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Kinetics generally describes bio-(chemical) reaction rates in dependence on substrate

concentrations. Kinetics for microalgae is often adapted from heterotrophs and lacks

mechanistic foundation, e.g. for light harvesting. Using and understanding kinetic

equations as the representation of intracellular mechanisms is essential for reason-

able comparisons and simulations of growth behavior. Summarizing growth kinetics

in one equation does not yield reliable models. Piecewise linear or rational functions

may mimic photosynthesis irradiance response curves, but fail to represent the mech-

anisms. Our modeling approach for photoautotrophic growth comprises physical and

kinetic modules with mechanistic foundation extracted from the literature. Splitting

the light submodel into the modules for light distribution, light absorption, and photo-

synthetic sugar production with independent parameters allows the transfer of kinetics

between different reactor designs. The consecutive anabolism depends among oth-

ers on nutrient concentrations. The nutrient uptake kinetics largely impacts carbon

partitioning in the reviewed stoichiometry range of cellular constituents. Consecutive

metabolic steps mask each other and demand a maximum value understandable as the

minimum principle of growth. These fundamental modules need to be clearly distin-

guished, but may be modified or extended based on process conditions and progress

in research. First, discussion of kinetics helps to understand the physiological situa-

tion, for which ranges of parameter values are given. Second, kinetics should be used

for photobioreactor design, but also for gassing and nutrient optimization. Numerous

examples are given for both aspects. Finally, measuring kinetics more comprehen-

sively and precisely will help in improved process development.
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1 INTRODUCTION

Photosynthesis is the major biochemical process to drive life

on earth. Heterotrophic life only functions by respiration of

Abbreviations: CCM, carbon concentration mechanisms; Chl, chlorophyll; CTR, carbon dioxide transfer rate; PI-curve, photosynthesis irradiance response

curve; PSU, photosynthetic units; RuBisCo, ribulose-1,5-bisphosphate carboxylase/oxygenase.
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oxygen supplied by phototrophs. Microalgae — next to terres-

trial plants — contribute substantially to the oxygen evolution.

The amount of oxygen produced by microalgae is remarkable

due to their high photosynthetic efficiency. Efficient light use
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T A B L E 1 Overview of the structure of commonly used kinetics

Mathematical approach Examples Advantages Disadvantages References
Rational functions (different

exponents in numerator

and denominator)

Andrews, Monod,

Haldane

Based on reaction or

enzyme kinetics

No specific

consideration of

phototrophic light

processing

[22,75,76]

Rational function with

mechanistic meaning in

photosynthesis (formally

as Monod)

Han Based on chlorophyll

reaction kinetics

PSU and time constants

not directly

measurable

[17,19,77,78]

[see also this

review]

Special functions

(exponential, hyperbolic

tangent)

Steele (exp),

Jassby & Platt (tanh),

van Oorschot (exp)

Easy to use with some

flexibility

No claim to mechanistic

background, if then

thermodynamics

[10,14,79]

Piecewise defined functions Classical PI-curve,

Blackman

Clear discrimination

between dominant

processes over light

range

Numerical point of

discontinuity,

over-simplification in

transition zones

[24,80]

[see also this

review]

Multiplication of different

kinetic factors/equations

Commonly applied to

combination of

different influences

Simple to use even in

complex environment

Ignores intracellular

stoichiometry

[56]

gives microalgae great potential for applications in pharma-

ceutical, cosmetic, food, feed, and chemical industries [1].

Designing microalgal production plants is an emerging field

developing more and more into the direction of rational pro-

cess design.

For heterotrophic bio-processes, the rational basis of

process design is well elaborated. For photo-bioprocesses,

mechanistic knowledge is described in the literature, but not

straightforwardly applied on process development. For pro-

cess development, production plants can be hierarchically

structured into a plant/reactor level, the level of the microal-

gal population (suspension), and the level of the intracellular

metabolic network [2]. Kinetics on the population level links

the reactor and the cell level. To represent valid connections

the kinetics has to be as rational as possible. The structure of

each kinetic equation should reflect the structure of the real

system. Unknown kinetic parameters should at least have a

clear physiological meaning. Further, the parameters have to

be independent from scale [2].

Lee et al. [3] and Béchet et al. [4] recently reviewed kinetic

models for microalgal growth. A short summary of differ-

ent mathematical descriptions including examples is given

in Table 1. Next to classical kinetic models of Monod [5],

Blackman [6], and Andrews [7], new expressions have been

proposed in the last decades especially for light kinetics [8].

Classical kinetics is based on mass action law and reaction

kinetics, and uses enzyme kinetics as template. Both do not

consider the physical step of light absorbance depending on

chlorophyll content in the chloroplast. Other mathematical

attempts are empiric or semi-mechanistic [9]. Light limita-

tion and light inhibition are completely different processes

on different time scales, but are formulated with only one

term in the kinetics, e.g. Steele [10]. This can be overcome

with kinetics defined piecewise, where the classic piecewise

linear photosynthesis irradiance response curve (PI-curve) is

one example. Most measured PI-curves for adapted cultures

in photo-bioreactors exhibit a distinct saturation range before

reaching inhibition. The broad range of saturation may be due

to a limiting step downstream from sugar production in the

metabolism, which is considered by Blackman kinetics [6].

The model according to Han is one of the few being directly

derived from reaction kinetics of photosynthetic units [8].

This will be derived later in this review (see Section 2.1).

Several aspects impede finding and validating kinetics for

photo-bioprocesses. The first one is the temporal aspect.

Photo-acclimation ranges from fractions of a second to hours

or days [11,12]. The differences in time scales prohibit the

transfer of short-term measurements to outdoor cultivations.

Another aspect is the spatial characteristic of light gradients.

The gradients make the direct application of kinetics possible

for only one light intensity. The necessary light integration

over the reactor volume and the consequences for the appear-

ance of the kinetics will be discussed later in this review. The

third aspect is the variability of the cells. Cellular composition

varies according to heterotrophic kinetics depending on nutri-

ents in the medium. Substrates for heterotrophic pathways are

carbohydrates formed in the chloroplast. The chloroplast per-

forms light absorption and photosynthesis partially indepen-

dent from the heterotrophic pathways of the cell. This vari-

ability of cellular reactions, time constants of reactions, and

acclimation as well as light gradients are indispensable for the

simulation of microalgal physiology.

Only mechanistic models based on physiological under-

standing of the cell yield reliable predictions when applied
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to other process conditions later on. Well formulated and

reasonably simplified kinetics can then be coupled to hydro-

dynamics and light attenuation in one model [13]. Such

models help to analyze and optimize cultivation systems or

to design new reactors and microalgae production plants.

We will show that only one kinetic equation for growth as

a function of light is not enough to consistently represent

the cell’s behavior. Building up on reactor conditions and

intracellular stoichiometry, separate equations for photon

absorbance and growth lead to a consistent and scale indepen-

dent system of kinetics. The necessary biological knowledge

for the kinetic equations is in many cases already available

or can be retrieved in small scale experiments. Based on

this kinetics, we will show how powerful such an approach

can be for reactor and medium design as well as process

development in general. The presented approach is not

comprehensive for the diversity of technical and biological

situations, but will encourage going further into the direction

of more knowledge driven rational process development for

photo-bioprocesses.

2 LIGHT KINETICS — A
SCAFFOLD TO OPTIMIZE
PHOTOBIOREACTOR GEOMETRY

Setting up kinetics for phototrophic bioprocesses can be car-

ried out in analogy to heterotrophic bioprocesses. For het-

erotrophs substrate uptake is usually assumed to be an enzy-

matic step. The specific substrate uptake rate rS = f(cS)

[g⋅(g⋅h)−1] is represented by Michaelis–Menten-type kinet-

ics. The substrate uptake can be summarized as rational func-

tion kinetics, with a polynomial expression in numerator and

denominator, considering also different kinds of inhibition.

In growth kinetics, a stoichiometric equation for the specific

growth rate rX = f(rS) [g⋅(g⋅h)−1] as function of substrate

uptake is formulated (Equation 1).

𝑟𝑆
(
𝑐𝑆

)
= 𝑟𝑆,max ⋅

𝑐𝑆

𝑐𝑆 + 𝑘𝑆
substrate uptake

𝑟𝑋
(
𝑟𝑆
)
= 𝑦𝑋,𝑆 ⋅ 𝑟𝑆 − 𝑟𝑋,𝑚 substrate usage

(1)

The yield coefficient yX,S [g⋅g−1] and the maintenance

parameter rX,m [h−1] are interpreted from assumptions about

carbon and energy balance. From the combination of sub-

strate uptake and yield the Monod equation rX = f(cS) can

be deduced. Splitting up Monod kinetics into substrate uptake

and yield is in many respects no true mechanism, but at least

follows one clear cause-effect chain. This practicability has

given reason to adapt Monod-type kinetics from heterotrophic

growth [4] or other formal kinetics to phototrophs [10,14].

In the phototrophic case, things are different. First, light is

not a concentration but a flux. Reactor equations for light

compare to equations describing a fed-batch with linear feed-

ing. Second, light uptake is not enzymatic, but a linear phys-

ical absorbance step. Growth may be stoichiometrically cou-

pled to absorbed photons in analogy to the heterotrophic yield

equation.

2.1 The photosynthetic response curve — the
basic building block of microalgal growth
kinetics
Setting up light kinetics as a quantitative way to describe

the cellular response to irradiance has been regarded as an

important concern for decades [15]. Measuring the pho-

tosynthetic activity as a function of light intensity in the

photosynthetically active frequency range leads to the so-

called PI-curve. This curve can be given either as a func-

tion of the (local) photon flux density here denoted as Ih𝜈

[µmol⋅m−2⋅s−1] or as the function of the specific absorbed

photon flux rh𝜈,abs [µmol⋅g−1⋅s−1]. Absorbed photons are

potentially active in photosynthesis and, thus describing

kinetics based on absorbed photons allows for a better under-

standing of the underlying physiological effects. In the fol-

lowing paragraphs three different kinetic approaches building

upon each other will be reviewed and discussed especially for

the specific growth rate rX [g⋅g−1⋅h−1] as the photosynthetic

activity.

In the simplest case, the specific growth rate as function

of irradiance starts with a linear increase for low light inten-

sities. The slope yX,I = drX/dIh𝜈 is a measure for the sensi-

tivity of growth to light. The negative intercept of the spe-

cific growth rate rX accounts for maintenance energy rX,m.

On the first linear increase follows a more or less constant

course of rX at medium light intensities. A limiting step in the

metabolism leads to a maximum specific growth rate rX,max

under the given environmental conditions. Possibly, at high

irradiance values, light inhibition causes a decreasing part of

the curve. As light inhibition is a multi-factorial process on

different time scales and should be avoided during production,

it is not further discussed in this review. The specific growth

rate rX can now be formally represented as Equation 2.

𝑟𝑋
(
𝐼ℎ𝜈

)

=
{
𝑦𝑋,𝐼 ⋅ 𝐼ℎ𝜈 − 𝑟𝑋,𝑚 for 𝐼ℎ𝜈 < 𝐼ℎ𝜈,𝑠𝑎𝑡
𝑟𝑋,max for 𝐼ℎ𝜈,𝑠𝑎𝑡 < 𝐼ℎ𝜈 < 𝐼ℎ𝜈,𝑖𝑛ℎ𝑖

(2)

This kinetic approach contains three a-priori unknown physi-

ological parameters being rX,max, rX,m, and yµ,I. The specific

light intensities compensation point Ih𝜈,comp for rX = 0, the

onset of saturation Ih𝜈,sat and the onset of inhibition Ih𝜈,inhi

can be deduced from the physiological parameters as given in

Equation 2 or vice versa. This simple kinetics already allows



SCHEDIWY ET AL. 833

to solve different tasks in reactor design as outlined in the last

paragraph of this section.

Kinetics does not develop full expressiveness until being

matched against underlying physiological mechanisms.

The first step of interaction between light intensity and

growth is light absorption, a linear process. Absorption is

determined by the effective absorption cross section 𝜎X

[m2⋅g−1] of the biomass. The specific absorbed photon

flux rh𝜈,abs [µmol⋅g−1⋅s−1] is a measure for the potentially

available photosynthetic energy of the cell under light lim-

iting conditions. The energy uptake by physical absorption

justifies the linearly increasing part of the kinetics under light

limitation. Light saturation under optimal growth conditions

can depend on (unknown) intracellular bottle-necks rint in

photosynthesis. The excess energy of absorbed photons is

then dissipated as fluorescence irradiation or heat, so called

non-photochemical quenching [16]. Equation 3 gives the

kinetic approach based on absorbed photons [4].

𝑟ℎ𝜈,𝑎𝑏𝑠 = 𝜎𝑋 ⋅ 𝐼ℎ𝜈 light absorption

𝑟𝑋
(
𝑟ℎ𝜈,𝑎𝑏𝑠

)
= 𝑦𝑋,ℎ𝜈 ⋅ 𝑟ℎ𝜈,𝑎𝑏𝑠 − 𝑟𝑋,𝑚 light limitation

𝑟𝑋 ≤ 𝑟𝑋,max light saturation

(3)

In contrast to substrate uptake in the heterotrophic case

(Equation 1), absorption as such has no natural limit, so

in this kinetic model the maximum specific growth rate is

determined by an intracellular step. The yield parameter yX,h𝜈

[g⋅mol−1] has a clear physiological meaning being the photo-

synthetic efficiency of formed biomass on absorbed photons.

Many authors observed no linear increase but a smooth sat-

uration curve without showing a sharp kink in the transition

between light limitation and light saturation. The reason of

this non-linear behavior can be understood as partial satu-

ration of the light harvesting complexes. Chlorophyll (Chl)

molecules change between an excited state after being hit

by a photon and a reactive state after the energy has been

transferred to the active center. The time constant 𝜏Chl [s]

related with this energy transfer process (mostly assumed for

PSII) is decisive for the total photosynthetic rate. Excited Chl

molecules can also fall back to the reactive state. The excess

energy is then lost by heat and fluorescence, reducing photo-

synthetic efficiency even at moderate light intensities. Chloro-

phyll molecules, which are already in the excited state, cannot

be further excited by a second photon.

A widely accepted kinetic model based on these assump-

tions has been given by Han [8] and further elaborated by

Bernardi [17,18]. Their state model is based on photosynthetic

units (PSU). Each PSU consists of Chl molecules and the fol-

lowing steps in PSII, PSI, and carbon fixation to form one

molecule of oxygen. PSUs can be reactive or activated (open,

closed). However, it is not clear, what these states mean physi-

cally for PSU. In the following equations the model is adapted

to biomass as the system boundary to contain only macroscop-

ically measurable parameters. The first step considers light

absorption as in Equation (3). But only Chl molecules being

in the reactive state can change their state into excited, assum-

ing that exactly one photon per Chl is involved. The specific

number of reactive Chl is here denoted as nChl,reactive and the

Chl in the excited state as nChl,excited [-], where nChl is the

number of Chl molecules per biomass [1⋅g−1]. Excited Chl

can then transfer energy to the reaction center via first order

reaction, falling back to the reactive state. The physiological

interpretation of the time constant 𝜏Chl [s] could be the relax-

ation time of PSII but is not clearly described in references.

The concept of first order kinetics does not actually require an

explicit time constant in a following step after light capture.

Setting up mass balances leads to differential equations for

each of the two states and an algebric equation for the whole

Chl as given in Equation (4).

𝑑𝑛𝐶ℎ𝑙,𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒

𝑑𝑡
= −𝜎𝑋 ⋅ 𝐼ℎ𝜈 ⋅

𝑛𝐶ℎ𝑙,𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒

𝑛𝐶ℎ𝑙
+
𝑛𝐶ℎ𝑙,𝑒𝑥𝑐𝑖𝑡𝑒𝑑

𝜏𝐶ℎ𝑙
= 0

𝑑𝑛𝐶ℎ𝑙,𝑒𝑥𝑖𝑐𝑡𝑒𝑑

𝑑𝑡
= +𝜎𝑋 ⋅ 𝐼ℎ𝜈 ⋅

𝑛𝐶ℎ𝑙,𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒

𝑛𝐶ℎ𝑙
−
𝑛𝐶ℎ𝑙,𝑒𝑥𝑐𝑖𝑡𝑒𝑑

𝜏𝐶ℎ𝑙
= 0

𝑛𝐶ℎ𝑙,𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 + 𝑛𝐶ℎ𝑙,𝑒𝑥𝑐𝑖𝑡𝑒𝑑 = 𝑛𝐶ℎ𝑙 (4)

With respect to time constants of the growth process being
orders of magnitudes higher than 𝜏Chl, these two linearly

dependent differential equations can be considered to be sta-

tionary (d/dt = 0). This assumption leads to the specific trans-

port rate rh𝜈,act [mol⋅g−1⋅s−1] of excited photon energy (exci-

tons) finally being active in water splitting:

𝑟ℎ𝜈,𝑎𝑐𝑡 =
𝑛𝐶ℎ𝑙,𝑒𝑥𝑐𝑖𝑡𝑒𝑑

𝜏𝐶ℎ𝑙

=
𝜎𝑋 ⋅ 𝐼ℎ𝜈 ⋅ 𝑛𝐶ℎ𝑙

𝜎𝑋 ⋅ 𝐼ℎ𝜈 ⋅ 𝜏𝐶ℎ𝑙 + 𝑛𝐶ℎ𝑙

=
𝑛𝐶ℎ𝑙

𝜏𝐶ℎ𝑙
⋅

𝐼ℎ𝜈

𝐼ℎ𝜈 +
𝑛𝐶ℎ𝑙

𝜎𝑋 ⋅𝜏𝐶ℎ𝑙

(5)

Unknown parameters can be lumped to achieve a workable

kinetics with less and measurable parameters:

𝑟ℎ𝜈,𝑎𝑐𝑡
(
𝐼ℎ𝜈

)
= 𝑟ℎ𝜈,𝑎𝑐𝑡,max ⋅

𝐼ℎ𝜈

𝐼ℎ𝜈 + 𝑘𝐼
with 𝑟ℎ𝜈,𝑎𝑐𝑡,max

=
𝑛𝐶ℎ𝑙

𝜏𝐶ℎ𝑙
𝑎𝑛𝑑 𝑘𝐼 =

𝑛𝐶ℎ𝑙

𝜎𝑋 ⋅ 𝜏𝐶ℎ𝑙
(6)

To finally obtain a growth kinetics, the yield of biomass

per photon yX,h𝜈 [g⋅mol−1] is included as well as a mainte-

nance parameter rX,m [h−1] describing the energy demand for

maintenance purposes:

𝑟𝑋
(
𝐼ℎ𝜈

)
= 𝑟𝑋,max ⋅

𝐼ℎ𝜈

𝐼ℎ𝜈 + 𝑘𝐼
− 𝑟𝑋,𝑚 with 𝑟𝑋,max

= 𝑟ℎ𝜈,𝑎𝑐𝑡,max ⋅ 𝑦𝑋,ℎ𝜈 (7)
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F I G U R E 1 Simulations of growth kinetics. A consecutive step

masks the PSU model [8] according to Blackman kinetics [6] in an

ideally illuminated reactor [30] (green curve and diamonds). Ideal

kinetics described by Blackman [6] assumes instant reaction and

relaxation of chlorophyll (dotted black line). Other graphs encounter for

steeper unidirectional light gradients as light integration (blue) and

growth integration (red)

A simulation with estimated parameters is shown in

Figure 1. The graphs of light and growth integration illustrate

potential effects of measuring light kinetics at higher biomass

concentrations as discussed in Section 2.2.

The model derived above is directly comparable to

Michaelis–Menten kinetics, having the same structure of a

rational function. Binding between substrate S and enzyme E

according to mass action law in enzyme kinetics corresponds

to light absorption of Chl. While in enzymatic systems the

back reaction releases one substrate molecule, in photo-

synthesis the respective photon is lost. Product formation

in enzyme kinetics, formulated as first order reaction of

enzyme-substrate complex to enzyme plus product, corre-

sponds to first order transition of excited Chl to reactive Chl

in the phototrophic case. In both cases mechanistic param-

eters are lumped to macroscopically measurable parameters

(for enzymes: rS,max = kE+S→ES ⋅ cE; kS = (kES→E+S +
kES→P)/kE+S→ES). Growth kinetics of algae can therefore

often be represented by a usual rational function, but with a

different physical and physiological background. Light inhibi-

tion can also be formulated considering Chl-inactivation [19]

leading to the typical quadratic term in the denominator.

Even though the state model leads to rational function,

the maximum specific growth rate is often determined by a

consecutive metabolic step. The impact of consecutive

metabolic steps on measurable growth kinetics was firstly

investigated by Blackman [6]. Kinetic approaches suit-

able for this scheme are referred to as Blackman kinetics.

Successive kinetics mask each other at different substrate

concentrations or here, light intensities. In cases where two

enzymatic steps are converting the same molar flux, a rational

function kinetics is observed for low and middle substrate

concentrations, being cut off at higher concentrations by the

constant maximum turnover rate of the second step. In case

the first enzymatic step is only active at low concentrations,

growth can be approximated by a linear increase as the

function of substrate concentration. The biological meaning

is overexpression of the substrate uptake system to allow

sufficient substrate uptake at low concentrations. Fitting data

from a Blackman system erroneously by rational function

kinetics may lead to seemingly acceptable results, but with

apparent low and varying kS-values. The linear piecewise

PI-curve (Equation 2) can be interpreted as Blackman kinet-

ics, where light absorption corresponds to substrate uptake.

Formally, Blackman kinetics leads to an additional parameter

describing the maximum specific growth rate under the given

conditions. The maximum specific growth rate can be caused

by a consecutive internal limitation (rX,max,int) or another

nutrient turnover rate rX,env = f(cComp) [g⋅g-1⋅h-1] that is sto-

ichiometrically coupled to the one under investigation [20].

The limitation of nutrient turnover is usually avoided by

nutrient replete conditions during the measurement process.

According to the “Law of Minimum”, the substrate concen-

tration leading to the lowest specific growth rate determines

the overall maximum specific growth rate [21].

𝑟𝑋,max,𝑡𝑟𝑢𝑒
(
𝐼ℎ𝜈

)
= min

(
𝑟𝑋,𝐶ℎ𝑙

(
𝐼ℎ𝜈

)
, 𝑟𝑋,𝑒𝑛𝑣

(
𝑐𝐶𝑜𝑚𝑝

)
, 𝑟𝑋,max,int

)
(8)

A simulation of growth kinetics assuming different limiting

consecutive steps is shown in Figure 2. Many data sets in the

literature can better be fit by Blackman kinetics than by pure

rational function kinetics, e.g. ref. [22–24].

2.2 Measuring light kinetics — a view
through the keyhole on physiology
PI-curves are measured on a short-term basis of minutes as

oxygen evolution in specialized chambers [25–27], as growth

in batch cultivations on a time scale of hours [28] or even

including long-term adaptation and acclimation in continu-

ous cultivations [29]. Short-term measurements can be useful

as an additional measurement during production processes to

monitor the acclimation state.

Measuring light kinetics and careful quantitative interpre-

tation can reveal further insights into the physiology of the

cells under given reactor conditions. The measurement of

light kinetics in short term uses low biomass concentrations

in specialized chambers. Measuring the light kinetics in pho-

tobioreactors requires special modeling reactors to avoid light

gradients. These reactors could be double sides illuminated

plate reactors or radially illuminated tubular reactors, both

at moderate biomass concentrations [30]. However, record-

ing light kinetics in the presence of higher gradients is also
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F I G U R E 2 Simulation of light kinetics

assuming different limiting consecutive steps. The

saturation of light harvesting systems causes a

hyperbolic shape of the PI-curve. Metabolic steps

following absorption confine the potential specific

growth rate further. The rate of carbon fixation

relates to starch production stoichiometrically,

whereas the transformation of starch to active

biomass requires an energy and carbon demanding

respiration step

a necessity to follow physiological changes during relevant

technical processes. Measuring the overall specific growth

rate as function of incident light intensity gives only selective

meaning and no predictive power.

In addition to different energetic states of chlorophyll

(see Section 2.1), higher cell densities result in a smoother

saturation curve due to steeper light gradients inside the pho-

tobioreactor. This gradient can be flat plate reactors approx-

imated as an exponentially decreasing function based on the

effective absorption cross section 𝜎X of the biomass. The spe-

cific growth rate then depends — assuming immediate reac-

tion — on the position on the light path [31]. Light gradients

inside the reactor are not easy to measure and specific growth

rates in spatial resolution are not accessible. For this reason,

growth experiments are usually evaluated based on an aver-

age value for the specific growth rate rX,av and with respect

to the mean light intensity or the total absorbed photons. The

absorbed photons are calculated via the incident light inten-

sity I0 and, if necessary, the irradiation leaving the reactor on

the side facing away from the light source. The mean specific

photon uptake rate, usually referred to as “photon availability”

[mol⋅g−1] is then determined as absorbed photons per biomass

in the reactor. Describing light kinetics as the correlation of

the average specific growth rate and incident light intensity or

photon availability gives:

𝑟𝑋,𝑎𝑣
(
𝐼ℎ𝜈,0

)
= 𝑟𝑋

(
1
𝐷𝑅

∫
𝐷𝑅

0
𝐼ℎ𝜈

(
𝑙𝑝𝑎𝑡ℎ

)
⋅𝑑𝑙𝑝𝑎𝑡ℎ

)

=
𝐼ℎ𝜈,0 ⋅ 𝐴𝑅

𝑐𝑋 ⋅ 𝑉𝑅
=

𝐼ℎ𝜈,0

𝑐𝑋 ⋅𝐷𝑅

for 𝑎 plate reactor (9)

This approach, more correctly referred to as “light integra-

tion” [32], does not need a measurement of light gradients. But

valid data can only be gained in cases, where limiting condi-

tions apply for the whole suspension inside the reactor. Pre-

dictions in the presence of light saturation and dark parts of

the reactor will lead to erroneous results.

The kinetic-based calculation of the mean specific growth

rate µav,I and comparison to measured data is not possible

without any assumption concerning the light gradient inside

the reactor. This more precise evaluation including light satu-

ration is called “growth integration” as being proposed by [33,

34].

𝑟𝑋,𝑎𝑣,𝜇
(
𝐼ℎ𝜈,0

)
= 1
𝐷R ∫

𝐷R

0
𝑟𝑋

(
𝐼ℎ𝜈

(
𝑙𝑝𝑎𝑡ℎ

))
⋅𝑑𝑙𝑝𝑎𝑡ℎ (10)

Here, the average specific growth rate is calculated by

integration over local rX-values along the light path being

assumed using a given light gradient. Both approaches are

compared by simulated curves in Figure 1. Growth inte-

gration, reflecting the real situation in a reactor, transforms

piecewise linear kinetics as well as rational kinetics to a sat-

uration curve. Simulation of growth integration looks similar

to Monod kinetics but with a lower maximum specific growth

rate and a higher limitation constant than present in the real

organisms. This gives reason to assume that sometimes

Monod-type kinetics measured at high biomass concen-

trations is only an artifact of the transformation process.

Consequently, a direct physiological interpretation of rX,av is

not admissible. To extract the real physiological kinetics, a

physically reasonable approach, e.g. Han-kinetics, has to be

simulated according to Equation 10 and the unknown param-

eters rXmax, kI, rX,m have to be numerically estimated from

the measured data. Investigations of the flashing light effect

revealed that growth rates can be in the range between predic-

tion by light integration and growth integration. This can be

understood as the energy storage of the light harvesting com-

plex in microalgae. However, characteristic frequencies of the

flashing light effect are usually higher than the relaxation time

of the harvesting pigments as predicted by the Han model.

Physiological parameters of the Han model cannot directly

be extracted from measured kinetics, as they appear in lin-

ear dependencies, e.g. nChl and 𝜏Chl appear only in linear

combination as nChl/𝜏Chl. However, some of the physiological

parameters can be measured employing optical measurement
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T A B L E 2 Typical values of kinetic parameters mainly applied in the model in section 2.1

Term Symbol Unit
Values,
Range Comment References

Initial slope of

PI-curve

yX,I [(g⋅g−1⋅h−1)⋅
(µmol⋅m−2s−1)−1]

1.7 × 10−4–6.0 × 10−4 Traditionally named 𝛼. For rX

responding to Ih𝜈 .

[22,80]

Photon yield yX,h𝜈 [g⋅mol−1] 0.2–2.1 Initial slope of PI-curve, if

normalized to absorbed photons.

(recalculated from given data)

[26,64]

Maximum specific

growth rate

rX,max [g⋅g−1⋅h−1] 0.02–0.15 Values are for typically applied

strains; higher values for

cyanobacteria.

[23,58]

Light limitation

constant

kI [µmol⋅m−2s−1] 100–300 Higher values than this range may

indicate distortion by light

gradients or other limitations.

[22,80]

Absorption cross

section biomass

𝜎X [m2/g] 0.1–0.3 Higher values at wavelength for

Chl-peaks, lower values, e.g. in

the green gap.

[36–38,81]

Relaxation time

photosystem

𝜏Chl [s] 10−6–10−3 Lower value as used in Figure 1,

higher for explaining flashing

light effect, can be measured with

fast PAM.

[82]

Chl content in

biomass

nChl [mg⋅g−1] 18–28 Low value for (high) light

acclimated, high values for dark

acclimated cells.

For other

influencing

parameters

see: [83]

Maximum specific

CO2-net-uptake

rate

rCO2,max [g⋅g−1⋅h−1] 0.04–0.3 Assuming the mentioned specific

growth rate range and 45 % carbon

(m/m) in the formed biomass.

Calculated

from rX,max

Limitation constant

for CO2

kCO2 [%]/

[µmol⋅L-1]/

[mg⋅L−1]

0.027/

11/

0.5

Values similar for different strains

and conditions, but sensitive to pH

shifts. (Solubility of CO2 drops

with increasing temperature.)

[3]

Limitation constants

for NO3
−, NH3

+,

PO4
3−

kNO3, kNH3,

kPO4

[µmol⋅L-1] 2–60 Highly dependent on strain,

temperature, etc.

[58]

techniques, a unique feature of microalgae [35]. This allows

not only to check kinetic parameters for feasibility, but also

gives hints for adaptation or acclimation of the cells during

cultivations.

A direct measurement of the effective absorption cross sec-

tion 𝜎X is possible either inline by optical sensors or offline

in spectrophotometers [36–38]. The measurement will help

to assess the light gradient in Equation 10 and to track chang-

ing pigment contents. In addition, offline measured Chl con-

tent data (nChl) delivers important information on acclima-

tion processes and supports interpretation of kI values. The

photon yield yX,h𝜈 is another important parameter, which can

be directly estimated by measuring biomass concentration

and incident light intensity and by evaluating growth integra-

tion. A value of 3 g⋅mol−1 is the theoretical maximum based

on the common assumption that 10 mol photons are neces-

sary for the fixation of 1 mol CO2. This will be observed

only in cases, where microalgae produce high levels of starch

without further conversion for growth. Transformation of

starch to active biomass needs respiration for ATP generation

and can reduce the photon yield up to 50%. Even lower values

are obtained during lipid production as lipids have a higher

heat of combustion. The lower biomass per photons does not

represent a reduction of photosynthetic activity. The recalcu-

lation of photosynthetic activity needs to consider the com-

position of the biomass and the energy content of different

constituents. Measuring light kinetics under nutrient starva-

tion (no formation of active biomass) will allow separation

of photosynthesis and anabolism. This could be another inter-

esting means to study the photosynthetic efficiency of a given

strain under given environmental conditions. Photon yield is

decisive for the overall process efficiency, so it is interesting

already during screening. Typical values for the parameters

used in the described kinetics are given in table 2.
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2.3 Impact of light kinetics on reactor design
Kinetic values have a direct impact on different aspects of

reactor design and process development. For strain selection

not only the maximum specific growth rate is decisive but also

the photon yield during light limitation. Light intensity in a

photobioreactor is determined by “light dilution” and “light

distribution”. The so-called light dilution is the transparent

surface area of the reactor per foot print area [39], while the

light distribution describes the light gradient in the suspen-

sion. For optimization, both design parameters can be calcu-

lated from kinetics. Strong sun radiation needs transforma-

tion to an average light intensity on the reactor surface slightly

higher than the onset of the saturation range (e.g. for tubes or

vertical panels) to achieve maximum efficiencies. At higher

light intensities the first illuminated layers of the suspension

are in saturation with dissipation of photons and, therefore, a

loss of productivity. Light distribution along the light path is

the key for calculation of the reactor thickness. The absorp-

tion cross section of the strain has to be known to perform

the simulations required for reactor design. Thickness of the

reactor and biomass concentration should be adapted to min-

imize the “dark zone” of the reactor. Only with thin reactors

high biomass concentrations can be obtained. The dark frac-

tion of the reactor provokes several disadvantages. Biomass

concentrations being too high for a given reactor thickness

cause a drop in productivity due to energy losses for main-

tenance becoming predominant in dark zones. Mixing might

improve productivity by the transition of cells between dif-

ferent light zones. Energy is required for mixing the whole

reactor volume and not only for the transition zone. In the

dark parts mixing remains without a positive effect for mass

transfer resulting in a waste of energy. Even seemingly simple

decisions of whether a plate reactor should be oriented, N/S or

E/W and the distance between two plates need a sun simula-

tor and a kinetic based reactor model. Losses in productivity

are not understandable simply by calculating reactor gauges

based on photon availability.

For artificially illuminated reactors, light kinetics can give

hints for calculation not only for light path but also for the light

color. At first glance, red illumination seems to be favorable as

absorbance shows a maximum and excess energy of photons

is minimal compared to photons with shorter wavelengths.

Red light is indeed appropriate for lower light intensities.

Increasing light intensity and biomass concentration, while

keeping the specific light availability (photons per biomass)

constant, diminishes this advantage [40]. Cells facing the

light become saturated, absorbed but dissipated photons are

missing at the side facing away from the light. A better choice

at high biomass concentrations could then be yellow [41]

or orange light with wavelengths at the shoulder of the red

absorbance maximum to be more energy efficient and yield

high productivities at medium biomass concentrations.

3 CO2 KINETICS — TAILORED
SUPPLY OF CARBON SOURCE

Next to light, inorganic carbon supply is the most essential

factor for microalgal cultivation. Carbon uptake on the cell

level as a function of CO2 partial pressure in the medium is

the most important kinetics to avoid carbon-limitation and to

minimize CO2 losses in the off-gas.

3.1 Basics of CO2-kinetics
The total CO2 demand of the cells can be calculated, as a first

guess, from carbon content eC,X of cells or its constituents. In

each time interval of the cultivation the carbon dioxide trans-

fer rate (CTR, compare Equation 12) has to be set according

to this minimum requirement.

𝐶𝑇𝑅min =
𝑀𝐶𝑂2
𝑀𝐶

⋅ 𝑟𝑋 ⋅ 𝑐𝑋 ⋅ 𝑒𝐶,𝑋 (11)

The minimum mass of CO2 required for starch, here meant

as the representative for the main photosynthetic product,

is YCO2/X = mCO2/mstarch = 1.6 g⋅g−1 (starch as a unit

C6H10O5). For maximum reduced lipids, the CO2 demand

YCO2/Lipid approaches 3.1 g⋅g−1 according to mass balances.

Carbon content of living microalgae cells may vary between

these two key points depending on its carbohydrate, protein,

or lipid content. As typical values for the carbon content

of microalgae 0.5 g⋅g−1 are mentioned [42], leading to a

CO2-demand of YCO2/X = 1.8 g⋅g−1 or rX = yX,CO2⋅rCO2 on

the level of specific turnover rates. This gives an indication

of the minimum carbon dioxide amount to be fed into the

reactor during a cultivation.

The concentration of dissolved CO2 in the medium, usu-

ally expressed as partial pressure pCO2 [%saturation, e.g. 1%

≈ 409 µmol⋅L−1 ≈ 18 mg⋅L−1 at 25◦C] has to be high enough

to enable the cells taking up their demand. Correspond-

ing kinetics rCO2 = f(cCO2) have been measured [43–45].

This data can be described mostly by Michaelis–Menten-type

kinetics with a half-saturation constant of kCO2 = 0.027%

[≈11.04 µmol⋅L−1 ≈ 0.486 mg⋅L−1 at 25◦C]. The knowledge

of this value is basically enough to control pCO2 on an appro-

priate level.

A more detailed analysis reveals that data can often be bet-

ter represented by Blackman kinetics introducing a second

limiting step downstream of the first enzymatic step. The lim-

iting step will cut off the slope of the rational kinetics at some

point. However, this limitation step costs an additional para-

meter not justified by the data due to lacking parameter esti-

mation accuracy. Parameter accuracy is limited by the persist-

ing problem of measuring precise and stable values of pCO2

in microalgal biotechnology. Not only the accuracy is a prob-

lem of the sensors but also changing solubility, concentra-

tion of other nutrients and pH-values. Even more, measuring
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HCO3
− as a potential second substrate is difficult. Recalcula-

tion based on solubility (Henry’s law), dissociation constants

(mass action law), and a zero-charge balance is in principle

possible, but rarely happens in practice. An overview concern-

ing this problem is elaborated in ref. [46]. The measurement of

rCO2 requires off-gas analysis and compensation of lost CO2

in the effluent of continuous cultivations, e.g. by pre-gassing

of feed medium.

Carbon uptake of the cell for carbon fixation is higher

than the apparent net uptake leading to an additional prob-

lem in interpretation. Algae degrade starch in respiration to

obtain ATP for growth on the remaining starch fraction. At

least in eukaryotic algae, the CO2 evolved by respiration has

to be taken up again to be further used in photosynthesis.

Estimations of the growth yield can consider heterotrophic

growth as the benchmark, where the yield of biomass from

glucose yX,Gluc is approximately 0.4 g/g to 0.5 g/g depending

on medium and cell composition [47,48]. Measured kinetics

represents only the net uptake instead of the real uptake being

nearly twice as high depending on the cellular composition.

3.2 Interpretation of measured CO2 kinetics
values against the background of the physiology
of carbon uptake
Carbon uptake as CO2 or HCO3

− goes along a metabolic route

including (strain dependent) diffusion steps, CO2/HCO3
−-

conversion, carbon concentration mechanisms (CCM) and,

finally, the reaction with ribulose-1,5-bisphosphate carboxy-

lase/oxygenase (RuBisCo) as the central carbon fixation

enzyme [49].

Facing the presence of saturation kinetics in microalgae,

the first diffusion step seems to not be limiting. Conse-

quently, the focus in references is on the carbon fixation

at RuBisCo. This most abundant enzyme in nature forms

the main bottleneck in global carbon cycle [50]. Due to its

tremendous importance, much research work has been car-

ried out to measure kinetic parameters in vivo and in vitro.

Isolated RuBisCo shows in vitro typical half-saturation con-

stants of 740 to 1120 ppm = 0.074 to 0.112% for CO2 (25–

38 µM [51]) and maximum turnover rates of 4 s−1 [52]. This

constant is a factor 2.1 to 3.2 higher than the measured value

in vivo and a factor 1.8 to 2.8 higher than the atmospheric

concentration, recently 400 ppm [equilibrium in water phase

0.04% ≈ 13.6 µmol⋅L−1 ≈ 0.6 mg⋅L−1]. Biologists assume

that RuBisCo has evolved in earth ages with a higher atmo-

spheric CO2 concentration. Due to the “low” CO2 values in

atmosphere nowadays, RuBisCo is expressed in high intra-

cellular concentrations. During fast growth of microalgae the

RuBisCo fractions range from 1.4 to 3.7% of the whole cell

protein under nutrient replete conditions [53].

Apparent kCO2 values derived from Michaelis–Menten

kinetics vary between different references and growth

conditions. This is understandable as the true value of

RuBisCo is masked by an additional maximum turnover

rate according to Blackman kinetics. Fitting data of a pro-

cess imprecisely with two consecutively active limiting steps

squashed into Michaelis–Menten kinetics leads to an appar-

ently lower half saturation constant.

Another factor is the role of oxygen partial pressure. Oxy-

gen competes with carbon dioxide at the RuBisCo binding

side. Binding oxygen leads to the so-called “photorespiration”

not to be confused with respiration in mitochondria to gener-

ate ATP for growth [54]. Photorespiration is on intracellular

cost of ATP and fixed CO2. The purpose of photorespiration

is discussed as a mechanism of the cell to reduce oxygen rad-

icals in the chloroplasts. In terms of kinetics, light respiration

should be visible as reduction of photon yield and as inhibition

of net carbon uptake. Only few data are available to evaluate

the competition of CO2 and O2 in real technical cultivations.

The measurement of pO2 in parallel is necessary but often not

shown in the data sets. Oxygen “inhibition” is assumed to start

above pO2 > 40%, a common value for dense and fast growing

cultures [55].

Another item leading to apparently lower limitation con-

stants for CO2 is CCM. CCM have the potential to shift the

macroscopically visible kinetics to lower kCO2-values com-

pared to the values that would result from CO2-measurements

close to RuBisCo. Possibly, the measured kCO2-values reflect

the enzymatic processes in CCM more than RuBisCo itself.

On the other hand, CCM leads to lower yields because of ATP

expenditure. An access to verify the effect of these two mech-

anisms leading to a lower photon yield would be the simulta-

neous assessment of light and carbon uptake kinetics.

3.3 Consequences for gassing strategy of the
photobioreactor
Optimal choice for CO2-gassing is guided by the idea to

keep pCO2 partial pressure in the medium at a value given

by the kinetics for an anticipated rX and to avoid CO2 losses

in the off-gas. In most real cases an educated guess such

as pCO2 = 1% is chosen. While the whole gas stream is

adjusted for sufficient mixing (e.g. 0.1 vvm), the partial pres-

sure of pCO2,Gas in the gas phase needs to drive the carbon

dioxide transfer to the cells. The volumetric carbon dioxide

transfer rate (g⋅L−1⋅h−1) over the gas–liquid interface needs

to cover the volumetric carbon dioxide uptake rate (CUR

[g⋅L−1⋅h−1]).

CTR = CUR = 𝑟𝐶𝑂2 ⋅ 𝑐𝑋

= 𝑘𝐿𝑎 ⋅
(
𝑐∗
𝐶𝑂2,𝑔𝑎𝑠 − 𝑐𝐶𝑂2,𝑙𝑖𝑞𝑢𝑖𝑑

)
(12)

This coupled mass transfer (CTR = f(cCO2,liquid))/reaction

(rCO2 = f(cCO2,liquid)) system has to always be in a dynamic

equilibrium due to its short time constants.
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Partial pressure in the gas phase is often controlled via pH

to avoid unstable pCO2 measurements. Resulting pCO2,Gas val-

ues are then typically in a range of 5 to 10%, what allows usage

of gas from combustion processes. Assuming 10% CO2 in the

in-gas, 1% in the off-gas of the bioreactor means a loss of 10%

of the whole CO2 going into the process. pH control is also

challenging as ammonia or nitrate uptake impact the pH value

and pH shifts may lead to inappropriate pCO2. Again, recalcu-

lation of pH by uptake of CO2, HCO3
− or NH4

+ is possible

in principle [56], while uptake of charged compounds requires

the equalization of charges between the medium and the intra-

cellular space over the cell membrane.

Microalgae in reasonable high cell concentrations grow in

the biggest part of the reactor volume below their maximum

specific growth rate due to light gradients (figure 1, equ. 10).

The lower specific growth rates in this part of the reactor

give room to lower the pCO2 into the range of the measured

kinetics. The lower carbon uptake for growth allows also to

optimize tube lengths in tubular reactors and the gas volume

fraction to reduce axial gradients. To be on the safe side,

perturbation of the pCO2-controller in the plant by short term

CO2-pulses will make possible limitations visible.

Strong aeration without any additional CO2 may serve as

a sufficient carbon supply when the aeration rate (kLa value)

is high and the light intensity inside the reactor is low due to

high cell densities. The high aeration is on cost of pneumatic

energy. Light and CO2 gradients along the bubble ascension

axis also have to be considered. Excitation energy from light

can be stored by the cells and used in short dark phases (ms)

as known from investigations of the flashing light effect [26].

Potentially, microalgae store similarly intracellular CO2 or

HCO3
− to bridge small volume elements with low pCO2 in

the reactor.

4 NUTRIENT UPTAKE
AND STOICHIOMETRY

Media design requests the precise dosage of nutrients, above

all nitrogen sources and phosphate, to enable microalgae to

build up their active biomass. During continuous cultivations,

e.g. in waste water treatment processes, the actual nutrient

concentrations have to be high enough to prevent kinetic nutri-

ent limitations. The apparent growth rate then results from

other growth conditions than nutrient concentrations. Nitrate

or ammonia and phosphate containing salts are in general

limited resources and contribute to production costs. Mini-

mization of nutrient consumption and, thus, expenditure is the

overall goal. An alternative low-priced nitrogen source is urea

due to its abundance in waste water. Under alkaline conditions

urea hydrolyzes to ammonia risking toxicity [57]. Hydrolyza-

tion releases, next to ammonia, CO2 into the medium. The

CO2 hampers the investigation of CO2 kinetics. Therefore,

we do not consider urea as a potential nutrient further in this

review. In their natural habitat, microalgae often grow under

nutrient deficiency rather than under light limitation. Conse-

quently, studies on phytoplankton belong to the earliest pub-

lished information on nutrient uptake kinetics.

4.1 Nutrient uptake
One example for a measured Monod-type kinetics of a tech-

nically relevant process is given for Dunaliella tertiolecta at

25◦C. D. tertiolecta shows kNO3 = 1.18 mg/L (19.1 µM) for

nitrate and kNH3 = 0.45 mg/L (25 µM) for ammonium associ-

ated with maximum specific growth rates of 1.87 day−1 and

1.63 day−1, respectively [58]. In waste water processes, typ-

ically higher values are reported. Measurement inaccuracies

at such low concentrations, especially under salt water condi-

tions, or short periods of nutrient limitation cause basic dif-

ficulties to determine precise kinetics, e.g. during batch pro-

cesses. In complex conditions such as waste water treatment,

the stoichiometric coupling between different nutrient uptakes

disables the determination of the actual limiting ion species.

Ranges of typical limitation constants are given in Table 2.

Some physiological abilities of the microalgal cells regard-

ing nutrient uptake need more attention to optimize related

photo-bioprocesses. First, many microalgae species can use

ammonia and nitrate but with different preferences, usually

for ammonia. In continuous cultivations this leads to lower

cNH3 values than kNH3 but to higher cNO3 values than kNO3.

For efficient nitrate removal, a stronger nitrogen limitation

has to be adjusted. Precise measurements of such types of

coupling are rare. Second, microalgae adapted to low nutri-

ent concentrations take up different ions faster than necessary

according to their macromolecular stoichiometry at a given

specific growth rate. This enables the cells to store nitrogen

in the form of special proteins or phosphate as polyphosphate

granules. Based on these storages they grow further even at

lacking nutrient supply. The storage capability makes setting

up a simple rX = f(cPO4) kinetics difficult. In batch cultures,

the phosphate storage delays the phosphate limitation com-

pared to the fast phosphate depletion. To determine the point

of limitation, a good physiological prediction based on kinet-

ics is necessary. The ability of microalgae to take up nutrients

efficiently and to store them has brought up the idea to feed

nitrogen, phosphate, and other minerals in short peaks. Nutri-

ents will be taken up immediately and used over time, leaving

only small concentrations in the medium. This is also meant

to reduce bacterial contaminations.

4.2 Stoichiometry of macromolecular
composition
Acclimation as response to light and adaptation as response

to nutrient availability leads to a remarkably variable
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macromolecular composition of microalgae. Vice versa,

macromolecular composition influences light absorbance and

nutrient uptake kinetics. This is considered, e.g. in the Droop

model [59], not further discussed here. One example for the

mutual dependency of the cellular composition and photo-

synthesis is the change of Chl content with light intensity

(Table 2). The Chl content influences the light gradient in

the reactor and, therefore, productivity. The protein content

also changes due to the stoichiometric relationship between

the number of Chl-molecules and the amount of proteins in

the light harvesting antenna. Other examples are given in the

following paragraphs.

The most prominent reason for stoichiometric variability

of the cells is that they partially decouple anabolism from

photosynthesis by the formation or usage of storage com-

pounds. Nitrogen limitation is regularly employed to decrease

anabolic activity causing accumulation of lipids and carbo-

hydrates [60,61] while the relative protein content decreases.

Carbohydrate fractions above 60%, in exceptional cases even

70% of lipids were reported for high salinities [62]. From a

kinetic viewpoint we need to assess whether accumulation of

storage compounds under nutrient limitation occurs on cost

of cellular “stress”. Nutrient starvation may induce oxida-

tive stress [63] due to a potentially limited turnover of essen-

tial proteins. High accumulation levels sometimes go along

with a reduction of photosynthetic efficiency. Nevertheless,

some strains show high intracellular storage contents without

significant loss in photosynthetic efficiency [64].

Accumulation also happens under moderate nitrogen limi-

tation but light and CO2 repletion as in some natural environ-

ments. After starch accumulation during the day, high decay

rates (up to 30%) of the dry mass follow during the night in

outdoor cultivations [65]. This decrease is sometimes mis-

interpreted as respiration for maintenance related processes.

But an increase in protein content and decrease of carbohy-

drates show that starch is converted to active biomass dur-

ing the night. The cell simply keeps on building cell com-

pounds on the previously accumulated starch and ongoing

nitrogen uptake with the given yield yX,starch (see Section 3),

macroscopically measured as loss of dry mass. Not much

kinetic information is available on this process, especially

not with respect to the overall productivity, although change

in composition may be important for product quality. One

application example may be waste water treatment, where

light is available only during the day, but nitrogen com-

pounds have to be removed during the night as well. A kinet-

ically based process policy could use this ability of the algal

cells.

Apart from storage compounds, microalgae can also

change the macromolecular composition of active biomass.

In case of nitrogen repletion, all nitrogen is taken up within

certain ranges. This can be proven by continuous turbido-

stat cultivations with increasing nitrogen source content in

F I G U R E 3 Variability of the cellular composition of microalgal

dry mass in photoautotrophic cultivations. The ranges of the biomass

composition are illustrated as the lower boundaries inside and the upper

boundaries outside the black circle [62,70–74]. The lightest part of the

inner circle (fraction of potential accumulation) displays the remaining

fraction of the cell. This remaining fraction may theoretically be filled

up with any (accumulated) biomass constituent

the feed medium. Even during constant specific growth rates,

nearly all nitrogen is taken up in a certain window of oper-

ation. The nitrogen stoichiometry then leads to an increased

protein content up to 0.5 g⋅g−1 as measured, e.g. by ref. [66]

for Chlorella. Only below the nitrogen quota of 5%, a dras-

tic reduction of the specific growth rate by the availability of

nitrogen is observed. The protein fraction is then reduced to

0.3 g⋅g−1 (own data, unpublished). Such results are valuable

for controlling product quality with respect to food or feed

application.

Ranges for cellular components such as chlorophyll, pro-

teins, lipids, carbohydrates, nucleic acids, pigments, or ash

can be found considering different process conditions and

microalgae species [67]. The partitioning of carbon from pho-

tosynthesis to the respective cellular components depends on

the cultivation conditions [67]. Next to light and CO2 con-

ditions, variations of the composition are related to nutri-

ents in terms of availability and kinetics. Temperature also

plays a role in the cellular stoichiometry [68]. Deviations from

the optimum not only remarkably decrease growth rates, but

also lead to starch production. This is discussed as a different

temperature influence on photosynthesis and anabolism. The

temperature aspect is not further discussed here, for review

see ref. [69]. A minimum of 35% of the cell consist neces-

sarily of certain constituents according to the reviewed data

(Figure 3, [62,70–74]). This fraction seems to maintain the

activity of essential metabolic pathways as well as the cel-

lular structure. The remaining fraction may be composed of

varying fractions of macromolecules.



SCHEDIWY ET AL. 841

Quantitative measurements of the limits of this macro-

molecular variability are available for singular conditions and

strains. But a general assessment and deeper understanding is

in demand, especially, considering possible metabolic costs

visible as reduction of photosynthetic activity in production

processes. Strategies to optimize the product concentration

by targeted influencing carbon annotation should be based on

kinetics.

5 CONCLUDING REMARKS

Kinetics forms the interface between cell physiology and con-

ditions inside the reactor. The rational design of reactors,

media, and processes can be based on these cell/reactor inter-

actions. Microalgal intracellular processes connect to extra-

cellularly measurable variables as projected by kinetics. Mea-

suring kinetics of microalgae include specific issues such as

light absorption and light gradients. Growth is a mechanis-

tic function of the local light intensity based on the model by

Han [19] and our physiological interpretation of macroscop-

ically measurable parameters. To deduce the mean growth

rate of the whole reactor, growth needs integration along the

light path. Growth integration induces a deformation on mea-

surable PI-curves, a problem that might have hindered set-

ting up mechanistic kinetics from measurements in the past.

Numerous studies have been performed to measure light and

CO2- as well as other uptake kinetics and to deduce kinetics

from physiological assumptions. Recording of kinetic data has

not yet been completed, but a lot of physiological knowledge

is available to set up kinetics based on biological facts and

mechanisms. One step of implementing mechanisms shown

in this review is to distinguish between light absorption and

energy usage from the absorbed photons. Combining the set

of light kinetics with assumptions on carbon annotation leads

to an observable macromolecular stoichiometry of the cells.

However, in practice interpretation often stops on the for-

mal level of description. Especially couplings between differ-

ent kinetics such as light absorptions and CO2-uptake would

give hints to possible process improvement. In this review,

we want to show that precise assessing of kinetics has a

great potential to improve and accelerate reactor and process

design. Besides given examples, other kinetics will be devel-

oped in more mechanistic precision to form a set of kinet-

ics that copes with the complexity of the cell to a reasonable

level.
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