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Abstract

In Industry 4.0 environments highly dynamic and �exible access control strategies are needed.

State of the art strategies are often not included in the modelling process but must be considered

afterwards. This makes it very di�cult to analyse the security properties of a system. In the

framework of the Trust 4.0 project the con�dentiality analysis tries to solve this problem using a

context-based approach. Thus, there is a security model named “context metamodel”. Another

important problem is that the transformation of an instance of a security model to a wide-spread

access control standard is often not possible. This is also the case for the context metamodel.

Moreover, another transformation which is very interesting to consider is one to an ensemble

based component system which is also presented in the Trust 4.0 project. This thesis introduces

an extension to the beforementioned context metamodel in order to add more extensibility

to it. Furthermore, the thesis deals with the creation of a concept and an implementation of

the transformations mentioned above. For that purpose, at �rst, the transformation to the

attribute-based access control standard XACML is considered. Thereafter, the transformation

from XACML to an ensemble based component system is covered. The evaluation indicated

that the model can be used for use cases in Industry 4.0 scenarios. Moreover, it also indicated

the transformations produce adequately accurate access policies. Furthermore, the scalability

evaluation indicated linear runtime behaviour of the implementations of both transformations

for respectively higher number of input contexts or XACML rules.
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Zusammenfassung

In Industry 4.0 Umgebungen werden hochgradig dynamische und �exible Zugri�skontrollstrate-

gien benötigt. Die Strategien des Standes der Technik sind häu�g nicht im Modellierungsprozess

enthalten und müssen später betrachtet werden. Dies macht es äußerst schwierig die Sicher-

heitseigenschaften des Systems zu analysieren. Im Rahmen des Trust 4.0 Projektes versucht

die Vertraulichkeitsanalyse dieses Problem zu lösen indem sie einen kontextbasierten Ansatz

verwendet. Deshalb existiert ein Sicherheitsmodell namens “Context Metamodel”. Ein wei-

teres wichtiges Problem ist, dass die Transformation einer Instanz des Sicherheitsmodelles

zu einem weit verbreiteten Zugri�skontrollstandard oftmals nicht möglich ist. Das ist auch

der Grund warum es das Context Metamodel gibt. Des Weiteren betrachtet diese Arbeit eine

andere Transformation, welche sehr interessant ist, nämlich die eines Ensemble basierten

Komponentensystems das ebenfalls im Trust 4.0 Projekt präsentiert wird. Diese Arbeit stellt

eine Erweiterung des zuvor genannten Context Metamodel vor, um mehr Erweiterbarkeit hin-

zuzufügen. Außerdem stellt diese Arbeit die Erstellung des Konzeptes und der Implementierung

der oben genannten Transformationen dar. Deshalb wird zunächst die Transformation zu dem

attributbasierten Zugri�skontrollstandard XACML betrachtet. Danach wird die Transformation

von XACML zu einem Ensemble basierten Komponentensystem betrachtet. Die Evaluation

deutete an, dass das Modell für Anwendungsfälle in Industry 4.0 Szenarien verwendet werden

kann. Des Weiteren deutete sie ebenfalls an, dass die generierten Zugri�skontrollartefakte der

Transformationen hinreichend akkurate Ergebnisse lieferte. Außerdem deutete die Skalierbar-

keitsevaluation lineares Laufzeitverhalten für die Implementierungen beider Transformationen

für eine respektive höhere Anzahl von Eingabekontexten oder XACML Regeln.
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1. Introduction

Industry 4.0 is an optimization initiative which adds dynamic actions to industrial processes

like supply chains. It uses IoT systems and self-organizing systems which interact in an ad-hoc

manner with machines, persons and organizations involved in the process.

1.1. Motivation

In Industry 4.0 scenarios, access control mechanisms play an important role. However, the

state of the art models for the subject of controlling access to data are not directly applicable to

the use cases required in dynamic environments. An example for such dynamic environments

are supply chains in which access to certain data can be varied for di�erent organizations or

persons in di�erent contexts. Another important di�culty is the high amount of �owing data

and �exibility needed. This is the reason for a model which ensures con�dentiality in such

fast-changing environments. Furthermore, model based security enables us to check security

properties at the model level instead at the implementation level. This enables us to detect

errors earlier in the process of setting up a secure system.

There is already the Trust 4.0 project which started to address the before-mentioned problems

concerning access control in systems used in supply chains. Furthermore, there already exists

a context metamodel [11, p. 11] which addresses the problem of fast changing contexts.

Another important motivation for this thesis is the advantage of automatic generation of

access control artefacts from a model based security system. The automatisation ensures an

accurate transformation of the model creator’s intention to policies usable in access control

decision. For example, all the modelled elements like Contexts are transformed to respective

checks in the generated policies. Especially, if many rules or rules with many checks are

modelled, a manual creation of policies is very error-prone whereas an automatic genera-

tion ensures the correct and accurate transformation of all checks. Moreover, the developer

can use her/his valuable time for more complicated tasks which cannot be automatised as easily.

A further advantage of model based security systems is the integration of the security de�nition

in the software modelling process. This allows the model creator to consider security related

issues at a higher level of abstraction. Thereafter, the creation of actual access control artefacts

can be done automatically, so no one needs to explicitly care about the implementation of the

modelled elements.

1



1. Introduction

Figure 1.1.: Running Example.

As a running example (see Figure 1.1) we consider the following: a machine of organization A

has a malfunction and must therefore be checked by a mechanic of a di�erent company B. For

that purpose, the mechanic must obtain access to the logs of the machine. However, B should

lose access rights to the machine as soon as the repair is �nished. Part two of the example

consists of a report with ID N which is sent by B after the repair was successfully �nished. The

arrival of this report is a prerequisite for an inspector W of A to inspect whether the machine

was acceptably repaired. To this end, W gets access to the logs of the machine. The two parts

of the example are separated by the dashed line.

1.2. Contribution

In my thesis, I am going to extend the context metamodel in order to facilitate the de�nition of

more �ne-grained access control constraints. This enables us to represent more complex usage

scenarios in an Industry 4.0 environment. For example, the second part of the running example

cannot be modelled using the original version of the context metamodel because the metamodel

does not consider prerequisites. Additionally, an automatic generation of access control artifacts

will be implemented. Thus, there will be an implementation of an automatic transformation

from context model instances to XACML policy sets which are then automatically transformed

to an ensemble system for security.

2



2. Foundation

This chapter describes the foundation of the thesis. As a foundation for the architectural

component model the Palladio Component Model (see Section 2.1) and its data-�ow extension

Data-centric Palladio (see Section 2.2) will be used. Moreover, as a pattern for policy generation

XACML and ensemble based component systems will be used (see Sections 2.4, 2.5). The model

which will be extended and for which the policy generation will be implemented is described

in Section 2.3.

2.1. Palladio Component Model

Figure 2.1.: Composition of a Palladio Component Model Instance (inspired by [7]).

Palladio is a tool-supported simulator for software architecture. It can be used to predict several

properties concerning quality of software. These are for example reliability and performance.

It has initially been developed by Karlsruhe Institute of Technology (KIT), FZI Research Center

for Information Technology, and University of Paderborn.

3



2. Foundation

The Palladio Component Model (PCM) is a detailed metamodel of component-based software

architectures which is developed using the Eclipse Modelling Framework (EMF) [6]. The model

is used to describe software by describing for example components, connectors, interfaces and

other elements which can be used to determine the systems’ performance or reliability [8].

An instance of the basic PCM consists of �ve models. Figure 2.1 shows all models except

the runtime model which is used for extensions at the run-time level. The repository model

describes the components and their interfaces. Service e�ect speci�cations (SEFF) thereby

describe the inner behavior of the components. The SEFF is an abstraction from the control

�ow in order to render concentrating on relevant information for analysis possible. The system

model represents the software architecture by combining the components of the repository

model. The allocation model describes the deployment of components on di�erent resources.

The usage model describes the users’ interaction with the system [8].

2.2. Data-centric Palladio

Data-centric Palladio (DCP) is an extension of the PCM which makes it possible to include

data-�ows into the model. It allows software developers to model data-�ows by using data

sources, sinks and processing operations. Sources represent creation points of data inside

the data �ow whereas sinks represent the end of a �ow. Processing Operations are used for

accessing and working with the data of the �ow [24].

Furthermore, basic access control can also be modelled. To achieve this, the model makes

use of so-called characteristics. In this model each characteristic has a type which speci�es

its purpose. These characteristics are used to describe metadata of the data. It is important

to understand that this metadata is rather abstract so that di�erent kinds of metadata can

be used in di�erent scenarios. One of the access control strategies which are made possible

consists of role based access control for which roles and access rights are de�ned as types for

characteristics. The access rights are added to the respective data as metadata and the roles are

added to the processing operations. To achieve a proper con�dentiality analysis, the access

rights linked to the data are compared to the roles linked to the data processing operation [24].

The data is modelled on a metalevel which means data types are modelled rather than actual

data. This has the advantage that the resulting models are more generally usable. Moreover, it

is also possible to implement an analysis which considers the actual model including data-�ows,

additional information like access control policies and analysis goals. These goals can be de-

�ned beforehand in a logic program which can thereafter be tested using a logic programming

environment [24].

4



2. Foundation

2.3. Context Metamodel

The context metamodel is an extension of DCP and represents dynamic context information

in order to describe dynamically changing properties of components in an Industry 4.0 en-

vironment. The model consists of three main parts. First, the subjects which represent the

acting components in the system. Second, the contexts which represent important information

concerning access control. Third, the helperattributes package that holds classes to describe

the structure of the system. The helperattributes and the subject package are subpackages of a

package called util.

Figure 2.2.: Subject Package of the DynamicContextModel

As shown in Figure 2.2, the subjects are divided into resources, users and organizations.

Resources represent non-human actors and users human actors. An organization is a composite

subject, which means it can contain other subjects like sub-organizations, workers (users) and

resources. Every subject has properties which are saved in a context. The di�erence between

resource and user is that users can directly communicate with each other using physical data,

whereas resources must use the underlying system in order to be able to interact with each

other [11, pp. 11-12]. Resources and organizations are classi�ed as stateful subjects whereas

users do not have a state and are therefore directly classi�ed as subjects.

Figure 2.3.: Base of the Context Class Hierarchy [11, p. 12].

5



2. Foundation

The base of the Context class hierarchy as shown in Figure 2.3 consists of an abstract class

Context which has two abstract subclasses EnvironmentalContext and UserDeclaredContext. The

�rst one is the super class for contexts concerning the subject’s environment, the second one

for contexts which are de�ned by users. All contexts inherit the method hasSameType which

checks if two contexts are of the same type and can therefore be compared [11, pp. 12-13].

Figure 2.4.: The Connection to Data-centric Palladio.

As shown in Figure 2.4, the integration into data-centric Palladio is modeled using a new

ContextCharacteristic and a respective type. The characteristic can hold several contexts.

Figure 2.5.: The di�erent environmental Contexts.

As depicted in Figure 2.5, the environmental contexts consist of a context representing mem-

bership in an organization and a context concerning location. Moreover, the IntegerThreshold-
Context allows us to compare with an integer threshold which must be ful�lled.

6



2. Foundation

Additionally, there are also user declared contexts which represent more complex user de�ned

access control features [11, p. 14]. Figure 2.6 illustrates there are also several user declared

contexts which consist of a ShiftContext and a RoleContext which describe respectively the shift

and the role that a user ful�lls. The InternalStateContext represents a resource which needs

to have the same internal state as the context [11, p. 14]. An example for an internal state

could be whether a machine is defective or normally working. The PrivacyLevelContext checks

whether the declared privacy level is ful�lled. The ShiftCheckContext checks if the current shift

matches the user’s shift.

Figure 2.6.: The di�erent User declared Contexts.

The Helperattributes package exists in order to model the environment of the system. It

contains the model for locations, roles and shifts. The classes of this package are used by classes

of the context package.

7



2. Foundation

2.4. Ensemble-based Component System (EBCS)

In order to evaluate security in dynamic systems the usage of autonomic component ensembles

can be helpful.

An ensemble is a group of several components which perform actions to ful�ll a certain

goal. The evaluation of a membership condition is done at runtime. It is also possible for a

component to be a member of di�erent ensembles. This is semantically equivalent to com-

ponents performing di�erent independent tasks. Furthermore, ensembles can also consist

of sub-ensembles. This is semantically equivalent to sub-tasks performed by the di�erent

sub-ensembles. The combination of the sub-tasks then make up the main task performed by

the top-level ensemble [1] [15].

In the scenario of security in component systems, ensembles are used to describe types of

situations. Instead of de�ning joint actions, access control rules are de�ned. In static access

control strategies these rules do mostly not consider dynamic context changes (see Chapter 3).

The advantage of the approach using ensembles is that it is possible to adapt access control

rules to dynamically changing contexts like for example di�erent states of a component. This

is the case because ensembles are context dependent and instantiated at runtime, so a changed

state can be considered during evaluation of a rule [1].

In the process of this thesis, a newer implementation of the ensemble security system will be

used (see section 5.1). The ensemble security system uses Scala as a programming language.

Components are modeled as classes in order to make multiple instantiations possible. Ensem-

bles can be modeled as singleton objects or as classes. In the example presented in the paper

and in the generated ensemble system explained in this thesis the ensembles which represent

the access control rules are modeled as singleton objects. An ensemble used as a security rule

consists of di�erent values which �lter the components of the ensemble, an optional situation
call, an optional constraints call, and one or more calls to allow or deny. The situation is used to

describe environmental condition, i.e. a condition concerning time or location. The constraints

are used to de�ne further constraints for the ensemble to be instantiated. The call to allow

or deny is then used to determine which e�ect the rule has. Furthermore, the di�erent rules

should be added in the root ensemble with a call to the rules function [3].

8



2. Foundation

In listing 2.1 one can see an easy ensemble system for a test action which is implemented as

an ensemble and requires the subject’s location to be equal to a certain string literal. At the

beginning of the model there is the de�nition of the used component classes and its attributes

(l. 3-11). The actual de�nition of the ensemble representing the action can be found at l. 14-23.

The situation and constraints calls are not shown in this example. They would be between the

attribute de�nitions and the call to allow (l. 21). Moreover, all resources are allowed in this

example (l. 15-16). They could also be checked in more detail with the �lter method like it is

done in order to de�ne the allowedSubjects (l. 19). In this example, only subjects with location

equal to “Production_Hall” are allowed (l.19). In the end, the map function called at the end

of the de�nition of the attributes of the ensemble exists in order to enable the Scala compiler

to be sure that the elements are always of the type Component (l. 20). Thus, the attributes

allowedSubjects and allowedResources can be used as argument in the call to allow. At the end

of the root ensemble de�nition further system wide calls can be done like adding rules, i.e.

ensembles, to the root ensemble (l. 25). At the end of the model de�nition, further model wide

calls can be done like extension methods or prerequisite handlers. Moreover, there must always

be the de�nition of the root ensemble (l. 28). The listing omits the imports.

1 class EasyExample(val now: LocalTime) extends Model {

2

3 class Subject(val subjectName: String, val location: String = null)

4 extends Component {

5 name(s"Subject $subjectName")

6 }

7

8

9 class Resource(val resourceName: String, val accessSubject: Subject) extends Component {

10 name(s"Resource $resourceName")

11 }

12

13 class System extends RootEnsemble {

14 object testAction extends Ensemble {

15 val allowedResources = components.select[Resource]

16 .map[Component](x => x.getClass().cast(x))

17 val allowedSubjects = components

18 .select[Subject]

19 .filter(x => x.location == "Production_Hall")

20 .map[Component](x => x.getClass().cast(x))

21

22 allow(allowedSubjects, "testAction", allowedResources)

23 }

24

25 val testActionRule = rules(testAction)

26 }

27

28 val rootEnsemble = root(new System)

29 }

Listing 2.1: An easy Ensembles System Example without Imports.
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In listing 2.2 one can see a matching scenario de�nition for the example ensemble shown above.

The scenario consists of a model de�nition (l. 3-4), subject and resource de�nitions (l. 5-7).

Thereafter, the components (here: subjects and resources) are set as a list as the components of

the model (l. 8). Then, the root ensemble which contains all ensembles (in this example only

one ensemble) is initialized with a call to init (l. 9). After this, the root ensemble is solved with

a call to solve (l. 10). In the end, the exists call on the speci�ed rule’s selected members can be

used to determine the access control decision (l. 11-14). The result is an allow decision because

subjectA is contained in the allowed subjects of the testAction ensemble. It is also possible to

make other user-de�ned or more complex queries in the exists call (ore several calls to exists)
in order to be able to model more complex scenarios. The �gure omits the helper method

convertToCol which converts a scala Iterable to a Java Collection in order to be able to test more

complex scenarios.

1 object EasyExample {

2 def main(args: Array[String]) : Unit = {

3 val scenario = new RunningExample(LocalTime.parse("13:00:00Z",

4 DateTimeFormatter.ISO_OFFSET_TIME))

5 val subjectA = new scenario.Subject("A", "Production_Hall")

6 val subjectB = new scenario.Subject("B", "Location B")

7 val resourceA = new scenario.Resource("machine", subjectA)

8 scenario.components = List(subjectA, subjectB, resourceA)

9 scenario.rootEnsemble.init()

10 val solved = scenario.rootEnsemble.solve()

11 val testActionAllow = solved && scenario.rootEnsemble.instance

12 .testActionRule.selectedMembers.exists(

13 x => convertToCol(x.allowedSubjects).contains(subjectA) &&

14 !convertToCol(x.allowedSubjects).contains(subjectB))

15 if(testActionAllow) {

16 println("allow")

17 } else {

18 println("deny")

19 }

20 }

21 }

Listing 2.2: An easy Ensembles System Scenario de�nition Example without Helper Method.

10



2. Foundation

2.5. ABAC - Attribute Based Access Control

In this section, I am going to describe the concepts of attribute based access control in general

and XACML in particular. It is used as an intermediate model on the way of transforming a

model instance of the context metamodel to an ensemble system.

2.5.1. General Information about Attribute Based Access Control

An often used access control strategy is Attribute Based Access Control (ABAC). It uses

attributes which are name-value pairs. These attributes are given to di�erent subjects and

objects. Access control policies are then used in order to evaluate if the attributes match. The

decision can also be dependent of further environmental conditions [16]. More information

which are not essential for understanding the concept of this thesis but are rather descriptions

of other state of the art access control strategies concerning ABAC can be found in section

3.3.2.

2.5.2. XACML - eXtensible Access Control Markup Language

Since attribute based access control does not work on the data �ow, it is not directly usable for

our case [5]. However, XACML is used as a intermediate model in order to create ensembles

more easily. That is why, the necessary parts for our policy generation will be explained brie�y

in this section.

The basic structures of XACML 3.0 policies which are going to be used consist of policy

sets, policies, rules, targets and matches. A policy set contains one or more policies which

are combined with a policy-combining algorithm. Each policy contains one ore more rule(s)

which are combined with a rule-combining algorithm. Each rule contains di�erent matches

which check the di�erent attribute values with a match function against the respective request

values. The matches are contained in a structure which is called All-Of which is contained

in a structure called Any-Of. The All-Of structure requires that all the contained matches are

correctly matched. The Any-Of structure can contain one or more All-Of structures from

which one of them must be matched so that the All-Of structure is matched. The target of the

rule contains zero or more Any-Of structures. The target determines if the respective rule is

applicable, if it is applicable and the optional condition is met, then the e�ect (e.g. permit) of

the rule is applied [26].

Another important concept of XACML are Obligations which must be ful�lled by the pol-

icy enforcement point (PEP) [26]. However, the default implementation of the PEP by the used

library does only show the obligations and does not automatically ful�l them. Fur further

information concerning the used XACML library see section 5.1.

The di�erent matches contained in the All-Of structure(s) determine which and how attributes

should be checked. Listing 2.3 shows an example of a match structure. The MatchId refers to

the used match function (l. 1). The AttributeValue structure determines the datatype and the

value, which the request attribute must match according to the match function (l. 2-4). The

11
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Figure 2.7.: XACML Policy Language Model [26].

AttributeDesignator structure determines which attribute (i.e. category and id must match)

should be matched against the value de�ned in the AttributeValue structure (l. 5-8).

1 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-regexp-match">

2 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">

3 John.*
4 </AttributeValue>

5 <AttributeDesignator

6 Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"

7 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"

8 DataType="http://www.w3.org/2001/XMLSchema#string"/>

9 </Match>

Listing 2.3: Example of a Match De�nition [26].
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The request contains the di�erent attributes of the di�erent categrories which are action, subject,
resource and environment. As Figure 2.8 shows, the policy enforcement point (PEP) decides

whether the access can be granted or not. It uses the Policy Decision Point (PDP) which uses the

policy repository controlled by the Policy Administration Point (PAP). Moreover, the PDP uses

also the Policy Information Point (PIP) which loads the attributes of all categories including

environmental attributes like for example the current date and time [26].

Figure 2.8.: XACML Access Control Decision Structure [16, p. 15].
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This chapter describes state of the art strategies for preserving con�dentiality and access

control.

3.1. DRM - Digital Rights Management

Digital Rigths Management (DRM) systems consist of di�erent servers which are communicat-

ing with each other in order to provide data to customers. In this scenario it is important that

data is secured using a set of policies. However, this system is not very �exible because data is

usually stored once at one speci�c location and thereafter not often changed [27]. It follows

that this approach cannot be used in Industry 4.0 contexts because in this case data is often

changed and distributed in the whole system.

An extension of DRM is E-DRM which allows data to be changed. It uses OrBAC [20] which

is described brie�y in subsection 3.3.3. Nevertheless, E-DRM is not applicable to Industry 4.0

scenarios because the data in E-DRM is still stored in �les, whereas in Industry 4.0 it is often

calculated during communication [11, p. 4]. However, it could still be used for data which

leaves the company network.

3.2. R-PRIS - Runtimemodel-based PRIvacy CheckS

Another approach consists of Runtime model-based PRIvacy checkS (R-PRIS). It uses a runtime

model and a checking algorithm. Though, it uses only geo-location for evaluating access rights

[23]. This means it does not directly work on the data �ow, which makes it not applicable in

our case. Moreover, other important attributes used in Industry 4.0 access control surroundings

are not considered in the R-PRIS approach. That is why, it can not directly be used for the use

case of dynamic Industry 4.0 scenarios.
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3.3. Access Control

The two often used access control methods are Discretionary Access Control (DAC) and

Mandatory Access Control (MAC) which additionally requires a passphrase. These policies

associate access rights directly to speci�c users [29] [13]. However, there are also other state

of the art access control strategies which are described in the following subsections of this

section.

3.3.1. RBAC - Role Based Access Control

Role based access control (RBAC) uses roles instead of users, which makes it possible to de�ne

user groups. This approach consists of users, which are members of roles. These roles can be

used to de�ne access rules to certain operations. It is also possible to de�ne role hierarchies

that enable us to create sub-groups. Furthermore, RBAC guarantees that users do not have

more access than de�ned by their roles [14]. This access control strategy was used for example

in SecureUML (see subsection 3.4.2).

However, dynamically changing contexts are not possible with this strategy because roles are

rather static [30] and not able to be changed because of dynamic context changes. This can

easily be seen regarding part one of the running example where B must only get access if the

machine is defective. Since roles cannot change dynamically it is not possible to model this

scenario in RBAC.

3.3.2. ABAC - Attribute Based Access Control

This section explains the usage of ABAC in an Industry 4.0 environment and a comparison

with the more simple RBAC approach.

The ABAC system initially needs more e�ort to be set up than the RBAC system. How-

ever, the administration of the attribute system is much easier and more dynamic because

new subjects must not be known to the system. Only the attributes must be known, which

makes the access control model much more extensible. In RBAC, the roles for new subjects

must be set explicitly. This leads to a higher administration e�ort. This advantage of ABAC is

very important for Industry 4.0 environments where the di�erent subjects are not necessarily

known at the time of creation of the access control system [30].

Another important advantage of the ABAC approach is the fact that environment attributes

can be checked, which makes it possible to create dynamic rules which also consider e.g. the

actual location or time of the access [30].
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3.3.3. OrBAC - Organization Based Access Control

Organisation based access control (OrBAC) makes it possible to model access control policies

using contexts. It de�nes organisations and users as subjects. Furthermore, roles and contexts

specify how access control rights can be given. When OrBAC was presented for the �rst time,

contexts were not categorized more speci�cally [18].

However, a later paper introduced a classi�cation of contexts. As shown in Figure 3.1, there

are several di�erent sub-classes of contexts. There are temporal contexts which represent a

certain time and spatial contexts which represent a location determined for example by the

user’s ip address. Moreover, there is also a prerequisite context which can be used to grant

access only in a certain pre-condition stored in the system database is ful�lled. Additionally,

there is a provisional context which considers actions triggered by an action which happened

beforehand. At last, there are user-declared contexts which can be used for further purposes

de�ned by the user [12]. This model can also be seen as a prototype for the context metamodel.

Figure 3.1.: Structure of Di�erent Context Classes in OrBAC [12].

However, joining of entities is not possible. Thus, horizontal cooperation of organizations

cannot be modeled using OrBAC. An extension of OrBAC is Coalition OrBAC which enables

us to join di�erent entities but only the ones which are of the same type [9].
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3.4. Model-Driven Development of Secure Systems

In this section, the advantages of model-driven development for security are brie�y explained.

An important bene�t of this approach is the fact that security questions can be already consid-

ered at modelling time. Moreover, the security can be checked in an earlier stage of development

with help of model validations tools and easier formal checking than if security is added later

in the development process. Furthermore, models are platform independent and less prone to

errors than other possibilities for achieving security in software systems [21].

3.4.1. UMLSec

UMLSec can be used to model con�dentiality on the control path. Thereby, it can ensure save

communication and role based access control. There are four security requirements which

are considered in the UMLSec extension. First, there is fair exchange which avoids cheating

commited by either party of the communication. Second, con�dentiality can also be modeled,

which allows that only the legitimate receiver can access the con�dential information. Third,

secure information �ow can also be used to guarantee that no information - not even partly -

is leaked. Last, a secure communication link respective a given attacker model is contained in

UMLSec as well [17]. However, dynamic formulation of constraints is di�cult because UMLSec

does not work on the data path but on the control path [4].

3.4.2. SecureUML

SecureUML is an approach which enables the modeller to de�ne roles, permissions and users

in an UML diagram. The signi�cant information for access control is added using annotations

which can be added to any UML element. Thereby, every element can be used as a secure

resource. It is also possible to automatically generate access control systems in the form of

policies. Moreover, the SecureUML approach is based on an extended RBAC model [19]. Thus,

it cannot easily be used for context based or attribute based access control models like used in

this thesis.

3.4.3. SECTET

Another approach which uses the model-driven development paradigm is SECTET. The paper

explains the transformation of high level model instances to low level access control policies

written in XACML. To achieve this, the SECTET UML meta-model is transformed to a XACML

meta-model using the operational Query View Transformation (QVT) language. Thereafter,

model instances can be created using EMF. These instances can then be transformed to XACML

policy �les using the XPAND language by OpenArchitectureWare [2]. The main di�erences

between the SECTET approach and the approach shown in this thesis are that in SECTET

another initial model is used and this thesis additionally considers the generation of an ensemble

based system from the XACML intermediate model.
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3.4.4. ACT

Another approach, which also considers creation of XACML policy �les from a model de�ned

security system is described in the paper “A Toolchain for Designing and Testing Access Control

Policies”. The described toolchain is called Access Control Testing toolchain (ACT) and consists

of graphical model-driven design, access control policy generation and automatized testing

of the generated policies. Moreover, there is also a tool which can be used to analyse certain

properties concerning the consistency of model and policies like for example detecting errors

in policy de�nitions in relation to the de�ned model. As a graphical access control model UWE

(UML-based Web Engineering) is used. UWE is a UML extension similar to SecureUML and

UMLSec. But in contrast to UMLSec, UWE is less detailed [10]. The main di�erence of this

approach in comparison with the one presented in this thesis is that the initial model for the

transformation is di�erent. The model presented in the paper is a security UML extension

based on RBAC whereas the initial model for this thesis uses an context based approach.
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The thesis consists of two parts: extending the context metamodel (see Section 2.3) and

improving the automatic generation of access control artifacts in the form of ensembles.

4.1. Extending the Context Metamodel

The context metamodel needs to be extended in order to enable us to model more use cases.

Especially, already existing use cases should be modeled in a more general way. For instance,

the part two of the running example cannot be modeled by the metamodel as it is at the moment.

The reason for this is that it is not possible to model prerequisites.

4.1.1. General Information concerning the Extension of the Metamodel

Regarding the extension of the metamodel, the IntegerThresholdContext is renamed to a context

named IntegralTresholdContext which is now a subclass of the abstract class named Comparison-
Context. This context contains the respective comparison (greater or smaller). The threshold

value is de�ned in the subclasses of ComparisonContext. Furthermore, another context named

FloatingComparisonContext which contains a double threshold is added as another subclass

of ComparisonContext. Generally, the comparison is de�ned as: the de�ned threshold value

must be compared to the request value. For example if the threshold is 5 and the Comparison

is greater, then the request value must be smaller or equal to 5.

Moreover, there is a new PrerequisiteContext which checks whether a certain prerequisite

is ful�lled. This context is similar to the PrerequisiteContext in OrBAC (see Section 3.3.3). For

that purpose there is an addition of a Prerequisite class in the helperattributes package. Instances

of this class contain a reference to an OperationSignature which de�nes the prerequisite. Due to

this modeling, it is possible to add further prerequisites during later design time. An example

for a prerequisite consists of a report with an ID that should be arrived before access can be

given. This can be modeled with a respective OperationSignature which describes an arriving

report. The prerequisites are stored in a PrerequisiteContainer.

Another important addition to the existing metamodel is the creation of an extension mecha-

nism which can be used to specify checking code inside a generated ensemble after generation.

This adds lots of extensibility to the access control possibilities represented by the metamodel.

For instance, the code added later could dynamically check a state of an external system or a

combination of attributes and external states. The extension mechanism is realized with an

ExtensionContext which de�nes a method name which should be created and inserted into the

ensemble system (see also sections 4.2, 4.3). Additionally, the context also de�nes whether the
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method should work on the component (i.e. isAtEnd) or not (i.e. !isAtEnd).

A last minor change is that the ShiftCheckContext is removed because the matching of the shift

against the current time should be always be done. Therefore, the ShiftCheckContext is now

obsolete.

Figure 4.1 summarizes the beforementioned changes by showing them highlighted in green.

Figure 4.1.: Summary of Extensions to the Metamodel.

4.1.2. Running Example

The running example introduced in the motivation (see Section 1.1) is modelled using two

characteristics which represent two rules. The �rst rule is for the situation when the machine is

in the OK state. That is why this rule contains an InternalStateContext containing the OK state.

Additionally, this rule contains role and organisation contexts to check if the access subject is a

worker of organisation A. Moreover, the rule contains the newly created PrerequisiteContext to

check whether the report was sent. In the later implementation, the report must be sent when

the change from the DEFECTIVE to the DEFECTIVE state happens. This must be considered

when implementing the system because the generation software does not know about the

underlying system. The second rule contains an InternalStateContext containing the DEFECTIVE
state and a role and organisation context to check if the access subject is a repairperson of

organisation B. In order to keep the example simple, the organisation A releases all access

rights to the logs of the machine. In reality, there would be an additional rule to ensure that

organisation A can always somehow access its own machine.
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4.2. Generating the XACML Intermediate Model

This section describes the transformation from PCM context model instances to XACML policy

set �les.

4.2.1. Advantages of the Intermediate Model Approach

The advantages of �rst creating the XACML intermediate model instead of directly generating

an ensemble system consist of the use of a wide-spread standard which can also be used in

systems which do not employ ensemble based security systems. Moreover, the generation of

ensembles from an XACML policy set �le is easier and more understandable than the direct

creation from context model instances. Another important advantage is the easier optimization

and an easier integration into other systems.

4.2.2. General Information concerning the Generation

The concept of the generation of this intermediate model is descibed in this section. An entity

of the related characteristics in the context model instance which represents an action is trans-

formed to a XACML policy. All the policies are combined in one policy set which represents

the whole model instance. As a policy and rule combining algorithm Permit-Overrides is used

which is equivalent to a logical OR.

The di�erent context containers are mapped to di�erent rules which are combined with

a logical OR. The di�erent contexts inside one related context container are inside one rule

combined with a logical AND. This is achieved using the XACML All-Of structure. Each policy

has a last rule which always denies. That is why, there is always a determinate result, i.e. if no

rule applies of no policy applies Deny is returned instead of NotApplicable. In order to make

further usages of the intermediate model more easy, only the Target and not the Condition
structure of the rule is used. Since all constraints can be expressed in the Target, the Condition
is not used.

4.2.3. Mappings of Contexts to XACML Structures

Most of the contexts are mapped to matches. The table 4.1 show the diferent mappings from

contexts to matches which are used to create XACML matches that represent the information

stored in the respective contexts.

The internal state is mapped to a simple string comparison because the internal state must

be equal to the one de�ned in the request. Roles, locations and organisations are mapped to

regular expression matches due to their hierarchical structure which needs to be transformed

to a logical OR inside the regular expression. The privacy level is also matched to a regex

matching because lower privacy levels are also accepted. This means for example that if the

privacy level is SECRET, the levels PRIVATE, RESTRICTED, PUBLIC and UNDEFINED are also

allowed. The comparisons and shifts are transformed to respective match wrappers which

create the needed XACML matches in order to successfully check the access control information.
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Context Match

InternalStateContext StringComparisonMatch

RoleContext respective subclass of RegexComparisonMatch

LocationContext respective subclass of RegexComparisonMatch

OrganisationContext respective subclass of RegexComparisonMatch

PrivacyLevelContext respective subclass of RegexComparisonMatch

ComparisonContext ComparisonMatch

ShiftContext ShiftMatch

Table 4.1.: Mapping from Contexts to Matches.

The listing 4.1 shows an example of the organisation context which is mapped to the a match

which uses regex matching (l. 1). The context contains an organisation A which has a sub

organisation ASub (l. 3), that is why the test which needs to be done is a comparison with the

two organisations combined with a logical OR.

1 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-regexp-match">

2 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">

3 (\QA\E)|(\QASub\E)

4 </AttributeValue>

5 <AttributeDesignator

6 Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"

7 AttributeId="context:organisation"

8 DataType="http://www.w3.org/2001/XMLSchema#string"

9 MustBePresent="false"/>

10 </Match>

Listing 4.1: Example of an Organisation Match.

Furthermore, there are two contexts which are mapped to obligations. These are the Pre-
requisiteContext and the ExtensionContext. The generated obligations contain the respective

information needed for an extension method call or a prerequisite operation signature which

can be called by an extension of a PEP (see chapter 7.1). During the process of this thesis, these

information are later used together with the attribute information saved in the rule matches

for generating ensembles.
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Listing 4.2 shows an example of an extension obligation for an extension context which de�nes

the extension method with name “testExtensionMethod” (l. 5). The method should be called at

the end of the checks. If there are more obligations, they are added in the ObligationExpressions
structure (l. 1-14) as a further ObligationExpression structure (l. 2-13).

1 <ObligationExpressions>

2 <ObligationExpression ObligationId="obligation:extension" FulfillOn="Permit">

3 <AttributeAssignmentExpression AttributeId="context:extension:testExtension">

4 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">

5 testExtensionMethod

6 </AttributeValue>

7 </AttributeAssignmentExpression>

8 <AttributeAssignmentExpression AttributeId="context:extension:isend">

9 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#boolean">

10 true

11 </AttributeValue>

12 </AttributeAssignmentExpression>

13 </ObligationExpression>

14 </ObligationExpressions>

Listing 4.2: Example of an Extension Obligation.

4.2.4. Running Example

The two characteristics of the running example model are transformed to two XACML rules.

The contexts are transformed to matches like explained above. However, the PrerequisiteContext
is transformed to an obligation which shall be ful�lled by a PEP. In our case the obligation is

considered during ensemble generation. The whole running example XACML policy set �le

can be found in the appendix of this thesis (see Section A.1).

4.3. Generating Ensembles from the Intermediate Model

The third contribution of this thesis is the generation of access control artefacts in the form of

ensembles.

4.3.1. General Information concerning the Generation

In order to achieve this, the software which was implemented in the process of this thesis loads

the intermediate model saved in an XACML policy set �le. This �le was previously created by

the generation software which transforms instances of the dynamic context model to XACML

policy set �les. Due to the structure of the intermediate model, the generated ensembles are

also described in a certain way which is similar to the structure de�ned in the intermediate

model. The composition of the ensemble system is described in detail in this section.

The di�erent policies in the XACML policy set are mapped to respective ensembles, which
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is logical because a policy represents an action in our case. Another important issue is the

generation of the di�erent kinds of components which can be used as parts of an ensemble.

In order to maintain the structure of the intermediate model there are two di�erent kinds of

components Subjects and Resources. They represent the respective XACML attribute categories.

The contained attributes are added as attributes for the respective subclass of Component. It is

also important to notice that only the contained attributes are added, other ones which do not

exist in the whole policy set are not added. See also Section 2.4 for the general structure of an

ensemble system.

The subject and resource attributes are checked with match functions which are equivalent

to the ones de�ned in the respective Match. The environmental attributes, i.e. the attributes

used for checking the shift time against the now time, are considered together with the shift

match in the subject checks. Furthermore, each resource has a reference to an access subject

which is checked against the subject attributes in the rule which is being transformed. This is

done in order to keep the logical combination of AND inside one rule. For the same reason, the

subject checks test if all resources match the resource attributes of the respective rule. It follows

that one should only use one access subject in one scenario at a time. However, subjects with

matching attributes are also found in the process of determining the access control decision.

Since it is possible to de�ne several scenarios and solving the system with di�erent accessing

subjects at the same time is rather a seldom used special case, the ensemble system can still be

used for several use cases.

All policies in the policy set are added as sub ensembles of one root-ensemble which rep-

resents the whole policy set. The access control decision can then be inspected in the scenario

de�nition. This de�nition is also added during the transformation but only as example code

which needs to be adapted in order to match the scenario one wants to consider.

4.3.2. Running Example

Listing 4.3 shows the generated ensemble for the read log action of the running example. The

subject checks inside the resources checks start with a null check and continue with the checks

de�ned in the respective rule (l. 6-10). Thereafter, the internal state is checked against “OK” (l.

11). This (l. 6-11) and the analogue code in the subject checks (l. 23-28) is the transformation

of the �rst rule which de�nes the situation when the machine is not defective. The situation

of the machine being defective is represented by the second rule (l. 12-17, l. 29-33). It is also

important to notice the call to the prereq_sendReport method (l. 24). This method can later be

used in order to actually ful�l the prerequisite of sending a report. The content of this method

must be added by hand because the generator does not know about the underlying system and

can thus not ful�l the prerequisite. The whole running example ensemble system including

one scenario de�nition can be found in the appendix of this thesis (see Section A.1).
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1 object readLog extends Ensemble {

2 val allowedResources =

3 components

4 .select[Resource]

5 .filter(x => (

6 (x.accessSubject != null

7 && ((x.accessSubject.organisation != null

8 && x.accessSubject.organisation.matches("(\\QA\\E)"))

9 && (x.accessSubject.role != null

10 && x.accessSubject.role.matches("(\\QWorker\\E)")))

11 && (x.internalstate == "OK"))

12 ||(x.accessSubject != null

13 && ((x.accessSubject.organisation != null

14 && x.accessSubject.organisation.matches("(\\QB\\E)"))

15 && (x.accessSubject.role != null

16 && x.accessSubject.role.matches("(\\QRepairperson\\E)")))

17 && (x.internalstate == "DEFECTIVE"))))

18 .map[Resource](x => x.getClass().cast(x))

19 val allowedSubjects =

20 components

21 .select[Subject]

22 .filter(x => (

23 (allowedResources.forall(y => ((y.internalstate == "OK")))

24 && prereq_sendReport("sendReport")

25 && (x.organisation != null

26 && x.organisation.matches("(\\QA\\E)"))

27 && (x.role != null

28 && x.role.matches("(\\QWorker\\E)")))

29 ||(allowedResources.forall(y => ((y.internalstate == "DEFECTIVE")))

30 && (x.organisation != null

31 && x.organisation.matches("(\\QB\\E)"))

32 && (x.role != null

33 && x.role.matches("(\\QRepairperson\\E)")))))

34 .map[Subject](x => x.getClass().cast(x))

35

36 allow(allowedSubjects, "readLog", allowedResources)

37 }

Listing 4.3: The Generated Ensemble representing the Read Log Action of the Running Example.
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In this chapter the implementation of the two parts of the policy generation is described. The

transformation implementations are implemented as eclipse plugins.

5.1. Used Libraries

The programming language used for implementing the transformations is Java 11. The gener-

ated ensembles are written in Scala 2.12.

In the process of implementation there was a library used in order to ease the writing and load-

ing of XACML policy set �les and testing their correct function. This library used is the AT&T
XACML framework (https://github.com/att/XACML) licensed under the MIT license. Another

used library is the Guava library but it is already a prerequisite of the AT&T XACML framework.

The framework with which the generated ensembles can be used is de�ned in the paper

[3]. In order to resolve a compatibility issue, a minor change in a print function in the library

is done which does not alter the function of the solver.

5.2. XACML Policy Generation

In Figure 5.1 one can see an overview over the most important parts of the context model to

XACML policy transformation software which was written in the process of this thesis. It

shows the classes of the generation package and its sub-packages matches and obligations. The

execute method of the SampleHandler which is the starting point of the plugin instantiates the

ContextHandler and calls the createPolicySet method. It uses the Match- and ObligationExtractor
in order to create XACML policies which are then combined to XACML policy sets via the

respective wrapper classes Policy and PolicySet.

The respective extractors for matches and obligations extract the information contained in the

context model instance with the help of two registries which de�ne the mappings of contexts

to either a sub-class of Match or Obligation. This infrastructure makes it possible to easily adapt

the generation of the XACML intermediate model to future changes to the context metamodel.

The mappings which are set at the moment can also be seen in the �gure. One can also see

that the MatchExtractor also overrides the extract method. This is done in order to be able

to also handle actions which do not have any contexts related to them. Another important

noteworthiness is that the MatchExtractor always adds the name of the action to the list of

matches at index 0. This is done in order to be able to combine all policies in one policy set

which represents the whole model instance.
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Figure 5.1.: XACML Generation Implementation Overview.

In order to get more information about the concrete implementation of each class and its

methods one can have a look at the JavaDoc documentation.

5.3. Ensembles Generation

The ensembles generation relies mainly on compounding of di�erent parts of Scala code. That

is why, there is a package with name “scala” which contains classes which represent small Scala

code parts. These code parts can be easily assembled in the process of transformation of the

XACML input policy set into the ensemble system to be created. Another important package is

the “xacml” package which contains larger parts of the transformation. The generation package

contains the other two packages and combines the policies to di�erent ensembles in a complete

ensemble system. In Figure 5.2, one can see the structure of the packages as described in this

paragraph. Moreover, one can see the CodePart interface which represents a larger Scala code

block which can be obtained by the “getCode” method. There are two implementations of

this interface, the PolicySetHandler which creates the whole ensemble system with the help

of creating di�erent ensembles using the PolicyCodePart. It is also an implementation of the

CodePart interface.
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Figure 5.2.: Ensembles Generation Packages Overview.

In Figure 5.3, one can see the di�erent Scala code parts. The ValueDeclaration and ValueInitiali-
sation classes represent the respective Scala constructs, the isOptional �ag in the constructor

of the declaration is used to set whether the standard value (mostly null) should be set. The

ScalaClass class represents the declaration of a class or singleton in Scala. The MethodSignature
and Call classes are for the respective functions of method signatures and method calls in

Scala. Moreover, the ScalaBlock represent the larger structure of a code block. Additionally,

several blocks can be appended to an iterable structure. This makes it possible to save a whole

ensemble system including the scenario de�nition in one object. The structure allows the

iteration over string builders of the di�erent appended blocks. This enables block-wise writing

of the structure.

Figure 5.3.: Ensembles Generation “Scala” Package.

In Figure 5.4 one can see the structure of the “xacml” package of the ensemble generation

software. It contains classes for the extraction of attributes and obligations from the XACML

policy set. The extraction results consist of code for checking the resources’ and subjects’

attributes against the attributes de�ned in the given XACML matches. In order to render the

extraction possible there are three enumerations. The Category enum represents the three
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XACML attribute categories resource, subject and environment. The Function enum represents

the di�erent used XACML match functions like for example “string-regepx-match”. This enum

also has a getter for the equivalent Scala code to the match function. In the end, the Attribute
enum contains the di�erent used XACML attributes. In order to be able to transform the

XACML obligations into respective extension methods there are interfaces for obligation lists

and the particular obligations. Furthermore, there are implementations for the text obligations.

The obligations are extracted together with the normal attributes inside the “extract” method

of the RuleAttributeExtractor for each XACML rule and category. This extractor is used by the

AttributeExtractor which combines the extraction results of the di�erent rules by connecting

them with a logical OR. The sets which are extracted can be used to allow the ComponentCode
to only contain attributes for the existing XACML attributes and obligations.

The extractions done in this package by the AttributeExtractor are then used by the Poli-
cyCodePart which creates the di�erent ensembles which represent the di�erent policies. In

the end, the PolicySetHandler uses the ComponentCode and the obligations’ method block

de�nitions which are written into the ensemble system at model level.

Figure 5.4.: Ensembles Generation “xacml” Package Overview.
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5.4. So�ware Engineering - Tests and Version Control

In this section issues concerning software engineering are brie�y explained. This section de-

scribes the used software engineering concepts which were considered during implementation.

There are unit and scenario tests which can be used to check whether the generation works as

expected. The unit tests check parts of the implementation which can be easily tested as units.

The scenario tests test the more complex interaction of transforming given input models to

respective access control policies. This is a XACML policy set �le in the case of the PCM-2-

XACML transformation and a Scala �le representing an ensemble system for security in the case

of the XACML-2-Ensembles transformation. The scenario tests can be seen as integration tests.

Nevertheless, in case of PCM-2-XACML they are realised as JUnit DynamicTests in order to

make automatic testing possible. The XACML-2-Ensembles scenario tests are not automatised

because the generated code would have to be compiled. There is a semi-automatised test

structure for this transformation.

In the process of implementation, the version control system git was used. The table 5.1

shows all the used GitHub repositories. The transformation repositories always contain the

related tests and evaluation scenario tests.

Git Address Description

https://github.com/Lolalol97/PCM-Dynamic-Context-MetaModel.git PCM context metamodel

https://github.com/Lolalol97/UseCasesTechnicalReport.git PCM context model instances

https://github.com/Lolalol97/PCM-2-XACML.git PCM-2-XACML transformation

https://github.com/Lolalol97/XACML-2-Ensembles.git XACML-2-Ensembles transformation

https://github.com/Lolalol97/ensembleTester_tcoof-security-ecsa.git Tester for generated ensembles

Table 5.1.: The used GitHub repositories.
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6. Evaluation

In order to evaluate the thesis a GQM-Plan [22] will be used. In this chapter, the evaluation

goals, questions and metrics for this thesis will be explained. Thereafter, the results of the

evaluation are presented and discussed.

6.1. Evaluation GQM Plan

The Evaluation considers the correct functioning of the automatic policy generation described

in the chapters 4 and 5. In order to evaluate this, three evaluation goals are considered:

• EG-1: Evaluate the feasibility of the metamodel and policy generation for its planned

purpose.

• EG-2: Evaluate the accuracy of the generated access control policies, i.e. whether the

access control decisions are accurate.

• EG-3: Evaluate the scalability of the implemented policy generation.

6.1.1. Design of Evaluation of Feasibility

In order to evaluate feasibility (EG-1), there will be a description of the planned use by describing

possible use cases. Afterwards, it will be evaluated whether the context metamodel and policy

generation is usable in the given cases. This design results in the evaluation questions:

• (Q-1.1) Is the metamodel usable for modelling the given use case?

• (Q-1.2) Is the XACML policy generation usable for transforming the given use case to a

XACML policy set?

• (Q-1.3) Is the ensemble policy generation usable for transforming the XACML policy set

representing the use case to an ensemble system.

(M-1.1) As a metric for the evaluation of feasibility one can use the number of successful

represented use cases divided by the total number of use cases.
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6.1.2. Design of Evaluation of Accuracy

In order to evaluate accuracy (EG-2), there will be a testing of access control decisions for

several use cases. The use cases which are checked for accurate access control decision are the

same as the ones used for evaluating feasibility. The following evaluation questions are raised:

• (Q-2.1) Is the generated XACML policy set accurate, i.e. it results in a correct access

control decision when requested properly?

• (Q-2.2) Is the generated ensemble system accurate, i.e. it results in a correct access

control decision when requested properly?

(M-2.1) As a metric precision (PR) an recall (RC) will be used. It consists of the formulas

PR = TP
TP+FP

RC = TP
RPA

where TP is the number of true positives, FP is the number of false positives and RPA the total

number of expected positives [28]. In our case, a true positive is a correct access granting and

a false positive consists of a incorrect given access.

6.1.3. Design of Evaluation of Scalabilty

Scalability is an important factor because policy generation should be fast so that a fast roll-out

of new access rules via XACML policy sets or ensemble systems can be done. This is necessary

in a fast changing dynamic Industry 4.0 environment.

In order to evaluate scalability (EG-3), the following questions are considered:

• (Q-3.1) How does the generation of XACML policy sets scale with an increasing number

of context characteristics container?

• (Q-3.2) How does the generation of ensemble systems scale with an increasing number

of XACML rules?

• (Q-3.3) How does the generation of XACML policy sets scale with an increasing number

of contexts in a rule?

• (Q-3.4) How does the generation of ensemble systems scale with an increasing number

of XACML matches in a rule?

(M-3.1) As a metric the time needed for policy generation in comparison to the number of

input contexts is used.

6.2. Evaluation Setups

In this section the setups to achieve the beforementioned evaluation goals are described.
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6.2.1. Description of Use Cases

In this subsection, the di�erent use cases used for the evaluation are brie�y described. In order

to render the evaluation more easy, only the signi�cant parts for the con�dentiality analysis

of the use case are modelled. The use case models can be found in the “PCM context model

instances” git (see Section 5.4).

The use case UC0 consists of a telemaintenance scenario. A service technician of organi-

sation A should do telemaintenance of a machine of organisation B. The access should only be

given when the machine is in state SERVICE_MODE, the time is between 15 and 17 o’clock

and the service technician has done an adequate security check beforehand [30]. Especially,

the role, internal state and time are signi�cant for this use case.

The use case UC1 consists of a worker in the production hall of organisation A which in-

forms the foreman about a problem. Thus, the worker sends a report. Thereafter, the foreman

receives the report. Then, the foreman sees the schedule of the workers in order to address

the problem in production. Especially, the role, organisation, time and location attributes are

important for this use case [5]. However, the organisation and location attributes are rather

considered in UC4. The regarded shift is the early production shift which takes place from 6 to

14 o’clock.

The use case UC2 consists of a worker in the factory of organisation B which informs the

foreman about a faulty item. Thereafter, the foreman informs the external supplier A. Especially,

the role, time and location attributes are important for this use case [5].

The use case UC3 consists of a scenario concerning a board which reacts on a low total

�rst time yield. This is an often analysed important quantity. The part of the use case con-

sidered here consists of the board informing two companies with the lowest score [5]. It is

assumed that the two companies are A and B.

The use case UC4 consists of a worker entering the production hall 30 minutes before the shift

starts [5]. The regarded shift is the early production shift which takes place from 6 to 14 o’clock.

In order to model that the entry should be allowed 30 minutes before the actual shift starts, the

shift is modelled form 05:30:00Z to 14:00:00Z.

The use case UC5 is a superordinate use case of UC4 and consists of a whole work�ow of a shift

from the arrival of the foreman via the arrival of workers, the leaving of workers and �nally

the leaving of the foreman 45 minutes after the end of the shift [5]. Furthermore, the evaluation

of this use case considers an alternative model for checking the time using an ExtensionContext.
Since this extension is only implemented in the generated ensemble system and not in the

XACML, this use case is not considered in the XACML accuracy evaluation. The reason for

this is that the default implementation of the PEP does not consider obligations (see Section 7.1).

The use case UC6 (UC-Combined model) consists of a combined use case of the use cases UC1,

UC2 and an extension which considers quality assurance (QA). In this scenario, the additional
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actions are in fact communications between QA A and QA B using reports. For these reports

there are certain restrictions concerning con�dentiality. For example, QA of A should only be

allowed to inform QA of B when the privacy level of the report has a certain privacy level [25].

The model considers the PROTECTED privacy level and in the process of accuracy evaluation

this or a less restrictive privacy level (PUBLIC) is checked.

The use case UC7 (UC-Running model) consists of the running example which is only consid-

ered additionally. Moreover, there are two further models: UC-Test which tests all contexts and

UC-Scale which contains exactly one ShiftContext. These two models are used for scalability

evaluation (see Subsection 6.2.4).

6.2.2. Evaluation Setup for Feasibility

This subsection describes the setup for the evaluation goal of feasibility (EG-1). The feasibility

evaluation should show the usability of the meta model and the transformations for the use

cases which describe possible future usages.

The feasibility is evaluated using the metric (M-1.1) described in the respective design section

(see Section 6.1.1). Due to pressure of time, the feasibility is only evaluated by myself and

not by a known security expert. In order to answer the question of model feasibility (Q-1.1),

the possibility of modelling the given use case is considered. The evaluation of feasibility

also considers the other two questions (Q-1.2, Q-1.3) by evaluating whether it is possible to

automatically transform the given use case model to an XACML policy set. Thereafter, it is

determined whether it is possible to transform the generated XACML policy set to an ensemble

system. These considerations are done for all described use case. The evaluation of an accurate

access control decision is not considered in this evaluation goal but rather in the accuracy

evaluation goal. The models for all the use cases can be found in the model instances Git (see

Section 5.4).

6.2.3. Evaluation Setup for Accuracy

This subsection describes the setup for the evaluation goal of accuracy (EG-2). The accuracy

evaluation should show the accuracy of the access control decision of the generated access

control artefacts when asked with a adequate request.

The accuracy is evaluated using the metric (M-2.1) described in the respective design section

(see Section 6.1.2). In order to answer the question of accurate XACML policy set generation

(Q-2.1), the generated XACML policy set �le from the use case model instance is tested in a dy-

namic test with adequate requests which are also de�ned in the respective use case description.

However, larger use cases are only considered partially in XACML accuracy evaluation but so as

to indicate the feasibility and accuracy of certain requirements. The generated XACML policy

set �les are then transformed to an ensemble system and tested with an adequate scenario

de�nition (Q-2.2). Moreover, for models which use prerequisite or extension contexts there is

also manually added extension or prerequisite code in the generated ensemble system. The
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setup for the testing of the accuracy can be found in the respective implementation Gits (see

Section 5.4).

6.2.4. Evaluation Setup for Scalability

This subsection describes the setup for the evaluation goal of scalability (EG-3). The time

measurements for all the evaluation goals are done in an automatic test system. Since it is

not part of the scope of this thesis, the actual printing library call is not considered in the

measurement.

The system used for the evaluation of the scalability of the transformations is a Aspire E15

E5-576-53AG with the following speci�cations:

• Intel Core i5-7200U with 2.5GHz

• 12 GB DDR4 RAM

• Linux Ubuntu 18.04.3 LTS

• Java 11

In order to generate the input model for an increasing number of rules (Q-3.1), a characteristic

container from a base model is copied several times. This approach simulates the existence of a

model with many rules. The considered copying numbers are 1, 10, 100, 1000, 10000, 100000

and 500000. As base models the UC-Scale and the UC-Test are used. The �rst one contains only

one ShiftContext whereas the second one contains all the contexts once. So one can be sure

that the scalability is given for all possible contexts.

The other test which is done in the automatic test system is the consideration of an increasing

number of contexts inside one rule (Q-3.3). This test is only done with the UC-Scale base model

because the ShiftContext is the context which produces the most XACML matches. Therefore,

it is ensured that the transformation of all other contexts scale in the same way because the

transformation of all contexts is built similarly.

The tests for the respective questions concerning the generation of ensemble systems (Q-
3.2, Q-3.4) use the resulting policy sets from the beforementioned scalability tests as input.

Thereafter, the transformation into an ensemble system is measured.

The actual results are evaluated by doing a warm up �rst and then doing 10 iterations of

the beforementioned tests. The average of the results are then depicted in a diagram to deter-

mine whether linear runtime behaviour can be seen.

The automatic test systems can be found in the implementation Gits of the respective transfor-

mations inside the packages
1
.

1.ensemblesgeneration.tests.evaluation and .xacmlpolicygeneration.tests.evaluation
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6.3. Evaluation Results

In this section the results of the evaluation are presented and discussed.

6.3.1. Results of Evaluation of Feasibility

All the beforementioned use cases were modelled in the process of the feasibility evaluation.

There were no larger problems implementing the use cases using the context meta model.

Table 6.1 shows the result of the feasibility evaluation. The �rst row summarizes whether the

modelling was possible for the di�erent models representing the use cases (Q-1.1). The second

row summarizes whether the transformation to XACML was possible (Q-1.2) and the third

row sums up if the transformation to an ensemble system was possible (Q-1.3).

Question Number of use cases Number of successfully represented use cases Metric Result (M-1.1)

Q-1.1 7 7 1

Q-1.2 7 7 1

Q-1.3 7 7 1

Table 6.1.: The feasability evaluation result.

A limitation of the evaluation of feasibility consist of the fact that no well-known security

expert was asked due to time reasons. Another limitation is that usability and integration in a

real Industry 4.0 environment was not considered in the process of evaluation and can hence

be considered future work (see also Section 7.3). Moreover, the easiness of creation of models

was also not evaluated and could also be considered future work.

To summarize, the feasibility evaluation indicated that the evaluation questions could be

answered to an adequate degree. Nevertheless, more evaluation and extensions to the imple-

mentations should be done in the future.
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6.3.2. Results of Evaluation of Accuracy

This subsection describes the results of the accuracy evaluation. Due to time and redundancy

issues, the XACML policy sets are only tested partially (see setup section 6.2.3). There are

overall 29 relevant requests for the di�erent use cases. Table 6.2 shows the result for the

di�erent use cases and the overall result (M-2.1).

Use case / Question TP RPA FP Result PR Result RC

UC0 1 1 0 1 1

UC1 3 3 0 1 1

UC2 2 2 0 1 1

UC3 3 3 0 1 1

UC4 1 1 0 1 1

UC6 2 2 0 1 1

Q-2.1 12 12 0 1 1

Table 6.2.: The accuracy evaluation result for the XACML generation.

There is also an accuracy evaluation of the XACML-2-Ensembles transformation. Each use

case model was tested with a scenario representing a permit decision and and one for a deny
decision. This means there are overall 14 Scala scenario de�nitions. Table 6.3 shows the result

for the di�erent use cases and the overall result (M-2.1).

Use case / Question TP RPA FP Result PR Result RC

UC0 1 1 0 1 1

UC1 1 1 0 1 1

UC2 1 1 0 1 1

UC3 1 1 0 1 1

UC4 1 1 0 1 1

UC5 1 1 0 1 1

UC6 1 1 0 1 1

Q-2.2 7 7 0 1 1

Table 6.3.: The accuracy evaluation result for the Ensembles generation.

A limitation of the accuracy evaluation is that modelling of requests and scenarios are not

completely unambiguous but it was always tried to model requests and scenarios the best way

possible. Another important limitation is that only a partial set of all possible combinations

of requests can be done so it is not strictly proven that the concept or the implementation is

correct. However, the accuracy evaluation indicated an adequately accurate representation of

the use cases. Like already considered in the discussion of the feasibility evaluation there is

also the problem of setting up the system in a real Industry 4.0 environment. Hence, this can

also be considered future work.

To sum up, the accuracy evaluation indicated that the implemented software generates ade-

quately accurate access control policies for the considered use cases.
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6.3.3. Results of Evaluation of Scalability

In this subsection the results of the scalability evaluation are presented and discussed. Figure 6.1

illustrates that the execution time of XACML generation indicates linear behaviour in relation

to the count of rules (Q-3.1). The blue points depict the averaged results of the evaluation test

structure for the UC-Scale base model whereas the red points are the averaged results for the

UC-Test base model (see also subsection 6.2.4). The green and the black lines are respective

linear references for the given data points to indicate that the execution time behaviour is

linear for input numbers of 1000 or more.
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Scalability Diagram of XACML Generation (OR).
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Figure 6.1.: Scalability Diagram of the PCM-2-XACML Transformation (OR) (Q-3.1).

Due to limitations of the used hardware for evaluation, the 500000 copies test is not done in the

scalability tests for the generating of ensemble systems. Figure 6.2 illustrates that the ensembles

generation indicates linear runtime behaviour in relation to the count of rules (Q-3.2). The blue

points depict the averaged results of the evaluation test structure for the respective generated

UC-Scale XACML policy set �le whereas the red points are the averaged results for the UC-Test

XACML policy set �le. The green and the black lines are respective linear references for the

given data points to indicate that the execution time behaviour is linear for input numbers of

1000 or more.

Figure 6.3 illustrates that the execution time of XACML generation indicates linear behaviour

in relation to the count of contexts in one rule (Q-3.3). The blue points depict the averaged

results of the evaluation test structure for the UC-Scale base model. The green line is a linear

reference for the given data points to indicate that the execution time behaviour is linear for

input numbers of 10000 or more.
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Figure 6.2.: Scalability Diagram of the XACML-2-Ensembles Transformation (OR) (Q-3.2).
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Scalability Diagram of Ensembles Generation (AND).
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Figure 6.4.: Scalability Diagram of the XACML-2-Ensembles Transformation (AND) (Q-3.4).

Figure 6.4 illustrates that the execution time of Ensembles generation indicates linear behaviour

in relation to the count of contexts in one rule (Q-3.4). The blue points depict the averaged

results of the evaluation test structure for the UC-Scale base model. The green line is a linear

reference for the given data points to indicate that the execution time behaviour is linear for

input numbers of 1000 or more.

In this paragraph the limitations of the scalability evaluation are discussed. One limitation

is that memory scalability was not considered because it is di�cult to measure this exactly.

Moreover, deep hierarchies of roles, organisations or locations were also not considered but as

long as the hierarchy is not too deep to make the implementation run out of stack memory,

which is very unlikely.

The scalability evaluation indicated that the execution time of the implemented transfor-

mations is linear for relevant numbers of contexts. Furthermore, it can be seen that the absolute

runtime (maximum ca. 50 seconds for 100000 XACML rules) is also acceptable considering

that the generation is done at design-time. To conclude, the scalability of both implemented

transformations is ensured for its planned purpose.
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In this chapter, the �ndings of this thesis are concluded. Moreover, the limitations of the

approach and possible future work is brie�y described.

7.1. Limitations

During the process of creating this thesis, some limitations were encountered which are brie�y

explained in this section. First, the PEP does not evaluate obligations (see Section 4.2.3) which

means that evaluating prerequisite and extension contexts is not yet possible in XACML.

However, it can be considered in the ensemble system. Second, the considered access subject

must be explicitly de�ned in the resource (see Section 4.3.1). Third, the ensembles generation

only considers the transformation of XACML policy sets generated by the XACML generation.

Fourth, the XACML policy sets and the ensembles are not optimized.

7.2. Summary

To sum up, the thesis presented an extension to the context meta model (see Section 4.1) as a

�rst contribution, a transformation of model instances to the attribute based XACML policy

sets (see Section 4.2) and a transformation of these policy sets to an ensemble based component

system (see Section 4.3). The model extension mainly considered extensibility at a later design

time. The transformations from the model to XACML makes it possible to generate access

control artefacts of a wide-spread security standard. Furthermore, the transformation to an

ensemble system considers the generation of an EBCS Scala �le from the XACML policy set

�le which was created beforehand by the PCM-2-XACML program.

7.3. Future Work

This section describes some ideas for future work concerning the topic of this thesis. First,

there could be an implementation of a PEP extension which considers obligations. Second, the

ensemble generation could be extended to a more general transformation which also considers

XACML policy sets which are not generated bei PCM-2-XACML. Third, further and larger

usability tests for the meta model and the transformations and improvements can be done in

the future. Fourth, a better integration into eclipse could also be considered like for example

an improved settings management which pays more attention to more detailed settings.
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A. Appendix

A.1. Generated Running Example

The Figure A.1 shows the generated XACML policy set �le for the running example. The Figure

A.2 shows the whole generated ensemble system and a scenario de�nition which checks the

situation when the machine is OK.
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1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <PolicySet xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" PolicySetId="completePolicySet" Version="1.0"

3 PolicyCombiningAlgId="urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:permit-overrides">

4 <Description>all policies combined</Description>

5 <Target/>

6 <Policy PolicyId="policy:readLog" Version="1.0" RuleCombiningAlgId="urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:permit-overrides">

7 <Description>Policy for readLog</Description>

8 <Target/>

9 <Rule RuleId="rule:readLog:0" Effect="Permit">

10 <Description>Context check rule for entity readLog’s characteristic 0</Description>

11 <Target>

12 <AnyOf>

13 <AllOf>

14 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

15 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">readLog</AttributeValue>

16 <AttributeDesignator Category="urn:oasis:names:tc:xacml:3.0:attribute-category:action" AttributeId="entity:name"

17 DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="false"/>

18 </Match>

19 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

20 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">OK</AttributeValue>

21 <AttributeDesignator Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource" AttributeId="context:internalstate"

22 DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="false"/>

23 </Match>

24 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-regexp-match">

25 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">(\QA\E)</AttributeValue>

26 <AttributeDesignator Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject" AttributeId="context:organisation"

27 DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="false"/>

28 </Match>

29 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-regexp-match">

30 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">(\QWorker\E)</AttributeValue>

31 <AttributeDesignator Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject" AttributeId="context:role"

32 DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="false"/>

33 </Match>

34 </AllOf>

35 </AnyOf>

36 </Target>

37 <ObligationExpressions>

38 <ObligationExpression ObligationId="obligation:prerequisite" FulfillOn="Permit">

39 <AttributeAssignmentExpression AttributeId="context:prerequisite:sendReport">

40 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">sendReport</AttributeValue>

41 </AttributeAssignmentExpression>

42 </ObligationExpression>

43 </ObligationExpressions>

44 </Rule>

45 <Rule RuleId="rule:readLog:1" Effect="Permit">

46 <Description>Context check rule for entity readLog’s characteristic 1</Description>

47 <Target>

48 <AnyOf>

49 <AllOf>

50 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

51 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">readLog</AttributeValue>

52 <AttributeDesignator Category="urn:oasis:names:tc:xacml:3.0:attribute-category:action" AttributeId="entity:name"

53 DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="false"/>

54 </Match>

55 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

56 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">DEFECTIVE</AttributeValue>

57 <AttributeDesignator Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource" AttributeId="context:internalstate"

58 DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="false"/>

59 </Match>

60 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-regexp-match">

61 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">(\QB\E)</AttributeValue>

62 <AttributeDesignator Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject" AttributeId="context:organisation"

63 DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="false"/>

64 </Match>

65 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-regexp-match">

66 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">(\QRepairperson\E)</AttributeValue>

67 <AttributeDesignator Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject" AttributeId="context:role"

68 DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="false"/>

69 </Match>

70 </AllOf>

71 </AnyOf>

72 </Target>

73 </Rule>

74 <Rule RuleId="denyIfNotApplicable" Effect="Deny">

75 <Description>this rule denies if this case is not applicable</Description>

76 <Target/>

77 </Rule>

78 </Policy>

79 </PolicySet>

Listing A.1: The XACML policy set �le for the running example.
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1 package scenarios

2 import tcof.{Component, _}

3 import java.time._

4 import java.time.format._

5 import java.util.Collection

6 import java.util.ArrayList

7 class RunningExample(val now: LocalTime) extends Model {

8 class Subject(val subjectName: String, val organisation: String = null, val role: String = null) extends Component {

9 name(s"Subject $subjectName")

10 }

11 class Resource(val resourceName: String, val accessSubject: Subject, val internalstate: String = null) extends Component {

12 name(s"Resource $resourceName")

13 }

14

15 class System extends RootEnsemble {

16 object readLog extends Ensemble {

17 val allowedResources =

18 components

19 .select[Resource]

20 .filter(x => (

21 (x.accessSubject != null

22 && ((x.accessSubject.organisation != null && x.accessSubject.organisation.matches("(\\QA\\E)"))

23 && (x.accessSubject.role != null && x.accessSubject.role.matches("(\\QWorker\\E)")))

24 && (x.internalstate == "OK"))

25 ||(x.accessSubject != null

26 && ((x.accessSubject.organisation != null && x.accessSubject.organisation.matches("(\\QB\\E)"))

27 && (x.accessSubject.role != null && x.accessSubject.role.matches("(\\QRepairperson\\E)")))

28 && (x.internalstate == "DEFECTIVE"))))

29 .map[Resource](x => x.getClass().cast(x))

30 val allowedSubjects =

31 components

32 .select[Subject]

33 .filter(x => (

34 (allowedResources.forall(y => ((y.internalstate == "OK")))

35 && prereq_sendReport("sendReport")

36 && (x.organisation != null && x.organisation.matches("(\\QA\\E)"))

37 && (x.role != null && x.role.matches("(\\QWorker\\E)")))

38 ||(allowedResources.forall(y => ((y.internalstate == "DEFECTIVE")))

39 && (x.organisation != null && x.organisation.matches("(\\QB\\E)"))

40 && (x.role != null && x.role.matches("(\\QRepairperson\\E)")))))

41 .map[Subject](x => x.getClass().cast(x))

42

43 allow(allowedSubjects, "readLog", allowedResources)

44 }

45 val readLogRule = rules(readLog)

46 }

47 val rootEnsemble = root(new System)

48 def prereq_sendReport(operationSignatureName: String) : Boolean = {

49 //TODO implement call to operation signature for operationSignature "sendReport"

50 return true

51 }

52 }

53

54 object RunningExample {

55 def convertToCol(iterable: Iterable[Component]) : Collection[Component] = {

56 val collection = new ArrayList[Component]

57 val iter = iterable.iterator

58 while (iter.hasNext) {

59 collection.add(iter.next)

60 }

61 return collection

62 }

63

64 def main(args: Array[String]) : Unit = {

65 //TODO: adapt to your usecase scenario

66 val scenario = new RunningExample(LocalTime.parse("13:00:00Z", DateTimeFormatter.ISO_OFFSET_TIME))

67 val subjectA = new scenario.Subject("W", "A", "Worker")

68 val subjectA2 = new scenario.Subject("W2", "A", "Worker")

69 val subjectB = new scenario.Subject("R", "B", "Repairperson")

70 val accessSubject = subjectA

71 val resourceA = new scenario.Resource("machineOk", accessSubject, "OK")

72 val resourceB = new scenario.Resource("machineDef", accessSubject, "DEFECTIVE")

73 scenario.components = List(subjectA, subjectB, subjectA2, resourceA, resourceB)

74 scenario.rootEnsemble.init()

75 val solved = scenario.rootEnsemble.solve()

76 scenario.rootEnsemble.instance.readLogRule.selectedMembers.foreach(x => println(convertToCol(x.allowedSubjects)));

77 scenario.rootEnsemble.instance.readLogRule.selectedMembers.foreach(x => println(convertToCol(x.allowedResources)));

78 val testActionAllow = solved && scenario.rootEnsemble.instance.readLogRule.selectedMembers.exists(x => convertToCol(x.allowedSubjects).contains(subjectA)

79 && convertToCol(x.allowedResources).contains(resourceA)

80 && !convertToCol(x.allowedSubjects).contains(subjectB))

81 if (testActionAllow) {

82 println("allow")

83 } else {

84 println("deny")

85 }

86 }

87 }

Listing A.2: The ensemble system for the running example.
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