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Abstract: The quantitative investigation of droplet laden turbulent flows at high temperature
conditions is of great importance for numerous applications. In this study, an experiment was set up
for investigation of evaporating urea–water sprays, which are relevant for the effective reduction of
nitrogen oxide emissions of diesel engines using Selective Catalytic Reduction. A shadowgraphy
setup is pushed to its limits in order to detect droplet diameters as small as 4 µm and droplet velocities
up to 250 m s−1. In addition, the operating conditions of the gaseous flow of up to 873 K and 0.6 MPa
are an additional challenge. Due to the high temperature environment, image quality is prone to
be compromised by Schlieren effects and astigmatism phenomena. A water-cooled window and
an astigmatism correction device are installed in order to correct these problems. The results to be
presented include characteristics of the turbulent gas flow as well as detailed spray characteristics
at different positions downstream of the atomiser. It is demonstrated that the velocity of the gas
can be approximated by the velocity of the smallest detectable droplets with sufficient accuracy.
Furthermore, the statistical analysis of velocity fluctuations provides data for predicting the turbulent
dispersion of the droplets.

Keywords: shadowgraphy; droplet sizing; particle tracking velocimetry; turbulent dispersion;
astigmatism; evaporation; selective catalytic reduction

1. Introduction

The characterization of sprays is of great importance for many technical applications.
Prominent examples are fuel sprays in automotive and aircraft engines or spray drying in
industrial processes. The knowledge of droplet size or evaporation rates are essential for the operation
of such systems [1]. In this context, spray modelling and numerical predictions are important
tools for the design process. The goal of numerous experimental investigations is the tuning of
model parameters of semi-empirical submodels or validating submodels and overall simulations [2].
In conclusion, an effective comparison of spray measurements and numerical simulations is the key
for a deeper understanding of sprays.

Essential processes like atomisation, spray structure, penetration and evaporation may be affected
significantly by temperature, pressure and flow velocity of the ambient gas. Hence, to perform the
experimental investigations under typical operating conditions is of major importance. Since in most
applications not only the droplet size but also the droplet velocity is of interest, an adequate and
established measurement technique is the Phase Doppler Anemometry (PDA). A drawback of this
technique is that beam steering may compromise measurements at high temperature conditions [2],
which may limit the achievable accuracy or impede the task to obtain quantitative data completely.
Nevertheless, successful measurements at technical relevant conditions were published [3].
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An alternative to interferometric techniques are imaging diagnostics. In this context,
the light sheet configuration in combination with structured illumination has become a prominent
technique for the analysis of spray systems in recent years [4,5]. A specific advantage of this
configuration is the well-defined measurement volume due to a low contribution of out-of-focus light.
However, the line-of-sight arrangement, with camera and illumination on the same optical axis,
is known to be well-suited for recording the droplet size [6]. This configuration is often referred to
as shadowgraphy and is proven to be a robust technique to obtain droplet size and velocity [7,8].
High quality raw images are as important as a precise post-processing routine and a calibration
of the optical setup in order to obtain quantitative droplet data. In several studies, a strong
agreement to PDA results is demonstrated, which emphasizes the capabilities of direct imaging
techniques [9–11]. In addition, imaging techniques can be extended for detecting the size and shape of
nonspherical droplets, which is of particular interest for the investigation of the primary breakup close
to the atomiser.

The motivation for a high spatial resolution of the imaging system can be the investigation of
microscopic spray structures or the detection of small droplets with a size in the range of 10 µm
with sufficient accuracy. A long working distance is favourable for the application of microscopic
imaging to spray measurements in order to minimize contamination of optical components and enable
the investigation inside pressurised flow channels. By an appropriate microscopic imaging setup,
a resolution in the range of 1 µm per pixel may be achieved, which has been reported in literature
as a powerful tool for spray diagnostics [12–14]. At this point, it should be noted that such imaging
systems may be applied close to their diffraction limit. Hence, a further increase of the resolution is
only sensible by a reduction of the wavelength λ or an increase of the numerical aperture NA [15].
The latter was successfully applied by Reddemann et al. [16] at the cost of a strong reduction of the
working distance.

An imperfect alignment of the main optical components, camera and illumination, can be
tolerated for direct imaging techniques. This is an advantage for conducting measurements under
high temperature conditions in comparison to PDA, where beam steering can compromise the
data rate considerably. The acquisition of raw images appropriate for post-processing can be
still challenging under realistic operation conditions due to density and temperature gradients
within the gaseous phase. The resulting refractive index fluctuations may lead to significantly
degraded images [14,17,18]. Hence, the image quality may not be sufficient to extract droplet size
distributions and velocity profiles. Nevertheless, macroscopic spray characteristics have been recorded
at microscopic level, like, for instance, spray penetration rate and spreading angle in the work of
Manin et al. [19] or the impressive observation of single fuel droplets transitioning to a supercritical
fluid by Crua et al. [20].

The main goal of the work to be presented in this paper is the development of a methodology
for analysing evaporation characteristics of urea–water sprays under realistic flow conditions.
The evaporation behaviour of urea–water solution (UWS) is an important process of the selective
catalytic reduction (SCR). SCR is an established technology for reducing nitrogen oxides (NOx)
emissions of diesel engines. It is capable of meeting recent and future emission regulations. In addition
to a DeNOx efficiency of 90% and more, the technology offers the advantage of a very low fuel
consumption [21]. Challenges involved in the design of an SCR system are the avoidance of deposits,
especially melamine complexes, while ensuring optimal conversion rates of NOx emissions in the
catalyst [22]. Since both processes are highly dependent on spray and evaporation characteristics,
experimental validation data are indispensable for the calibration of numerical simulations of
urea–water sprays and finally the design process of the SCR system.

Various experimental methodologies have been presented in the literature, which focus on
urea–water spray characterization. Most of these studies investigate a specific UWS injection setup,
which is closely linked to the actual SCR application. For instance, commercial 3-hole injectors
are frequently used [11,23–26], the spray–wall interaction of UWS droplets is investigated [27] or
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the optimal mixer location downstream of the atomiser is evaluated [23]. The overall process of
preparation of ammonia from UWS, including deposit formation, is reviewed in detail by Lauer [28].
In contrast to most studies, the experimental methodology to be presented is based on a generic test
case, since the long-term objective is more fundamental: It is to provide experimental validation data,
which can be used to study evaporating urea–water sprays under realistic thermodynamic conditions.
A generic test case is advantageous for validating a numerical methodology, since other processes, like
droplet–wall interaction and deposit formation, are excluded in order to solely focus on the modelling
of spray evaporation. Furthermore, a generic test case provides well-defined boundary conditions,
which enables a straightforward setup of numerical simulations.

Obviously, the proper diagnostics of the droplet size and velocity distribution is a vital
capability of the measurement technique to be presented. This enables an effective comparison to
numerical predictions. A well proven shadowgraphy approach, which has been developed previously
by Müller et al. and Gepperth et al. [8,29], is extended to the microscopic level in order to enable the
detection of droplet diameters as small as 4 µm with high accuracy. The analysis of the evaporation
characteristics requires high temperature conditions of the hot gas, which may be a major obstacle
to obtain raw images with sufficient quality. Hence, a water-cooled window and an astigmatism
correction device are adapted to the optical path in order to suppress image degradation due to
refractive index fluctuations and astigmatism. Consequently, sensible quantitative results of the target
spray parameters can be retrieved.

The results to be presented will focus on the capabilities of the diagnostics for deriving vital
validation data. First of all, realistic droplet starting conditions need to be selected in a numerical
simulation, preferably close to the atomiser nozzle. Therefore, detailed spray characteristics are
captured at the first measurement position downstream of the atomiser. Once the droplets are correctly
initialised in the simulation, the interaction with the gas flow is the key aspect for predicting droplet
trajectories and evaporation. In particular, the relative velocity of droplets to the gas flow is of
importance. This velocity is also called slip velocity and has a strong influence on droplet kinematics,
secondary atomisation and evaporation [2]. The direct measurement or estimation of the gas velocity
is especially challenging in the near nozzle region, where the spray affects the velocity field of the
gas phase considerably. Moreover, the simultaneous measurement of droplet size in addition to
droplet and gas velocity is necessary in order to deliver detailed validation data for turbulent spray
dispersion models [30].

The combination of Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF) is
a well-known planar optical diagnostic technique for measuring droplet and gas velocity. However,
successful phase discrimination and simultaneous measurement of droplet size are not straightforward,
which may cause considerable measurement uncertainty [30]. An alternative way to realise the
simultaneous measurement of droplet and gas velocity is the utilisation of the smallest detectable
droplets as seeding particles of the gas flow. This methodology was successfully applied with the
PDA for detecting evaporating [31] and burning droplets [32]. In these studies, droplets of a size
smaller than 3-5 µm were utilised to derive the gas velocity. The present diagnostics also offers the
possibility to detect droplets of such small size, which is a distinctive advantage of microscopic imaging.
An analytical and numerical study is presented, demonstrating that the average velocity of the gas can
be approximated by the velocity of the smallest detectable droplets with sufficient accuracy.

Furthermore, the discussion is extended to the statistical analysis of velocity fluctuations.
High-spatial-resolution PIV is presented in literature as a promising technique for investigation
of turbulent fluctuations in dispersed multiphase flows [33]. To the authors’ knowledge, however,
size-dependent information about the response of droplets to turbulent velocity fluctuations of the gas
phase has not been retrieved using a shadowgraphy approach. In this study, it is demonstrated that
information about the underlying turbulent fluctuations can be estimated with reasonable accuracy.
Most importantly, the results can be utilised for validating the turbulent spray dispersion, since the
droplet size is determined with high accuracy. Finally, it is shown that microscopic imaging may



Appl. Sci. 2019, 9, 4403 4 of 26

provide experimental validation data at different positions downstream of the atomiser, which can
be used to study the evaporation characteristics of UWS under technically relevant flow conditions.
To the authors’ knowledge, similar measurements at such flow conditions and at comparable temporal
and spatial resolution are not available.

2. Materials and Methods

A test rig was set up at the Institute of Thermal Turbomachinery at the Karlsruhe Institute of
Technology for the investigation of evaporating urea–water sprays at realistic exhaust gas conditions
of a diesel engine. A twin-fluid atomiser was integrated into a generic pipe flow. The rig was designed
for operation at elevated temperature and pressure conditions in order to enable the investigation
of pre- and post-turbo injection of UWS. The methodology to obtain the desired spray parameters is
based on a high–resolution imaging system, which has been developed to handle such challenging
operating conditions. The detailed description of the test section and the diagnostics as well as the
post-processing routine will be discussed in the following subsections.

2.1. Test Section

The test section consists of a pipe flow and an atomiser, which is mounted on the centre axis.
This setup is illustrated in Figure 1. The simple geometrical configuration is chosen in order to minimize
secondary flow phenomena and to impose well-defined boundary conditions for numerical predictions.
The hot gas mass flow of up to 1.5 kg s−1 is provided by multiple rotary–screw compressors. By means
of a natural gas fired heat exchanger, non-vitiated, preheated air at a constant elevated pressure is
delivered to the test section.

hot gas

cold gas

position 0

position 1

position 2

position 3

(x=50 mm) (x=270 mm)

(x=225 mm) (x=495 mm)
Thg, phg

UWS Tcg, pcg

atomiser
x

Figure 1. Test section with instrumentation and measurement positions.

The operating condition of the hot gas flow is defined by temperature Thg, pressure phg and
mass flow. The latter is measured by two orifice plates located upstream of the test section and is
controlled to adjust a certain bulk flow velocity. Temperature and pressure are controlled at a definite
distance upstream of the atomiser nozzle. It has to be mentioned that the mechanical design of the
test section limits the operating range to a temperature of 873 K and an absolute pressure of 0.6 MPa.
Still, it can be concluded that the exhaust gas conditions of diesel engines can be reflected over a wide
range with this experimental setup. The operating conditions of the initial results presented in this
paper will be elucidated in Section 3.

A twin-fluid atomiser with an internal mixing chamber (CALDYN Apparatebau GmbH, Ettlingen,
Germany) was mounted at the centre, coaxial to the hot air flow. The most important advantage in
comparison to a simple pressure atomiser is a sharp spray angle and at the same time a very high
quality of atomisation. The resulting spray is defined by a very narrow drop size distribution and
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a Sauter Mean Diameter (SMD) of less than 20 µm. A snapshot of the spray in the near nozzle region is
shown in Figure 2 in order to get a first impression. It should be noted that no flow around the atomiser
was present. Hence, the illustrated spray represents the characteristics of the atomiser operated at
quiescent ambient conditions. In particular, the narrow spray angle of approximately 15◦ is a very
important feature, since the wall contact of droplets can be excluded over a long distance downstream
of the atomiser. In addition, secondary atomisation can be assumed to be completed at a very short
distance downstream of the atomiser nozzle. Hence, measurements close to the atomiser are feasible
for deriving evaporation characteristics.

50 mm

Figure 2. Snapshot of the spray in the near nozzle region at quiescent ambient conditions and
temperature of the ambient gas of 293 K.

The piping of the test rig consists of tube elements and elements equipped with windows
providing optical access. These modules are interchangeable in order to investigate the spray
characteristics at different distances x downstream of the atomiser. Possible measurement positions
are depicted in Figure 1. The operating condition of the atomiser is defined by the mass flow of cold
atomising air and the volume flow of UWS, which are mixed directly upstream of the atomiser exit.
The temperature of the cold air Tcg is measured directly upstream of the mixing chamber. The final
temperature of the mixture is determined in order to estimate the initial temperature of droplets Td0 at
the atomiser exit.

2.2. Diagnostics

The basis of the diagnostics is an efficient and reliable shadowgraphy setup, which has been
successfully used in numerous other studies of the primary breakup of a prefilming airblast
atomiser [8,29,34]. The optical schematic is given in Figure 3. A 14-bit double frame camera with
a resolution of 1600x1200 pixel (LaVision GmbH, Göttingen, Germany) was equipped with a long
distance microscope (Questar QM-100, New Hope, PA, USA) in order to enable the detection of
very small droplets. For background illumination, a dual cavity Nd:YAG laser was positioned at the
opposite site of the test section. A diffuser lens expanded the laser beam and a laser dye was utilised
to absorb the coherent laser light and emit incoherent light at a slightly shifted wavelength.

λ = 587 nm λ = 532 nm

Double frame camera

Long distance microscope

Diffuser Nd:YAG laser

Figure 3. Optical setup for Particle Tracking Velocimetry.
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Incoherent light is not only important to avoid unwanted effects like laser speckles, but it is
also necessary to suppress an interference pattern generated by the droplets themselves. The latter
argument becomes vital when using a long distance microscope, since only a very small part of the
off-axis light is collected by the camera. An additional diffusing screen was mounted between the test
section and the diffuser to further decrease the spatial coherence and to suppress unwanted diffraction
effects, which can impede the detection of the droplet size. The most important advantages of the laser
illumination are no chromatic aberrations and the prevention of motion blur of very rapid moving
droplets due to an exposure time of approximately 10 ns.

The final setup of the optical components was tuned to achieve the highest spatial resolution at
sufficient contrast. In this context, the limiting factor of the collected light intensity is not the capability
of the laser, but the intensity level within the diffuser in order to maintain a tolerable decay time of the
laser dye. Finally, a spatial resolution of 0.75 µm/pixel could be achieved. An exemplary raw snapshot
of the spray at an ambient temperature of 293 K is presented in Figure 4a. The shape of the droplets in
the focal plane can be clearly recognised. However, blurry droplets or even rings are also captured,
which represent droplets at different distances out of the focal plane. This implies that a measurement
volume is present, which includes droplets located at different distances away from the focal plane.
These characteristics have to be taken into account during image processing.

2.2.1. Design of the Optical Access

Further tuning of the optical setup is necessary, if the measurement technique is to be applied
to high temperature and pressure conditions in order to obtain raw images of sufficient quality
for post-processing. The first effect, which compromises the image quality when increasing the
temperature level is a high percentage of completely blurred images like the one shown in Figure 4b.
Obviously, the drastic image degradation will be a problem for the extraction of quantitative
droplet data. Even though few acceptable images can be obtained at intermediate temperature,
an appropriate counter measure is required, since it is crucial to evaluate a sufficient number of
droplets to ensure statistical significance. This argument is supported by the fact that storage capacity
limits the tolerable amount of recorded images.

(a) (b)
Figure 4. Exemplary raw image at a distance from the atomiser of x = 50 mm and at a hot gas
temperature of (a) Thg = 293 K and (b) Thg = 773 K.

The cause of the image degradation are density gradients between the measurement volume
and the camera. In particular, the temperature difference between the hot gas in the test section
and the ambient air in the laboratory was found to be a major source of this problem. As a remedy,
an adjustment to the optical access module has been introduced to ensure well-defined temperature
boundary conditions at this interface. The design of the optical access module is illustrated in Figure 5.
It consists of two quartz windows, which are separated by a water cooling module. A constant water
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volume flow is applied to keep the modules’ temperature at the outlet lower than 300 K while the
hot gas reaches a temperature of up to 873 K. The safe operation of this system is ensured by directly
connecting the water flow to the pressure of the hot gas. Hence, the pressure difference over the inner
window was as low as 0.01 MPa, and the major stress due to the pressure difference to the ambience is
imposed on the thick outer window.

water cooling
module

astigmatism
correction glass plate

camera

z
y

x
y

Figure 5. Enhanced optical access module to adapt the measurement technique to high temperature
conditions of the gas phase.

(a) (b)
Figure 6. Exemplary raw image at Thg = 773 K (a) using only the water-cooled optical access module
and (b) using the water-cooled optical access module and the astigmatism correction plate.

Air cooling was discarded since water cooling offers several advantages. Besides the higher heat
capacity of water, the similar refractive index of water and quartz glass is advantageous. Additionally,
at high hot gas temperatures, the strong absorption of infrared light by water becomes vital. By this
means, the heat transfer to the ambience will be reduced and the Schlieren effect will be minimised.
As a result, the quality of the recorded raw images is considerably improved, which is exemplarily
shown in Figure 6a.
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2.2.2. Compensation of Astigmatism

The raw image shown in Figure 6a features another imaging problem to cope with. The shape
of the droplets is frequently distorted in two characteristic directions, which are perpendicular
to each other. Strongly distorted droplet images even seem like they occur in pairs of two.
Furthermore, no droplet is imaged as sharp as for a hot gas temperature of 293 K and very small
droplets in the range of 5 µm in diameter are not visible. The described imaging error is caused by
an astigmatism phenomenon. It implies that no distinctive focal point is present in the optical path.
This phenomenon can be exploited to determine the position of droplets in the direction perpendicular
to the image plane. This way, all three components of the velocity field can derived using a single
camera [35]. However, one major goal of this study is the detection of the droplet diameter with high
accuracy, which is severely compromised by the astigmatism phenomenon.

One reason for the astigmatism may be a misalignment of the optical access module with respect
to the camera due to thermal expansion. However, exact alignment of camera and windows at
elevated temperature did not improve the situation. Hence, it was studied whether an inhomogeneous
thermal expansion of the inner window may be responsible. A plausible deformation of this window,
which may result from the thermal load of the hot gas flow at elevated temperatures, is schematically
illustrated in Figure 7. An assumed thermal expansion at the centre of the rectangular glass window
will result in a curvature, which is dependent on the spatial direction.

Hence, the image of a droplet is distorted depending on the distance of the droplet from the
theoretical focal plane of the imaging system. This implies that a droplet can be imaged sharp in one
direction while being completely out of focus in another direction. In summary, the inner window
acts at elevated temperatures like a lens with an aberration, which causes the visible astigmatism
phenomenon. Furthermore, the optical axis of the camera is not positioned at the centre of the window,
which may enhance this effect. It is important to emphasize that the astigmatism phenomenon only
appears at elevated temperature levels and that it is present, no matter whether the water cooling
module is used or not.

Original:

x
y

z
y

Image: z
x

Figure 7. Schematic shape of the inner glass window of the optical access module at elevated
temperature and its astigmatism effect on droplet images at the resulting two focal lines and the
so-called circle of least confusion.

Since it is very difficult to eliminate the root cause of the problem, an astigmatism correction
plate was placed between the camera and the test section. A rotation of the correction glass plate,
as depicted in Figure 5, induced an additional astigmatism, which in turn compensated the unwanted
astigmatism caused by the inner window. An adjustment in two angular directions was performed
in order to properly implement the correction of the astigmatism. This was required to ensure that
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the rig had reached a stable temperature level prior to the fine adjustment of the correction device.
An exemplary raw image after the application of the astigmatism correction is shown in Figure 6b.
Obviously, no astigmatism is present and the image is generally much sharper, which facilitates the
detection of very small droplets. Hence, it was possible to acquire raw images of sufficient quality for
post-processing. The influence of a pressure difference across the outer window of up to 0.5 MPa was
investigated as well. It was found that it has no direct influence on the quality of recorded images,
but leads to an amplification of the astigmatism effect due to an increased heat transfer from the hot
gas flow to the window assembly.

2.3. Post-Processing and Calibration

The processing of images is performed by means of a MATLAB R© (R2017b, The MathWorks,
Inc.) routine that has previously been developed at the institute [8,36]. This post-processing routine
was successfully used for multiple experiments in the past [29,37]. The first step of the routine is the
separation of droplets from the background by means of an intensity threshold. This threshold is
dynamically set to 80% of the median value of the intensity distribution of each individual image.
In the first place, the choice of the threshold level is empirical. However, it has been proven to be
a robust criterion for various test images and different experimental setups. In general, the choice
of the threshold level is a trade-off between the correct detection of small droplets and the incorrect
assignment of droplets to the background noise.

In the present study, the threshold level was mainly chosen in order to prevent the incorrect
assignment of droplets to the background noise. In other words, the threshold level was not optimised
for detecting droplets as small as possible. This is a feasible setting, since the chosen size of the
smallest detectable droplets of 4 µm in diameter can be spatially resolved by a fair amount of pixels
(4 µm ≈ 5 pixels). Ideally, the choice of the threshold level should be validated by an estimation of
the overall noise level. However, this requires a comprehensive investigation, which is beyond the
scope of this study. We are well aware that the selected threshold level will affect the directly derived
droplet size. Therefore, a suitable calibration of the optical setup was necessary for determining the
droplet size with high accuracy, which will be elucidated in detail subsequently.

Furthermore, the routine was complemented by a local threshold technique in order to enable
the measurement close to the atomiser, where an inhomogeneous illumination due to the spray
cloud was inevitable. In this work, the image was simply subdivided into twelve segments of equal
dimensions, and a local threshold was set for each of the segments.

The result of the first step of the processing routine is illustrated for a raw image with a highly
inhomogeneous background in Figure 8a,b using the global threshold and the described local
threshold, respectively. The global threshold yielded many incorrectly detected droplets in the dark
areas of the image, while in the bright areas some droplets were not detected at all. In contrast,
the result when using the local threshold was more sensible since the number of incorrectly detected
droplets was drastically reduced. It should be noted that this simple segmentation of the image is
not ideal, but feasible in this case since only round droplets of a certain size range are present in
the spray. In summary, quantitative droplet data could be obtained at very low distances downstream
of the atomiser nozzle at the cost of a higher computational effort for image processing. In addition,
the accuracy of detected droplets was improved due to the fact that a slightly inhomogeneous
background was present in many spray images, while the calibration of droplet size, which will
be elaborated in the next paragraph, was conducted with a homogeneous background.

By separation of droplets from the background by means of an intensity threshold, the outer
contour of each droplet can be identified directly. However, a suitable calibration is necessary since
the chosen threshold level of 80% is arbitrary and the determination of droplet size is dependent on
the droplet position relative to the focal plane and the droplet size itself [7]. In other words, a robust
procedure is required for determining the actual droplet diameter from the detected droplet diameter
while considering defocused droplets in the measurement volume.
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In order to address this issue, a Depth of Field (DoF) calibration is performed, which is discussed
in detail by Warncke et al. [34]. Briefly, a calibration plate is installed in the test section at the same
optical setting like for the actual spray measurements. Two exchangeable glass plates are used with
numerous opaque circles, which mimic droplets of a wide range of diameters between 1 µm and 300 µm.
The calibration plates are manufactured by an etching process with an absolute accuracy of 0.1 µm.
In this context, it should be pointed out that the numerical aperture of the optical setup NA≈ 0.1,
which means that only a small part of the off-axis light contributes to the image. Hence, images of
liquid droplets and opaque circles are very similar with the exception of a bright spot (glare point) at the
centre of a droplet [38]. This calibration technique was proven to be feasible at several occasions [29,34].

(a) (b)
Figure 8. Exemplary raw image at Thg = 773 K and at x = 50 mm with enhanced contrast for better
visualisation of the highly inhomogeneous background: (a) global threshold of 80%; (b) local threshold
of 80%.

In this study, the DoF correction is enabled since the calibration plate can be moved in the direction
perpendicular to the image plane with an accuracy of 1 µm by means of a traverse system. This is
necessary to obtain quantitative data from blurred droplets, which are located outside the focal plane.
In the calibration procedure, this situation can be simulated by blurred circles on the calibration plate at
a known distance from the focal plane. The criterion to correct blurry droplets is the average intensity
gradient at the outer contour of the droplet. Finally, the measured diameter of one droplet is corrected
based on the known diameter from the calibration plate.

It is of great importance that, in this step of the calibration, the smallest detectable droplet size and
the size of the acceptable measurement volume is determined because larger droplets can be detected
at a larger distance out of the focal plane than smaller droplets. The smallest detectable droplet size of
the experimental setup presented in this paper was set to 4 µm, which could be detected consistently at
a distance out of the focal plane of ± 200 µm. Based on the fixed measurement volume, the minimum
intensity gradient of larger droplets was directly derived and the bias on the number distribution of
the spray, due to the size-dependent detectability, could be corrected.

Another parameter that has to be considered for microscopic imaging is the diffraction limit.
According to Abbe [15], the smallest resolvable length scale ddiff of the presented optical setup is given by

ddiff =
λ

2 NA
= 2.9 µm, (1)

with the wavelength of the light source λ= 587 nm and the numerical aperture NA≈ 0.1. This result
confirms that the smallest detectable droplet size of 4 µm is selected reasonably, even though it is close
to the estimated diffraction limit.

In the final step of the processing routine, the droplet velocity is determined. First, a regular
Particle Image Velocimetry (PIV) algorithm is applied to all droplets of one image in order to obtain
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an estimate of the velocity vector for each droplet. Based on this result, a least square fitting algorithm
is used to detect the identical droplets on both images taken by the double frame camera. Then, the
velocity can be calculated for each droplet using the inter framing time [8].

For the discussion of the measurement accuracy, it is important to note that only droplets with
a valid velocity assignment were taken into account. Furthermore, the difference between the measured
volume distribution of droplets and the flux density distribution had to be taken into account [1].
Therefore, the knowledge about the velocity of each individual droplet was used to correct for
this bias. The characteristics of the presented diagnostics are defined by the optical components
and the processing routine as summarised in Table 1.

Table 1. Major properties of the microscopic imaging diagnostics.

Parameter Unit Value

Measurement volume mm3 1.2 x 0.9 x 0.4

Field of view mm2 1.2 x 0.9

Resolution µm/pixel 0.75

Detectable diameters µm 4 - 300

Numerical aperture ' 0.1

Exposure time µs ' 0.01

Interframing time µs 0.5

3. Results and Discussion

The discussion of the initial results is based on the data taken at four measurement positions and at
one hot gas operating condition, which are defined in Figure 1 and Table 2, respectively. The operating
condition of the hot gas is set in order to preserve the Reynolds number

Re =
D ūhg

νhg
= 100, 000 (2)

of the pipe flow. In Equation (2), D represents the diameter of the pipe of 70.3 mm, ūhg the bulk
velocity, and νhg the kinematic viscosity of the hot gas. The main reason for preserving Re is to ensure
well-defined boundary conditions for the turbulent dispersion of droplets.

Table 2. Operating condition of the hot gas and the twin-fluid atomiser for experimental investigation
of spray evaporation of urea–water solution (UWS).

Parameter Symbol Value

Hot gas temperature Thg 773 K

Hot gas pressure phg 0.12 MPa

Hot gas bulk velocity ūhg 96 m s−1

UWS volume flow V̇UWS 10 L h−1

Cold gas mass flow ṁcg 5.84 kg h−1

Cold gas pressure pcg 0.49 MPa

Initial droplet temperature Td0 325.8 K

The subsequent discussion of the results is focused on the capabilities of the diagnostics. In this
context, the first measurement position downstream of the atomiser (x = 50 mm) is of great importance
for the methodology, since the droplet data recorded at this position can be utilised as droplet starting
conditions for numerical simulations of spray evaporation. Hence, it must be ensured that sufficient
information about the spray is captured in order to avoid inconclusive results.
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Furthermore, the accuracy of measuring the gas velocity by using the smallest detectable droplets
as seeding particles is assessed by a Stokes number analysis. The resulting gas velocity may yield
important information for the analysis of spray systems, since the relative velocity of droplets with
regard to the gas phase can be derived. Finally, it will be elucidated that the described methodology
will provide experimental validation data, which can be used to study the evaporation characteristics
of UWS under technical relevant flow conditions.

3.1. Spray Characteristics

An ambitious goal of numerous spray experiments is the detection of the spray characteristics
like droplet diameter distribution or velocity profiles as close as possible to the atomiser. This is in
particular important for an insight into the primary atomisation process or if the starting conditions
of the droplets are sought for numerical simulations. The first measurement position of this study
was placed 50 mm downstream of the atomiser because secondary atomisation is almost completed
at this position. On the other hand, an acceptable droplet concentration is present which facilitates
post-processing. The results at this position reveal spray characteristics typical for the twin-fluid
atomiser, which will be discussed in detail in the following.

The present diagnostics offer the possibility to vary the position of the measurement volume
across the cross section of the pipe by simply moving the camera in the direction of the optical axis as
depicted in Figure 9. In this context, the small depth of field is a significant advantage of the present
microscopic imaging setup, since a slim and thus well–defined measurement volume is achieved.
Finally, a traversing of ±5 mm in a radial direction around the centre of the pipe was employed
covering 11 measurement positions. At each position, 3000 double frame images are taken with
a repetition rate of 10 Hz. The resulting number of evaluated droplets varied from a few thousands at
the edge to approximately 120,000 at the centre of the spray.

Double frame camera

Long distance microscope Illumination

r

Measurement volume

Figure 9. Schematic of traversing the camera and hence the measurement volume in a radial direction
of the pipe.

A typical result is plotted in Figure 10a in terms of characteristic droplet diameters.
Obviously, the profiles are not perfectly symmetric. The reason for this phenomenon is assumed
to result from some measurement positions featuring low statistical significance. First of all, it is
found that the statistical significance is reduced with increased distance from the centre of the
spray due to a lower concentration of droplets. Moreover, the high concentration of droplets
at the centre of the spray causes a stronger background noise if the inner spray cone is situated
between camera and measurement position. Hence, the outer positions in positive radial direction in
Figure 10a are characterised by a lower signal-to-noise ratio, and therefore a lower quantity of droplets
is evaluated. Speaking in numbers, at the extreme positions of +5 mm and -5 mm, approximately 4000
and approximately 19,000 droplets are detected, respectively. Nevertheless, the overall quantity of
evaluated droplets is sufficient for a further analysis of the spray characteristics.

In general, the atomiser is capable of producing a very fine spray. The Sauter Mean Diameter
D32 stays at a constant level just above 10 µm over a range of ±2 mm in a radial direction. In this core
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zone large droplets, represented by the diameter at 90% volumetric quantile DV90, have a diameter
in the range of 20 to 25 µm. While the arithmetic mean Diameter D10 yields no strong variation in a
radial direction, a clear inhomogeneity is revealed by the profiles of D32 and DV90. Both characteristic
diameters increase sharply at a distance of 2-3 mm from the centre of the spray, which gives evidence
to an imperfect atomisation process at the outer edge of the spray cone.
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Figure 10. Distribution of characteristic (a) droplet diameters and (b) droplet velocities in a radial
direction at x = 50 mm (a spline fit is used for interpolation).

In addition to the information about droplet size, the velocity has been determined for each
detected droplet. The result is summarised in Figure 10b by means of three average velocity profiles
plotted over the radial direction of the pipe flow. The first profile ū8 µm represents the average velocity
of droplets of 8 µm diameter, which is calculated for a diameter range of 8 ± 0.5 µm in order to achieve
statistical significance. At the centre of the spray, a very high velocity is detected, which is far above
the bulk velocity of the gas phase ūhg = 96 m s−1. This is caused by the high velocity of the air stream
emerging from the nozzle. At the edge of the traverse displacement, the velocity drops down to slightly
above the bulk velocity of the gas phase. The reason for this behaviour is given by the slower bulk hot
gas flow, which decelerates the air flow from the nozzle. In this context, it should be noted that the
outlet bore hole diameter of the atomiser nozzle is 2 mm.

The velocity ū5 µm of droplets of 5 µm diameter was found to be lower than ū8 µm over the entire
profile due to the lower inertia of the smaller droplets. Similarly, the velocity of droplets of a diameter
greater than 15 µm ū>15 µm is presumed to feature the fastest velocity over the entire radial dimension.
In contrast, ū>15 µm was found to have the fastest velocity only at the centre region of the spray. It shows
a strong decrease towards the edges of spray, where the lowest velocity of the three velocity profiles
is measured. In this region, ū>15 µm even drops below the bulk velocity of the gas flow. A possible
explanation for this effect may be derived from the diameter distribution in Figure 10a. These results
indicate an imperfect atomisation at the outer edge of the spray, which may lead to larger droplets
emerging with low initial velocity from the atomiser.

A snapshot of the spray in the near nozzle region was recorded using a relatively long exposure
time of approximately 0.14 ms as shown in Figure 11. Obviously, the centre of the spray can not be
investigated in detail due to motion blur. In contrast to that, droplets at the outer region of the spray
as well as liquid structures still connected to the atomiser nozzle are recorded sharply, which implies
that they feature a considerably lower velocity in comparison to droplets within the main spray cone.
Therefore, the statement of large droplets with low initial velocity is confirmed, which is also in
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accordance with the general primary atomisation process of an effervescent atomiser as reviewed by
Sovani et al. [39].

Figure 11. Snapshot of the spray in the near nozzle region using an exposure time of approximately
0.14 ms.

The radial position featuring the strongest velocity gradient of all velocity profiles in Figure 10b,
approximately 2 mm off the centre, represents the shear layer zone between the jet flow of the atomiser
and the surrounding hot gas flow. In this region, the finest spray is recorded as illustrated by the D32

and in particular by the DV90. Both characteristic diameters increase sharply at a further distance from
the centre of the spray. This behaviour may be caused by the strong velocity gradient in combination
with shear layer turbulence. Hence, the atomisation process in this region is dominated by the resulting
high relative velocity between the droplets and the hot gas. At this point, it should be emphasised
that the evaluation of this correlation between droplet size and velocity is only possible because the
diagnostics is capable of detecting the size and velocity of individual droplets.

In conclusion, these initial results of the test section comprise important spray data close to the
atomiser. In particular, the possibility to obtain data at different positions in a radial direction in
a dense spray region turns out to be a great advantage of the measurement technique. This gives
a better understanding of the atomisation process or enables the tuning of the cold gas mass flow of
the atomiser ṁcg in order to achieve desired spray characteristics. Furthermore, the recorded data in
the proximity of the atomiser can be utilised as droplet starting conditions for numerical simulations of
spray evaporation. In this context, the captured inhomogeneities of the droplet diameter and velocity
profiles represent vital input data for numerical predictions.

3.2. Determining the Gas Velocity

The gas velocity is an important parameter for the analysis of spray systems, since the relative
velocity of droplets to the gas flow can be derived. This relative velocity, which is also called slip
velocity, has a strong influence on droplet kinematics, secondary atomisation, and evaporation [2].
Hence, the simultaneous measurement of gas and droplet velocity is a great advantage for
spray diagnostics. Standard optical techniques for measuring the gas velocity are Laser Doppler
Anemometry (LDA) and Particle Image Velocimetry (PIV). Both techniques require seeding the flow
with small particles in the order of 1 µm in diameter. These seeding particles will follow the flow
almost perfectly due to their low inertia.

Microscopic imaging has already been demonstrated to be capable to detect such seeding particles
if the droplet size is not of interest using Particle Shadow Velocimetry [40]. In addition to an often
simpler optical setup, this technique can be advantageous in comparison to established diagnostics
like PIV or LDA for small-scale applications or multiphase flows [41,42]. However, the goal of this
study is to detect not only the velocity, but also the diameter of individual droplets.
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Therefore, one way to realise a simultaneous measurement of gas and droplet velocity is the
utilisation of the smallest detectable droplets as seeding particles. Hence, no additional seeding
is necessary and the non-intrusive and simultaneous measurement of the gaseous velocity field is
possible as long as enough small droplets are present in the flow. This methodology was successfully
applied with the PDA for detecting evaporating [31] and burning droplets [32]. In these studies,
droplets of a size smaller than 3-5 µm were utilised to derive the gas velocity.

The present microscopic imaging setup also offers the possibility to detect droplets of such small
size, which may be utilised as seeding. However, it is mandatory that the droplets of a selected size do
follow the flow correctly in order to derive a sensible gas velocity. In this context, it is important to
note that the droplet size cannot be specified in advance since it depends on the actual flow field of
the gas. Subsequently, the timescales due to the inertia of the droplets will be estimated in order to
decide up to which size the droplets are suitable as tracers of the gas flow. This gives a measure of the
accuracy of the present diagnostics for determining the gas velocity.

The following estimation will focus on the most critical part of the flow field of the experimental
setup in this study: the strong deceleration of the air jet emerging from the atomiser nozzle. First of
all, a Stokes flow is assumed for the gas flow around the droplet [43]. The relevant timescale is the
response or relaxation time of a droplet

τd =
ρd D2

d
18 µg

, (3)

which is dependent on the density of the droplet ρd, the droplet diameter Dd and the dynamic viscosity
of the gas µg. Considering the relative velocity between droplet and the gas phase (ug(t)− ud(t)) and
neglecting gravitation, the equation of motion can be written as

dud
dt

=
1
τd

(ug(t)− ud(t)). (4)

Taking the homogeneous solution of this differential equation, it is obvious that the droplet
velocity recovers after a sudden jump according to

ud(t) ∼ e−
t

τd . (5)

The determination of an appropriate timescale of the gaseous phase is not straightforward, since
it depends on the actual flow field. As a first approach, the assumption is made that the axial velocity
of the droplets of 4 µm diameter ud,4 µm(t) represents the velocity of the gas phase. The experimental
results of the temporal arithmetic mean of ud,4 µm(x) at the centre of the pipe are illustrated in Figure 12
for the first three measurement positions downstream of the atomiser.

However, the initial velocity of the gas and the droplets at the atomiser exit is not available.
Furthermore, the evolution of the velocity directly downstream of the nozzle is governed by gas
dynamics and the resulting primary atomisation. In this study, the initial velocity of the droplets and the
air is estimated as Ma = 1 at the nozzle outlet based on the estimated droplet starting temperature Td0.
The present atomiser is operated at supercritical flow conditions in order to achieve a strong pressure
drop at the atomiser outlet. Hence, this assumption is reasonable. Furthermore, the assumption is
conservative in terms of the estimation of the measurement accuracy, since expected shock waves may
lead to a lower effective initial velocity of droplets after primary atomisation in the near nozzle region.

In the next step, a function of the type

ug(t) = C1e
− t

τg + C2 (6)

is used to fit the estimated and experimental data in order to derive an estimated evolution of the
gas velocity ug, which is shown in Figure 12. This function is chosen according to Equation (5).
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Hence, a timescale of the gas phase τg can be derived and the Stokes number of a droplet with
a diameter of 4 µm can be calculated:

St4 µm =
τd
τg

= 0.13. (7)

Since the condition,
St4 µm � 1, (8)

is not perfectly fulfilled, the derived evolution of the gas velocity is used to solve a more generalised
equation of motion of one droplet,

dud
dt

= −3
4

ρg cD

ρd Dd
|ug(t)− ud(t)| (ug(t)− ud(t)), (9)

in order to estimate the measurement accuracy. The correlation of Ihme et al. [44] is used to determine
the drag coefficient

cD = 0.36 + 5.48 Re−0.573
d

24
Red

. (10)

This correlation is only valid for perfect spheres, which is a reasonable assumption for the small
droplets in this study. Most importantly, Equation (10) was validated experimentally for droplet
Reynolds numbers

Red =
Dd |ug(t)− ud(t)|

νhg
< 104. (11)
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Figure 12. Estimation of the gas velocity ug as a function of the distance downstream of the atomiser
nozzle x and the numerically derived response of droplets of 4, 10 and 20 µm in diameter.

Therefore, the main restriction of the Stokes theory (Red < 1) is overcome. The resulting spatial
evolution of the velocity of a droplet of a diameter of 4 µm ud,4 µm(x) is illustrated in Figure 12.
Obviously, droplets of a diameter of 4 µm follow the estimated gas velocity very well. Furthermore, this
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approach yields directly the estimated measurement error at position 0 at a distance of x0 = 50 mm
downstream of the atomiser:

ud,4 µm(x0)− ug(x0)

ug(x0)
=

8.94 m s−1

217.5 m s−1 = 4.1%. (12)

In view of the strong estimated deceleration at the near-nozzle region, the measurement accuracy
is acceptable. Furthermore, an iterative determination of ug is possible based on the already
obtained results. This way, ug can be determined with improved accuracy. In the scope of this
paper, however, the gas velocity is simply taken from the velocity of the smallest detectable droplets.
Additionally, the response of droplets of 10 µm and 20 µm diameter is calculated, which corresponds
to the smallest detectable droplet range of non-microscopic imaging techniques. Both results are
plotted in Figure 12 and reveal a drastically greater measurement error than that of the 4 µm droplets,
which emphasizes the specific advantage of the method.

In summary, the use of microscopic imaging seems to be well suited for determining the
gas velocity by using the velocity of the smallest detectable droplets. This is advantageous as
no additional input is required, neither regarding the experimental setup nor with respect to the
processing routine. The additional information about the gas flow field can be utilised to analyse and
validate droplet kinematics. In addition, the effect of the slip velocity on secondary atomisation or
evaporation can be evaluated.

3.3. Discussion of Velocity Fluctuations

Since the temporal average of the gas velocity can be derived with sufficient accuracy,
the discussion is extended to the statistical analysis of velocity fluctuations. This requires the
post-processing, as presented in Section 2.3, to be extended in order to exclude spurious vector
assignments, which may compromise the statistical analysis. The universal outlier detection of
Westerweel and Scarano [45] is widely used for Particle Image Velocimetry (PIV) data. This technique
is based on a normalised median filter, which considers the neighbour velocity vectors of the vector
under concern. Furthermore, this filter was verified for a wide range of Reynolds numbers ranging
from 10−1 to 107. In contrast to PIV data, Particle Tracking Velocimetry (PTV) yields non-equidistant
neighbour vectors. Hence, a weighting of neighbour vectors based on the distance from the droplet
velocity vector concerned is used as proposed by Duncan et al. [46]. Finally, this filter is applied using
a conservative threshold of 2 to ensure that spurious vectors are effectively removed.

The droplet data at specific spatial positions are split into droplet diameter classes with a constant
width of 0.5 µm in order to evaluate the effect of droplet size on velocity fluctuations. The probability
distribution of the radial velocity is illustrated exemplarily for two droplet diameter classes at a distance
of x = 50 mm downstream of the atomiser in Figure 13a. Obviously, this velocity component is normally
distributed and the mean value is approximately 0 m s−1. Furthermore, the radial velocity of the smaller
droplets has a higher standard deviation, which may indicate that those droplets follow the velocity
fluctuations of the gas phase considerably better compared to larger ones.

For a more detailed analysis, the standard deviation of the radial velocity is calculated for
each droplet diameter class in the range between 4 µm and 20 µm. The result reveals a decreasing
standard deviation with increasing droplet diameter at all positions downstream of the atomiser as
shown in Figure 13b. The most interesting observation is that, at the position closest to the atomiser
nozzle (x = 50 mm), the standard deviation of the radial velocity is found to be proportional to D−2

d .
Considering the timescale of droplet relaxation, as indicated by Equation (3), there is strong evidence
that the standard deviation of the droplet velocity is due to the fluctuations of the gas velocity.

Hence, the generally high standard deviation at position 0 obviously results from strong turbulent
fluctuations of the gas phase. At this measurement position, a strong shear layer turbulence is
generated by the interaction of the rapid cold gas injected by the atomiser with the substantially slower
hot gas flow. This result is supported by the strong gradient of the axial droplet velocity as shown in
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Figure 10b. The positions further downstream of the atomiser are characterised by a generally lower
level of the standard deviation and a considerably weaker dependency on droplet size. This result is
sensible, since the influence of the atomiser air flow and the resulting shear layer turbulence decays
with increasing distance downstream of the atomiser.

The standard deviation of the radial velocity, as shown in Figure 13b, represents a valuable result,
since it can be directly applied for predicting the turbulent dispersion. Consequently, the droplet
trajectories in the test section can be computed dependent on the droplet size. In addition, the standard
deviation of the velocity may contain vital information about the turbulent fluctuations of the gas phase.
These velocity fluctuations impose an additional relative velocity between droplets and gas, which may
affect evaporation or atomisation considerably. In literature, high–spatial–resolution PIV is presented
as a promising technique for investigation of turbulent fluctuations in dispersed multiphase flows [33].
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Figure 13. Exemplary probability distributions of the radial velocity for different droplet sizes at
x = 50 mm (a) and standard deviation of the radial velocity at different distances downstream of the
atomiser nozzle x; (b) a curve proportional D−2 is used to fit the data at x = 50 mm.

Subsequently, it will be investigated whether an estimation of the turbulent fluctuations of the gas
phase or even the turbulent slip velocity is possible based on the present microscopic imaging data.
First of all, the theoretical analysis of particle response in an oscillating gas phase presented by
Burger et al. [47] is adapted to turbulent fluctuations. The turbulent gas velocity is simplified by
a simple sinusoidal oscillation

ug = ūg + ûg sin ωt, (13)

which is defined by the amplitude ûg and the angular frequency ω. The mean velocity ūg is set
to 0 m s−1. Stokes flow is assumed analogous to the analysis of the mean gas velocity. By inserting
Equation (13) into Equation (4), the oscillation of the droplet velocity after reaching the steady-state
condition can be derived

ud =
ûg√

1 + τ2
dω2

sin (ωt + arctan (τdω)). (14)

In this study, only the amplitude of the resulting droplet velocity oscillation is of interest.
Hence, the function

f (ûg, ω, C) =
1√
2

 ûg√
1 + τ2

dω2
+ C

 (15)



Appl. Sci. 2019, 9, 4403 19 of 26

is employed for fitting the experimental data. The amplitude is scaled by the factor 1√
2

in order to enable
a direct comparison to the experimentally available standard deviation. Furthermore, the desired
dependency of this amplitude function on the droplet diameter is represented by the droplet relaxation
time τd, which is affected additionally by the density of the droplets ρd and the dynamic viscosity of
the gas phase µg. The constant C was found to be necessary in order to achieve a sensible fit. This offset
is supposed to result from fluctuations of the gas velocity, which are characterised by lower frequencies.
Hence, all droplets in the presented size range are assumed to follow those low frequency fluctuations
almost perfectly.

The fit of f (ûg, ω, C) from Equation (15) is found to be in excellent agreement to the experimental
data as shown in Figure 14. The desired information about the underlying oscillation by means of ûg

and ω can be estimated with reasonable accuracy, which is graphically illustrated by 95% confidence
intervals for the fitted function. In addition, the resulting parameters of f (ûg, ω, C) are summarised in
Table 3.

Table 3. Estimated properties of the turbulent fluctuations of the gas phase by fitting f (ûg, ω, C) to
experimental data. The indicated uncertainty is based on a 95% confidence interval.

Parameter Symbol Value

Amplitude ûg 12.7 ±1.0 m s−1

Angular frequency ω 27.0 ±3.8 kHz

Frequency f 4.3 ±0.6 kHz

Constant offset C 6.6 ±0.1 m s−1
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Figure 14. Fit to the standard deviation of the radial velocity. The resulting parameters of the amplitude
function f (ûg, ω, C) are given in Table 3.

The cut-off Stokes number
Stcut−off = τd f =

1
2π

(16)

can be determined using the derived frequency of the oscillation f , as fundamentally introduced in
work of Burger et al. [47] for studying the particle response in oscillating flows. This cut-off Stokes
number may be used analogous to the cut-off frequency of a first order low pass filter in order to assign
different regimes of droplet motion in a turbulent gas flow. In the case under consideration, the droplet
diameter of 4.9 µm is determined using Equation (16), which is graphically illustrated in Figure 14.
Hence, the droplets in this size range can be used as an indicator for turbulent fluctuations of the
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gas phase. Subsequently, this will be demonstrated based on a more detailed analysis of the spray
characteristics at Position 0 (x = 50 mm).

In Figure 15, the Sauter Mean Diameter (D32) and the diameter at the 90% volumetric quantile
(DV90) are plotted over the radial position. These results were already discussed in Section 3.1.
In particular, the radial positions featuring the strongest average velocity gradient, ±2 mm off the
centre, were found to correspond to the smallest characteristic diameters. Therefore, shear layer
turbulence seems to play a major role during the atomisation process.

For a further in depth analysis, the standard deviation of the radial velocity of very small
droplets is discussed. The standard deviation σv, 5 µm is plotted in Figure 15, which is determined
using droplets of a diameter between 4.5 µm and 5.5 µm. The distribution of σv, 5 µm is found to peak
exactly at ±2 mm off the centre, which confirms the statement that these regions correspond to strong
velocity fluctuations caused by shear layer turbulence. Furthermore, the largest droplets of the spray,
as represented by the DV90, are strongly correlated to σv, 5 µm. Obviously, the turbulent fluctuations of
the hot gas flow induce the dominating slip velocity, which triggers the atomisation process.
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Figure 15. Correlation of characteristics droplet diameters to the standard deviation of the radial
velocity σv, 5 µm at Position 0 (x = 50 mm).

In conclusion, the standard deviation of the radial velocity directly yields an estimation of droplet
dispersion, which can be utilised to validate the droplet distribution in the pipe flow as a function of the
droplet size. Furthermore, information about the underlying turbulent fluctuations can be estimated
with reasonable accuracy. Hence, the smallest detectable droplets may be used as an indicator for
turbulence intensity.

However, the knowledge of the turbulent fluctuations does not directly yield the turbulent slip
velocity of the droplets. Actually, the gradient of the mean velocity in an axial direction needs to be
taken into account as well, since a small displacement in a radial direction due to turbulent dispersion
may induce a high slip velocity in an axial direction as discussed by Chen et al. [31]. Hence, turbulent
fluctuations may cause a high slip velocity of relatively small droplets, which are characterised by
strong dispersion due to their low inertia. This effect needs to be considered in order to estimate
an absolute slip velocity caused by turbulent fluctuations. However, a more detailed analysis of this
slip velocity is beyond the scope of this paper.

As an outlook, if a high speed camera in combination with a suitable illumination is used,
time-dependent droplet data can be recorded, which may give a more detailed insight into the
interaction of the spray with turbulent fluctuations of the gas phase.
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3.4. Evaporation Characteristics of Urea–Water Solution

The long-term objective of the present methodology is to provide experimental validation
data, which can be used to study evaporating urea–water sprays under realistic thermodynamic
conditions. In order to pin down the effect of urea on the evaporation process, distilled water is used
as an alternative liquid in the measurement campaign. First of all, there is almost no difference in
surface tension and viscosity between water and urea–water solution (UWS). Hence, it is presumed
that the atomisation process is effectively not affected when using an air assisted nozzle. Therefore,
it is expected that the same spray for UWS and water is generated.

However, a recent publication by Kapusta et al. [26] indicates that replacing UWS with water will
influence the spray characteristics considerably. In this study, a pressure driven single fluid nozzle is
used and the pressure in the liquid reservoir is preserved. In other words, the pressure difference over
the whole injection system is kept constant. Therefore, the liquid volume flow through the atomiser
may be affected by the fluid properties, most importantly by the viscosity. Hence, the velocity at the
exit of the atomiser nozzle will also be affected, which is one major parameter affecting the primary
breakup regime of a cylindrical jet. For the discussion of the effect of the Weber and Ohnesorge number,
please refer to the review of Dumouchel [48]. In conclusion, the study of Kapusta et al. [26] does
not evaluate the influence of different fluid properties on the actual atomisation process but on the
performance of a whole injection system.

In contrast, an air assisted nozzle is used in the present study with an identical setting of the air
mass flow and velocity, when replacing UWS with pure water. In addition, the liquid volume flow
was kept identical. These provisions ensure that the relevant non-dimensional numbers are effectively
identical for UWS and pure water. Therefore, the influence of slightly different liquid properties is
considerably lower in comparison to simple pressure atomisers.

It should be noted that the density difference between UWS and water of approximately
9% will affect the integral momentum of the spray jet. However, this effect is negligible using
a twin-fluid atomiser. Hence, the overall effect of different fluid properties for UWS and water on the
atomisation process can definitely be considered as marginal. In summary, the present experimental
configuration provides identical droplet initial conditions, since the atomiser produces practically
the same spray for UWS and water. By this means, experimental results for water can be used to
calibrate numerical simulations in terms of starting conditions and the quality of submodels, since the
complex evaporation behaviour of UWS can be excluded. Furthermore, the comparison of droplet
diameter distributions of UWS and water further downstream of the atomiser may provide insights in
the evaporation behaviour of UWS. Subsequently, it will be evaluated if evaporation characteristics
can be retrieved using the present microscopic imaging technique.

The measured droplet size distribution for UWS and water at the centre of the pipe and
at a distance of 225 mm downstream of the atomiser are illustrated in Figure 16a. At first
glance, the normalised number probability density function (PDF) is very similar for both fluids,
which confirms the statement that the atomisation process is basically identical. Additionally,
the average droplet velocity ūd of the spray is basically identical. Nevertheless, a detailed comparison
reveals a higher probability of small droplets for UWS, whereas most larger diameter classes are
characterised by a higher probability of droplets for water. Furthermore, this characteristic effect
becomes more prominent with increasing distance from the atomiser as shown in Figure 16b,c.
The reason for this phenomenon can be explained by the effect of urea on the evaporation process.
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(c) x = 495 mm
Figure 16. Normalised number PDF for urea–water solution (UWS) and water at (a) x = 225 mm;
(b) x = 270 mm; and (c) x = 495 mm (The droplet data resulted at x = 225 mm, x = 270 mm from 3000
double images and at x = 495 mm from 5000 double images).

For a further in depth analysis of the evaporation process, the difference between pure water and
UWS will be briefly described. First, it is assumed that the Biot number

Bi =
α Dd
2 λd

� 1, (17)

resulting in uniform temperature within the droplet. According to a Rapid Mixing evaporation
model, uniform urea concentration inside the droplet is additionally assumed. With this assumption,
the evaporation of an UWS droplet can be subdivided into two stages: The first stage is characterised
by an almost exclusive evaporation of water. This means that there will be no evident difference
between the evaporation of pure water and UWS. Once the water of the UWS droplet is consumed
by evaporation, the evaporation and thermolysis of urea starts. This is the second stage, which can
be described as an evaporation process with a considerably lower evaporation rate in comparison
to water. Details of modelling the evaporation of UWS are discussed in the work of Birkhold et al. [49].

The evaporation process of UWS and water droplets is illustrated in Figure 17 by means of
model results for the present hot gas operating condition. Comparing two droplets after an exemplary
residence time (dashed line) in the hot gas environment, the 10 µm droplet still behaves like a regular
water droplet, whereas the 8 µm features a considerably lower evaporation rate in comparison to water.
The important conclusion from the discussion of the evaporation characteristics is that a designated
droplet size exists during the lifetime of each UWS droplet, at which the water is completely consumed,
and the evaporation rate is drastically reduced.
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Figure 17. Exemplary model results of UWS and water droplets with an initial diameter of 10 µm
and 8 µm. The evaporation process of UWS is modelled based on the model of Birkhold et al. [49].
Crust formation is considered using the reduction coefficient of Kontin et al. [50].

This knowledge can be transferred to the discussion of the PDFs in Figure 16a–c. The difference
in the PDFs between UWS and water is caused by the sudden change of the evaporation rate. In other
words, all droplets smaller than a certain size undergo urea evaporation and the thermolysis process,
which explains the higher number of UWS droplets in the small diameter classes in comparison
to water. The higher probability of all larger diameter classes for the water spray is a consequence of
the normalization of the PDF by the total number of droplets. The discussed difference of the PDFs
grows stronger with increasing distance from the atomiser, since the residence time of the droplets in
the hot gas increases. This results in a progress of spray evaporation and consequently larger droplets
will undergo urea evaporation and thermolysis.

In summary, the analysis of the evaporation characteristics reveals promising results, which can
be used to study evaporating urea–water sprays. Therefore, the diagnostics may be used to
provide validation data for numerical predictions that focus on the evaporation behaviour of UWS.
Most importantly, the reasonable and very detailed differences in the droplet diameter distribution
emphasize the accuracy of the present spray diagnostics.

4. Conclusions

In this study, a microscopic imaging technique has been developed for recording quantitative spray
data in challenging operating conditions. Challenges arise in particular from the high temperatures of
the gas phase, which may cause Schlieren effects in the optical path and an astigmatism phenomenon.
Both effects did strongly compromise the image quality. As a countermeasure, the optical setup was
equipped by a water-cooled window and an astigmatism correction device. By means of an advanced
post-processing routine, it is possible to detect droplets as small as 4 µm and droplet velocities up
to 250 m s−1 at operating conditions of the gaseous phase of up to 873 K and 0.6 MPa.

Moreover, the traversing of the camera in the direction of the optical axis in a dense spray region
turns out to be a great asset. This gives the opportunity to detect inhomogeneous diameter and velocity
profiles across the spray cone at a distance of 50 mm from the atomiser. Hence, valuable droplet data
are captured, which may serve as initial conditions for numerical simulations.

Evaluation of the data revealed that the mean gas velocity can be derived from the velocity
of the smallest detectable droplets with reasonable accuracy. This gas velocity may be utilised
to calculate the temporal mean slip velocity between individual droplets and the gas phase.
Hence, the effect of this average slip velocity on secondary atomisation or evaporation can be taken
into account. Additionally, the evaluation of the droplet velocity fluctuations in a radial direction
reveals vital information about the turbulence of the gas phase, which may be used for validation of
numerical predictions. Most importantly, the turbulent dispersion of droplets can be directly evaluated.
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In addition to UWS, distilled water was also used as a liquid under otherwise identical conditions.
The direct comparison of the droplet diameter distribution between UWS and water revealed typical
features of the evaporation characteristics of UWS for all positions downstream of the atomiser.

In summary, the present methodology provides detailed spray data, which can be used to study
the evaporation characteristics of UWS under challenging flow conditions. Future work will be focused
on the variation of hot gas temperature, pressure and velocity, covering a range of technically relevant
operating conditions.
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The following abbreviations are used in this manuscript:

LDA Laser Doppler Anemometry
LIF Laser Induced Fluorescence
PDA Phase Doppler Anemometry
PDF Probability Density Function
PIV Particle Image Velocimetry
PTV Particle Tracking Velocimetry
SCR Selective Catalytic Reduction
UWS Urea–Water Solution

References

1. Tropea, C. Optical Particle Characterization in Flows. Annu. Rev. Fluid Mech. 2011, 43, 399–426. [CrossRef]
2. Fansler, T.D.; Parrish, S.E. Spray measurement technology: A review. Meas. Sci. Technol. 2014, 26, 012002.

[CrossRef]
3. Cárdenas, M.; Martin, D.; Kneer, R. Experimental Investigation of Droplet Size and Velocity in Clustered

Diesel Sprays under High-Pressure and High-Temperature Conditions; Technical Report, SAE Technical Paper:
San Diego, CA, USA, 2010.

4. Berrocal, E.; Kristensson, E.; Zigan, L. Light sheet fluorescence microscopic imaging for high-resolution
visualization of spray dynamics. Int. J. Spray Combust. Dyn. 2017, 10, 86–98. [CrossRef]

5. Kristensson, E.; Berrocal, E. Crossed patterned structured illumination for the analysis and velocimetry of
transient turbid media. Sci. Rep. 2018, 8. [CrossRef]

6. Bongiovanni, C.; Chevaillier, J.P.; Fabre, J. Sizing of bubbles by incoherent imaging: Defocus bias. Exp. Fluids
1997, 23, 209–216. [CrossRef]

7. Kashdan, J.; Shrimpton, J.; Whybrew, A. Two-Phase Flow Characterization by Automated Digital
Image Analysis. Part 1: Fundamental Principles and Calibration of the Technique. Part. Part. Syst. Charact.
2003, 20, 387–397. [CrossRef]

8. Müller, A.; Koch, R.; Bauer, H.J.; Hehle, M.; Schäfer, O. Performance of Prefilming Airblast Atomizers in Unsteady
Flow Conditions; ASME: Barcelona, Spain, 2006. [CrossRef]

9. Kashdan, J.; Shrimpton, J.; Whybrew, A. Two-Phase Flow Characterization by Automated Digital
Image Analysis. Part 2: Application of PDIA for Sizing Sprays. Part. Part. Syst. Charact. 2004, 21, 15–23.
[CrossRef]

http://dx.doi.org/10.1146/annurev-fluid-122109-160721
http://dx.doi.org/10.1088/0957-0233/26/1/012002
http://dx.doi.org/10.1177/1756827717734078
http://dx.doi.org/10.1038/s41598-018-30233-y
http://dx.doi.org/10.1007/s003480050104
http://dx.doi.org/10.1002/ppsc.200300897
http://dx.doi.org/10.1115/gt2006-90432
http://dx.doi.org/10.1002/ppsc.200400898


Appl. Sci. 2019, 9, 4403 25 of 26

10. Esmail, M.; Kawahara, N.; Tomita, E.; Sumida, M. Direct microscopic image and measurement of the
atomization process of a port fuel injector. Meas. Sci. Technol. 2010, 21, 075403. [CrossRef]

11. Postrioti, L.; Brizi, G.; Ungaro, C.; Mosser, M.; Bianconi, F. A methodology to investigate the behaviour
of urea–water sprays in high temperature air flow for SCR de-NOx applications. Fuel 2015, 150, 548–557.
[CrossRef]

12. Sjöberg, H. Long-working-distance microscope used for diesel injection spray imaging. Opt. Eng. 1996,
35, 3591. [CrossRef]

13. Blaisot, J.B.; Yon, J. Droplet size and morphology characterization for dense sprays by image processing:
Application to the Diesel spray. Exp. Fluids 2005, 39, 977–994. [CrossRef]

14. Crua, C.; De Sercey, G.; Heikal, M.; Gold, M. Dropsizing of near-nozzle diesel and RME sprays by
microscopic imaging. In Proceedings of the 12th ICLASS Triennial International Conference on Liquid
Atomization and Spray Systems, Heidelberg, Germany, 2–6 September 2012.

15. Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für
Mikroskopische Anatomie 1873, 9, 413–418. [CrossRef]

16. Reddemann, M.A.; Mathieu, F.; Kneer, R. Transmitted light microscopy for visualizing the turbulent primary
breakup of a microscale liquid jet. Exp. Fluids 2013, 54. [CrossRef]

17. Crua, C.; De Sercey, G.; Gold, M.; Heikal, M. Image-based analysis of evaporating diesel sprays in the
near-nozzle region. In Proceedings of the 5th ILASS-Europe, Crete, Greece, 1–4 September 2013.

18. Manin, J.; Bardi, M.; Pickett, L.; Dahms, R.; Oefelein, J. Microscopic investigation of the atomization and
mixing processes of diesel sprays injected into high pressure and temperature environments. Fuel 2014,
134, 531–543. [CrossRef]

19. Manin, J.; Bardi, M.; Pickett, L.; Payri, R. Boundary condition and fuel composition effects on injection
processes of high-pressure sprays at the microscopic level. Int. J. Multiph. Flow 2016, 83, 267–278. [CrossRef]

20. Crua, C.; Manin, J.; Pickett, L.M. On the transcritical mixing of fuels at diesel engine conditions. Fuel 2017,
208, 535–548. [CrossRef]

21. Johnson, T.V. Review of Diesel Emissions and Control. SAE Int. J. Fuels Lubr. 2010, 3, 16–29. [CrossRef]
22. Fang, H.L.; DaCosta, H.F. Urea thermolysis and NOx reduction with and without SCR catalysts. Appl. Catal.

B: Environ. 2003, 46, 17–34. [CrossRef]
23. Oh, J.; Lee, K. Spray characteristics of a urea solution injector and optimal mixer location to improve droplet

uniformity and NOx conversion efficiency for selective catalytic reduction. Fuel 2014, 119, 90–97. [CrossRef]
24. Kapusta, Ł.J.; Teodorczyk, A. Laser diagnostics for urea–water solution spray characterization.

MATEC Web Conf. 2017, 118, 00029. [CrossRef]
25. Payri, R.; Bracho, G.; Gimeno, J.; Moreno, A. Investigation of the urea–water solution atomization process in

engine exhaust-like conditions. Exp. Therm. Fluid Sci. 2019, 108, 75–84. [CrossRef]
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