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Abstract: DNA-crosslinks are one of the most severe types of DNA lesions. Crosslinks (CLs) can be
subdivided into DNA-intrastrand CLs, DNA-interstrand CLs (ICLs) and DNA-protein crosslinks
(DPCs), and arise by various exogenous and endogenous sources. If left unrepaired before the cell
enters S-phase, ICLs and DPCs pose a major threat to genomic integrity by blocking replication.
In order to prevent the collapse of replication forks and impairment of cell division, complex repair
pathways have emerged. In mammals, ICLs are repaired by the so-called Fanconi anemia (FA)
pathway, which includes 22 different FANC genes, while in plants only a few of these genes are
conserved. In this context, two pathways of ICL repair have been defined, each requiring the
interaction of a helicase (FANCJB/RTEL1) and a nuclease (FAN1/MUS81). Moreover, homologous
recombination (HR) as well as postreplicative repair factors are also involved. Although DPCs
possess a comparable toxic potential to cells, it has only recently been shown that at least three
parallel pathways for DPC repair exist in plants, defined by the protease WSS1A, the endonuclease
MUS81 and tyrosyl-DNA phosphodiesterase 1 (TDP1). The importance of crosslink repair processes
are highlighted by the fact that deficiencies in the respective pathways are associated with diverse
hereditary disorders.
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1. Introduction

As sessile organisms, plants lack a strategy of damage avoidance and therefore are particularly
exposed to harmful environmental influences. As a consequence of DNA lesions that are induced by a
wide range of damaging factors, a great variety of DNA repair mechanisms have evolved in order to
maintain genomic integrity. Covalent linkages within DNA strands, or between DNA and proteins,
possess a high cytotoxic potential, and it remains a main challenge for cells to overcome these threats.
As intrastrand crosslinks (CLs) only affect one DNA strand, they can be repaired more easily than
interstrand CLs (ICLs) that connect and, therefore, compromise both complementary DNA strands.
Similar to ICLs, DNA-protein crosslinks (DPCs) exhibit a physical obstacle to the replication machinery,
mandatorily requiring efficient and fast-acting repair mechanisms in order to prevent blocking of the
replication fork. In this review, we sum up the formation of the distinct types of CLs, the consequences
of unrepaired CLs and the current knowledge of CL repair mechanisms in plants and other organisms.

2. Sources of DNA Crosslinks

CLs represent a severe threat to genomic integrity and can be caused by a wide range of endogenous,
environmental and chemical factors. Figure 1 provides an overview of CL-inducing sources and the
resulting types of lesions.
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Figure 1. Overview on the origin of different types of crosslinks. The different origins of CL induction 

by endogenous, environmental and chemical factors are summarized. Reactive aldehydes, reactive 

oxygen species (ROSs) and stabilization of enzymatic reaction intermediates are able to endogenously 

produce CLs. UV and ionizing radiation (IR) are environmental CL sources. Chemical crosslinkers 

form the third category, including mitomycin C (MMC), camptothecin (CPT), etoposide (Eto), 

zebularine (ZEB) and cis-platin. The colored dots provide information on the type of induced CL. 

Intrastrand CL: yellow; ICL: orange; DPC: blue. 

Reactive aldehydes—such as formaldehyde, which is produced during the demethylation of 

histones [1–3], or acetaldehyde, which results from ethanol metabolism or as an intermediate of sugar 

metabolism [4]—are able to endogenously induce all three types of CLs: intrastrand CLs, ICLs and 

DPCs. For CL induction, the nucleophilic primary amine of a DNA base and the carbonyl carbon of 

an aldehyde form a methylol adduct that is subsequently converted to a Schiff base. In case of another 

primary amine of a DNA base in close proximity, intrastrand CLs or ICLs can be formed. Reaction 

with a lysine or arginine residue of a protein, in contrast, leads to the formation of a covalent linkage 

between protein and DNA, thus producing a DPC [4–9]. 

Reactive oxygen species (ROSs) arise from various metabolic processes in the cell. In plants, 

ROSs are of particular importance as they are produced during a fundamental plant-specific process: 

photosynthesis. In this context, ROSs result from the side reactions of involved oxidases [10,11]. In 

mechanisms of plant pathogen defense, however, ROSs are exploited in order to kill pathogens and 

pathogen-infected plant cells [12–14]. 

In general, ROSs arise as a byproduct of molecular oxygen reduction. The result is the formation 

of the superoxide anion (O2−) from which other ROSs like H2O2 are derived. H2O2 can be further 

converted into water, and a hydroxyl radical (˙OH) that is strongly reactive and based on its strong 

electronegativity triggers a chain reaction of radical formation [15,16]. Interstrand crosslinking by 

ROSs mainly derives from C4′-oxidized abasic sites and nucleophilic addition to guanine radical 

cations [17]. DPCs can moreover indirectly arise from ROSs via the formation of 

apyrimidinic/apurinic (AP) sites, leading to covalent linkages of nearby proteins [6,18]. Apart from 

ICLs and DPCs, oxidative DNA damage further includes intrastrand CLs by bonding a nucleobase 

with the 5′ carbon of the 2-deoxyribose from the same nucleobase or a neighboring pyrimidine base 

[19,20]. 

Spontaneously occurring enzymatic DPCs are another endogenous source of DNA-protein 

adducts. In this scenario, technically reversible enzymatic reaction intermediates are trapped at the 

DNA, and subsequently persist as permanent covalent adducts. Predominantly, DNA processing 

enzymes such as type 1 and 2 topoisomerases or DNA-methyltransferases are subject to the formation 

of enzymatic DPC lesions [21–24]. In cases of a trapped TOP1 or TOP2, the resulting outcomes are 

referred to as topoisomerase 1 cleavage complexes (TOP1ccs) or topoisomerase 2 cleavage complexes 

Figure 1. Overview on the origin of different types of crosslinks. The different origins of CL induction
by endogenous, environmental and chemical factors are summarized. Reactive aldehydes, reactive
oxygen species (ROSs) and stabilization of enzymatic reaction intermediates are able to endogenously
produce CLs. UV and ionizing radiation (IR) are environmental CL sources. Chemical crosslinkers form
the third category, including mitomycin C (MMC), camptothecin (CPT), etoposide (Eto), zebularine
(ZEB) and cis-platin. The colored dots provide information on the type of induced CL. Intrastrand CL:
yellow; ICL: orange; DPC: blue.

Reactive aldehydes—such as formaldehyde, which is produced during the demethylation of
histones [1–3], or acetaldehyde, which results from ethanol metabolism or as an intermediate of sugar
metabolism [4]—are able to endogenously induce all three types of CLs: intrastrand CLs, ICLs and
DPCs. For CL induction, the nucleophilic primary amine of a DNA base and the carbonyl carbon of an
aldehyde form a methylol adduct that is subsequently converted to a Schiff base. In case of another
primary amine of a DNA base in close proximity, intrastrand CLs or ICLs can be formed. Reaction
with a lysine or arginine residue of a protein, in contrast, leads to the formation of a covalent linkage
between protein and DNA, thus producing a DPC [4–9].

Reactive oxygen species (ROSs) arise from various metabolic processes in the cell. In plants,
ROSs are of particular importance as they are produced during a fundamental plant-specific process:
photosynthesis. In this context, ROSs result from the side reactions of involved oxidases [10,11].
In mechanisms of plant pathogen defense, however, ROSs are exploited in order to kill pathogens and
pathogen-infected plant cells [12–14].

In general, ROSs arise as a byproduct of molecular oxygen reduction. The result is the formation
of the superoxide anion (O2

−) from which other ROSs like H2O2 are derived. H2O2 can be further
converted into water, and a hydroxyl radical (.OH) that is strongly reactive and based on its strong
electronegativity triggers a chain reaction of radical formation [15,16]. Interstrand crosslinking by
ROSs mainly derives from C4′-oxidized abasic sites and nucleophilic addition to guanine radical
cations [17]. DPCs can moreover indirectly arise from ROSs via the formation of apyrimidinic/apurinic
(AP) sites, leading to covalent linkages of nearby proteins [6,18]. Apart from ICLs and DPCs, oxidative
DNA damage further includes intrastrand CLs by bonding a nucleobase with the 5′ carbon of the
2-deoxyribose from the same nucleobase or a neighboring pyrimidine base [19,20].

Spontaneously occurring enzymatic DPCs are another endogenous source of DNA-protein adducts.
In this scenario, technically reversible enzymatic reaction intermediates are trapped at the DNA, and
subsequently persist as permanent covalent adducts. Predominantly, DNA processing enzymes such
as type 1 and 2 topoisomerases or DNA-methyltransferases are subject to the formation of enzymatic
DPC lesions [21–24]. In cases of a trapped TOP1 or TOP2, the resulting outcomes are referred to as
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topoisomerase 1 cleavage complexes (TOP1ccs) or topoisomerase 2 cleavage complexes (TOP2ccs).
The key feature of this kind of enzymatic DPCs is the tyrosyl-phosphodiester bond that is stabilized
between the DNA backbone and the protein [25].

Environmental influences such as UV and ionizing radiation (IR) represent a second class of
CL-inducing factors. Both types of radiation are able to contribute to DNA damage through the
introduction of intrastrand CLs and DPCs. The most well-known intrastrand CLs caused by UV
radiation are pyrimidine pyrimidone 6-4 photoproducts and cyclobutane pyrimidine dimers [26–28].
Moreover UV and IR are able to induce DPCs, mostly resulting in the protein linked to an undisrupted
DNA strand [6,29–32].

For research aiming to elucidate the repair of distinct types of CLs or for cancer treatment, chemical
crosslinkers are frequently applied. The cytotoxic antibiotic mitomycin C (MMC), which is obtained
from Streptomyces caespitosus, induces ICLs as the main adduct [33]. The activation of this substance
occurs due to its reduction to an alkylant in the cell, which enables the linkage between complementary
DNA strands [34].

Camptothecin (CPT), etoposide (Eto) and zebularine (ZEB) are compounds that are widely used
to induce DPCs. CPT specifically targets topoisomerase 1. Topoisomerases are enzymes crucially
needed to ensure the relaxation of the DNA after torsional tension. They function via the active
tyrosine residue in the active center of the enzyme to attack the phosphate of the DNA backbone.
This way, a tyrosyl-phosphodiester bond is formed, while simultaneously nicking the DNA backbone.
After the supercoiling is resolved, the reverse reaction takes place, resulting in the religation of the
backbone and the topoisomerase dissociates from the DNA [35]. CPT leads to the stabilization of the
tyrosyl-phosphodiester bond by preventing the religation of the DNA backbone after topoisomerase
1 action, inducing TOP1ccs, which represent a specific type of enzymatic DPC accompanied by a
single-strand break [21,36]. Eto induces TOP2ccs by trapping topoisomerase 2 at the DNA in a similar
manner as described for CPT in the case of TOP1ccs [37–39]. Zebularine is a nucleoside analogous of
cytidine that enables the covalent trapping of DNA methyltransferase (DNMT) after being incorporated
in genomic DNA. Covalent adducts of DNMTs at the DNA are a further type of DPC, also known as
nucleoprotein adducts (NPAs) [40].

Cis-diamin-dichloro-platin (II) (cis-platin) is one of the most broadly applied cytotoxic agents in
cancer treatment for which a strong antitumor activity was proven in 1970 [41]. The effect of cis-platin
is based on the induction of different DNA adducts, such as intrastrand crosslinks or DPCs. Ninety
percent of all DNA lesions induced by cis-platin crosslinking occurs by binding the active cationic
form of the N7 position of two purine bases [42,43]. In addition to intrastrand CLs (85–90%) [44],
cis-platin is also able to induce DPCs (8–10%) [45] that can be described as ternary DNA-platin-protein
adducts [46–50]. Here, cis-platin connects N7 positions of guanines with lysine, cysteine, histidine,
glutamine or arginine residues of the protein. Using mass spectrometry approaches, more than 250
different proteins haven been identified as targets of cis-platin-induced crosslinking to the DNA [45].
It is important to note that not necessarily the frequency but also the nature of the respective lesion is
an important determinant of the cytotoxicity of cis-platin.

3. Biological Consequences

Faithful duplication of DNA in S-phase is dependent on the reliable function of the replisome.
Replisomes are multiprotein molecular machines that coordinate all crucial enzyme activities needed
for replication [51–53]. Among a wide variety of replication-associated factors, replicative helicases
and polymerases represent the key enzymes of this process.

ICLs and DPCs pose a great risk for living cells, as they block a variety of DNA metabolic processes
such as replication and transcription by forming a physical obstacle [6,54–56]. While in the case of
intrastrand CLs the complementary DNA strands can be separated and the intact strand can serve
as template for repair, proper strand separation is compromised at the ICL and DPC sites. Here, the
progression of key enzymes such as replicative helicases and polymerases is blocked (Figure 2).
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Figure 2. Blocking of replication by crosslinks. Crosslinks, like DPCs (blue) and ICLs (red) represent
a physical obstacle for the replication machinery, including replication-associated key enzymes like
helicases and polymerases. If left unrepaired, inhibition of replication compromises cell division and
can consequently result in cell death.

In the case of DPCs, the biological consequences differ depending on their position. If the
DNA-protein adduct is located on the leading strand, progression of the replicative helicase and
polymerase is blocked. In vitro studies using DPC-mimicking biotin-streptavidin adducts showed that
DNA unwinding is disturbed during replication [54,57,58], obstructing the replication fork progression
in vivo [54,59]. DPCs located on the lagging strand do not interfere with helicase progression, but
impede the translocation of the replicative polymerase [49,54,56–58,60,61].

ICLs affect both complementary DNA strands and thereby lead to an arrest of both the helicases
and polymerases [54,62,63]. Inhibition of replication can result in genome instability and in blocking
the cell division, leading to untimely cell death [32]. Therefore, it is not surprising that mutations in
many of the known genes involved in CL repair are associated with severe human diseases.

Besides replication, crosslinks also block transcription. Here, the CLs are a barrier for proper
RNA polymerase progression, thereby inhibiting the production of RNA transcripts that are crucially
needed as templates for protein biosynthesis [54,64–66].

Taken together, CLs threaten cellular integrity at various levels and in numerous genetic processes.
This major impact of crosslinks on cell viability is widely exploited in cancer treatment.

4. Repair of DPCs

Surprisingly, even though ICLs and DPCs are of comparable toxicity for cells and end in the same
cell fate, detailed research on DPC repair was neglected for a long time. It has only been during the
last few years that the central mechanism of repair of DPCs was elucidated.

DPCs represent a class of structurally highly diverse DNA adducts [54], and therefore many
specific repair pathways have evolved. Analysis of non-enzymatic DPC repair first focused on
the contribution of canonical DNA repair pathways such as nucleotide excision repair (NER) and
homologous recombination (HR) [67,68]. It has been shown that NER is able to protect cells from
DPC-inducing agents in bacteria and yeast [69–71], removing the majority of formaldehyde-induced
DPCs before S-phase [69,72]. However, repair of DPCs via NER appear to be limited by the size of the
covalently attached proteins. Protein adducts larger than 11 kDa are able to escape from NER-based
repair [69,70,73]. The application of proteasome inhibitors impairs cells during DPC repair, suggesting
the possibility that proteolytic activity can make bigger DPCs accessible too [9,73]. In E.coli it has
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been shown that DPCs can alternatively be repaired via RecBCD-dependent HR. Hypersensitivity
of HR-deficient cell lines after treatment with DPC-inducing agents showed that HR also appears
to be involved in DPC tolerance and repair in eukaryotes [69,70,74–76]. As DPCs do not only vary
by the covalently bound protein, but also by the type of DNA structure involved, this serves as an
additional feature for specialized repair. Type 2 topoisomerases, for example, lead to the formation
of DPCs adjacent to a double-strand break (DSB). Thus, enzymes involved in DSB repair, such as
the multifunctional MRN complex, can contribute to DPC repair. This has been proven by a distinct
sensitivity of Mre11-deficient yeast cells after treatment with topoisomerase mutagens [77] and the
repair of stabilized TOP2ccs via the conserved MR complex of T4 bacteriophages [78,79]. Replication
fork regression could be one mechanism of DPC tolerance [80]. In such a case, the replication machinery
could use the newly synthesized undamaged daughter strand as template, while the damage on the
parental strand would remain. CPT-sensitive mutants of the RecQ-homologs ScSgs1 and HsBLM hint at
an involvement of these helicases in the repair of CPT-induced lesions [81,82] where they could induce
the regression of the replication fork. In Arabidopsis, topoisomerase 3α— acting in the RecQ-helicase
associated RTR complex—could additionally be linked to DPC repair, as respective mutants exhibit a
hypersensitivity to CPT [83].

An important pathway for the repair of stabilized TOP1cc is mediated by the enzymatic hydrolysis
of the phosphodiester bond via tyrosyl-DNA phosphodiesterase 1 (TDP1). The specialized enzyme
TDP1 resolves the phosphodiester bonds between the 3′-phosphate of the DNA backbone and the
active tyrosyl residue of topoisomerase 1 [84,85]. TDP1 is an strongly conserved gene (in evolutionary
terms) that exists in all eukaryotic organisms, and its mutations lead to a hypersensitivity towards
TOP1 inhibitors [37,84,85]. The activity of TDP1 is based on its HKN motifs, forming the active
center of the enzyme [86]. The removal of DPCs via TDP1 requires the partial degradation of
the DPC by a proteasome [37,87–89] and the subsequent processing of the DNA backbone by
polynucleotide-3′-phosphatase (PKNP) and canonical repair pathways for the re-ligation of the
backbone [90]. Recruitment of TDP1 is achieved by PARylation, implicating an interaction of TDP1 and
PARP1 that is also involved in the recruitment of downstream repair factors like XRCC1 [91,92]. This
links the function of TDP1 with the mechanism of base excision repair (BER) [93,94]. The complexity
of DPC repair is reflected in the CPT hypersensitivity of yeast tdp1 mutants, which is only detectable in
the absence of at least one further repair enzyme [67,72,95,96].

The importance of TDP1 for genome stability is further highlighted by the occurrence of the human
autosomal recessive inheritable syndrome SCAN1 (spinocerebrellar ataxia with axonal neuropathy) by
homozygous mutations of the TDP1 gene. This neurodegenerative disease leads to a dieback of neurons
of the cerebellum and spinal marrow, thereby causing musculoskeletal system disturbance [97,98].

Similar to the activity of TDP1 at TOP1ccs, tyrosyl-DNA phosphodiesterase 2 (TDP2) is crucial for
the hydrolysis of 5′-tyrosyl-phosphodiester bonds at stabilized TOP2-DNA intermediates (TOP2ccs).
In doing so, TDP2 promotes a crucial step for the repair of this specific type of enzymatic DPC, which
is located adjacent to a DSB [99,100]. With the exception of Medicago truncatula [101], plant TDP2
homologues remain poorly characterized so far.

Although several DPC repair strategies rely on proteolytic activity for the efficient removal of
covalent DNA-protein adducts, the main pathway based on degradation of the protein moiety has only
recently been discovered [72]. In yeast, a central role in the repair of enzymatic (as well as non-enzymatic)
DPCs could be assigned to the metalloprotease Wss1 (weak suppressor of smt3 protein 1) [72]. Wss1
was already identified in 2001 and was firstly connected to the SUMO pathway [102–104]. While
Wss1-deficient yeast lines exhibited hypersensitivity to formaldehyde, a synergistic hypersensitive
effect was detected for ∆wss1 ∆tdp1 after TOP1cc induction via CPT treatment. Rescue of the severe
growth defects in the double mutant via additional deletion of TOP1 clearly indicate that TDP1 and
Wss1 are involved in the repair of TOP1ccs using parallel pathways [72]. Wss1 is also involved in
the repair of formaldehyde-induced DPCs, due to the lack of the specific tyrosyl-phosphodiester
bonds that are repaired by TDP1. The protease function of Wss1 has been shown to be crucial
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for its role in DPC repair, as complementation analyses of ∆wss1 ∆tdp1 lines with a Wss1 version
containing a mutated active center of the protease domain could not rescue their hypersensitive
phenotype [72]. As a protease, Wss1 is able to target a much broader group of targets compared to
TDP1. After Wss1-mediated proteolytic degradation of the protein, the small remaining peptide is now
accessible for further downstream repair mechanisms such as translesion synthesis, which involves
damage-tolerant translesion polymerases [32]. These findings are supported by the detection of a
Wss1-dependent mutagenesis after formaldehyde treatment, where Wss1-deficient lines exhibited a
reduced mutagenesis rate compared to the wildtype [72]. Additionally, it has been shown that the
metalloprotease acts mainly during the replicative phase of the cell cycle and enables the complete
replication of DPC-containing DNA. Consequently, Wss1 highly contributes to the maintenance of
genomic integrity.

Based on structural similarities of the zinc-metalloprotease domain, the protein SPRTN (SprT-like
N-terminal domain, also known as DVC1) was suggested to be the respective repair protease in
mammals [72]. Mutations in HsSPRTN lead to the development of Ruijs-Aalfs syndrome, which is
associated with genomic instability, progeroid features and a high susceptibility to the early onset of
hepatocellular cancer [105,106].

After treatment of SPRTN-deficient mouse embryo fibroblast cells with formaldehyde, CPT and
etoposide hypersensitivity has been detected. Thus, it can be confirmed that SPRTN is indeed the
functional mammalian homologue of Wss1 [107,108].

Bioinformatic analyses have hinted to the existence of Wss1/SPRTN-type proteases in the plant
kingdom as well. For plants and some fungi, a second Wss1 homologue, Wss1-UBL (later called
WSS1B), was identified, which is characterized by the eponymous N-terminal ubiquitin-like (UBL)
domain [32].

To check whether the pathway for DPC repair via proteolytic degradation is conserved in plants,
Cas9-generated Arabidopsis mutant lines of AtWSS1A (Wss1) and AtWSS1B (Wss1-UBL) have been
characterized, and no indication of AtWSS1B in DPC repair was found. In contrast, WSS1A has
been identified as a crucial factor in the repair of both enzymatic DPCs as a result of CPT as well
as cis-platin-induced non-enzymatic DPCs [109]. Further epistasis analysis revealed more insight
into plant DPC repair. The analysis of Attdp1 Atwss1A double-mutant lines revealed a synergistic
hypersensitivity after treatment with CPT, but not cis-platin, while the tdp1 single-mutant line did not
show any hypersensitivity. WSS1A and TDP1 consequently act in parallel pathways in the repair of
enzymatic TOP1ccs, although WSS1A is the more significant factor. In line with the enzymatic function
of TDP1, no role in the repair of non-enzymatic DPCs (which do not harbor any tyrosyl-phosphodiester
bonds) was detected.

The structure-specific endonuclease MUS81 is of special importance in plants, acting as a key
player in DNA repair [110]. Biochemical analysis has demonstrated the involvement of AtMUS81
in a complex with its interacting partner AtEME1A or AtEME1B in the dissolution of 3′ flaps and
nicked Holliday junctions, as well as at a minor rate for intact Holliday junctions [111]. Indeed, an
important role for AtMUS81 could be revealed in epistasis analysis, demonstrating the involvement of
the endonuclease in the repair of enzymatic as well as non-enzymatic DPCs via a third and predominant
pathway in parallel to the protease WSS1A and the phosphodiesterase TDP1 [109]. Consequently, at
least three independent pathways for DPC repair exist in Arabidopsis. The first pathway nucleolytically
targets the DNA via the endonuclease MUS81 (at enzymatic and non-enzymatic DPCs). The second
pathway proteolytically degrades the proteinaceous part of enzymatic and non-enzymatic DPCs via
WSS1A, whereas the third pathway enzymatically hydrolyses the tyrosyl-phosphodiester bond of
trapped topoisomerase 1 via TDP1 (Figure 3).
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phosphodiester bond by TDP1. 
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Figure 3. Repair of DPCs in Arabidopsis thaliana. DPCs in general can be repaired via proteolytic
degradation by WSS1A and in a parallel pathway via endonucleolytic cleavage by MUS81.
Enzymatic DPCs like CPT-induced TOP1ccs can be additionally repaired via hydrolysis of the
tyrosyl-phosphodiester bond by TDP1.

5. Repair of Intrastrand CLs and ICLs

Intrastrand CLs compromise only one DNA strand, thus leaving the other available as a template.
This enables repair either via NER or during replication bypasses via the pathway of postreplicative
repair (PRR) [112,113]. For UV-induced intrastrand CLs such as pyrimidine dimers, most organisms,
including plants, possess the additional possibility for repair via specialized enzymes called photolyases.
In the process of photoreactivation, these enzymes are able to revert the covalent bond of base dimers
in a light-dependent manner [114].

ICL repair is of particular complexity, as both DNA strands are affected by the lesion and therefore
repair is lacking a sound template. In mammals, the main mechanism for ICL repair is the so-called
Fanconi anemia (FA) pathway that involves 22 FANC (Fanconi anemia complementation group)
genes (FANCA/ B/ C/ D1/ D2/ E/ F/ G/ I/ J/ L/M/ N/ O/ P/ Q/ R/ S/ T/ U/ V and W) [115–119]. In humans,
germline mutations in these genes lead to the rare autosomal recessive disease Fanconi anemia,
which is associated with severe bone marrow failure, chromosomal breakage and innate physical
malformations [116,120].

In the Fanconi anemia pathway, ICLs are recognized via a complex composed of the helicase
FANCM, FA-associated protein 24 (FAAP24) and MHF. The loading of the core complex (involving
10 FANC proteins, 3 FAAPs and MHF1/2) lead to the monoubiquitinylation of FANCI and FANCD2
(ID complex) [116,121–123]. The ID complex then recruits DNA endonucleases like MUS81, SLX1,
and XPF/ERCC4/FANCQ, thereby accomplishing the unhooking of the CL by cutting adjacent to the
ICL [123]. During this process, a DNA adduct persists on one strand while a break occurs on the other
strand. The DNA adduct can further be bypassed via translesion synthesis and afterwards be eliminated
via NER. The DSB is then repaired via HR [123,124]. In general, ICLs are repaired differently depending
on the cell cycle phase. In the G1-phase, ICLs can be repaired in a recombination-independent manner
by unhooking the CL via endonucleolytic cleavage. Afterwards, translesion synthesis can take over,
synthesizing the sequence gap with the help of error-tolerant translesion polymerases. In the next
step, the CL, which is merely attached to one DNA strand, can be excised via NER followed by
repair synthesis.

If a covalent linkage of the complementary DNA strands occurs during the replicative phase
of the cell cycle, the repair involves an additional step, as a one-sided DSB arises. In the
recombination-dependent repair, unhooking of the CL occurs as before, followed by translesion
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synthesis (TLS) and NER. The DSB generated by the unhooking is subsequently repaired via HR and
the replication fork gets restored after resolution of the recombination intermediates [125,126].

In plants, only around half of the 22 known mammalian FANC genes are conserved: FANCD1
(BRCA2)/ D2/ E/ I/ J (BRIP1)/ L/M/ O (RAD51C)/ Q (ERCC4)/ R and T [127] (Table 1). However, efforts
towards the elucidation of the specific network for plant ICL repair have, to date, only successfully
linked two of the conserved FANC genes (the helicases FANCJ and FANCM) to ICL repair, indicating
that there is no classical FA pathway in plants [128–131]. Nevertheless, in recent years a multitude of
ICL repair factors have been identified in plants, shedding light on this complex mechanism.

Table 1. FANC genes in plants. The table gives an overview of the conserved FANC genes in plants, the
synonymous nomenclature where present, keywords and their functions and respective references.

FANC Gene Synonym Keywords Reference

FANCD1 BRCA2 Somatic and meiotic HR [132,133]
FANCD2 Somatic and meiotic HR [134]
FANCE No role in meiotic HR [135]
FANCI No role in meiotic HR [135]

FANCJ BRIP1,
BACH1

Helicase,
ICL repair, replicative repair, rDNA stability [129]

FANCL Ubiquitin ligase,
no role in meiotic HR [135,136]

FANCM
Helicase, Antirecombinase,

ICL repair, suppression of somatic and
meiotic HR

[128,137]

FANCO RAD51C Recombinase,
Mitotic and meiotic HR [138]

FANCQ ERCC4, RAD1, UVH1 Endonuclease, NER [112,139]
FANCR RAD51 Recombinase, mitotic and meiotic HR [133,140]
FANCT uncharacterized [127]

The helicase FANCJ, also known as BACH1 (BRCA1-associated C-terminal helicase 1) or BRIP1
(BRCA1 interacting protein), has multifunctional roles in the maintenance of genome stability [141].
In Arabidopsis, two FANCJ homologues exist, FANCJA and FANCJB. Although the two AtFANCJ
proteins are 66.2% identical to each other, only FANCJB has been demonstrated to play a role in ICL
repair. This is reflected by the hypersensitivity of the respective mutants towards MMC treatment [129].

In addition to the conserved FANC genes, homologues of Fanconi anemia-associated proteins
such as FAN1 (Fanconi/FANCD2 associated nuclease 1) and MHF1 [131,142] have been identified in
Arabidopsis, and both proteins play a role in ICL repair. The nuclease FAN1 is not conserved in all
eukaryotes, but an essential function in human ICL repair has been demonstrated [143]. Arabidopsis
FAN1 is involved in ICL repair and, interestingly, both its nuclease and ubiquitin-binding zinc
finger domain are essential for this function [142]. The histone fold-containing protein AtMHF1 is
involved in a common pathway with the FA helicase FANCM, acting in parallel to the RecQ helicase
RECQ4A [131]. Astonishingly, FANCM, which is essential for ICL recognition and one of the central
components of the FA core complex in humans, appears to fulfil only a minor function in plants.
FANCM-deficient Arabidopsis plants do not depict MMC hypersensitivity, and the involvement of
FANCM in ICL repair is only revealed when additional repair factors from parallel pathways are
missing, such as RECQ4A [131]. Although most FANC genes in plants do not possess a conserved
role in ICL repair, some are nevertheless important to the maintenance of genome stability in different
ways. For example, AtFANCD2 and AtFANCM have been shown to fulfil important roles in meiotic
recombination [128,134,137].

RTEL1 is a Fe-S cluster helicase closely related to FANCJ. RTEL1 is a conserved key factor in the
preservation of telomere stability, promoted by its ability to dissolve T-loops and G4 structures [144,145].
As double-mutant lines of the RTEL1 and FANCJ homologues in Caenorhabditis elegans are synthetically
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lethal, both helicases were suggested to carry out essential functions in an independent manner [146].
For AtRTEL1, besides an antirecombinogenic function, an involvement in ICL repair has been
shown [147,148] whereby the helicase acts in parallel to both FA helicases FANCM and FANCJB [129,147].
Moreover, a crucial role in the maintenance of 45S rDNA repeats was shown for RTEL1, thereby acting
independently of the FA helicase FANCJ and the RTR-complex partner RMI2 [147,149].

NER is a central component of DPC and ICL repair in mammals, and a conserved involvement of
NER in plant ICL repair seems likely, as mutants and RNAi lines of the plant XPF homolog RAD1
depict strong MMC hypersensitivity [113,150]. The involvement of NHEJ (KU70/80, XRCC4, LIG4)
and MMEJ (TEB) factors in the repair of MMC-induced lesions are most likely based on the occurrence
of DSBs during replication-dependent repair of ICLs [113,151,152]. In such a scenario, HR-dependent
repair mechanisms also participate as RAD51 homologs, and BRCA1 (including interaction partners)
have been identified as ICL repair factors in plants [152–155].

Initially, a three-branched model was proposed for plant ICL repair that was defined by the
nuclease MUS81, the helicase RECQ4A and the translocase RAD5A [156]. Within the last nine years
of crosslink research, further CL repair factors have been integrated in the model in agreement with
the initial findings. The latest studies in Arabidopsis thaliana now propose a model (Figure 4) for ICL
repair initiation in plants that is mediated by two main repair branches, with are both defined by the
interaction of an Fe-S cluster helicase with a nuclease.
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Figure 4. Model for the ICL repair network in Arabidopsis thaliana. The initiation of ICL repair is based
on the activity of helicases and nucleases, which define three independent pathways. The helicase
FANCJB acts together with the nuclease FAN1 in ICL repair. After initial processing, the repair is
completed via RECQ4A, REV3 or RAD5A. A second parallel pathway is defined by the helicase HRQ1
in combination with the endonuclease RAD1, while the third pathway is dependent on the helicase
RTEL1 and the endonuclease MUS81.

We assume the involvement of the following enzymes in the initial steps of the repair pathways: the
helicase FANCJB and the nuclease FAN1 representing one branch, acting independently of the helicase
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RTEL1 and the endonuclease MUS81 [129,147]. The nucleases might be involved in the unhooking step
of ICL repair, which is achieved by incisions into the DNA followed by an unwinding of the damaged
DNA by the respective helicase. Downstream of FANCJB/FAN1, epistasis analysis has revealed that
ICLs can further be processed by at least three different subpathways [129,142,156,157]. The first repair
pathway is based on the Arabidopsis homologue of the human BLM helicase, RECQ4A. RECQ4A
has been shown to be part of the RTR complex, as a key player in the dissolution of recombination
intermediates, and it also plays a role in ICL repair independently of MUS81 [156,158]. The involvement
of RECQ4A in a parallel pathway to MUS81 is further supported by the fact that double mutants of
mus81 and members of the RTR complex lead to synthetic lethality [110,159]. Furthermore, a role in
ICL repair has been demonstrated for the RTR complex partner TOP3α, hinting to a joint involvement
of the complex [159]. Interestingly, a RecQ-like helicase HRQ1, which is proposed to be the yeast and
plant homologue to human RECQ4, was recently demonstrated to act in ICL repair in Arabidopsis
wherein a role parallel to RECQ4A and similar to that of RAD5A was revealed [160]. Furthermore,
HRQ1 and RAD1 were proposed to cooperate in ICL repair, indicating the possibility of another
helicase nuclease association for the initial repair steps. The second and third subpathways are defined
by the two branches of PRR, mediated by the translocase RAD5A and the catalytic subunit of the
translesion polymerase zeta, REV3 [113,129,156,157]. AtRAD5A is a homologue of yeast Rad5, acting
in the error-free pathway of PRR [113]. Thereby, RAD5A fulfils a dual role, both mechanistically as
translocase, and regulatory in the polyubiquitination of PCNA. In complementation analyses, both
enzyme activities has been shown to be necessary for ICL repair in Arabidopsis [113]. The RAD5A
translocase has further been classified in ICL to act independently of AtRAD1-mediated NER and
AtTEB-mediated MMEJ. REV3, in contrast, is involved in the error-prone mechanism of PRR, called
TLS [157]. Presumably, repair intermediates of ICLs in Arabidopsis can be processed either via the two
parallel pathways of PRR or via the RecQ helicase RECQ4A following the unhooking of the ICL.

Due to the different properties of CLs, the repair network for intrastrand CLs differs from that of
ICLs. So far, no elaborate model has been developed in plants, but a multitude of repair factors have
been identified in Arabidopsis, with most of them playing a role in the repair of both types of CL, albeit
in different contexts. The basic three-branched model, mediated by the RecQ helicase RECQ4A, the
nuclease MUS81 and the PRR translocase RAD5A, seems to also apply to intrastrand CL repair [156].
Furthermore, a prominent role was proposed for the RECQ4A-associated RTR complex, as all members
(RECQ4A, TOP3α, RMI1, RMI2) were shown to cooperate in intrastrand CL repair [83,149,158]. As such,
a conserved function in plants seems likely, as a function for the P. patens RECQ4 homolog in DNA
repair was recently confirmed [161]. This could also be linked to the function of the RTR complex in HR,
which is a further important mechanism for intrastrand CL repair as multiple RAD51 homologs and
RAD54 were shown to be involved in intrastrand CL repair in Arabidopsis [138,162–164]. However, in
general, a number of factors cooperating in ICL repair in plants do not seem to do so in intrastrand CL
repair. Although the Fe-S cluster helicase RTEL1 defines an ICL repair pathway together with MUS81,
this is not the case for intrastrand CLs, where both factors act independently [147]. In the same study, a
hidden role for the FA helicase FANCM was also defined as acting in parallel to RTEL1. Furthermore,
a role in intrastrand CL repair was confirmed for the FA-associated nuclease FAN1 [160]. PRR is an
important mechanism for the repair of intrastrand CLs, reflecting the importance of both RAD5A and
REV3 in Arabidopsis [157,165]. Similar to its involvement in ICL repair, RAD5A was demonstrated
to act independently of RAD1-mediated NER and TEB-dependent MMEJ [113]. Error-prone PRR
mediated by REV3 also fulfils an independent role in parallel to RECQ4A, MUS81 and RAD5A [157].
A factor that might unite the different branches of intrastrand CL repair is the RecQ-like helicase HRQ1,
which cooperates with RAD1, RECQ4A, RAD5A and FAN1, leaving only the backup endonuclease
MUS81 in a separate pathway [160].
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6. Conclusions and Perspectives

Crosslinks of all described types are toxic lesions, strongly threatening the genomic integrity
of the cell. Therefore, efficient repair strategies are indispensable for cell viability. While the repair
mechanisms of intrastrand CLs and ICLs have been studied for decades, research on DPCs has only
been sparsely conducted. With the identification of DPC-processing proteases in 2014 [72], DPC repair
mechanisms have been receiving more attention and now represent a quickly developing scientific field.
As DPC repair mechanisms are currently only partially elucidated, it will be interesting to investigate
the interplay of different repair pathways in respect to DPCs in plants in the future.

Although it might not seem obvious at first glance, a better understanding of CL repair mechanisms
could also help in fighting the obstacles of climate change in agriculture. In future, plants insufficiently
adapted to heat and salt stress might produce a surplus of stress-induced ROSs, resulting in more DNA
damage. Also, as cultivation of plants at higher altitudes surges, plants will be exposed to higher doses
of UV light, threatening both genome stability and ultimately leading to reduced yields. Thus, further
research on CL repair mechanisms in plants could help ensure food security in an uncertain future.
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Abbreviations

BER Base excision repair
CL Crosslink
CPT Camptothecin
DPC DNA-protein crosslink
DSB Double-strand break
Eto Etoposide
FANC Fanconi anemia complementation group
HR Homologous recombination
ICL Interstrand crosslink
IR Ionizing radiation
MMC Mitomycin C
MMEJ Micro-homology mediated end-joining
NER Nucleotide excision repair
PRR Post replicative repair
ROS Reactive oxygen species
TDP1/2 Tyrosyl-DNA-phosphodiesterase 1/2
TLS Translesion synthesis
TOP1cc Topoisomerase 1 cleavage complex
ZEB Zebularine
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