

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission

Consolidated Design of the HCPB Breeding Blanket for the Pre-Conceptual Design Phase of the EU DEMO and Harmonization with the ITER HCPB TBM Program

F. A. Hernández^a, P. Pereslavtsev^a, G. Zhou^a, Q. Kang^a, S. D'Amico^a, H. Neuberger^a, L. V. Boccaccini^a B. Kiss^b, G. Nádasi^c, L. Maqueda^d, I. Cristescu^a, I. Moscato^e, I. Ricapito^f, F. Cismondi^g

^aKIT. Germany ^bBUTE, Hungary

°Wigner RCP, Hungary ^dESTEYCO, Spain

^eUniversity of Palermo, Italy ^gEUROfusion, Germany ^fF4E, Spain

20th International Workshop on Ceramic Breeder Blanket Interactions, Karlsruhe, 18-20 September 2019

- **1.** HCPB BL2017 v1: Design Architecture
- **2.** Performance: Neutronics, Thermo-hydraulics, Thermo-mechanics
- **3.** Plant Integration: HCPB TER and HCPB PHTS & BoP
- **4.** DEMO Relevancy of the ITER HCPB-TBS
- **5.** Summary and Outlook Towards the CD Phase

1. HCPB BL2017 v1: Design Architecture

Performance: Neutronics, Thermo-hydraulics, Thermo-mechanics
 Plant Integration: HCPB TER and HCPB PHTS & BoP
 DEMO Relevancy of the ITER HCPB-TBS
 Summary and Outlook Towards the CD Phase

- HCPB integrated into DEMO1 BL2017 (16 sectors, R₀=9m, A=3.1, P_{fus}≈2GW)
- 1 sector = 3 outboard (OB) + 2 inboard (IB) (single module) segments
- Arrangement of fuel-breeder pins containing KALOS CB (Li₄SiO₄ + 35mol% Li₂TiO₃)
- Pins inserted into hexagonal prismatic blocks of Be₁₂Ti neutron multiplier
- Structural steel: EUROFER97

5

1. HCPB BL2017 v1: Design Architecture

- **2.** Performance: Neutronics, Thermo-hydraulics, Thermo-mechanics
- **3.** Plant Integration: HCPB TER and HCPB PHTS & BoP
- **4.** DEMO Relevancy of the ITER HCPB-TBS
- **5.** Summary and Outlook Towards the CD Phase

3. Performance: Neutronics

- Fully heterogeneous MCNP model
- Tritium Breeding:
 - ⁶Li 60%: TBR ≈ 1.20, ⁶Li 40%: TBR ≈ 1.16
- Neutron shielding:

7

- Increased concern on VV activation: BB should contribute to ALARA-activate VV
- dpa_{VV} ≈ 0.130dpa/fpy (WCLL ≈ 1/10 HCPB)
- Best mats.: TiH_2 , $ZrH_{1.6}$, $YH_{1.75}$, WC, B_4C
- 18cm external shield => WCLL-like dpa_{VV}

3. Performance: Thermo-hydraulics (TH)

3. Performance: Thermo-mechanics (TM)

Global FEM TM analyses (Cat. II & III)

Analyses involving VDE scenarios

9

EM inputs recently finished; Ongoing work with focus on BB attachment

А

Regions

В

С

2. Performance: Neutronics, Thermo-hydraulics, Thermo-mechanics

3. Plant Integration: HCPB TER and HCPB PHTS & BoP

4. DEMO Relevancy of the ITER HCPB-TBS

5. Summary and Outlook Towards the CD Phase

4. Plant Integration: HCPB TER System

- Selected TER technology: cryogenic approach (higher TRL)
- Purge gas chemistry: He + 0.1%H₂ => permeating Q₂ species => T permeation
- Alternative chemistry: He + x% H₂O ("wet" purge gas) => non-permeating Q₂O species => T permeation reduced orders of magnitude, but fast corrosion of EUROFER97 and safe use with beryllides to be assessed
- TER technology for wet purge gas can also be based on RMSB

4. Plant Integration: HCPB PHTS and BoP

BoP = PHTS + IHTS(ESS) + PCS ; PHTS: 8 loops ; 1 loop = 1 IHX + 2 circulators High BoP TRL \Leftrightarrow P_{1circ,el} <6MW \Leftrightarrow Δp_{PHTS} <3 bar (for P_{fus}≈2GW) Δp_{inVV} ≈0.8 bar; Δp_{exVV} ≈1.9 bar; Δp_{PHTS} ≈2.7 bar => P_{pump.el} ≈90MW (P_{1circ,el} ≈5MW)

1. HCPB BL2017 v1: Design Architecture

2. Performance: Neutronics, Thermo-hydraulics, Thermo-mechanics

3. Plant Integration: HCPB TER and HCPB PHTS & BoP

4. DEMO Relevancy of the ITER HCPB-TBS

5. Summary and Outlook Towards the CD Phase

5. DEMO Relevancy of the ITER HCPB-TBS

Technical Performance Assessment EU DEMO through ITER TBM:

- Functionality ("act-alike" philosophy) is maintained
- Expected that EU TBM RoX to DEMO will still be very relevant despite changes

14

	ITER CDR HCPB TBM	DEMO PCD HCPB
Coolant	He	He
 Pressure / Tin / T_{out} 	80 bar / 300°C / 500°C	80 bar / 300°C / 520°C
Steel		
• Type	EUROFER97	EUROFER97
BFMs		
• CB / Li6	Li ₄ SiO ₄ / 90%	Li ₄ SiO ₄ +Li ₂ TiO ₃ / 60%
• T _{max} CB / PF	920 °C / ~63%	920 °C / ~63%
• NMM	Be	Be ₁₂ Ti
• T _{max} NMM / PF	650 °C / ~63%	- / blocks
Purge gas		
Chemistry / Pressure	He + 0.1% H ₂ / 4 bar	He + 0.1%H ₂ / 2 bar
W		
 Length x thickness 	3m x 29mm	~3m x 20mm
 Channels section 	(15 x 15)mm	\sim (12 x12)mm, variable
 Mass flow / speed 	100 g/s / 80 m/s	~50 g/s / ~50m/s
 HTC / augmentation 	6400 W/m²K / no	8000 W/m²K / yes
BU / Pin		
• T x P x R Ø / pitch	(205 x 205 x 480)mm	Ø80mm / 130mm
 Mass flow per unit 	~50 g/s	~20 g/s
Stiffening grids		
 Channel section 	(6 x 10)mm	-
• HTC / Δp	4400 W/m²K / 0.24 bar	-

- **2.** Performance: Neutronics, Thermo-hydraulics, Thermo-mechanics
- **3.** Plant Integration: HCPB TER and HCPB PHTS & BoP
- **4.** DEMO Relevancy of the ITER HCPB-TBS
- 5. Summary and Outlook Towards the CD Phase

6. Summary and Outlook Towards CD Phase

- Current reference design: fuel-breeder pin in hexagonal prismatic Be₁₂Ti blocks
- Basic key performance indicators (neutronics, thermo-hydraulics, thermo-mechanics) show promising results
- "Interface-friendly" design => helps to keep high TRL of key interfacing systems (TER and BoP)
- Design to be presented at the PCD phase Gate Review => starting point for CD phase

You're welcomed for a further discussion at ISFNT (Poster P1-083, Monday 23rd)!

Back up slides

1. Introduction: HCPB Design Evolution

- **2.** HCPB BL2017 v1: Design Architecture
- **3.** Performance: Neutronics, Thermo-hydraulics, Thermo-mechanics
- **4.** Plant Integration: HCPB TER and HCPB PHTS & BoP
- **5.** DEMO Relevancy of the ITER HCPB-TBS
- 6. Summary and Outlook Towards the CD Phase

1. Introduction: HCPB Design Evolution

Design iterations to meet new, very challenging DEMO requirements

