corresponding matrix reads(
h1

h2

)
→

(
1 + 1

2δZh1h1
1
2δZh1h2

1
2δZh2h1 1 + 1

2δZh2h2

)(
h1

h2

)
. (3.11)

In the mass eigenbasis, the mass matrix in equation (2.7) yields

Mh1h2 =

(
m2
h1

0

0 m2
h2

)
︸ ︷︷ ︸

≡M2

+Rα

(
TΦH/v 0

0 TΦS/vS

)
RTα︸ ︷︷ ︸

≡δT

. (3.12)

The tadpole terms in the tree-level mass matrix are bare parameters. At next-to-leading

order (NLO) they obtain a shift that corresponds to the change of the vacuum state of the

potential through electroweak corrections. To avoid such vacuum shifts at NLO, we renor-

malise the tadpoles such that the VEV remains at its tree-level value also at NLO. This

requires the introduction of tadpole counterterms δTi such that the one-loop renormalised

one-point T̂i function vanishes

T̂i = Ti − δTi
!

= 0 , i = ΦH ,ΦS . (3.13)

Since we formulate all counterterms in the mass basis it is convenient to rotate the tadpole

parameters in their corresponding mass basis as well, using the same rotation matrix Rα,(
Th1

Th2

)
= Rα ·

(
TΦh

TΦS

)
. (3.14)

For the mass counterterms of the Higgs sector we replace the mass matrix as

Mh1h2 →Mh1h2 + δMh1h2 , (3.15)

– 6 –
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with the one-loop counterterm

δMh1h2 =

(
δm2

h1
0

0 δm2
h2

)
+Rα

(
δTΦH
v 0

0
δTΦS
vS

)
RTα ≡

(
δm2

h1
0

0 δm2
h2

)
+

(
δTh1h1 δTh1h2

δTh2h1 δTh2h2

)
.

(3.16)

In equation (3.16) we neglect all terms of order O (δαδTi) since they are formally of two-

loop order. Using OS conditions and equation (3.16) finally yields the following relations

for the counterterms (i = 1, 2)

δm2
hi

= Re
[
Σhihi(m

2
hi

)− δThihi
]
, (3.17)

δZhihi = −Re

[
∂Σhihi(p

2)

∂p2

]
p2=m2

hi

, (3.18)

δZhihj =
2

m2
hi
−m2

hj

Re
[
Σhihj (m

2
hj

)− δThihj
]
, i 6= j . (3.19)

3.1 Renormalisation of the dark gauge coupling gχ

As previously mentioned, the dark gauge coupling gχ cannot be linked to a physical ob-

servable, which prevents the usage of OS conditions for its renormalisation. Therefore the

coupling will be renormalised using the MS scheme. As the UV divergence is universal, we

just need a vertex involving gχ. We choose the triple h1h1h1 vertex. First we write

ANLO
h1h1h1

= ALO
h1h1h1

+AVC
h1h1h1

+ACT
h1h1h1

, (3.20)

where AVC stands for the amplitude for the virtual corrections to the vertex and ACT is

the amplitude for the vertex counterterm. We will henceforth drop the index h1h1h1 for

better readability. The counterterm amplitude ACT consists of two contributions,

ACT = δmix + δgCT (3.21)

with

δmix =
3

2
gh1h1h1δZh1h1 +

3

2
gh1h1h2δZh2h1 (3.22)

and

δgCT =
∑
p

∂gh1h1h1

∂p
δp , p ∈ {mh1 ,mh2 ,mχ, v, α, gχ} . (3.23)

The trilinear Higgs self-coupling reads (expressing v through 2mW /g)

gh1h1h1 = −
3gm2

h1

2mW
cos3 α−

3gχm
2
h1

mχ
sin3 α . (3.24)

The divergent part of δgχ is then given by

δgχ
∣∣
div

=

(
mχ

3m2
h1

sin3 α

)(
AVC +ACT

∣∣
δgχ=0

) ∣∣
div
. (3.25)
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h1

h1

h1

F

F

F

F = {l, q}

h1

h1

h1

S

S

S

S = {hi, G0, G±, Gχ}

h1

h1

h1

U

U

U

U ∈ {ηZ , η±, ηχ}

h1

h1

h1

S

S

V

S, V = {G0, G±, Gχ}, {Z,W±, X}

h1

h1

h1

S

V

S

S, V = {G0, G±, Gχ}, {Z,W±, X}

h1

h1

h1

V

S

S

S, V = {G0, G±, Gχ}, {Z,W±, X}

h1

h1

h1

S

V

V

S, V = {G0, G±, Gχ}, {Z,W±, X}

h1

h1

h1

V

S

V

S, V = {G0, G±, Gχ}, {Z,W±, X}

h1

h1

h1

V

V

S

S, V = {G0, G±, Gχ}, {Z,W±, X}

h1

h1

h1

V

V

V

V = {Z,W±, X}

h1

h1

h1

S

S

S = {G0, G±, Gχ, hi}

h1

h1

h1

V

V

V = {Z,W±, X}

h1

h1

h1

S

S

S = {G0, G±, Gχ, hi}

h1

h1

h1

V

V

V = {Z,W±, X}

h1

h1

h1

S

S

S = {G0, G±, Gχ, hi}

h1

h1

h1

V

V

V = {Z,W±, X}

Figure 1. Generic diagrams contributing to AVC
h1h1h1

. Here F denotes fermions, S scalars, V gauge

bosons, and U ghost fields.

In figure 1 we present the set of diagrams used to calculate AVC. The one-loop di-

agrams were generated with FeynArts [22] for which the model file was obtained with

SARAH [23–26] and the program package FeynCalc [27, 28] was used to reduce the ampli-

tudes to Passarino-Veltmann integrals [29]. The numerical evaluation of the integrals was

done by Collier [30–33]. The counterterm gχ in the MS scheme is then obtained as

δgχ
∣∣
ε

=
g3
χ

96π2
∆ε , (3.26)

with

∆ε =
1

ε
− γE + ln 4π , (3.27)

where γE denotes the Euler-Mascheroni constant.

3.2 Renormalisation of the scalar mixing angle α

The final parameter that needs to be renormalised is the mixing angle α. Again, this

is a quantity that cannot be related directly to an observable, except if we would use a

process-dependent renormalisation scheme which is known to lead to unphysically large
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counterterms [34]. The renormalisation of the mixing angles in SM extensions was thor-

oughly discussed in [34–45]. In this work we will use the KOSY scheme, proposed in [46, 47],

which connects for the derivation of the angle counterterm the usual OS conditions of the

scalar field with the relations between the gauge basis and the mass basis. The bare

parameter expressed through the renormalised one and the counterterm reads

α0 = α+ δα . (3.28)

Considering the field strength renormalisation before the rotation,(
h1

h2

)
= R (α+ δα)

√
ZΦ

(
ΦH

ΦS

)
, (3.29)

and expanding it to strict one-loop order,

R (α+ δα)
√
ZΦ

(
ΦH

ΦS

)
= R(δα)R(α)

√
ZΦR(α)T︸ ︷︷ ︸

!
=
√
ZH

R(α)

(
ΦH

ΦS

)
+O(δα2) =

√
ZH

(
h1

h2

)
,

(3.30)

yields the field strength renormalisation matrix
√
ZH connecting the bare and renormalised

fields in the mass basis. Using the rotation matrix expanded at one-loop order results in

√
ZH = R(δα)

(
1 +

δZh1h1
2 δCh

δCh 1 +
δZh2h2

2

)
≈

(
1 +

δZh1h1
2 δCh + δα

δCh − δα 1 +
δZh2h2

2

)
. (3.31)

Demanding that the field mixing vanishes on the mass shell is equivalent to identifying the

off-diagonal elements of
√
ZH with those in equation (3.11),

δZh1h2

2

!
= δCh + δα and

δZh2h1

2

!
= δCh − δα . (3.32)

With equation (3.19) the mixing angle counterterm reads

δα =
1

4
(δZh1h2 − δZh2h1) (3.33)

=
1

2(m2
h1
−m2

h2
)
Re
(
Σh1h2(m2

h1
) + Σh1h2(m2

h2
)− 2δTh1h2

)
. (3.34)

In our numerical analysis we will use two more renormalisation schemes for δα: the

MS scheme and a process-dependent scheme. In the MS scheme we only take the countert-

erm δα into account in the divergent parts in D = 4 dimensions. Applying dimensional

regularisation [48, 49], these are the terms proportional to 1/ε, where D = 4 − 2ε. Both

the KOSY scheme and the MS scheme lead to a gauge-parameter dependent definition of

δα This is avoided if δα is defined through a physical process.

In our process-dependent renormalisation scheme for α, discussed in the numerical

results, we define the counterterm δα through the process h → ττ , where h denotes the

SM-like scalar of the two hi (i = 1, 2). The counterterm is defined by requiring the

NLO decay width to be equal to the LO one. The NLO corrections involve infrared (IR)
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divergences stemming from the QED corrections. Since they form a UV-finite subset, this

allows us to apply the renormalisation condition solely on the weak sector thus avoiding

the IR divergences, i.e. we require for the NLO and LO amplitudes of the decay process

ANLO,weak
h→ττ

!
= ALO

h→ττ , (3.35)

where ‘weak’ refers to the weak part of the NLO amplitude. The h coupling to τ τ̄ depends

on the mixing angle α as

ghττ =
gmτ cosα

2mW
, (3.36)

and the LO amplitude reads

ALO
h→ττ = ghττ ū(pτ )u(pτ ) =

gmτ cosα

2mW
ū(pτ )u(pτ ) , (3.37)

with u(pτ ) (ū(pτ )) denoting the spinor (anti-spinor) of the τ with four-momentum pτ .

Dividing the weak NLO amplitude into the LO amplitude, the weak virtual corrections to

the amplitude, and the corresponding counterterm part,

ANLO,weak
h→ττ = ALO +Avirt,weak +Act , (3.38)

the condition eq. (3.35) translates into

Avirt,weak +Act = 0 , (3.39)

and we get the mixing angle counterterm in the process-dependent scheme as

δα =

(
2mW

gmτ cosα

)[
Avirt,weak + Act

∣∣
δα=0

]
. (3.40)

Here Act
∣∣
δα=0

denotes the complete counterterm amplitude but without the contribution

from δα.

4 Dark matter direct detection at tree level

In the following we want to set our notation and conventions used in the calculation of

the spin-independent (SI) cross section of DM-nucleon scattering. The interaction between

the DM and the nucleon is described in terms of effective coupling constants. The major

contribution to the cross section comes from the light quarks q = u, d, s and gluons. For

the VDM model the effective operator basis contributing to the SI cross section is given

by [50]

Leff =
∑

q=u,d,s

Leff
q + Leff

G , (4.1)

with

Leff
q = fqχµχ

µmq q̄q +
gq
m2
χ

χρi∂µi∂νχρOqµν , (4.2a)

Leff
G = fGχρχ

ρGaµνG
aµν , (4.2b)
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where Gaµν (a = 1, . . . , 8) denotes the gluon field strength tensor and Oqµν the quark twist-2

operator corresponding to the traceless part of the energy-momentum tensor of the nu-

cleon [51, 52],

Oqµν =
1

2
q̄i

(
∂µγν + ∂νγµ −

1

2
/∂

)
q . (4.3)

Operators suppressed by the DM velocities and the momentum transfer of the DM particle

to the nucleon are neglected in the analysis. Furthermore, we neglect contributions intro-

duced by the gluon twist-2 operator Ogµν , since these contributions are one order higher in

the strong coupling constant αs [50].

For vanishing momentum transfer and on-shell nucleon states, the nucleon matrix

elements are given by

〈N |mq q̄q |N〉 = mNf
N
Tq (4.4a)

−9αS
8π
〈N |GaµνGa,µν |N〉 =

1−
∑

q=u,d,s

fNTq

mN = mNf
N
TG

(4.4b)

〈N(p)| Oqµν |N(p)〉 =
1

mN

(
pµpν −

1

4
m2
Ngµν

)(
qN (2) + q̄N (2)

)
, (4.4c)

where N denotes a nucleon, N = p, n, and mN is the nucleon mass. Furthermore,

qN (2), q̄N (2) are the second moments of the parton distribution functions of the quark

q(x) and the antiquark q̄(x), respectively. The four-momentum of the nucleon is denoted

by p. The numerical values for the matrix elements fNTq , f
N
TG

and the second moments qN (2)

and q̄N (2) are given in appendix A. The SI effective coupling of the VDM particle with

the nucleons is obtained from the nucleon expectation value of the effective Lagrangian,

eq. (4.1), by applying eqs. (4.4), which yields

fN/mN =
∑

q=u,d,s

fqf
N
Tq +

∑
q=u,d,s,c,b

3

4

(
qN (2) + q̄N (2)

)
gq −

8π

9αS
fNTGfG . (4.5)

In the contribution from the quark twist-2 operator all quarks below the energy scale

∼ 1 GeV have to be included, i.e. all quarks but the top quark. The SI scattering cross

section between the VDM particle and a nucleon, proton or neutron (N = p, n), is given by

σN =
1

π

(
mN

mχ +mN

)2 ∣∣fN ∣∣2 . (4.6)

Note that the sum in the first term of eq. (4.5) only extends over the light quarks. The

leading-order gluon interaction with two VDM particles is mediated by one of the two

Higgs bosons which couple to the external gluons through a heavy quark triangle diagram,

cf. figure 2. The charm, bottom and top quark masses are larger than the energy scale

relevant for DM direct detection and should therefore be integrated out for the description

of the interaction at the level of the nucleon. By calculating the heavy quark triangle

diagrams and then integrating out the heavy quarks we obtain the related operator in the

heavy quark limit. This is equivalent to calculating the diagram in figure 3 with heavy
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χ χ

hi

Q

Figure 2. Higgs bosons hi mediating the coupling of two gluons to two VDM particles through a

heavy quark loop.

quarks Q = c, b, t, and replacing the resulting tensor structure mQQ̄Q with the effective

gluon operator as follows [12, 13, 53]

mQQ̄Q→ −
αS
12π

GaµνG
aµν , (4.7)

corresponding to the effective leading-order VDM-gluon interaction in equation (4.2).

For the tree-level contribution to the SI cross section the t-channel diagrams depicted

in figure 3 have to be calculated for vanishing momentum transfer. The respective Wilson

coefficient for the effective operator in equation (4.1) is extracted by projecting onto the

corresponding tensor structure, mqqq̄. Accounting for the additional symmetry factor of

the amplitude, this yields finally the following fq factor for the quarks,

fq =
1

2

ggχ
mW

sin(2α)

2

m2
h1
−m2

h2

m2
h1
m2
h2

mχ , q = u, d, s, c, b, t . (4.8)

As explained above, the heavy quarks Q = b, c, t contribute to the effective gluon inter-

action. By using eq. (4.7), the Wilson coefficient for the gluon interaction, fG, can be

expressed in terms of fq for q = c, b, t,

fG =
∑
q=c,b,t

− αS
12π

fq , (4.9)

resulting in the SI LO cross section

σLO =
sin2 2α

4π

(
mχmN

mχ +mN

)2
(
m2
h1
−m2

h2

)2
m4
h1
m4
h2

m2
χm

2
N

v2v2
S

∣∣∣∣∣∣
∑

q=u,d,s

fNTq + 3 · 2

27
fNTG

∣∣∣∣∣∣
2

. (4.10)

The twist-2 operator does not contribute at LO. The obtained result is in agreement with

ref. [20].3

5 Dark matter direct detection at one-loop order

As a next step, we want to include the NLO EW corrections in the calculation of the SI

cross section. For this, we evaluate the one-loop contributions to the Wilson coefficients fq

3The authors of ref. [20] introduced an effective coupling fN ≈ 0.3 between the nucleon and the DM

particle, which corresponds to |
∑
q=u,d,s fTNq + 2

9
fTN
G

∣∣.
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χ χ

q q

hi

Figure 3. Generic tree-level diagram contribution to the SI cross section. The mediator S

corresponds to the two Higgs bosons h1 and h2. The quark line q corresponds to all quarks

q = u, d, s, c, b, t.

χ χ

q q

hi

(a) Vertex Corrections

χ χ

q q

hj

hi

(b) Mediator Corrections

χ χ

q q

(c) Box Corrections

Figure 4. Generic one-loop corrections to the scattering of VDM with the nucleon. The grey blob

corresponds to the renormalized one-loop corrections. The corrections can be separated into vertex

(a), mediator (b) and box corrections (c).

and fG in front of the operators in equation (4.2). At this order, also the Wilson coefficient

gq is non-zero. The additional topologies contributing at NLO EW are depicted in figure 4.

Note that we do not include vertex corrections to the hiq̄q vertex. They are partly given

by the nuclear matrix elements and beyond the scope of our study. For the purpose of

our investigation, we assume them to be encoded in the effective coupling factors of the

respective nuclear matrix elements. In the following, we present the calculation of each

topology separately.

5.1 Vertex corrections χχhi

The effective one-loop coupling χχhi is extracted by considering loop corrections to the

coupling χχhi, where we take the DM particles to be on-shell and assume a vanishing

momentum for the Higgs boson hi. The amplitude for the NLO vertex including the

polarisation vectors ε(∗) of the external VDM particles, is given by

iANLO
χχhi

= iALO
χχhi

+ iAVC
χχhi

+ iACT
χχhi

, (5.1)

with the leading-order amplitude iALO
χχhi

, the virtual vertex corrections iAVC
χχhi

and the

vertex counterterm iACT
χχhi

. Denoting by p the four-momentum of the incoming VDM

particle, the tree-level amplitude is given by

iALO
χχhi

= gχχhiε(p) · ε
∗(p) = 2gχmχε(p) · ε∗(p)

{
sinα , i = 1

cosα , i = 2
. (5.2)
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χ

χ

h1

S

S

S

S = {hi, Gχ}

χ

χ

h1

S

S

V

S, V = {hi, Gχ}, {X}

χ

χ

h1

S

V

S

S, V = {hi, Gχ}, {X}

χ

χ

h1

V

S

S

S, V = {hi}, {X}

χ

χ

h1

S

V

V

S, V = {hi}, {X}

χ

χ

h1

S

V

S, V = {hi}, {X}

χ

χ

h1

S

V

S, V = {hi}, {X}

χ
χ

h1

S

S

S = {hi, Gχ}

Figure 5. Generic diagrams contributing to the virtual corrections to the vertex χχhi. The generic

symbols denote F fermions, S scalars and V gauge bosons.

The vertex counterterm amplitudes for i = 1, 2 read

iACT
χ→χh1

=

[
1

2
(gχχh2δZh2h1 + gχχh1δZh1h1) + gχχh1δZχχ + δgχχh1

]
ε(p) · ε∗(p) (5.3a)

iACT
χ→χh2

=

[
1

2
(gχχh1δZh1h2 + gχχh2δZh2h2) + gχχh2δZχχ + δgχχh2

]
ε(p) · ε∗(p) , (5.3b)

with the counterterms δgχχhi (i = 1, 2) for the couplings

gχχh1 = 2gχmχ sinα (5.4)

gχχh2 = 2gχmχ cosα (5.5)

derived from

δgχχhi =
∑
p

∂gχχhi
∂p

, p ∈ {mχ, gχ, α} . (5.6)

In figure 5 all contributing NLO diagrams are shown, where S denotes scalars, F fermions

and V vector bosons. At NLO an additional tensor structure arises in the amplitude. Let

pin be the incoming momentum and pout the outgoing momentum of the DM vector gauge

boson. Assuming zero momentum transfer is equivalent to assuming pin = pout. Note that

this assumption is stricter than simply assuming p2
in = p2

out, since this only implies the

same masses for the incoming and outgoing particles. The additional new tensor structure

(denoted by ∼ NLO) is given by

iANLO = (. . . ) ε(pin) · ε∗(pout)︸ ︷︷ ︸
∼LO

+ (. . . ) (pin · ε∗(pout)) (pout · ε(pin))︸ ︷︷ ︸
∼NLO

. (5.7)

The additional NLO tensor structure vanishes by assuming pin = pout, and because for

freely propagating gauge bosons we have ε(p) · p = 0. The counterterms in equation (5.3)

cancel all UV-poles of the virtual vertex corrections in figure 5 which has been checked

both analytically and numerically. Accounting for the symmetry factor of the amplitude

and projecting onto the corresponding tensor structure, the vertex corrections are plugged

in the generic diagram in figure 4(a) which contributes to the operator χµχ
µmq q̄q. We will

refer to the resulting contribution as fvertex
q . Since the expression it quite lengthy, we do

not give the explicit formula here.
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χ

q

χ

qF

S S

F, S = {q}, {hi}

χ

q

χ

q

S

S

F

S

F, S = {q}, {hi, Gχ}

χ

q

χ

q

S

V

F

S

F, S, V = {q}, {hi, Gχ}, {X}

χ

q

χ

q

S SS

F

F, S = {q}, {hi}

χ

q

χ

q

V SS

F

F, S, V = {q}, {hi, Gχ}, {X}

Figure 6. Generic diagrams of the box topology contributing to the SI cross section. The symbol

S denotes scalars, F fermions and V vector bosons. The flavour of the fermion F and the external

quark q are the same as we set the CKM matrix equal to the unit matrix.

5.2 Mediator corrections

We proceed in a similar way for the mediator corrections. We calculate the self-energy

corrections to the two-point functions with all possible combinations of external Higgs

fields and plug these into the one-loop propagator in the generic amplitude in figure 4(b).

The self-energy contribution to the hihj propagator (i, j = 1, 2) reads

∆hihj = −
Σ̂hihj (p

2 = 0)

m2
hi
m2
hj

, (5.8)

with the renormalised self-energy matrix(
Σ̂h1h1 Σ̂h1h2

Σ̂h2h1 Σ̂h2h2

)
≡ Σ̂(p2) = Σ(p2)− δm2 − δT +

δZ

2

(
p2 −M2

)
+
(
p2 −M2

) δZ
2
, (5.9)

where the mass matrix M and the tadpole counterterm matrix δT are defined in equa-

tion (3.12). The Z-factor matrix δZ corresponds to the matrix with the components δZhihj
defined in equation (3.19). Projecting the resulting one-loop correction on the correspond-

ing tensor structure, we obtain the effective one-loop correction to the Wilson coefficient

of the operator χµχ
µmq q̄q induced by the mediator corrections as

fmed
q =

ggχmχ

2mW

∑
i,j

Rα,i2Rα,j1∆hihj , (5.10)

with the rotation matrix Rα defined in equation (2.8).

5.3 Box corrections

We now turn to the box corrections. The generic set of diagrams representative of the

box topology is depicted in figure 6. In the following, we present the treatment of box

diagrams contributing to the SI cross section. In order to extract for the spin-independent

cross section the relevant tensor structures from the box diagram, we expand the loop

diagrams in terms of the momenta pq of the external quark that is not relativistic [12].

Since we are considering zero momentum transfer, the incoming and outgoing momenta of

the quark are the same,

pin
q = pout

q . (5.11)

Note that as in the case of the vertex corrections this requirement is stricter than requiring

that the squared momenta are the same, since this only implies same masses for incoming
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and outgoing particles. Assuming small quark momenta, and because the mass of the light

quarks is much smaller than the energy scale of the interaction, allows for the simplification

of the propagator terms arising in the box diagrams through the expansion,

1

(l ± pq)2 −m2
q

=
1

l2
∓ 2pq · l

l4
+O(p2

q/l
4) , (5.12)

where l is the loop momentum of the box diagram, mq the mass of the quark and where

we use m2
q = p2

q . After applying this expansion to the box diagrams, the result has to

be projected onto the required tensor structures contributing to the operators in equa-

tion (4.2). The box diagrams contribute to XµX
µmq q̄q and the twist-2 operators. By

rewriting [13, 51, 52]

q̄i∂µγνq = Oqµν + q̄
i∂µγν − i∂νγµ

2
q +

1

4
gµνmq q̄q , (5.13)

the parts of the loop amplitude that correspond to the twist-2 and the XµX
µmq q̄q operator

can be extracted. The asymmetric part in equation (5.13) does not contribute to the SI

cross section and therefore can be dropped. We refer to these one-loop contributions to

the corresponding tree-level Wilson coefficients as fbox
q and gbox

q .

As discussed in refs. [12, 13] the box diagrams also induce additional contributions to

the effective gluon interaction with the VDM particle that have to be taken into account in

the Wilson coefficient fG in eq. (4.2b). The naive approach of using the same replacement as

in equation (4.7) to obtain the gluon interaction induces large errors [12]. To circumvent the

over-estimation of the gluon interaction without performing the full two-loop calculation,

we adopt the ansatz proposed in ref. [13]. For heavy quarks compared to the mediator

mass, it is possible to derive an effective coupling between two Higgs bosons and the gluon

fields. Using the Fock-Schwinger gauge allows us to express the gluon fields in terms of the

field strength tensor Gaµν , simplifying the extraction of the effective two-loop contribution

to fG. Integrating out the top-quark yields the following effective two-Higgs-two-gluon

coupling [13]4

LhhGG =
1

2
deff
G hihj

αS
12π

GaµνG
aµν , (5.14)

where the effective coupling deff
G of ref. [13] has to be adopted to our model. First of all we

only have scalar-type mediators, given by the Higgs bosons hi, so that the mixing angle

φSM of ref. [13] which quantifies the CP-odd admixture, is set to

φSM = 0 . (5.15)

Second, the coupling of the Higgs bosons hi to the top quark differs depending on which

Higgs boson is coupled, so that the effective coupling in equation (5.14) becomes

deff
G →

(
deff
G

)
ij

= (Rα)i1(Rα)j1
1

v2
, (5.16)

with the rotation matrix Rα defined in equation (2.8). The effective coupling allows for

the calculation of the box-type diagram in figure 7 (right).

4The authors of ref. [13] found that the bottom and charm quark contributions are small. This may

not be the case if the Higgs couplings to down-type quarks are enhanced. This does not apply for our

model, however.
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Q

χ χ

hi hj

deffG

Figure 7. The full two-loop gluon interaction with the DM candidate (left) and the effective

two-loop interaction after integration out the heavy quarks (right).

In ref. [13], the full two-loop calculation was performed. The comparison with the

complete two-loop result showed very good agreement between the approximate and the

exact result for mediator masses below mt. Our model is structurally not different in the

sense that the mediator coupling to the DM particle (a fermion in ref. [13]) is also a scalar

particle so that the results obtained in ref. [13] should be applicable to our model as well.

Moreover, the box contribution to the NLO SI direct detection cross section is only minor

as we verified explicitly.

The diagram in figure 7 (right) yields the following contribution to the Lagrangian

Leff ⊃
(
deff
G

)
ij
Cij4χµχ

µ−αS
12π

GaµνG
aµν , (5.17)

where Cij4 denotes the contribution from the triangle loop built up by hi, hj and the

VDM particle. It has to be extracted from the calculated amplitude of figure 7 (right).

Using equation (4.2b) the contributions by the box topology to the gluon-DM interaction

are given by

f top
G =

(
deff
G

)
ij
Cij4
−αS
12π

. (5.18)

5.4 The SI one-loop cross section

In the last sections we discussed the extraction of the one-loop effective form factors for

the operators in equation (4.2). The NLO EW SI cross section can then be obtained by

using the effective one-loop form factor

fNLO
N

mN
=

∑
q=u,d,s

fNLO
q fNTq +

∑
q=u,d,s,c,b

3

4
(q(2) + q̄(2)) gNLO

q − 8π

9αS
fNTGf

NLO
G , (5.19)

with the Wilson coefficients at one-loop level given by

fNLO
q = fvertex

q + fmed
q + fbox

q (5.20a)

gNLO
q = gbox

q (5.20b)

fNLO
G = − αS

12π

∑
q=c,b,t

(
fvertex
q + fmed

q

)
+ f top

G . (5.20c)
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Like at LO, the heavy quark contributions of fvertex
q and fmed

q have to be attributed to the

effective gluon interaction. With the LO form factor given by

fLO
N

mN
= fLO

q

 ∑
q=u,d,s

fNTq +
∑
q=c,b,t

2

27
fNTG

 , (5.21)

where fLO
q has been given in eq. (4.8), we have for the NLO EW SI cross section at leading

order in αS ,

σN =
1

π

(
mN

mχ +mN

)2 [
|fLO
N |2 + 2Re

(
fLO
N fNLO∗

N

)]
. (5.22)

6 Numerical analysis

In our numerical analysis we use parameter points that are compatible with current the-

oretical and experimental constraints. These are obtained by performing a scan in the

parameter space of the model and by checking each data set for compatibility with the con-

straints. In order to do so, the VDM model was implemented in the code ScannerS [54, 55]

which automatises the parameter scan. We require the SM-like Higgs boson (denoted by

h in the following) to have a mass of mh = 125.09 GeV [56]. With ScannerS, we check if

the minimum of the potential is the global one and if the generated points satisfy the theo-

retical constraints of boundedness from below and perturbative unitarity. We furthermore

impose the perturbativity constraint g2
χ < 4π. Furthermore, the model has to comply with

the experimental Higgs data. In the VDM model, the Higgs couplings to the SM parti-

cles are modified by a common factor given in terms of the mixing angle α, that is hence

constrained by the combined values for the signal strengths [56]. Through an interface

with HiggsBounds [57–59] we additionally check for collider bounds from LEP, Tevatron

and the LHC. We require agreement with the exclusion limits derived for the non-SM-like

Higgs boson at 95% confidence level. Among these searches the most stringent bound arises

from the search for heavy ZZ resonances [60]. Still, the bounds for the mixing angle α

derived from the measurement of the Higgs couplings are by far the most relevant. In order

to check for the constraints from the Higgs data, the Higgs decay widths and branching

ratios were calculated with sHDECAY [55],5 which includes the state-of-the-art higher-order

QCD corrections. The code sHDECAY is based on the implementation of the models in

HDECAY [61, 62].

Concerning the DM constraints, information on the DM particle from LHC searches

through the invisible width of the SM Higgs boson were taken into account [57–59]. Fur-

thermore, the DM relic abundance has been calculated with MicrOMEGAs [63–66], and

compared with the current experimental result from the Planck Collaboration [67],

(Ωh2)obs
DM = 0.1186± 0.002 . (6.1)

We do not force the DM relic abundance to be in this interval, but rather require the

calculated abundance to be equal to or smaller than the observed one. Hence, we allow

5The program sHDECAY can be downloaded from the url: http://www.itp.kit.edu/∼maggie/sHDECAY.
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the DM to not saturate the relic density and therefore define a DM fraction

fχχ =
(Ωh2)χ

(Ωh2)obs
DM

, (6.2)

where (Ωh2)χ stands for the calculated DM relic abundance of the VDM model. DM

indirect detection also provides constraints on the VDM model. The annihilation into

visible states, mainly into ZZ, W+W−, bb̄ and light quark pairs, can be measured by

Planck [67], if it manifests itself in anisotropies of the cosmic microwave background (CMB),

by Fermi-LAT [68] if it comes form the γ-ray signals in the spheroidal dwarf galaxies, and

by AMS-02 [69, 70] if it originates from e± excesses in the Milky Way. As shown in ref. [71],

the Fermi-LAT upper bound on the DM annihilations is the most stringent one. In order to

obtain the bound, we follow ref. [68] in their claim that all final states give approximately

the same upper bound on the DM annihilation cross sections. Hence we use the Fermi-

LAT bound from ref. [68] on bb̄ when mχ > mb, and on light quarks for mχ < mb. In the

comparison with the data, the DM fraction in eq. (6.2) has to be taken into account, and

an effective DM annihilation cross section is defined by

σeff
χχ = f2

χχσχχ , (6.3)

with fχχ and σχχ computed by MicrOMEGAs.

The sample was generated taking into account the experimental bounds on the DM

nucleon SI cross section at LO. The most stringent bound on this cross section is the

one from the XENON1T [72, 73] experiment. We apply the latest XENON1T upper

bounds [73] for a DM mass above 6 GeV and the combined limits from CRESST-II [74]

and CDMSlite [75] are used for lighter DM particles. Note that the experimental limits

on DM-nucleon scattering were derived by assuming that the DM candidate makes up

for all of the DM abundance. Hence, the correct quantity to be directly compared with

experimental limits is the effective DM-nucleon cross-section defined by

σeff
χN ≡ fχχσχN , (6.4)

where χN stands for the scattering VDM χ with the nucleon N , and fχχ denotes the

respective DM fraction, defined in eq. (6.2). The formula for the LO direct detection cross

section σχN in our VDM model has been given in eq. (4.10) and the NLO contributions

have been discussed in section 5. For our numerical analysis, we use the LO and NLO

results for N = p.

The ranges of the input parameters of the scan performed to generate viable parameter

sets are listed in table 1. From here on, we denote the non-SM-like of the two CP-even

Higgs bosons mhi (i = 1, 2) by mφ, the SM-like Higgs boson is called mh. Note, that in

ScannerS the scan is performed over mχ and vS instead of mχ and gχ. The corresponding

gχ values are given by gχ = mχ/vS . Only points with g2
χ ≤ 4π are retained. Note that we

vary α in the range [−π/4, π/4] to optimize the scan. This is possible due to the bound on

sinα that comes from the combined signal strength measurements of the production and

decay of the SM-like Higgs boson [56]. The remaining input parameters, gauge, lepton and
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mφ [GeV] mχ [GeV] vS [GeV] α

min 1 1 1 −π
4

max 1000 1000 107 π
4

Table 1. Input parameters for the VDM model scan, all parameters varied independently between

the given minimum and maximum values. The SM-like Higgs boson mass is set mh = 125.09 GeV

and the SM VEV v = 246.22 GeV.

quark masses, electric coupling, Weinberg angle and weak SU(2) coupling, are set to

mW = 80.398 GeV , mZ = 91.1876 GeV , sin θW = 0.4719 ,

me = 0.511 · 10−3 GeV , mµ = 0.1057 GeV , mτ = 1.777 GeV ,

mu = 0.19 MeV , md = 0.19 MeV , ms = 0.19 MeV ,

mc = 1.4 GeV , mb = 4.75 GeV , mt = 172.5 GeV .

(6.5)

For the proton mass we take

mp = 0.93827 GeV . (6.6)

6.1 Results

In the following we present the LO and NLO results for the spin-independent direct de-

tection cross section of the VDM model. We investigate the size of the NLO corrections

and their phenomenological impact. We furthermore discuss the gauge dependence of the

results and the influence of the renormalisation scheme on the NLO results. If not stated

otherwise, results are presented for the Feynman gauge, i.e. the gauge parameter ξ,6 is set

equal to one, ξ = 1. In the NLO results, the default renormalisation scheme for the mixing

angle α is the KOSY scheme, cf. subsection 3.2.

6.1.1 The SI direct detection cross section at leading order

In figure 8 we show in grey the LO results of the direct detection cross section for all points

of the VDM model that are compatible with our applied constraints, as a function of the

DM mass mχ. Note, that we also include the perturbativity limit on gχ, g2
χ < 4π. The

result is compared to the Xenon limit shown in blue. Note that, in order to be able to

compare with the Xenon limit, we applied the correction factor fχχ to the LO and NLO

direct detection cross section, cf. eq. (6.4). Since the compatibility with the Xenon limit

is already included in the selection of valid parameter points, all cross section values lie

below the blue line (modulo the size of the grey points). As can be inferred from figure 8,

the LO cross section can be substantially smaller than the present sensitivity of the Xenon

experiment, by more than 10 orders of magnitude.

6.1.2 Results for mφ < mt

We now investigate the dependence of the LO and NLO direct detection cross section

on gχ and the size of the NLO corrections for the parameter sets featuring a non-SM-

like Higgs boson with a mass mφ < mt. For these, the approximate treatment of the

6We commonly denote by ξ the gauge parameter for all gauge bosons.
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Figure 8. Grey: The tree-level SI cross section σLO versus the DM mass mχ in GeV for the

complete parameter sample compatible with the applied constraints. The blue line denotes the

Xenon Limit.
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Figure 9. Spin-independent direct detection LO cross section (left) and NLO cross section (right)

versus the mass mφ for the parameter sample passing all constraints and mφ < mt. The color code

denotes the size of the dark gauge coupling gχ.

NLO box contributions discussed in subsection 5.3 can be applied. In figure 9 we display

for all parameter sets passing our constraints that additionally feature mφ < mt the LO

direct detection cross section in the left panel and the NLO result in the right panel, as

a function of mφ. The color code quantifies the coupling gχ ≤
√

4π. Note, that here and

in the following we do not apply the correction factor fχχ eq. (6.2) on the direct detection

limit, as long as we do not directly compare with the Xenon limit. This is why the LO

cross section in figure 9 is larger than in figure 8.

Both the LO and the NLO contribution to the SI direct detection cross section are pro-

portional to fLO
q and therefore proportional to gχ, sin 2α and (m2

h1
−m2

h2
) ≡ (m2

h −m2
φ).

This behaviour is reflected in figure 9. We observe that the LO cross section increases

with gχ, more specifically g2
χ (yellow points) and drops for mφ = mh = 125.09 GeV. The

NLO corrections on the other hand increase with g3
χ. The reason is that, as we explicitly
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Figure 10. K-factor versus the Higgs mass mφ (left) and σLO (right) for the parameter sample

passing all constraints and mφ < mt. The color code denotes the size of the dark gauge coupling gχ.

verified, the NLO corrections are dominated by the vertex corrections. The vertex correc-

tions are proportional to g2
χ, so that the NLO contribution to the cross section scales as

2 Re(fLO
q fvertex∗

q ) ∝ g3
χ, in contrast to the LO contribution that is proportional to g2

χ. In

total the K-factor, i.e. the ratio between NLO and LO cross section, therefore increases

with gχ.

Being proportional to fLO
q the NLO corrected cross section also drops for mφ = mh,

so that the sensitivity of the direct detection experiment is not increased after inclusion

of the NLO corrections; the blind spots remain also at NLO. In our scan we furthermore

did not find any parameter points where a specific parameter combination leads to an

accidental suppression at LO that is removed at NLO. There is a further blind spot when

α = 0. However, in this case the SM-like Higgs boson has exactly SM-like couplings and

the new scalar decouples from all SM particles except for the coupling with the SM-like

Higgs boson. In this scenario the SM-like Higgs decouples from the vector dark matter

particle, and, depending on the mass of the second scalar and its coupling strength with

the SM-like Higgs boson, we may end up with two dark matter candidates with the second

scalar being metastable. The study of such a scenario is beyond the scope of this paper

and we do not consider this case further here.

The K-factor is depicted in figure 10, as a function of mφ (left) and σLO (right). The

colour code indicates the size of gχ. The K-factor is mostly positive and the bulk of K-

facture values ranges between 1 and about 2.3. As mentioned above, the K-factor increases

with gχ, as can also be inferred from the figure, in particular from figure 10 (right).

In this and all other plots, we excluded points with mφ ≈ mh and K-factors where

|K| > 2.5. We found that for mφ ≈ mh the interference effects between the h and φ

contributions, that become relevant here, largely increase the (dominant) vertex contri-

bution fvertex
q to the effective NLO form factor. It exceeds by far the LO form factor

fLO
q . Depending on the sign of fvertex

q , the NLO cross section, which is proportional to

2 Re(fLO
q fvertex∗

q ), is largely increased or suppressed, inducing for large negative NLO am-

plitudes negative NLO cross sections. In these regions, the NLO results are therefore no
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Figure 11. K-factor as function of the LO direct detection cross section with the color code

indicating the size of sin2 2α (left) and mχ (right).

longer reliable. Two-loop contributions might lead to a better perturbative convergence,

but are beyond the scope of this paper. We deliberately did not take into account one-loop

squared terms to remove the negative cross sections. Such an approach would only include

parts of the two-loop contributions. Whether or not they approximate the total two-loop

results well enough can only be judged after performing the complete two-loop calculation.

This is why we chose the conservative approach to exclude these points from our analysis.

In figure 11, we show the K-factor as function of σLO, but with the colour code

indicating the size of sin2 2α (left) and mχ right. There is no clear correlation between the

K-factor and sin2 2α or mχ. These plots furthermore show, that there is no correlation

between the maximum size of σLO and mχ or sin2 2α, while the maximum σLO values

require large gχ values, cf. figure 10 (right).

6.1.3 Results for mφ > mt

We now turn to the parameter region of our sample of valid points where the approximation

described in subsection 5.3 is a priori not valid. We cannot judge the goodness of the

approximation in this parameter region without doing the full two-loop calculation which

is beyond the scope of this paper. We can check, however, if we see some unusual behaviour

compared to the results for parameter sets with mφ < mt, where the approximation can

be applied.

Figure 12 shows the K-factor as a function of the LO SI direct detection cross section.

The size of gχ is indicated by the color code. We only take into account parameter samples

compatible with all constraints and where mφ > mt. As already observed and discussed for

the parameter sample with mφ < mt, also here the K-factor increases with gχ. Overall, the

bulk of points reaches larger K-factors than for mφ < mt but remains below 2.5. So, the

behaviour of the K-factor does not substantially differ from the results for mφ < mt. The

comparison of the approximate and exact result in ref. [13] showed that the difference in

the box contribution between the two results does not exceed one order of magnitude for a
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Figure 12. K-factor versus the LO SI cross section. The color code denotes the size of the dark

gauge coupling gχ for the parameter sample passing all constraints and mφ > mt.

pseudoscalar mediator with mass 1 TeV7 and remains small even for scalar mediator masses

up to 1 TeV (cf. figure 4 in ref. [13]). Together with the fact that the box contribution

makes up only for a small part of the NLO SI direct detection cross section,8 we conclude

that our approximate NLO results for parameter sets with larger mediator masses should

also be applicable in this parameter region.

6.1.4 Gauge dependence

As has been discussed in ref. [34] for the 2HDM and in ref. [38] for the N2HDM the

renormalisation of the mixing angle α in the KOSY scheme leads to gauge parameter

dependent results. We therefore check here the gauge dependence of our NLO results by

performing the calculation in the general Rξ gauge and comparing it with our default result

in the Feynman gauge ξ = 1.

We introduce the relative gauge dependence ∆ξσ
NLO, defined as

∆ξσ
NLO =

(
σNLO

∣∣
ξ
− σNLO

∣∣
ξ=1

)
/σNLO

∣∣
ξ=1

, (6.7)

where σNLO
∣∣
ξ

denotes the NLO SI direct detection cross section calculated in the general

Rξ gauge and σNLO
∣∣
ξ=1

the result in the Feynman gauge. In figure 13 we show ∆ξσ
NLO as a

function of the gauge parameter ξ, for two sample parameter points of our valid parameter

set, called point 5 and 6, respectively. They are given by the following input parameters.

For the parameter point 5 we have

Point 5: mφ = 283.44 GeV , mχ = 914.76 GeV ,

gχ = 7.67 , α = 0.07312 .
(6.8)

7We estimate this by extrapolating figure 4 (left) in ref. [13] to 1 TeV.
8We explicitly verified that the box form factor fbox

q remains below the vertex correction form factor

fvertex
q . In particular, for K-factors above 1, the box form factor remains more than two orders of magnitude

below the vertex form factor.
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Figure 13. Relative gauge dependence ∆ξσ versus the gauge parameter ξ for parameter point

number 5 (left) and 6 (right). See text, for their definitions.

The parameter point 6 is given by

Point 6: mφ = 119.84 GeV , mχ = 766.82 GeV ,

gχ = 1.555 , α = 0.425943 .
(6.9)

As can be inferred from figure 13, we clearly see a gauge dependence of the NLO results.

The relative gauge dependence is, however, small with values below the few per cent level

for a rather large range of ξ variation. Note also, that a gauge parameter dependence a

priori is no problem as long as it is made sure that the explicit value of the gauge parameter

is accounted for when interpreting the results.

6.1.5 Renormalisation scheme dependence

We now investigate the influence of the renormalisation scheme and scale on the NLO

result. For this, we show in figure 14 the K-factor for the whole data sample passing our

constraints for three different renormalisation schemes of the mixing angle α as a function

of the LO cross section. The chosen schemes have been described in subsection 3.2 and

are the KOSY scheme (yellow points), the process-dependent scheme (green) and the MS

scheme (violet). The scale applied in the MS scheme is µ0 = 1 GeV. The KOSY scheme

has been shown to lead to a gauge-parameter dependent definition of the counterterm

δα [34, 38]. This is also the case for the MS scheme. As can be inferred from the plot, the

MS scheme additionally leads to unnaturally large NLO corrections with K-factor values

up to about 108 for our data sample (not shown in the plot). This has been known already

from previous investigations in the 2HDM [34] and N2HDM [38]. The process-dependent

scheme has the virtue of implying a manifestly gauge-independent definition of the mixing

angle counterterm. However, also here the NLO corrections are unacceptably large with

values up to about 109, so that also this scheme turns out to be unsuitable for practical use.

This behaviour has also been observed in our previous works [34, 38]. We therefore conclude

that the KOSY scheme should be used in the computation of the NLO corrections. The

fact that it is gauge dependent is no problem as long as the chosen gauge is clearly stated

when presenting results. Moreover, by applying a pinched scheme, the gauge dependence

can be avoided, cf. ref. [34]. This is left for future work.
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passing all constraints and for three different renormalisation schemes of α: the KOSY scheme

(yellow), the process-dependent scheme (green), the MS scheme (violet).

The uncertainty due to missing higher-order corrections can be estimated by varying

the renormalisation scheme or by varying the renormalisation scale. The comparison of

the KOSY with the other two renormalisation schemes makes no sense as the latter lead

to unacceptably large corrections. The KOSY scheme does not allow us to vary the renor-

malisation scale, so that we cannot provide an estimate of the uncertainty due to missing

higher order corrections. We conclude with the remark that the variation of the renormal-

isation scale between 1/2 and 2 times the scale µ0 in the MS scheme leads to a variation

of the NLO cross section of about 16% — in contrast to the unphysically large corrections

that are to be traced back to the blowing-up of the MS counterterm of α.

6.1.6 Phenomenological impact of the NLO corrections on the xenon limit

We now turn to the discussion of the phenomenological impact of our NLO results. In

figure 15 (left) we show the LO direct detection cross section (blue points) and the NLO

result (orange) compared to the Xenon limit (blue-dashed), as a function of the DM particle

mass. For the consistent comparison with the Xenon limit we applied the correction factor

fχχ (eq. (6.4)) to the LO and NLO cross section in both plots of figure 15. In the left figure

we plot all parameter points where the LO cross section does not exceed the Xenon limit

but the NLO result does. This plot shows that for a sizeable number of parameter points,

the compatibility with the experimental constraints would not hold at NLO any more.

This demonstrates that the NLO corrections are important and need to be accounted for

in order to make reliable predictions about the viable parameter space of the VDM model.

In the right plot we display the same quantities, but only for parameter points of our

data sample where
|σXe(mχ)− σLO|

σLO
> 1 (6.10)

and
|σXe(mχ)− σNLO|

σNLO
< 1 . (6.11)
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Figure 15. The SI cross section including the correction factor fχχ at LO (blue) and NLO (orange)

compared to the Xenon limit (blue-dashed) versus the DM mass mχ. The definition of the parameter

sample included in the left and right plots is described in the text.

This implies we only consider parameter points where the LO cross section is much smaller

than the Xenon limit, but the NLO cross section is of the order of the Xenon limit. We

learn from this figure that although LO results might suggest that the Xenon experiment

is not sensitive to the model, this statement does not hold any more when NLO corrections

are taken into account. These results confirm the importance of the NLO corrections when

interpreting the data.

7 Conclusions

In this paper, we investigated a minimal model with a VDM particle. We computed

the NLO corrections to the direct detection cross section for the scattering of the VDM

particle off a nucleon. We developed the renormalisation of the model, proposing several

renormalisation schemes for the mixing angle α of the two physical scalars of the model.

We computed the leading corrections, including relevant two-loop box contributions to the

effective gluon interaction in the heavy quark approximation. With the box contributions to

the NLO cross section being two orders of magnitude below the leading vertex corrections,

we estimated the error induced by the approximation to be small. Interference effects of the

two scalar particles that become important for degenerate mass values on the other hand,

were found to be large and require further investigations beyond the scope of this paper,

namely the computation of the complete two-loop contributions. Outside this region, the

perturbative series is well-behaved and K-factors of up to about 2.5 were found.

We further investigated the impact of the chosen renormalisation scheme for α. While

the process-dependent renormalisation of α is manifestly gauge-parameter independent,

it was found to lead to unphysically large corrections. This did not improve by choos-

ing the gauge-parameter dependent MS scheme. A renormalisation scheme exploiting the

OS conditions of the scalar fields on the other hand, leads to moderate K-factors, while

being manifestly gauge-parameter dependent. For the proper interpretation of the data,

therefore, the choice of the gauge parameter has to be specified here.
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We found that the NLO corrections can either enhance or suppress the cross section.

With K-factors of up to about 2.5, they are important for the correct interpretation of

the viability of the VDM model based on the experimental limits on the direct detection

cross section. The NLO corrections can increase the LO results to values where the Xenon

experiment becomes sensitive to the model, or to values where the model is even excluded

due to cross sections above the Xenon limit. In case of suppression, parameter points that

might be rejected at LO may render the model viable when NLO corrections are included.

The next steps would be to investigate in greater detail the interesting region of de-

generate scalar masses and study its implication on phenomenology in order to further be

able to delineate the viability of this simple SM extension in providing a VDM candidate.
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A Nuclear form factors

We here present the numerical values for the nuclear form factors defined in equation (4.4).

The values of the form factors for light quarks are taken from micrOmegas [76]

fpTu = 0.01513 , fpTd = 0.0.0191 , fpTs = 0.0447 , (A.1a)

fnTu = 0.0110 , fnTd = 0.0273 , fnTs = 0.0447 , (A.1b)

which can be related to the gluon form factors as

fpTG = 1−
∑

q=u,d,s

fpTq , fnTG = 1−
∑

q=u,d,s

fnTq . (A.2)

The needed second momenta in equation (4.4) are defined at the scale µ = mZ by using

the CTEQ parton distribution functions [77],

up(2) = 0.22 , ūp(2) = 0.034 , (A.3a)

dp(2) = 0.11 , d̄p(2) = 0.036 , (A.3b)

sp(2) = 0.026 , s̄p(2) = 0.026 , (A.3c)

cp(2) = 0.019 , c̄p(2) = 0.019 , (A.3d)

bp(2) = 0.012 , b̄p(2) = 0.012 , (A.3e)

where the respective second momenta for the neutron can be obtained by interchanging

up- and down-quark values.
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B Feynman rules

In the following we list the Feynman rules needed to perform the one-loop calculation. The

Feynman rules are derived by using the program package SARAH [23–26]. All momentum

conventions are adopted from the FeynArts conventions. The trilinear Higgs couplings read

hi

χ

χ

= i2gχmχRα,i2 ,
hi

Z

Z

= i
gm2

Z

mW
Rα,1i , (B.1a)

hi

W

W

= igmWRα,1i ,
hi

F

F

= i
gmF

2mW
Rα,1i , (B.1b)

hi

G0

G0

=−i
gχm

2
hi

mχ
Rα,i1 ,

hi

Gχ

Gχ

=−i
gχm

2
hi

mχ
Rα,i2 , (B.1c)

hi

Gχ

χ

=−gχ(pGχ−phi)Rα,1i , hi

ηχ

ηχ

= igχmχRα,i2ξχ , (B.1d)

hi

hj

hk

=

i [κv (Rα,1iRα,2jRα,2k+Rα,2iRα,1jRα,2k+Rα,2iRα,2jRα,1k)

+κvS (Rα,2iRα,1jRα,1k+Rα,1iRα,2jRα,1k+Rα,1iRα,1jRα,2k)

+6λHv (Rα,1iRα,1jRα,1k)+6λSvS (Rα,2iRα,2jRα,2k)] .

(B.1e)

The quartic couplings yield

χ

χ

Gχ

Gχ = i2g2
χgµν ,

χ

χ

hk

hl = i2g2
χgµνRα,k2Rα,l2 , (B.2a)

Gχ

Gχ

hk

hl =

i
ggχcαsα
2mWmχ

Rα,k1Rα,l1
(
m2
h2
−m2

h1

)
− i

g2
χ

m2
χ

Rα,k2Rα,l2
(
m2
h2
c2
α +m2

h1
s2
α

)
.

(B.2b)
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