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ABSTRACT
Background. The classification of hepatitis viruses still predominantly relies on ad
hoc criteria, i.e., phenotypic traits and arbitrary genetic distance thresholds. Given
the subjectivity of such practices coupled with the constant sequencing of samples
and discovery of new strains, this manual approach to virus classification becomes
cumbersome and impossible to generalize.
Methods. Using two well-studied hepatitis virus datasets, HBV and HCV, we assess if
computational methods for molecular species delimitation that are typically applied
to barcoding biodiversity studies can also be successfully deployed for hepatitis virus
classification. For comparison, we also used ABGD, a tool that in contrast to other
distance methods attempts to automatically identify the barcoding gap using pairwise
genetic distances for a set of aligned input sequences.
Results—Discussion. We found that the mPTP species delimitation tool identified
even without adapting its default parameters taxonomic clusters that either correspond
to the currently acknowledged genotypes or to known subdivision of genotypes
(subtypes or subgenotypes). In the cases where the delimited cluster corresponded
to subtype or subgenotype, there were previous concerns that their status may be
underestimated. The clusters obtained from the ABGD analysis differed depending
on the parameters used. However, under certain values the results were very similar to
the taxonomy and mPTP which indicates the usefulness of distance based methods in
virus taxonomy under appropriate parameter settings. The overlap of predicted clusters
with taxonomically acknowledged genotypes implies that virus classification can be
successfully automated.

Subjects Biodiversity, Computational Biology, Taxonomy, Virology, Infectious Diseases
Keywords Virus, DNA-barcoding, Species delimitation, Phylogeny, HBV, HCV

INTRODUCTION
The continuous advances in next generation sequencing technologies lead to an increasingly
easier and inexpensive production of genome and metabarcoding data. The wealth of
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available data has triggered the development of new models of molecular evolution,
algorithms, and software, that aim to improve molecular sequence analyses in terms of
biological realism, computational efficiency, or a trade-off between the two. In response to
such technological and technical advancements, several fields of biology have undergone
a substantial transformation. Sequence-based species delimitation and identification, in
the framework of DNA-(meta)barcoding constitutes a representative example that revived
taxonomy and systematics (Tautz et al., 2003;Moritz & Cicero, 2004; Savolainen et al., 2005;
Waugh, 2007; Bucklin et al., 2010; Valentini, Pompanon & Taberlet, 2009; Li et al., 2015),
while it also provided a new means of analysis in several fields (Galimberti et al., 2013;
Mishra et al., 2016; Leray & Knowlton, 2015; Bell et al., 2016; Batovska et al., 2018). Among
others, the development of novel species delimitation tools has substantially advanced
the study of biodiversity of microorganism that are often hard to isolate and study
(Taberlet et al., 2012; Gibson et al., 2014; Thomsen & Willerslev, 2015). The sequencing of
environmental samples in conjunction with algorithms for genetic clustering has led to the
identification of a plethora of previously unknown organisms and a re-assessment of the
microbial biodiversity in several settings.

In a similar context, genetic information has been a rich source of information for viral
species. Several studies show how phylogenetic information can be deployed for identifying
the spatial and temporal origin of a virus, potential factors that trigger its dispersal, and
other key epidemiological parameters (Stadler et al., 2011; Stadler et al., 2014; Gire et al.,
2014). In an era of high human mobility, such methods are important, as the increase
of emerging and re-emerging epidemics is even more prominent than in the past (Balcan
et al., 2009; Meloni et al., 2011; Pybus, Tatem & Lemey, 2015). Nevertheless, phylogenetic
information is still not used in the context of virus species classification or identification. As
we have witnessed for other microorganisms, using or adapting already available methods
for fast and automated delimitation or identification of virus species can greatly contribute
to better understand their evolution.

To date, the official taxonomy of viruses (ICTV, i.e., International Committee on
Taxonomy of Viruses) has mainly been based on established biological classification
criteria as used for other life forms, such as plants or animals. An analogous hierarchical
classification system containing orders, families, subfamilies, genera, and species is
being applied (Simmonds, 2015). The ICTV is typically based on phenotypic criteria,
such as morphology, nucleic acid type (i.e., DNA or RNA), hosts, symptoms, mode of
replication, geographical data, or presence of antigenic epitopes, to name a few. Generally,
such criteria, despite being informative, can be subjective, require highly specialized
knowledge, and are time consuming to apply. In contrast, sequence evolution takes into
account the evolutionary history of life forms and, thus, may offer a more objective
source of information for taxonomic classification. An important difference in viruses
compared to other organisms is that they lack a common set of universal genes such
as the 18S rRNA in eukaryotes or the 16S rRNA in prokaryotes. Therefore, we cannot
infer a comprehensive virus tree of life (Simmonds et al., 2017), and, more importantly
for species delimitation, we cannot rely upon barcoding markers that are universally
suitable for all viruses. We can nonetheless gain valuable insights for their systematics by
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utilizing phylogenetic information at lower taxonomic ranks (e.g., families, genera, species),
using appropriate genes for each dataset. In this context, methods using genetic-distance
thresholds (Bao, Chetvernin & Tatusova, 2014; Lauber & Gorbalenya, 2012; Yu et al., 2013)
have been suggested as a complementary method to the traditional virus classification for
accelerating new species identification.

In this study, we explore whether a recently developed algorithm for molecular species
delimitation on barcoding or marker gene phylogenies can be deployed for ICTV.
In contrast to genetic distance-based methods the multi-rate Poisson Tree Processes
(mPTP, Kapli et al., 2017) infers the number of genetic clusters given a phylogenetic
input tree. Such trees can easily be inferred using both, Maximum Likelihood (Stamatakis,
2014), or Bayesian approaches (Ronquist et al., 2012) on single-gene or multi-gene multiple
sequence alignments. The fundamental assumption of the model is that variance in the
data, as represented by the phylogeny, is greater among species than within a species
(Zhang et al., 2013). The additional assumption of mPTP, that the genetic variation may
differ substantially among species allows to accurately delimit species in large (meta-)
barcoding datasets comprising multiple species of diverse life histories (Kapli et al., 2017).
Experiments using empirical data for several animal phyla (Kapli et al., 2017) and recently
also viruses (Thézé et al., 2018; Modha et al., 2018) show that the method consistently
provides extremely fast and sensible species estimates on ‘classic’ phylogenetic marker and
barcoding genes.

To assess whether mPTP can be deployed as a quantitative ICTV method we analyze
two medically important viruses, Hepatitis B (HBV) and Hepatitis C (HCV), that are
leading global causes of human mortality (Stanaway et al., 2016). Both viruses cause
liver inflammation, but are substantially different from each other. HBV has a partially
double-stranded circular DNA genome with a length of about 3.2 kb while HCV is a
single-stranded, positive-sense RNA virus, with a genome length of approximately 10 kb
(Radziwill, Tucker & Schaller, 1990; Tang & McLachlan, 2001; Martell et al., 1992). Both
virus types comprise at least two taxonomic levels (HBV: genotypes, subgenotypes; HCV:
genotypes, subtypes). Besides the significance of the two viruses for human health, we
selected them as test cases since due to the substantial amount of taxonomic research that
has been conducted and that we can hence use to assess the efficiency of genetic clustering
(e.g., Simmonds et al., 2005; Schaefer, 2007; Smith et al., 2014;Messina et al., 2015).

MATERIAL AND METHODS
Datasets
We generated multiple sequence alignments (MSAs) corresponding to two virus types:
HBV and HCV from two sets of full-length genomic sequences downloaded from publicly
available databases (NCBI: http://www.ncbi.nlm.nih.gov/, accession numbers provided in
Appendix S1).

The HBV dataset comprises 110 sequences corresponding to eight genotypes (i.e., A-H)
and 31 subgenotypes. The genotypes (A through D, F, and H) have been further divided
into subgenotypes indexed by numbers for the corresponding genotype (e.g., A1, A2, B1, B2,
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B3, etc.; Kramvis, 2014). The inter-genotypic and inter-subgenotypic divergence exceeds
8% and 4%–8%, respectively across the genome. No subgenotypes have been reported for
genotypes E, G and H which shows that they are of lower levels of genetic divergence than
the rest. The distribution of HBV genotypes differs greatly with respect to the geographical
origin. Moreover, they differ in their natural history, response to treatment and disease
progression (Huang et al., 2013; Biswas et al., 2013;Moura et al., 2013; Shi et al., 2013). For
our study we included the sequences of the eight genotypes (A–H) that form part of the
oldest identified HBV groups.

The HCV dataset (I) comprises 213 sequences corresponding to seven major taxonomic
units named after genotypes (1, 2, 3, 4, 5, 6, and 7) and numerous subtypes (Smith et al.,
2014). The HCV classification into genotypes and subtypes was based on genetic-distance
thresholds that were verified by the fact that they formedmonophyletic clades in an inferred
phylogeny (Smith et al., 2014). Therefore, the HCV classification serves as an appropriate
test case for assessing whether a similar clustering can be identified with a more objective
and automated method, such as mPTP, that does not require any user input apart from a
phylogeny.

Genetic cluster delimitation
To delimit the putative species, additionally to mPTP, we used the distance-based
‘‘Automatic Barcode Gap Discovery ’’ tool (ABGD, Puillandre et al., 2012). ABGD is a
popular distance-based barcodingmethod that, compared to other distance-basedmethods
attempts to automatically identify the threshold value for the transition from intra-specific
variation to inter-specific divergence (Puillandre et al., 2012).

For the mPTP delimitation, a fully binary (bifurcating) rooted phylogeny is required.
Therefore, using the aligned sequences we inferred the phylogenetic relationships under
the GTR+0 model of nucleotide substitution using RAxML-NG (Kozlov et al., 2018). We
rooted the phylogenetic trees according to the originally published phylogenies (i.e., using
the branch leading to genotypes F/H for HBV and genotype 7 for HCV). Using heuristic
search algorithms for finding the ‘best’ delimitation given the rooted phylogeny and
without any further prior assumptions. We performed the mPTP delimitation under
Maximum Likelihood (ML) and calculated the support of the delimited clusters using
Markov-chain Monte Carlo (MCMC) sampling (Kapli et al., 2017). We conducted the
MCMC sampling twice for 106 generations, to identify potential lack of convergence with
a sampling frequency of 0.1.

For ABGD, the user has to define two important parameters, (i) the prior maximum
divergence of intraspecific diversity (P), which implies that the barcode gap is expected
to exceed this value and should not be confused with the genetic thresholds assumed to
define the inter-specific relationships, (ii) a proxy for the minimum gap width (X), which
indicates that the barcoding gap is expected to be X times larger than any intraspecific gap
(Puillandre et al., 2012). For both, HBV, and HCV, we used 10 prior maximum thresholds
in the range of p= 0.001 and P = 0.05. The proxy for the minimum gap width (X) was set
to the default value (X = 1.5) for HCV, while for HBV the default value did not yield any
delimitation and we therefore set it to a lower value (X = 0.5).
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RESULTS & DISCUSSION
The biodiversity of viruses is tremendous and it is broadly accepted that our understanding
of their ecology and evolution is constrained to a small fraction of species (Paez-Espino
et al., 2016). In just a kilo of marine sediment there can be a million of different viral
genotypes (Breitbart & Rohwer, 2005), while on a global scale the number of viruses
is 10 million-fold higher than the number of stars in the universe (Suttle, 2013). The
classification of such a diverse set of organisms constitutes a challenging task and is
impossible to accomplish within reasonable time using phenotypic characters. Quantitative
computational methods could provide a viable alternative, particularly for large scale
clustering and fast identification of viral strains (Simmonds et al., 2017; Modha et al.,
2018). Using empirical data of the HBV and HCV viruses we show that by applying
phylogeny-aware and distance-based tools to classify the strains of the two virus types, the
corresponding genetic clustering closely recovers their currently accepted taxonomy.

HCV Clustering
The current taxonomy of HCV comprises seven genotypes, while mPTP yielded 16 genetic
clusters (Fig. 1, Figs. S1 and S2 and Appendix S1). From the 16 clusters, five were congruent
with the current taxonomy, i.e, genotypes 1, 2, 4, 5 and 7. On the contrary, genotype 3 and
genotype 6 were further split into three and eight sub-clusters correspondingly (Fig. 1),
which corroborates former views that divergent variants of these genotypes may qualify
as separate major genotypes (Simmonds et al., 2005; Smith et al., 2014). In particular, the
additional clusters identified by mPTP correspond to previously identified groups of
subtypes (Fig. S1). For genotype 6, these clusters consisted of the following subtype groups:
6a; 6b and 6xd; 6c, 6d, 6e, 6f, 6g, 6o, 6p, 6q, 6r, 6s, 6t, 6u, 6w, 6xc and 6xf; 6 h, 6i, 6j,
6k, 6l, 6m, 6n, 6xb, 6xe; 6xa; 6v (Fig. S1 and Appendix S1). Similarly, for genotype 3, the
delimited clusters were (i) 3g, 3b, 3i, 3a, 3e, 3d, (ii) 3k, and (iii) 3 h and 3. All clusters were
substantially supported by the MCMC sampling, except the split of 3k subtype from its
sister group (Fig. 1), which may be due to the limited amount of corresponding sequences.

The number of clusters inferred with ABGD ranged from 1 to 208 depending on the
value of the maximum intraspecific divergence threshold (Fig. 2). The most reasonable
result (i.e., the one closest to the current standard taxonomy) comprised 19 clusters and
was obtained for a minimum of intraspecific genetic diversity of 5.99% (i.e., p= 0.0599).
Under this threshold, the delimitation is largely identical to the delimitation obtained
with mPTP (Fig. 1), with three differences: (i) that genotype 3 was split into four clusters,
instead of three, (ii) genotype six was divided into nine clusters instead of eight, and,
(iii) genotype 7 is divided into two clusters. When the prior intraspecific divergence was
increased to a higher minimum of 10%, all sequences were grouped in a single cluster.
When the threshold was set to a lower value (3.6%) the number of clusters increased to
135 (Fig. 2). Nevertheless, the delimitation with the 5.99% threshold is largely congruent
to current taxonomy and the clusters obtained with mPTP, thus indicating the usefulness
of distance-based methods in virus taxonomy under well informed parameters.

So far, the classification of HCV into genotypes and subtypes has been defined mostly
by visual identification of clades in phylogenetic inference of HCV sequences (Simmonds
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Figure 1 Clustering of the HCV samples into genotypes; the first bar of colors corresponds to the
genotypes currently acknowledged by ICTV, the second to the mPTPML clustering and the third to the
ABGD clustering (p = 0.0599, X = 1.5). The numbers indicate the support for a particular node being a
speciation node obtained by the MCMC sampling under the mPTP model (support <0.5 not shown, but
see Fig. S2). The phylogenetic relationships were inferred using RAxML under the GTR+0 model.

Full-size DOI: 10.7717/peerj.7754/fig-1
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Figure 2 Number of delimited clusters for ABGDwith respect to input parameters. The graph shows
the change of the number of delimited clusters (y axis) with respect to the minimum intraspecific thresh-
old (‘‘p’’) assumed by ABGD (x axis). The threshold that yielded the most sensible clustering for HBV was
p = 0.0129 while for HCV was p = 0.0599, both are shown with a dotted red line in the figure; the corre-
sponding number of clusters is indicated in a red box.

Full-size DOI: 10.7717/peerj.7754/fig-2

et al., 2005; Smith et al., 2014). Specifically, the genotypes correspond to the seven major
highly-supported phylogenetic HCV clusters while subtypes were defined as the secondary
hierarchical clusters found within each genotype (Smith et al., 2014). This classification
scheme has been widely adopted (Combet et al., 2007; Yusim et al., 2016) and has been
shown to be robust (in terms of stability of the HCV phylogeny) and relevant for clinical
practice, since response rates to immunomodulatory treatment for the chronic hepatitis C
differs across genotypes. Nevertheless, new, unassigned lineages are often discovered from
understudied areas (Sulbaran et al., 2010; Nakano et al., 2012; Lu et al., 2013; Tong et al.,
2015) and it is challenging to assign them a taxonomic status, given that the genetic distance
cut-off among intra and inter-specific relationships is arbitrary and variable for different
parts of the HCV phylogeny (Simmonds et al., 2005). The greatly overlapping mPTP and
ABGD clusters with the HCV genotypes shows that the classification, and, consequently,
the identification, of the genotypes can be easily automated utilizing objective, transparent,
and unifying approaches. Embracing such alternatives can be crucial for viruses like HCV,
taking into account that the correct identification of the HCV genotypes could be of clinical
importance in providing the appropriate medical treatment (Strader et al., 2004; Ge et al.,
2009).
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HBV clustering
In the case of HBV, the mPTP clustering is almost identical to the current classification
(Norder et al., 2004; Kramvis & Kew, 2007) of the virus that comprises eight genotypes,
except for subgenotype C4 which formed a new cluster (Fig. 3, Figs. S3 and S4 and
Appendix S1). This is in line with the greater genetic divergence of C4 compared to the
other subgenotypes due to its ancient origin in native populations in Oceania (Paraskevis
et al., 2013). However, the split of C4 from its sister cluster (genotype C) is not supported
by the MCMC sampling, potentially reflecting the lack of adequate sampling. On the other
hand, the number of clusters identified by ABGD varied from 1 to 85 under different
thresholds of minimum intraspecific divergence, while the delimitation for a threshold
of 1.29% exactly matched the eight genotypes of the HBV classification (Figs. 2 and
3). Both ABGD and mPTP identified seven of the genotypes (A–F) as distinct genetic
clusters. The only difference was that mPTP split genotype C into two distinct clusters
(Fig. 3), i.e., subgenotype C4 was recovered as a distinct cluster from the remaining seven
subgenotype.

CONCLUSIONS
The application of mPTP to the HCV and HBV data sets shows that automated viral
species delimitation using phylogeny-aware methods yields clusters that largely agree with
the current standard taxonomy. The additional clusters identified for HCV by mPTP is
not surprising as they have been previously considered divergent sub-clusters within the
genotypes 3 and 6. Analogously, for HBV, mPTP yielded almost identical results to the
current nomenclature system with the exception of a single sub-genotype, C4, that was
previously mentioned to be more genetically divergent within genotype C (Paraskevis
et al., 2013). In both cases, these new clusters indicate the potential need for taxonomic
revision. However, given the wide use of the current nomenclature in the medical field,
and the lack of other sources of information such as recombination, particularly for
HBV, and, response to treatment, we wouldn’t suggest taxonomic changes at present.
Regarding distance methods, the example of HCV and HBV, shows that meaningful
parameter values for distance-based methods may differ substantially among datasets,
and, therefore, establishing global thresholds is impossible. On the contrary, mPTP can be
seamlessly applied to taxa of substantially different life histories (e.g., variable population
sizes, evolution rates), as it does not require any input parameters except a phylogeny.
Overall, the ease-of-use of mPTP in conjunction with its computational efficiency on
phylogenies with hundreds of samples render it a useful tool for viral biodiversity estimates,
initial classification of understudied taxa, and accelerating the viral species identification
process.
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