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Abstract We present analytic formulas that describe the
fully-differential production of color-singlet final states in
qq̄ and gg annihilation, including all the relevant partonic
channels, through NNLO QCD. We work within the nested
soft-collinear scheme, which allows the fully local subtrac-
tion of infrared divergences. We demonstrate analytic cancel-
lation of soft and collinear poles and present formulas for the
finite parts of all integrated subtraction terms. These results
provide an important building block for calculating NNLO
QCD corrections to arbitrary processes at hadron colliders
within the nested soft-collinear subtraction scheme.
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1 Introduction

Perturbative computations play an important role in the con-
temporary exploration of particle physics at the Large Hadron
Collider (LHC). In particular, the lack of direct evidence
for physics beyond the Standard Model suggests that further
progress in particle physics will require a better understand-
ing of hard hadron collisions and a confrontation of precise
theoretical predictions with experimental results.

The quality of theoretical predictions for hard processes
at the LHC has improved dramatically in recent years thanks
to the advent of flexible methods for handling infrared sin-
gularities, which has led to the calculation of next-to-next-
to-leading-order (NNLO) QCD corrections for sufficiently
complex processes [1–20]. In spite of these successes, there
are ongoing efforts to either simplify and improve existing
methods or to devise “better” ones. For example, it is believed
that the slicing formalism of Refs. [15–18] may be made more
efficient through a deeper understanding of power corrections
to soft and collinear limits [21–26]. Similarly, improved con-
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trol of the interplay between soft and collinear dynamics may
lead to the formulation of simple “minimal” local subtrac-
tion schemes [27–29]. Although there is no guarantee that
any of these efforts will result in an absolute breakthrough
in fixed-order calculations for LHC processes, it is plausible
that these developments will lead to more efficient compu-
tational frameworks and enable precise phenomenological
descriptions of complex multiparticle final states.

In Ref. [30] we have attempted to simplify the residue-
improved subtraction scheme proposed in Ref. [10,11]. This
subtraction scheme is very attractive because it is fully local,
completely general and perfectly modular, so that the sub-
tractions for a generic process are built from a relatively small
set of basic ingredients. Its main disadvantages include a lack
of physical transparency and a certain redundancy, as well as
the numerical integration of the subtraction terms that may
inadvertently impact its efficiency.

We have argued in Ref. [30] that QCD color coherence
removes an interplay between the angles and energies of soft
and collinear particles in gauge-invariant QCD amplitudes,
thus leading to a minimal number of subtraction terms that
need to be considered. Perhaps more importantly, since soft
and collinear singularities are not intertwined, it is possible to
separate them cleanly, removing unnecessary redundancies
of the subtraction procedure presented in Ref. [10,11]. As
shown in Ref. [30], it appears to be advantageous to first sub-
tract the double-soft singularities from the full amplitude and
then to remove the remaining singularities iteratively. Once
this is done, a transparent and physically appealing subtrac-
tion scheme is obtained. Moreover, this scheme appears to
be very efficient, at least in the color-singlet production case
that we have studied up to now [30,31].

Given the improved efficiency and inherent simplicity of
the subtraction scheme developed in Ref. [30], it is natural to
investigate whether one could obtain analytic results for the
integrated counterterms. The successful completion of this
task would lead to the formulation of the first subtraction
scheme applicable at the LHC that is both fully local and
under complete analytic control. Although it is hard to say
to what extent these nice features are actually important in
practice, we do hope that they will lead to a very efficient
subtraction framework for completely generic processes.

It is easy to identify the major obstacles to obtaining
fully analytic subtraction schemes. Indeed, any NNLO sub-
traction scheme involves three “double-unresolved” contri-
butions whose integration is highly non-trivial. They are
(1) the double-soft emission of two partons with energies
E f1 ∼ E f2 � √

s, where
√
s is the center-of-mass energy of

the partonic process; (2) the emission of two partons collinear
to one of the incoming legs and (3) the emission of two par-
tons collinear to one of the hard final-state legs. We note
that as far as the numerical implementation of NNLO QCD
corrections to a generic process is concerned, contributions

(1) and (2) are the most problematic. Indeed, for any split-
ting process, the integrated contribution (3) is a number of
the form a f /ε + b f , so that it can be calculated numerically
once and for all. On the contrary, the integrated contributions
(1) and (2) are functions of the relative angles between hard
partons and the momentum fraction carried into the hard pro-
cess, respectively.1 Close to the end-points, these functions
may develop integrable singularities, making their numerical
evaluation tedious.

In Ref. [32], some of us presented analytic results for the
integrated double-soft subtraction term. In this paper, we will
argue that a minor modification of the subtraction procedure
described in Ref. [30] greatly simplifies the analytic integra-
tion of the triple-collinear subtraction terms. In fact, such an
integration of all relevant triple-collinear subtraction terms
has recently been performed in Ref. [33]. Thanks to these
results, it is now possible to present a subtraction framework
for the production of color-singlet particles at hadron collid-
ers that is both fully analytic and fully local.

Although the production of color-singlets at NNLO QCD
has been studied many times, including the development of
public computer codes, even the simplest versions of these
processes, such as pp → Z and pp → H , are quite useful
to us because NNLO QCD corrections to these processes are
known analytically [34,35]. This feature allows us to check
all the non-trivial ingredients of our computational frame-
work to a very high accuracy. We believe such a validation is
important in view of the expected application of the subtrac-
tion method to more complex cases in the future. Of course,
it is also interesting to explore the performance of our sub-
traction scheme by considering a well-known process, where
many benchmarks exist already.

Nevertheless, it should be clear that the goal of this paper
is to present analytic formulas relevant for the production of
generic color-singlet final states at a hadron collider, writ-
ten in a way that will allow us to move beyond color-singlet
production. For this reason we decided to avoid using sim-
plifications that are particular to the cases of Drell–Yan or
Higgs production.

The rest of this paper is organized as follows. In Sect. 2
we summarize the main features of the nested soft-collinear
subtraction scheme of Ref. [30] and explain how we modified
it to allow for the analytic integration of the triple-collinear
subtraction terms. In Sect. 3 we provide formulas for the qq̄-
initiated production of the color-singlet final state. In Sect. 4
we provide formulas for gluon annihilation into a color-
singlet final state. We discuss the validation of our results

1 Although the computation of NNLO QCD corrections to a generic
process requires all three contributions, for sufficiently simple processes
only a subset is needed. For example, for color-singlet production only
contributions (1) and (2) are needed, while for color singlet decay only
(1) and (3) are required.
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in Sect. 5 and conclude in Sect. 6. A large number of useful
formulas are collected in the appendices, as well as in an
ancillary file attached to this paper.

2 Overview of the nested subtraction scheme

In this section we briefly review the method for computing
NNLO QCD corrections described in Ref. [30] and explain
how to modify it to simplify the analytic integration of the
triple-collinear subtraction terms. We consider the produc-
tion of a color-singlet state V in hadronic collisions. We write
the (fiducial) cross section as

σ f =
∑

a,b∈[−n f ,n f ]

∫
dx1dx2 fa(x1, μF )

× fb(x2, μF )dσ̂ fa fb (x1, x2, μR, μF ;O), (2.1)

where n f is the number of light flavors, dσ̂ fa fb is the partonic
cross section in the fa fb channel, and we employ the follow-
ing notation for parton distributions functions: f0 = g and
f±1,±2,±3,±4,±5 = {d/d̄, u/ū, s/s̄, c/c̄, b/b̄}. Finally, O is
a suitable infrared-safe observable that defines the fiducial
volume.

We consider the perturbative expansion of the partonic
cross section and write

dσ̂ fa fb (x1, x2, μR, μF ,O)

= dσ̂
LO
fa fb + dσ̂

NLO
fa fb + dσ̂

NNLO
fa fb + O

(
α
q+3
s

)
. (2.2)

Here q = 0 for quark-initiated processes and q = 2 for
gluon-initiated processes, and we have suppressed the argu-
ments of the functions on the right-hand side. We focus on
the NNLO QCD contribution dσ̂

NNLO
fa fb . It can be written as

dσ̂
NNLO
fa fb = dσ̂

RR
fa fb + dσ̂

RV
fa fb + dσ̂

VV
fa fb + dσ̂

ren
fa fb , (2.3)

where

dσ̂
RR
fa fb = N

2s

∫
dLips(V )[d f4][d f5](2π)d

× δd (p1 + p2 − pV − p4 − p5)

× |Mtree|2(p1, p2, pV , p4, p5) O(pV , p4, p5),

dσ̂
RV
fa fb = N

2s

∫
dLips(V )[d f4](2π)dδd (p1 + p2 − pV − p4)

× 2Re
[
MtreeM1−loop,∗](p1, p2, pV , p4) O(pV , p4),

dσ̂
VV
fa fb = N

2s

∫
dLips(V )(2π)dδd (p1 + p2 − pV )

× [
2Re

[
MtreeM2−loop,∗]

+ |M1−loop|2](p1, p2, pV ) O(pV ), (2.4)

and dσ̂
ren contains all contributions that originate from the

renormalization of input parameters, such as the strong
coupling constant αs and the parton distribution functions
(PDFs). In Eq. (2.4), N is a normalization factor that takes
into account color and spin averages, s is the partonic center-
of-mass energy squared, dLips(V ) is the phase space for the
final state V , and

[d fi ] = dd−1 pi
(2π)d−12Ei

θ(Emax − Ei ). (2.5)

Here d is the dimensionality of space-time that we use as the
regularization parameter, and Emax is an arbitrary2 energy
scale that is introduced for future convenience.

Each term in Eq. (2.3) is individually divergent. These
divergences can either appear explicitly as poles in ε =
(4−d)/2 or be hidden inside phase-space integrals. The goal
of any subtraction scheme is to extract these divergences and
to arrive at the following representation of the NNLO con-
tribution to the cross section

dσ̂
NNLO
fa fb = dσ̂

NNLO
V+2, fa fb + dσ̂

NNLO
V+1, fa fb + dσ̂

NNLO
V, fa fb , (2.6)

where dσ̂
NNLO
V+i are finite quantities that involve contributions

with V and up to i partons in the final state. We will refer to
dσ̂

NNLO
V+i , with i = 2, 1, 0, as terms with NNLO, NLO and

LO kinematics, respectively.
In Ref. [30], we proposed a framework to achieve the

separation of the NNLO contributions to the cross section as
in Eq. (2.6). It is based on three ideas:

• a multiparticle phase space can be decomposed into a sum
of elements (partitions) such that for each partition only
a well-definite subset of particles gives rise to collinear
singularities upon integration over the phase space of the
final state partons. An early discussion of this idea can be
found in papers on NLO QCD subtractions [36,37]; in the
context of NNLO QCD calculations, it was reincarnated
in Ref. [10,11];

• for each of these partitions there exists a phase space
parametrization that allows the extraction of both soft and
collinear singularities in a fully factorized form [10,11];

2 The only requirement on Emax is that it should be at least as large as the
maximum energy allowed by the momentum-conserving δ-functions in
Eq. (2.4). For simplicity, throughout this paper we use Emax = √

s/2,
where

√
s is the partonic center-of-mass energy.
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• thanks to gauge invariance and color coherence [38],
soft and collinear singularities are not entangled in QCD
amplitudes, in contrast to individual diagrams [30].

We argued in Ref. [30] that these three points allow us to fol-
low the so-called FKS subtraction scheme [36,37], developed
for NLO QCD computations, and to perform the required
soft and collinear subtractions in a nested way. As a conse-
quence, the computational framework becomes very trans-
parent physically and quite efficient numerically.

We will illustrate the main ideas of Ref. [30] by consid-
ering the double-real emission corrections to the Drell–Yan
process qq̄ → V as an example, focusing on the most com-
plicated q(p1)q̄(p2) → V + g(p4)g(p5) channel. All other
partonic channels can be dealt with along the same lines
although the details can be somewhat different.3 We write
the corresponding cross section as

2s · dσ̂
RR
qq̄ =

∫
[d f4][d f5]θ(E4 − E5)FLM,qq̄(1, 2, 4, 5)

≡ 〈FLM,qq̄(1, 2, 4, 5)〉, (2.7)

where

FLM,qq̄(1, 2, 4, 5)

= N
∫

dLips(V )(2π)dδd(p1 + p2 − pV − p4 − p5)

×|Mtree
qq̄→V+gg|2(p1, p2, pV , p4, p5) O(pV , p4, p5),

(2.8)

see Eq. (2.4). All energies in these formulas are to be under-
stood in the center-of-mass frame of the colliding partons.
Note that we have introduced the energy ordering E4 > E5 in
Eq. (2.7). Since the matrix element is symmetric with respect
to the permutations of the gluons g4 and g5, we can remove
the 1/2! symmetry factor from N .

Our goal is to extract singularities from Eq. (2.7). These
singularities have different origins. There exist

• a double-soft singularity that occurs when the energies
of the two gluons vanish in such a way that their ratio
E5/E4 is fixed;

• a single-soft singularity that arises when E5 vanishes at
fixed E4. Note that due to the energy ordering in Eq. (2.7)
the opposite limit, E4 → 0 at fixed E5, cannot occur;

• many different collinear singularities that appear when
one or both gluons are emitted along the direction of the
incoming quark or the incoming anti-quark, or when the
momenta of the two gluons become parallel to each other.

We need to extract all these singularities in an unambiguous
way. We explain how to do this in the next two subsections.

3 Results for all the relevant channels are presented in the next sections.

2.1 Extraction of soft singularities

Before we begin extracting the singularities, we introduce
the kinematic variables that we will use throughout the rest
of this paper. We define the invariants

si j = (pi + p j )
2 = 2pi · p j = 2Ei E j (1 − cos θi j )

= 2Ei E jρi j = 4Ei E jηi j , (2.9)

where ρi j = 2ηi j = 1 − cos θi j , and θi j is the relative angle
between partons i and j . We stress that energies and angles
are defined in the center-of-mass frame. From this definition
it is clear that 0 ≤ ηi j ≤ 1. It is also clear that s12 = s, the
partonic center-of-mass energy that we have already intro-
duced.

As we explained in Ref. [30], it is convenient to begin by
regularizing the double-soft singularity E4 ∼ E5 ∼ λ

√
s →

0. We write

〈FLM,qq̄(1, 2, 4, 5)〉 = 〈SSFLM,qq̄(1, 2, 4, 5)〉
+〈(I − SS)FLM,qq̄(1, 2, 4, 5)〉,

(2.10)

where SS is an operator that extracts the double-soft λ → 0
singular limit from FLM,qq̄ . To make this statement precise,
when the operator SS acts on FLM , it removes the four-
momenta of the gluons from both the energy-momentum
conserving δ-function and the observable, and extracts the
leading singular behavior from the matrix element squared.
The result is

SSFLM,qq̄(1, 2, 4, 5) = g4
s,b Eik(1, 2, 4, 5) FLM,qq̄(1, 2),

(2.11)

where gs,b is the bare strong coupling and Eik(1, 2, 4, 5) is
the square of the eikonal factor derived e.g. in Ref. [39].
It is also given in Ref. [30] using notation that is identical
to what we use in this paper. Also, FLM,qq̄(1, 2) is defined
analogously to Eq. (2.8); it reads

〈FLM,qq̄(1, 2)〉 = N
∫

dLips(V )(2π)dδd(p1 + p2 − pV )

×|Mtree
qq̄→V |2(p1, p2, pV )O(pV ). (2.12)

This tree-level matrix element squared integrated over the
Born phase space obviously provides the leading-order result
for the observable O.

We deal with the two terms on the right-hand side of
Eq. (2.10) in very different ways. In the first term, thanks
to Eq. (2.11), the hard matrix element decouples and only
the eikonal factor needs to be integrated over the two-gluon
phase space. In our original paper [30] this integral was cal-
culated numerically but, since then, an analytic computation
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of this integral has become available [32]. The result reads4

〈SSFLM,qq̄(1, 2, 4, 5)〉
a2
s,be

−2εL〈FLM,qq̄(1, 2)〉
= C2

F DCF
S + CFCAD

CA
S + CFTRn f D

n f
S , (2.13)

where we have defined

as,b = g2
s,b

8π2

(4π)ε

�(1 − ε)
, (2.14)

and

L = log

(
s

μ2

)
. (2.15)

In Eq. (2.13), the abelian part is known in a closed form

DCF
S = 2

ε4

�4(1 − ε)

�2(1 − 2ε)

= 2

ε4 − 2π2

3ε2 − 8ζ3

ε
− 2π4

45
+ O(ε), (2.16)

and the other two contributions are computed as an expansion
in ε

DCA
S = 1

2ε4 + 11

12ε3 + 1

ε2

(
−16

9
− π2

4
+ 11

3
ln 2

)

+1

ε

(
217

54
− 11π2

36
− 137

18
ln 2

−11

3
ln2 2 − 21

4
ζ3

)
− 649

81
+ 125π2

216

−11π4

80
+ 434

27
ln 2 − 11

6
π2 ln 2

+137

18
ln2 2 + 22

9
ln3 2 − 275

12
ζ3,

D
n f
S = − 1

3ε3 + 1

ε

(
13

18
− 4

3
ln 2

)

+1

ε

(
−125

54
+ π2

9
+ 35

9
ln 2 + 4

3
ln2 2

)

+601

162
− 23π2

108
− 223

27
ln 2 + 2π2

3
ln 2

−35

9
ln2 2 − 8

9
ln3 2 + 25

3
ζ3. (2.17)

The equivalent results for gluon-initiated color singlet pro-
duction can be obtained by simply replacing CF → CA in
Eq. (2.13).

We now turn to the second term in Eq. (2.10) where the
double-soft divergences are already regularized but both the
E5 → 0 divergence at fixed E4 and collinear divergences are
still present. To extract them, we repeat the above procedure

4 We note that the result in Eq. (2.13) also includes the n f -part which
originates from the radiation of a qq̄ pair in the final state. We include
it here for completeness.

and subtract the E5 → 0 singularities at fixed E4. We call
the corresponding operator S5 and write

〈(I − SS)FLM,qq̄(1, 2, 4, 5)〉
= 〈(I − SS)(I − S5)FLM,qq̄(1, 2, 4, 5)〉

+〈S5(I − SS)FLM,qq̄(1, 2, 4, 5)〉. (2.18)

When the operator S5 acts on FLM,qq̄(1, 2, 4, 5), it removes
the gluon g5 from the phase space and the observable, and
extracts the leading singularity

S5FLM,qq̄(1, 2, 4, 5) = g2
s,b

E2
5

×
[
(2CF − CA)

ρ12

ρ15ρ25
+ CA

(
ρ14

ρ15ρ45
+ ρ24

ρ25ρ45

)]

×FLM,qq̄(1, 2, 4). (2.19)

We remind the reader that ρi j is related to the angle θi j
between partons i and j by ρi j = 1 − cos θi j . We have
also introduced

〈FLM,qq̄(1, 2, 4)〉
= N

∫
dLips(V )[d f4](2π)dδd(p1 + p2 − pV − p4) ×

|Mtree
qq̄→V+g|2(p1, p2, pV , p4) O(pV , p4), (2.20)

see Eq. (2.8). From here on, we will omit the subscript on
M indicating the partonic process. It is clear that the second
term in Eq. (2.18) has a simplified (i.e. independent of g5)
matrix element. The integration over the energy and angles of
the gluon g5 can therefore be performed, and the remaining
infrared divergences in the matrix element for the process
qq̄ → V + g4 can be dealt with in a way that is similar to
what is usually done in next-to-leading-order computations.
On the other hand, the first term in Eq. (2.18) is now free of
soft divergences but still contains collinear singularities. We
explain how to extract them in the next subsection.

2.2 Extraction of collinear singularities

In the previous subsection we extracted soft singularities
from the double-real emission contribution by writing it as
〈
FLM,qq̄(1, 2, 4, 5)

〉 → 〈
(I − SS)(I − S5)FLM,qq̄(1, 2, 4, 5)

〉

+simpler terms with reduced kinematics. (2.21)

The procedure continues with the extraction of collinear sin-
gularities. This requires an additional step, similar to the
energy ordering in Eq. (2.7). Indeed, we need to split the
phase space into regions such that in each region only a lim-
ited subset of momentum configurations can lead to collinear
singularities.

Doing that involves the first two points on the itemized list
that we presented after Eq. (2.6). The first point is the phase
space partitioning; our goal is to split the phase space so that
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collinear singularities are localized in a clean and physical
way. For example, we may want to focus on the collinear
emissions off the incoming quark or the collinear emissions
off the incoming anti-quark, or on the collinear emission of
the gluon g4 off the quark and the gluon g5 off the anti-quark
etc.

We can do that by introducing a partition of unity and
using it to split the phase space. We write

1 = ω41,51 + ω42,52 + ω41,52 + ω42,51. (2.22)

For the double-collinear partitions {4i, 5 j}, i �= j , the
damping factor ω4i,5 j is engineered in such a way that
collinear singularities in ω4i,5 j FLM,qq̄(1, 2, 4, 5) arise only
if the momentum p4 is parallel to pi and/or the momentum p5

is parallel to p j . Conversely, in the triple-collinear partitions
{4i, 5i}, i = 1, 2, the damping factor w4i,5i is designed in
such a way that only the p4||pi , p5||pi and p4||p5 momentum
configurations lead to a singularity. Apart from these condi-
tions, there is significant freedom in choosing the partition
functions; we will present a possible choice in the forthcom-
ing sections.5

Contributions from the double-collinear partitions
ω41,52, ω42,51 can be computed right away since the singular
limits are easy to establish and no overlapping singularities
are present. For example, in the case of ω41,52, it is sufficient
to use the angle between the three-momenta p4 and p1 and
the angle between the three-momenta p5 and p2 as indepen-
dent variables to describe the collinear singularities in this
partition.

The situation is more complex for the triple-collinear par-
titions, where overlapping singularities are present. The com-
plexity stems from the fact that different hierarchies between
ρ4i , ρ5i and ρ45 lead to inequivalent limits in this case. To
identify these limits and extract them in a unique way, we
further partition the phase space into four sectors. Taking as
an example the w41,51 partition, we introduce four sectors as
follows

1 = θ
(
ρ51 <

ρ41

2

)
+ θ

(ρ41

2
< ρ51 < ρ41

)

+θ
(
ρ41 <

ρ51

2

)
+ θ

(ρ51

2
< ρ41 < ρ51

)

= θ(a) + θ(b) + θ(c) + θ(d ). (2.23)

The four sectors in the partition w42,52 are constructed analo-
gously. It is clear that Eq. (2.23) acts in such a way that in each
of the four sectors only a small number of singular collinear
limits occurs. We then expect that by choosing an appropriate

5 We note that if one is only interested in color-singlet production,
partitions can easily be avoided. Nevertheless, we stress that here we
use this class of processes to present results that can be used as building
blocks for NNLO calculations for generic processes. In the general case,
partitions are crucial for the formalism presented here.

parametrization for each of the four sectors, these singulari-
ties can be isolated and extracted. A convenient phase space
parametrization for each of the four sectors can be found in
Refs. [10,11].

In each of the four sectors shown in Eq. (2.23), the nested
subtraction of these collinear limits can then be performed
in a similar manner to that discussed in connection with the
soft limits. We sketch how to do this by considering sector
(a) of the w41,51 partition. Because of the angular ordering
in Eq. (2.23), a double-collinear singularity in this sector can
only occur if p5||p1. Similar to the soft case, we isolate it by
writing
〈
θ(a)w41,51(I − S5)(I − SS)FLM,qq̄(1, 2, 4, 5)

〉

= +
〈
θ(a)C51w

41,51(I − S5)(I − SS)FLM,qq̄ (1, 2, 4, 5)
〉

+
〈
θ(a)(I − C51)w

41,51(I − S5)(I − SS)FLM,qq̄(1, 2, 4, 5)
〉
,

(2.24)

where C51 is an operator that extracts the most singular con-
tribution in the collinear 5||1 limit from the quantity on
the left-hand side of Eq. (2.24) and enforces this collinear
limit on the damping factor w41,51, the reduced matrix ele-
ment, the momentum-conserving δ-function and the observ-
able O. This amounts to the replacements ρ51 → 0 and
p1 → p′

1 = p1(E1 − E5)/E1 in these quantities. The result
reads

C51w
41,51FLM,qq̄(1, 2, 4, 5)

= −w̃
41,51
5||1

g2
s,b

p1 · p5
Pqq

(
E1

E1 − E5

)
FLM,qq̄(1

′, 2, 4),

(2.25)

where Pqq is the splitting function

Pqq(z) = CF

[
1 + z2

1 − z
− ε(1 − z)

]
, (2.26)

and

w̃
4i,5 j
k||l = lim

ρkl→0
w4i,5 j . (2.27)

The “1′ ” notation in FLM,qq̄ refers to the p1 → p′
1 substi-

tution that we just described. Compared to the soft limits,
there is an additional subtlety. Indeed, in our construction
the angular part of the phase space is non-trivial. To unam-
biguously define the C51 operator, we must specify its action
on the gluons’ phase space [d f4][d f5]. A convenient choice,
adopted already in Ref. [30], is to let C51 act on it, i.e. to take
the ρ51 → 0 limit of the measure [d f4][d f5].

The right hand side of Eq. (2.24) includes a term with
reduced kinematics, which can be dealt with using meth-
ods similar to the ones used in NLO computations, and
another term that only contains a triple-collinear singularity.
The latter occurs whenever 4||5||1, without further hierarchy
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between ρ51, ρ41 and ρ45. To regulate this last singularity,
we introduce a triple-collinear operator CC1 and write

〈
θ(a)(I − C51)w

41,51(I − S5)(I − SS)FLM,qq̄(1, 2, 4, 5)
〉

= +
〈
θ(a)CC1(I − C51)(I − S5)(I − SS)FLM,qq̄(1, 2, 4, 5)

〉

+
〈
θ(a)(I − CC1)(I − C51)w

41,51(I − S5)(I − SS)

× FLM,qq̄(1, 2, 4, 5)
〉
, (2.28)

where we used CC1w
41,51 = limρ51→0,ρ41→0,ρ45→0 = 1,

which immediately follows from the definition of w41,51.
Similar to the single-collinear case, the operator CC1 extracts
the most singular behavior from the matrix element in the
limit ρ41 ∼ ρ51 ∼ ρ45 → 0 and sets p1 → p′

1 = p1(E1 −
E4 − E5)/E1 in the reduced matrix element, momentum-
conserving δ-function and observable O. We obtain

CC1FLM,qq̄(1, 2, 4, 5)

= g4
s,b

(
2

s145

)2

Pggq(s45, −s14, −s15; z4, z5)FLM,qq̄(1
′, 2),

(2.29)

where s145 = s45 − s14 − s15 and Pggq is a triple-collinear
splitting function [39] that depends on the invariants si j and
the momentum fractions zi = Ei/(E4 + E5 − E1).

Note that in the triple-collinear limit the only effect of
the gluon emission on the reduced matrix element and the
kinematics of the initial state is the boost p1 → p′

1 = (E1 −
E4−E5)/E1 p1. Defining z = (E1−E4−E5)/E1 = −1/z1,
we can schematically write Eq. (2.28) as
〈
θ(a)(I − C51)w

41,51(I − S5)(I − SS)FLM,qq̄(1, 2, 4, 5)
〉

=
∫

dz 〈P(z)〉 〈FLM,qq̄(z, 2)
〉

+
〈
θ(a)(I − CC1)(I − C51)w

41,51(I − S5)(I − SS)

×FLM,qq̄(1, 2, 4, 5)
〉
, (2.30)

where 〈P(z)〉 is the integral of the (soft-regulated) split-
ting function over the phase space of the unresolved gluons,
with the constraints E4 + E5 = (1 − z)E1 and E4 < E5. We
note that the second term in Eq. (2.30) is free of all singulari-
ties, and can be integrated in four dimensions using standard
Monte-Carlo techniques.

Although this discussion is valid for any triple-collinear
operator CC1 that extracts the corresponding triple-collinear
singularity from the matrix element squared, we must spec-
ify the action of CC1 on [d f4][d f5] and on the Pggq function
itself to unambiguously define the subtraction framework.
In Ref. [30], we let CC1 act on both [d f4][d f5] and on the
splitting function, i.e. we evaluated all the si j invariants in
Eq. (2.29) and the angular factors in the [d f4][d f5] phase
space in the triple-collinear limit. While this is a valid option,

it is not the only one. In fact, this choice makes the analytic
integration over the angles of the unresolved partons rather
complicated, since it constrains the internal rotational sym-
metry of the unresolved phase space and does not allow for
simple reparametrizations.

To overcome these issues, we now define the operator
CC1 in such a way that it does not act on either [d f4][d f5]
or on Pggq . Rather, CC1 acts on the momentum-conserving
δ-function and on the observable, and extracts the leading
triple-collinear singularity from the matrix element accord-
ing to Eq. (2.29), but it leaves the angular factors in the
[d f4][d f5] phase space and all the si j invariants in Eq. (2.29)
untouched. This modification of the subtraction scheme leads
to a simpler integration of the triple-collinear splitting func-
tion over the unresolved phase space. Indeed, such a cal-
culation has recently been performed for all relevant triple-
collinear splitting functions in Ref. [33].

The results of Ref. [33], combined with the integrated
double-soft subtraction terms presented earlier in Ref. [32],
allow us to promote the fully local subtraction framework
of Ref. [30] to a fully analytic scheme. This implies that we
can now check the cancellation of all infrared poles analyti-
cally and achieve faster and more stable physical predictions
by using analytic formulas for all the integrated subtraction
terms.

We will present the analytic formulas required for the
computation of NNLO QCD corrections to the production of
color-singlet final states in the remaining parts of this paper.
However, before we do that, a general comment is in order.
Indeed, as should be clear from the discussion in this section,
our framework is highly modular; we believe that this mod-
ularity ensures that its generalization beyond color-singlet
production will proceed seamlessly. Indeed, the only differ-
ences between the color-singlet production and the general
case with colored partons in the final state are:

1. compared to color-singlet production, a generic process
has a more complicated color structure and requires
double-soft integrals that are functions of relative angles
of pairs of hard emitters, rather than pure numbers as in
Eq. (2.17). The results relevant for this case have been
presented in Ref. [32];

2. a generic process also involves triple-collinear final state
splitting. While the analytic integration of the relevant
splitting functions over the unresolved triple-collinear
phase space has not been performed for all possible split-
tings, in Ref. [33] it was shown that techniques used
to deal with initial state splittings can be successfully
applied to final splittings as well.

It follows that the most general ingredients required for
computing NNLO QCD corrections to generic partonic pro-
cesses at the LHC can be obtained. From that perspective,
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the analytic formulas presented in this paper provide impor-
tant building blocks for such a generic computation and give
an excellent starting point for its generalization that will be
addressed in the future. For now, we will proceed with pre-
senting analytic formulas for all partonic channels that may
contribute to the production of color-singlet final states at a
hadron collider.

3 Quark-initiated color-singlet production

In this section, we consider the production of a color-singlet
final state

pp → V + X, (3.1)

to NNLO QCD accuracy for reactions that are quark-initiated
at leading order. We refer to these processes as “Drell–Yan
processes”, however, we emphasize that the results presented
in this section are applicable to any color-singlet production
process which is quark-initiated at LO. Typical examples
include pp → Z ,W+, γ ∗, Z Z ,W+W−,WZ ,WH, ZH
and so on.

Starting from Eq. (2.1), we find it convenient to group the
different partonic channels in three categories

dσDY
f =

∫
dx1dx2

∑

a,b∈[−n f ,n f ]
a,b �=0

fa(x1) fb(x2)dσ̂DY
fa fb (x1, x2)

+
∫

dx1dx2

∑

a∈[−n f ,n f ]
a �=0

[
fa(x1)g(x2)dσ̂DY

fa g(x1, x2)

+g(x1) fa(x2)dσ̂DY
g fa (x1, x2)

]

+
∫

dx1dx2 g(x1)g(x2)dσ̂DY
gg (x1, x2). (3.2)

We omit the dependence of dσDY
f on the renormaliza-

tion and factorization scales μR, μF and the observable O
to shorten the notation. The first term in Eq. (3.2), dσ̂DY

fa fb
,

receives contributions from quark channels and is present at
LO. The terms on the second line, dσ̂DY

fa g
and dσ̂DY

g fa
, start

contributing at NLO, and the last term dσ̂DY
gg appears for the

first time at NNLO. In what follows, we will consider the
LO, NLO and NNLO contributions in turn. To simplify the
notation, we will omit the superscript DY for the rest of this
section.

For the NNLO contribution, we will consider the differ-
ent channels defined in Eq. (3.2) separately. We also find it
convenient to split each of these channels further, according

to the highest final state multiplicity that they involve, (cf.
Eq. (2.6))

dσ̂
NNLO
fa fb = dσ̂

NNLO
V+2, fa fb + dσ̂

NNLO
V+1, fa fb + dσ̂

NNLO
V, fa fb . (3.3)

Finally, we separate each dσ̂
NNLO
V+i, fa fb in the above equa-

tion into terms involving only tree-level matrix elements and
terms involving loop corrections, by writing6

dσ̂
NNLO
V+2, fa fb = dσ̂

NNLO
1245, fa fb ,

dσ̂
NNLO
V+1, fa fb = dσ̂

NNLO
124, fa fb + dσ̂

NNLO
virt124, fa fb ,

dσ̂
NNLO
V, fa fb = dσ̂

NNLO
12, fa fb + dσ̂

NNLO
virt12, fa fb .

(3.4)

The term dσ̂
NNLO
1245, fa fb receives contributions from processes

with NNLO-like kinematics (i.e. with two additional resolved
partons in the final state), and corresponds to the fully sub-
tracted real-real contribution. The remaining terms arise from
integrated subtraction terms, αs and parton distribution func-
tion renormalizations, and real-virtual and purely virtual cor-
rections. The terms dσ̂

NNLO
124, fa fb and dσ̂

NNLO
12, fa fb only involve

tree-level matrix elements squared, while dσ̂
NNLO
virt124, fa fb and

dσ̂
NNLO
virt12, fa fb also involve finite remainders of virtual ampli-

tudes. It is important to emphasize that all of the different
terms in Eq. (3.4) are separately finite, so that we can discuss
them separately. In what follows, we will present results for
each of these terms.

3.1 LO and NLO

We start by discussing the quark channel dσ̂ fa fb , with a, b �=
0, which is the only channel contributing at leading order. The
LO cross section reads

2s · dσ̂LO
fa fb = 〈

FLM, fa fb (1, 2)
〉
. (3.5)

We turn now to the NLO QCD corrections to the quark chan-
nel, following the discussion in Section 3 of Ref. [30] closely.
The real emission corrections qq̄ → V + g have singulari-
ties associated with the radiated gluon becoming soft and/or
collinear to the initial state quark or antiquark. We regulate
these by writing
〈
FLM, fa fb (1, 2, 4)

〉

=
〈
ÔNLOFLM, fa fb (1, 2, 4)

〉
+ 〈

S4FLM, fa fb (1, 2, 4)
〉

+ 〈
(C41 + C42)(I − S4)FLM, fa fb (1, 2, 4)

〉
, (3.6)

where the soft operator S4 and the collinear operatorsC41 and
C42 behave as discussed in the previous section. The ÔNLO

operator reads

ÔNLO = (I − C41 − C42)(I − S4), (3.7)

6 We note that certain partonic channels only contain a subset of these
terms.
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and this makes the first term of Eq. (3.6) finite. The remain-
ing terms in Eq. (3.6) are subtraction counterterms whose
integration over the unresolved phase space will yield the
singularities associated with the real emission. For color sin-
glet production, the soft and soft-collinear limits cancel each
other

(I − C41 − C42)S4FLM, fa fb (1, 2, 4) = 0. (3.8)

Thus we only need to consider the pure collinear limits
〈
(C41 + C42)FLM, fa fb (1, 2, 4)

〉
. (3.9)

We focus on the C41 operator, whose effect on FLM, fa fb
(1, 2, 4) is

C41FLM, fa fb (1, 2, 4)

= g2
s,b

E2
4ρ41

(1 − z)Pqq(z)FLM, fa fb (z · 1, 2), (3.10)

where we have introduced the rescaling of the energies
z = 1 − E4/E1 in this limit, and we recall

Pqq(z) = CF

[
1 + z2

1 − z
− ε(1 − z)

]
. (3.11)

Integrating over the angular phase space of g4 and rewriting
the integral over the energy E4 as an integral over z gives
〈
C41FLM, fa fb (1, 2, 4)

〉

= −as
ε

�2(1 − ε)

�(1 − 2ε)

(
μ2

s

)ε

×
1∫

0

dz

(1 − z)2ε
Pqq(z)

FLM, fa fb (z · 1, 2)

z
, (3.12)

where as = g2
s,b/(8π2) · (4π)ε/�(1 − ε). The integration

over z still leads to divergences corresponding to the soft
limit z → 1. In order to make a connection with the collinear
renormalization of the PDFs, we rewrite this in terms of plus-
distributions [30] and perform the ε-expansion. It is imme-
diate to obtain
〈
C41FLM, fa fb (1, 2, 4)

〉

= −as
ε

(
μ2

s

)ε
�2(1 − ε)

�(1 − 2ε)

×
⎡

⎣−
(
CF

ε
+ 3CF

2

) 〈
FLM, fa fb (1, 2)

〉

+
1∫

0

dzPqq(z)

〈
FLM, fa fb (z · 1, 2)

z

〉⎤

⎦ , (3.13)

where we have definedPqq(z) = P̂(0)
qq (z)+εP ′

qq(z)+O(ε2),
with

P̂(0)
qq (z) = CF

[
2

(1 − z)+
− (1 + z) + 3

2
δ(1 − z)

]
, (3.14)

and

P ′
qq(z) = −CF

[
2(1 + z)ln(1 − z) − (1 − z)

− 4

[
ln(1 − z)

1 − z

]

+

]
. (3.15)

In the above, P̂(0)
qq (z) is the Altarelli-Parisi splitting function.

We find it convenient to separate the δ-function piece and
write

P̂(0)
qq (z) = P̂(0)

qq,R(z) + P̂(0)
qq,δ δ(1 − z), (3.16)

with P̂(0)
qq,δ = γq = 3CF/2. A summary of the splitting func-

tions required at both NLO and NNLO, for all the channels
considered in this paper, is given in Appendix C.

After these manipulations, the cancellation of poles
between the real emission correction, the virtual correction,
and the PDF (and αs) renormalization can be performed
immediately, and the ε → 0 limit can then be taken. The
NLO QCD corrections in the quark channel then read

2s · dσ̂ NLO
fa fb =

〈
Ffin

LV, fa fb (1, 2) + αs(μ)

2π

[
2π2

3
CF

− 2γq ln

(
μ2

s

)]
FLM, fa fb (1, 2)

〉

+ αs(μ)

2π

1∫

0

dz

[
P ′
qq(z) − P̂(0)

qq,R(z) ln

(
μ2

s

)]

×
〈
FLM, fa fb (z · 1, 2) + FLM, fa fb (1, z · 2)

z

〉

+
〈
ÔNLOFLM, fa fb (1, 2, 4)

〉
, (3.17)

with a, b �= 0. In Eq. (3.17),
〈
Ffin

LV, fa fb
(1, 2)

〉
refers to the

finite remainder of the (UV-renormalized) one-loop virtual
correction. Its definition is given in Appendix A.

The qg and gq channels start contributing at NLO. They
read

2s · dσ̂NLO
fa g = αs(μ)

2π

1∫

0

dz
∑

x

〈
FLM, fa fx (1, z · 2)

z

〉

×
[
P ′
qg(z) − P̂(0)

qg,R(z) ln

(
μ2

s

)]

+
〈
ÔNLOFLM, fa g(1, 2, 4)

〉
,

(3.18)

and analogously
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2s · dσ̂NLO
g fa = αs(μ)

2π

×
1∫

0

dz
∑

x

[
P ′
qg(z) − P̂(0)

qg,R(z) ln

(
μ2

s

)]

×
〈
FLM, fx fa (z · 1, 2)

z

〉
+
〈
ÔNLOFLM,g fa (1, 2, 4)

〉
, (3.19)

with a �= 0. The splitting functions P̂(0)
qg,R and P ′

qg are con-

structed along the same lines as P̂(0)
qq,R and P ′

qq discussed
above, and their definitions are given in Appendix C. Note
that in these channels only a subset of soft/collinear singu-
larities is present in FLM(1, 2, 4); for example

ÔNLOFLM,qg(1, 2, 4)

= (I − C41 − C42)(I − S4)FLM,qg(1, 2, 4)

= (I − C42)FLM,qg(1, 2, 4). (3.20)

3.2 NNLO: quark channels

In this section we consider the NNLO corrections to dσ̂ fa fb ,
with a, b �= 0. This includes the partonic processes qi q̄ j →
V + gg, qi q̄ j → V + qkq̄l and qiq j → V + qkql . Of
these partonic processes, the qi q̄ j → V + gg has the most
complicated singularity structure; it was discussed in detail in
Ref. [30] and reviewed in Sect. 2. Recall that we introduced
an energy ordering E4 > E5 (cf. Eq. (2.7)), which is natural
since the amplitude is symmetric under the exchange of the
two final state gluons.

The singularity structure is much simpler for final state
quarks, where one could use only two sectors to separate the
collinear singularities. Nevertheless, we find it convenient to
treat the gluon and quark final states on an equal footing. We
therefore need to symmetrize the amplitudes involving the
final state quarks explicitly, since they are not symmetric in
general; we do this by writing
∫

[d f4][d f5]FLM,qq̄(1, 2, 4, 5)

=
∫

[d f4][d f5]FLM,qq̄(1, 2, 4, 5)

×[θ(E4 > E5) + θ(E4 < E5)
]

=
∫

[d f4][d f5]θ(E4 > E5)
[
FLM,qq̄(1, 2, 4, 5)

+FLM,qq̄(1, 2, 5, 4)
]]

≡ 〈FLM(1, 2, 4, 5)〉 . (3.21)

If one wishes to consider the final state gluons and quarks
separately, one could do away with the energy ordering and
the symmetrization of the quark amplitudes. We emphasize
that in this case, the formulas in the forthcoming sections
would require modifications.

As mentioned in Sect. 2, an important part of the subtrac-
tion scheme is the separation of the phase space into parti-
tions such that in each partition, only a limited number of
kinematic configurations leads to collinear divergences, cf.
Eq. (2.22). Throughout this paper, we choose the partition
functions to be

w41,51 = η42η52

(
1 + η41

η45 + η42 + η51
+ η51

η45 + η41 + η52

)
,

w42,52 = η41η51

(
1 + η42

η45 + η41 + η52
+ η52

η45 + η42 + η51

)
,

w41,52 = η42η51η45

η45 + η41 + η52
, w42,51 = η41η52η45

η45 + η42 + η51
,

(3.22)

and recall that ηi j = ρi j/2. It is straightforward to check that
these functions restrict the collinear singularities as discussed
in Sect. 2, and also that they sum up to one, cf. Eq. (2.22).

We now present results for the different terms in Eq. (3.4)
that arise in the quark channel.

3.2.1 Terms with NNLO kinematics

This (hard) regularized contribution is the only one that
involves the full matrix element for fa fb → V + f4 f5. It
reads [30]

dσ̂NNLO
1245, fa fb

=
∑

(i j)∈dc

〈[
(I − C5 j )(I − C4i )

][
I − SS

][
I − S5

]

× [d f4][d f5]w4i,5 j FLM, fa fb (1, 2, 4, 5)

〉

+
∑

i∈tc

〈[
θ(a)[I − CCi

][
I − C5i

]+ θ(b)[I − CCi
][
I − C45

]

+ θ(c)[I − CCi
][
I − C4i

]+ θ(d )
[
I − CCi

][
I − C45

]]

× [
I − SS

][
I − S5

][d f4][d f5]w4i,5i FLM, fa fb (1, 2, 4, 5)

〉
.

(3.23)

In this equation, dc = {(1, 2), (2, 1)} and tc = {1, 2} refer
to the double- and triple-collinear partitions, respectively,
while the sectors (a)–(d ) are defined by the angular ordering
conditions in Eq. (2.23). The operators S5, SS, Ci j and CCi

have been discussed in great detail in Ref. [30], and in Sect. 2.
We note that dσ̂NNLO

1245 fa fb
is computed numerically in four

dimensions. In order to do so, we must provide the explicit
parametrization of the phase space for the completefinal state
which includes two radiated partons and a vector boson (or
its decay products). It is clear that there are many differ-
ent ways to do so. We find it useful to describe the phase
space using tree-level variables, i.e. the invariant mass M2

V
and the rapidity Y of the vector boson, but other choices are
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possible. In addition, we have to choose the energies of the
two final state partons and the relative angles between them
and the hard emitter7 as independent variables, in order to
extract singularities in the same way as in the computation
of the integrated subtraction terms, which are presented in
the forthcoming subsections. For this reason, there is less
freedom in choosing how to parametrize the momenta of the
radiated partons. We have discussed this point in some detail
in Appendix B of Ref. [30]. We will not repeat this discussion,
instead, our goal here is to provide a guide for a numerical
implementation of Eq. (3.23).

We work in the center-of-mass frame of the colliding par-
tons. As the first step, we determine the center-of-mass colli-
sion energy squared s. To do so, we parametrize the energies
of the radiated partons as8

E4 =
√
s

2
x1, E5 =

√
s

2
x1x2, (3.24)

where x1, x2 ∈ [0 : 1], and use momentum conservation
(p1 + p2 − p4 − p5)

2 = M2
V to find

s = M2
V

1 − x1(1 + x2) + x2
1 x2η45

. (3.25)

There is an obvious constraint s < Sh , where Sh is the center-
of-mass energy squared of the colliding hadrons, that we have
to impose while generating the events.

The choice of angular variables depends on the partition
and the sector; for the sake of definiteness, we will discuss
the sector “a” of the partition w41,51. In this case, the scalar
products ηi j = (1 − cos θi j )/2 may be parametrized by the
variables x3, x4, λ ∈ [0 : 1] according to

η41 = x3, η51 = x3
x4

2
, η45 = x3(1 − x4/2)2

NF (x3, x4/2, λ)
, (3.26)

where

NF (x3, x4, λ) = 1 + x4(1 − 2x3) − 2(1 − 2λ)√
x4(1 − x3)(1 − x3x4), (3.27)

see Refs. [10,11]. We note that, since 0 ≤ x4 ≤ 1, the angular
ordering η51 < η41/2 is assured.

In addition to the invariant mass, we also fix the rapidity
of the vector boson in the laboratory frame, Y . This allows
us to determine the fractions of the hadronic energy carried
by the colliding partons, ξ1,2. We find

ξ1,2 =
√

s

Sh
e±y, (3.28)

where

y = Y − 1

2
ln

1 − x1(1 − η41) − x1x2(1 − η51)

1 − x1(1 − η42) − x1x2(1 − η52)
. (3.29)

7 The identity of the “hard emitter” depends on the partition.
8 We remind the reader that we have chosen Emax = √

s/2.

We require that 0 < ξ1,2 < 1 and that both the numera-
tor and the denominator in the argument of the logarithm in
Eq. (3.29) are positive definite.

We are now in position to write down the four-momenta
of the QCD partons for an event. We do so in the partonic
center-of-mass frame. The knowledge of ξ1,2 then allows us
to boost momenta to the laboratory frame where all kinematic
constraints are defined. The momenta read

p1,2 =
√
s

2
(1, 0, 0,±1) ,

p4 =
√
s

2
x1 (1, sin θ41 cos ϕ4, sin θ41 sin ϕ4, cos θ41) ,

p5 =
√
s

2
x1x2 (1, sin θ51 cos(ϕ4 + ϕ45),

sin θ51 sin(ϕ4 + ϕ45), cos θ51) , (3.30)

where cos θi j = 1 − ρi j and [10,11]

sin ϕ45 = 2
√

λ(1 − λ)(1 − x4/2)

NF (x3, x4/2, λ)
,

cos ϕ45 = ±
√

1 − sin2 ϕ45. (3.31)

The four-momentum of the vector boson is obtained by
momentum conservation pV = p1+ p2− p4− p5. If needed,
further details of the colorless final state can be described.
For example, in case of V → l+l−, the phase space for lep-
tonic decays is generated in the V -rest frame and the lepton
momenta are boosted back into the partonic center-of-mass
frame using the known pV and M2

V .
For the chosen partition and sector, the phase space weight

reads

wh({xi }, λ; {yi })
= wLO({yi })

(8π2)2

s3

8M2
V

x3
1 x2x3(1 − x4/2)

NF (x3, x4/2, λ)

×w41,51(η41, η42, η51, η52, η45), (3.32)

where wLO is the weight of the Born fa fb → V process,
which depends in general on a set of variables {yi } that
describes the V final state. The contribution of the gener-
ated hard event to the phase-space integral is then

I FLM,qq̄ (1, 2, 4, 5)

→ N fq (ξ1) fq̄ (ξ2)wh({xi }, λ; {yi })|M(p1, p2, pV , p4, p5)|2.

(3.33)

The matrix element squared can be calculated either in the
center-of-mass frame or in the laboratory frame since all
required boosts are defined at this point.

The contribution that we just described corresponds to the
product of identity operators in Eq. (3.23); below we discuss
how the subtraction terms in Eq. (3.23) are to be calculated.
To this end, we consider first the class of terms in Eq. (3.23)
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where the double-soft operator SS appears. We will start with
the term SSFLM and describe the weight of the counter-event
produced by this term. To compute the weight, we take the
limit x1 → 0 everywhere; this corresponds to E4,5 → 0 at
E5/E4 held fixed. We obtain

sSS = M2
V , ySS = Y, ξ SS

1,2 =
√

M2
V

Sh
e±Y . (3.34)

The four-vectors for p1,2 and p4,5 are the same as in
Eq. (3.30) but the four-momentum of the vector boson reads
pV = p1 + p2, i.e. the radiation of the two soft partons does
not impact the kinematics of the vector boson. The phase
space weight of the counter-event reads

wSS({xi }, λ; {yi })
= wLO({yi })

(8π2)2

M4
V

8

x3
1 x2x3(1 − x4/2)

NF (x3, x4/2, λ)

×w41,51(η41, η42, η51, η52, η45), (3.35)

and its contribution to the fiducial cross section becomes

SSFLM,qq̄(1, 2, 3, 4, 5)

→ N fq(ξ
SS
1 ) fq̄(ξ

SS
2 )wSS({xi }, λ; {yi })

Eik(1, 2, 4, 5)|M(p1, p2)|2. (3.36)

Suppose we consider terms in Eq. (3.23) where, in addi-
tion to the double-soft operator SS, some other operator acts
on FLM,qq̄ . In this case, we should just set the relevant vari-
able(s) to zero in Eq. (3.36) and, if necessary, change the
way the four-momenta are generated. For example, consider
a term C51SSFLM,qq̄(1, 2, 4, 5). For this sector, the opera-
tor C51 implies that x4 should be set to zero everywhere
after the leading 1/x4 asymptotic limit is extracted. The four-
momenta are then unchanged, except for p5 which becomes

p5 → C51SSp5 = MV

2
x1x2 (1, 0, 0, 1) . (3.37)

Computing the 5||1 limit of the double-soft eikonal function,
we arrive at the contribution from theC51SSFLM,qq̄(1, 2, 4, 5)

kinematic configuration

C51SSFLM,qq̄(1, 2, 3, 4, 5)

→ N fq(ξ
SS
1 ) fq̄(ξ

SS
2 ) wSS({xi }, λ; {yi })|x4→0

16C2
F

s̃12

s̃15s̃25

s̃12

s̃14s̃24
|M(p1, p2)|2.

(3.38)

The invariants s̃i j can be calculated by combining Eqs. (2.9)
and (3.26), and by noting that in this limit the initial state
partons are back-to-back, so η12 → 1, and therefore η42 →
1 − η41 and η52 → 1. Explicitly, the s̃i j invariants read

s̃12 = C51SSs12 = 4E1E2,

s̃14 = C51SSs14 = 4E1E4x3,

s̃24 = C51SSs24 = 4E2E4(1 − x3),

s̃15 = C51SSs15 = 2E1E5x3x4,

s̃25 = C51SSs25 = 4E2E5.

(3.39)

Note that the invariant s̃15 �= 2(p1 · p5). This is so because
the 1/s̃15 term describes the leading x4 → 0 singularity, so
we must keep x4 �= 0 there while setting x4 to zero every-
where else.

As the last example, consider the triple-collinear limit,
which corresponds to x3 → 0, cf. Eqs. (3.26, 3.30). In this
case, the partonic center-of-mass collision energy squared is

sCC = M2
V

1 − x1(1 + x2)
. (3.40)

Similar to the case of the hard event, we require 0 < sCC < Sh .
The four-momenta of partons to be used in the matrix element
and the momentum-conserving δ-function are

pCC1,2 = CC p1,2 =
√
sCC
2

(1, 0, 0,±1) ,

pCC4 = CC p4 =
√
sCC
2

x1 (1, 0, 0, 1) ,

pCC5 = CC p5 =
√
sCC
2

x1x2 (1, 0, 0, 1) ,

(3.41)

and the vector boson four-momentum is

pCCV = (pCC1 − pCC4 − pCC5 ) + pCC2 = E1 − E4 − E5

E1
pCC1 + pCC2

= (1 − x1(1 + x2))p
CC
1 + pCC2 . (3.42)

Combining Eq. (3.42) with Eq. (3.40), we can easily check
that (pCCV )2 = M2

V as, of course, it should.
As we emphasized in Sect. 2, we define CCi such that it

does not act on the phase space. The weight of the counter-
event is then identical to that of the hard process

wCC ({xi }, λ; {yi }) = wh({xi }, λ; {yi }) (3.43)

and the parameter y relevant for calculating the fractions of
the hadronic energy carried by the incoming partons reads

yCC = Y − 1

2
ln (1 − x1(1 + x2)) . (3.44)

The momentum fractions themselves are then given by

ξCC1,2 =
√
sCC
Sh

e±yCC . (3.45)

Combining the different ingredients, we derive the weight of
the triple-collinear counter-event

CCFLM,qq̄ (1, 2, 4, 5)

→ N fq(ξ
CC
1 ) fq̄(ξ

CC
2 )wCC ({xi }, λ; {yi })

×
(

2

s̄145

)2

Pggq (s̄45, −s̄14, −s̄15; z4, z5)|M(p′
1, p2)|2,

(3.46)
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where p′
1 = (1 − x1(1 + x2))p1. We evaluate the arguments

of the triple-collinear splitting function Pggq without setting
x3 to zero. These invariants s̄i j read

s̄14 = CCs14 = 4E1E4x3, s̄15 = CCs15 = 2E1E5x3x4,

s̄45 = CCs45 = 4E4E5x3(1 − x4/2)2

NF (x3, x4/2, λ)
,

(3.47)

and s̄145 = s̄45 − s̄14 − s̄15, while the energy fractions are
zi = Ei/(E4 + E5 − E1). We stress that the above scalar
products in the splitting function are evaluated with x3 �= 0,
i.e. not in the triple-collinear limit.

The remaining contributions to the fully-subtracted cross
section dσ̂NNLO

1245, fa fb
are computed along the same lines. The

important thing is that we always take the leading singularity
in the relevant variables and employ the limiting behavior of
amplitudes-squared to calculate weights of the subtraction
terms. We also make sure that the subtraction counterterms
that make the hard matrix element finite are identical to the
subtraction terms that have been analytically integrated.

3.2.2 Tree-level terms with NLO kinematics

In this section, we consider the term with NLO kinematics
and tree-level matrix elements, dσ̂NNLO

124, fa fb
. The general struc-

ture of this contribution is

dσ̂NNLO
124, fa fb

= αs(μ)

2π

∑

x

1∫

0

dz

{
P̂(0)
fx fa ,R

(z)

〈
ln

ρ41

4
ÔNLO

[
w̃

41,51
5||1 FLM, fx fb (z · 1, 2, 4)

z

]〉

+
[
P ′

fx fa (z) − P̂(0)
fx fa ,R

(z) ln

(
μ2

s

)]

〈
ÔNLO

[
FLM, fx fb (z · 1, 2, 4)

z

]〉
+
〈
ln

ρ42

4
ÔNLO

[
w̃

42,52
5||2 FLM, fa fx (1, z · 2, 4)

z

]〉
P̂(0)
fx fb,R

(z)

+
〈
ÔNLO

[
FLM, fa fx (1, z · 2, 4)

z

]〉 [
P ′

fx fb (z)

−P̂(0)
fx fb,R

(z) ln

(
μ2

s

)]}

+ αs(μ)

2π

〈
ÔNLO

[
�q · FLM, fa fb (1, 2, 4)

+ �r · [rμrνFμν
LM, fa fb

(1, 2, 4)
]]〉

,

(3.48)

where the various splitting functions are defined in
Appendix C. Although we only need �q in Eq. (3.48), it

appears to be convenient to introduce a more general object
�i∈{q,g}. It is defined as

�i =Ci

[
2

3
π2 − 2 ln

2E4√
s

(
w̃

41,51
5||1 ln

η41

2
+ w̃

42,52
5||2 ln

η42

2

)]

+ CA

[
ln

2E4√
s

(
ln

2E4√
s

+ ln(η41η42)

)
− ln η41 ln η42

]

+
(

137

18
− 7

6
π2
)
CA − 13

9
n f + β0

[
w̃

41,51
4||5 ln

η42

η41

+ w̃
42,52
4||5 ln

η41

η42
+ ln(η41η42)

2

− ln
2E4√

s
+ 2 ln 2

]
+ Xi

[
ln

2E4√
s

+ ln(η41η42)

2

]

− 2γi ln

(
μ2

s

)
. (3.49)

In the case i = q, we find Cq = CF , γq = 3CF/2 and
Xq = 3CA/2, cf. Appendix. B. In addition

�r = −CA

3
+ n f

3
. (3.50)

Note that to obtain Eq. (3.49), we used η41 + η42 = 1. In
Eq. (3.48), Fμν

LM, fa fb
is analogous to FLM, fa fb but with the

polarization vector for gluon 4 removed

〈Fμν
LM, fa fb

(1, 2, 4)〉
= N

∫
dLips(V )[d f4](2π)dδd(p1 + p2 − pV − p4)

× [
Mtree,μM∗,tree,ν](p1, p2, pV , p4) O(pV , p4),

Mtree = εμ(p4)Mtree,μ.

(3.51)

In Eq. (3.48), Fμν
LM is contracted with rμrν , where rμ is a

unit vector that spans the two-dimensional space orthogonal
to p4, see Ref. [30] for further details. If p4 is parametrized
as in Eq. (3.30), then

rμ = (0,− cos θ41 cos ϕ4,− cos θ41 sin ϕ4, sin θ41). (3.52)

Note that since r · p4 = 0 and r2 = −1, we can view rμ as
the polarization vector of the emitted gluon.

As an illustration, we now explicitly write Eq. (3.48) in the
case of Z production. For the same-flavor channel ( fa, fb) =
(q, q̄), Eq. (3.48) becomes

dσ̂
Z ,NNLO
124,qq̄

= αs(μ)

2π

1∫

0

dz

{
P̂(0)
qq,R(z)

〈
ln

ρ41

4
ÔNLO

×
[

w̃
41,51
5||1 FLM,qq̄(z · 1, 2, 4)

z

]
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+ ln
ρ42

4
ÔNLO

[
w̃

42,52
5||2 FLM,qq̄(1, z · 2, 4)

z

]〉

+P̂(0)
gq,R(z)

〈
ln

ρ41

4
ÔNLO ×

[
w̃

41,51
5||1 FLM,gq̄(z · 1, 2, 4)

z

]

+ ln
ρ42

4
ÔNLO

[
w̃

42,52
5||2 FLM,qg(1, z · 2, 4)

z

]〉

+
[
P ′
qq(z) − P̂(0)

qq,R(z) ln

(
μ2

s

)]

×
〈
ÔNLO

[
FLM,qq̄(z · 1, 2, 4) + FLM,qq̄(1, z · 2, 4)

z

]〉

+
[
P ′
gq(z) − P̂(0)

gq,R(z) ln

(
μ2

s

)]

×
〈
ÔNLO

[
FLM,gq̄(z · 1, 2, 4) + FLM,qg(1, z · 2, 4)

z

]〉 }

+αs(μ)

2π

〈
ÔNLO

[
�q · FLM,qq̄(1, 2, 4)

+�r · [rμrνFμν
LM,qq̄(1, 2, 4)

]]〉
. (3.53)

For different-flavor quark channels ( fa, fb) = (qi , q j ) with
qi �= q̄ j , we find

dσ̂
Z ,NNLO
124,qi q j

= αs(μ)

2π

1∫

0

dz

{
P̂(0)
gq,R(z)

〈
ln

ρ41

4
ÔNLO

×
[

w̃
41,51
5||1 FLM,gq j (z · 1, 2, 4)

z

]

+ ln
ρ42

4
ÔNLO

[
w̃

42,52
5||2 FLM,qi g(1, z · 2, 4)

z

]〉

+
[
P ′
gq(z) − P̂(0)

gq,R(z) ln

(
μ2

s

)]

×
〈
ÔNLO

[
FLM,gq j (z · 1, 2, 4)+FLM,qi g(1, z · 2, 4)

z

]〉 }
.

(3.54)

3.2.3 Tree-level terms with LO kinematics

We now turn to the contribution involving terms with
LO kinematics and tree-level matrix elements, dσ̂NNLO

12, fa fb
.

Accounting for the boost of the initial state along the col-
lision axis, it can naturally be split into

dσ̂NNLO
12, fa fb = dσ̂NNLO

(z,z̄), fa fb + dσ̂NNLO
(z,2), fa fb

+ dσ̂NNLO
(1,z), fa fb + dσ̂NNLO

(1,2), fa fb , (3.55)

a, b �= 0. We now consider each of these terms separately.

1. Terms involving FLM(z · 1, z̄ · 2)

dσ̂NNLO
(z,z̄), fa fb =

(
αs(μ)

2π

)2 ∑

x,y

1∫

0

dz dz̄

×
[
P ′

fx fa (z) − ln

(
μ2

s

)
P̂(0)
fx fa ,R

(z)

]

×
〈
FLM, fx fy (z · 1, z̄ · 2)

zz̄

〉

×
[
P ′

fy fb (z̄) − ln

(
μ2

s

)
P̂(0)
fy fb,R

(z̄)

]
. (3.56)

Once again, to illustrate this equation we consider the
case of Z production. Here, this contribution is only rel-
evant for the ( fa, fb) = (q, q̄) channel, where it reads

dσ̂
Z ,NNLO
(z,z̄),qq̄ =

(
αs(μ)

2π

)2

×
1∫

0

dz dz̄

[
P ′
qq(z) − ln

(
μ2

s

)
P̂(0)
qq,R(z)

]

×
〈
FLM,qq̄(z · 1, z̄ · 2)

zz̄

〉

×
[
P ′
qq(z̄) − ln

(
μ2

s

)
P̂(0)
qq,R(z̄)

]
. (3.57)

2. Terms involving FLM(z · 1, 2) and FLM(1, z · 2):

dσ̂NNLO
(z,2), fa fb + dσ̂NNLO

(1,z), fa fb

=
(

αs(μ)

2π

)2 ∑

x

1∫

0

dz

[
T fx fa (z)

〈
FLM, fx fb (z · 1, 2)

z

〉

+
〈
FLM, fa fx (1, z · 2)

z

〉
T fx fb (z)

]
. (3.58)

This term has a non-trivial flavor structure. To simplify it,
we employ the notation used to describe the NNLO QCD
contributions to the Altarelli-Parisi splitting functions,
and write the functions T in terms of nonsinglet, singlet,
and vector functions

Tqi q j = δi jT NS
qq + T S

qq ,

Tqi q̄ j = δi jT V
qq̄ + T S

qq̄ .
(3.59)

Similar to the Altarelli-Parisi splitting functions, we have
T S
qq̄ = T S

qq through NNLO, and we will always use the
latter in what follows. Again, we consider the exam-
ple of Z production. For the ( fa, fb) = (qq̄) channel,
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Eq. (3.58) becomes

dσ̂
Z ,NNLO
(z,2),qq̄ + dσ̂

Z ,NNLO
(1,z),qq̄

=
(

αs(μ)

2π

)2 1∫

0

dz
[
T NS
qq (z) + T S

qq(z)
]

×
〈
FLM,qq̄(z · 1, 2) + FLM,qq̄(1, z · 2)

z

〉
, (3.60)

while for the qiq j with i �= − j it reads

dσ̂
Z ,NNLO
(z,2),qi q j

+ dσ̂
Z ,NNLO
(1,z),qi q j

=
(

αs(μ)

2π

)2 1∫

0

dz
[
δi jT V

qq̄(z) + T S
qq(z)

]

×
〈
FLM,q̄ j q j (z · 1, 2) + FLM,qi q̄i (1, z · 2)

z

〉
.

(3.61)

The transition function T NS
qq is explicitly shown in

Appendix D. All other Ti j functions are presented in an
ancillary file.

3. Terms involving FLM(1, 2)

dσ̂NNLO
(1,2), fa fb

=
〈
FLM, fa fb (1, 2)

〉
×
(

αs(μ)

2π

)2

{
C2
F

[
8π4

45
− (

2π2 + 16ζ3
)

ln

(
μ2

s

)

+
(

9

2
− 2π2

3

)
ln2

(
μ2

s

)]

+ CACF

[
739

81
+ 209π2

72
− 7π4

80
+ ln 2

×
(

4

3
+ 11π2

9
− 7

2
ζ3

)
+ (ζ2 − 2) ln2 2

− ln4 2

6
− 407

36
ζ3 − 4Li4

(
1

2

)

+ ln

(
μ2

s

)(
−199

54
+ 23π2

24
− 7ζ3

)

− 11

4
ln2

(
μ2

s

)]
+ CFn f

[
− 214

81

− 7π2

18
− ln 2

(
4

3
+ 2π2

9

)
+ 2 ln2 2

+ 37

18
ζ3 + ln

(
μ2

s

)(
17

27
− π2

12

)

+ 1

2
ln2

(
μ2

s

)]
+ �bd

[
23

36
CFn f

+ CACF

(
π2

3
− 131

36

)
+ (2 ln 2)CFβ0

]}
. (3.62)

The �bd term in Eq. (3.62) depends on the choice of
partition functions. It is defined as follows

�bd ≡ −
〈

[I − C41 − C42]

[
ρ12

ρ41ρ42

(
w̃

41,51
4||5 ln

η41

1 − η41

+w̃
42,52
4||5 ln

η42

1 − η42

)]〉
. (3.63)

If the partition functions are chosen as in Eq. (3.22), it is
immediate to obtain

�bd = 2 − π2

3
. (3.64)

3.2.4 Terms involving virtual corrections

Finally, we consider the two terms in Eq. (3.4) which involve
virtual corrections, dσ̂

NNLO
virt124, fa fb and dσ̂

NNLO
virt12, fa fb . The for-

mer corresponds to the real-virtual corrections, which have
NLO kinematics. As such, they have singularities that appear
when the radiated parton becomes unresolved. These singu-
larities can be subtracted as at NLO, so that this term reads

dσ̂NNLO
virt124, fa fb = 〈

ÔNLOF
fin
LV, fa fb (1, 2, 4)

〉
, (3.65)

where Ffin
LV, fa fb

(1, 2, 4) is a finite remainder of the one-loop
amplitude, see Appendix B. The other term corresponds to
virtual contributions with LO kinematics. It reads

dσ̂NNLO
virt12, fa fb

=
〈
Ffin

LVV, fa fb (1, 2) + Ffin
LV2, fa fb

(1, 2)

+αs(μ)

2π

[
2π2

3
CF − 2γq ln

(
μ2

s

)]

×Ffin
LV, fa fb (1, 2)

〉
+ αs(μ)

2π

1∫

0

dz

×
[
P ′
qq(z) − ln

(
μ2

s

)
P̂(0)
qq,R(z)

]

×
〈
Ffin

LV, fa fb
(z · 1, 2) + Ffin

LV, fa fb
(1, z · 2)

z

〉
, (3.66)

where γq = 3CF/2 as before and Ffin
LVV, Ffin

LV2 and Ffin
LV are

defined in Appendix A.
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3.3 NNLO: quark–gluon channels

In this section, we describe the NNLO contributions to the
qg channel, see Eq. (3.2). Similar results hold for the gq
channel. In principle, this channel could be treated in the
same fashion as the quark channels discussed in the previous
section. However, its singularity structure is much simpler,
and so we need to consider a smaller number of limits. Indeed,
no double-soft singularities are present in this case. Because
of this, we find it convenient not to order the energies of
partons 4 and 5. We write
∫

[d f4][d f5]FLM,qg(1, 2, 4, 5) ≡ 〈
FLM,qg(1, 2, 4, 5)

〉
,

(3.67)

and parametrize E4,5 = x1,2Emax. However, the structure
of the collinear singularities is similar to that discussed in
Sect. 3.2, so we use the same angular parametrization and
partitioning as defined there.

There is another important difference compared to the qq̄
channel discussed in Sect. 3.2, namely that in the qg channel
spin correlations appear in the collinear emissions off the
incoming gluon. We postpone their discussion to Sect. 4.1,
where we consider the most general case of spin correlations.
Apart from this, the structure of the result is very similar to the
one discussed previously, so we limit ourselves to reporting
the relevant formulas.

We write

dσ̂
NNLO
fa g = dσ̂

NNLO
V+2, fa g + dσ̂

NNLO
V+1, fa g + dσ̂

NNLO
V, fa g , (3.68)

and

dσ̂
NNLO
V+2, fa g = dσ̂

NNLO
1245, fag,

dσ̂
NNLO
V+1, fa g = dσ̂

NNLO
124, fag + dσ̂

NNLO
virt124, fa g,

dσ̂
NNLO
V, fa g = dσ̂

NNLO
(z,z̄), fa g + dσ̂

NNLO
(1,z), fa g + dσ̂

NNLO
virt12, fa g.

(3.69)

We consider the case with a �= 0, and discuss each term
separately. Note that in this channel there are no terms pro-
portional to FLM(1, 2) or to FLM(z · 1, 2) since the process
qg → V at leading order is impossible. For the other terms,
we obtain the following results.

1. Tree-level terms with NNLO kinematics

dσ̂NNLO
1245, fag

=
∑

(i j)∈dc

〈[
(I − C5 j )(I − C4i )

][
I − S5

]

× [d f4][d f5]w4i,5 j FLM, fa g(1, 2, 4, 5)

〉

+
∑

i∈tc

〈[
θ(a)[I−CCi

][
I−C5i

]+θ(b)[I−CCi
][
I−C45

]

+ θ(c)[I − CCi
][
I − C4i

]+θ(d )
[
I−CCi

][
I−C45

]]

× [
I−S5

][d f4][d f5]w4i,5i FLM, fa g(1, 2, 4, 5)

〉
. (3.70)

The discussion of the individual terms is identical to that
for the quark channels, cf. Sect. 3.2.1, with the only differ-
ence being that now the energies of the final state partons
are parametrized differently.

2. Tree-level terms with NLO kinematics

dσ̂NNLO
124, fa g = αs(μ)

2π

1∫

0

dz

{
P̂(0)
qq,R(z)

〈
ln

ρ41

4
ÔNLO

[
w̃

41,51
5||1 FLM, fa g(z · 1, 2, 4)

z

]〉
+
∑

x �=0

P̂(0)
qg,R(z)

〈
ln

ρ42

4
ÔNLO

×
[

w̃
42,52
5||2 FLM, fa fx (1, z · 2, 4)

z

]〉
+ P̂(0)

gg,R(z)

〈
ln

ρ42

4
ÔNLO

×
[

w̃
42,52
5||2 FLM, fa g(1, z · 2, 4)

z

]〉

+
[
P ′
qq (z) − P̂(0)

qq,R(z) ln

(
μ2

s

)]

×
〈
ÔNLO

[
FLM, fa g(z · 1, 2, 4)

z

]〉

+
∑

x �=0

[
P ′
qg(z) − P̂(0)

qg,R(z) ln

(
μ2

s

)]

×
〈
ÔNLO

[
FLM, fa fx (1, z · 2, 4)

z

]〉

+
[
P ′
gg(z) − P̂(0)

gg,R(z) ln

(
μ2

s

)]

×
〈
ÔNLO

[
FLM, fa g(1, z · 2, 4)

z

]〉 }

+ αs(μ)

2π

〈
ÔNLO

[
�(qg) · FLM, fa g(1, 2, 4)

]〉
, (3.71)

which is analogous to Eq. (3.48) for the quark chan-
nels. The splitting functions in Eq. (3.71) are defined in
Appendix C, and �(qg) is given by

�(qg) = CF

[
ln

2E4√
s

(
ln

2E4√
s

− 2 ln η41 − 4 ln 2

)

+
(

3

2
− 2 ln

2E4√
s

)

×
(

w̃
41,51
4||5 ln

η42

η41
+ w̃

42,52
4||5 ln

η41

η42

)
+ 13

2

+ 3 ln 2 − π2 + 3 ln η41

+ 2Li2(η42) − 3

2
ln

(
μ2

s

)]

+β0

[
1

2

(
ln

2E4√
s

+ ln η42

)
− ln

(
μ2

s

)]
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+CA

[
π2

3
− 3

4
ln η42 +

(
3

2
− ln

2E4√
s

)

× ln
η42

η41
− 3

4
ln

2E4√
s

− Li2(η42) + Li2(η41)

]
. (3.72)

3. Tree-level terms with LO kinematics involving FLM(z ·
1, z̄ · 2)

dσ̂NNLO
(z,z̄), fa g =

(
αs(μ)

2π

)2 ∑

x

1∫

0

dz dz̄

×
[
P ′
qq(z) − ln

(
μ2

s

)
P̂(0)
qq,R(z)

]

×
〈
FLM, fa fx (z · 1, z̄ · 2)

zz̄

〉

×
[
P ′
qg(z̄) − ln

(
μ2

s

)
P̂(0)
qg,R(z̄)

]
, (3.73)

which is analogous to Eq. (3.56).
4. Terms with LO kinematics involving FLM(z ·1, 2) and

FLM(1, z · 2)

dσ̂NNLO
(1,z), fa g

=
(

αs(μ)

2π

)2 ∑

x

1∫

0

dz Tqg(z)
〈
FLM, fa fx (1, z · 2)

z

〉
,

(3.74)

analogous to Eq. (3.58). The function Tqg can be found
in the ancillary file.

5. Terms involving virtual corrections with NLO kine-
matics

dσ̂NNLO
virt124, fa g = 〈

ÔNLOF
fin
LV, fa g(1, 2, 4)

〉
, (3.75)

analogous to Eq. (3.65). The finite remainder Ffin
LV, fa g

(1, 2, 4) is defined in Appendix B.
6. Terms involving virtual corrections with LO kinemat-

ics

dσ̂NNLO
virt12, fa g = αs(μ)

2π

∑

x

1∫

0

[
P ′
qg(z) − ln

(
μ2

s

)
P̂(0)
qg,R(z)

]

×
〈
Ffin

LV, fa fx
(1, z · 2)

z

〉
, (3.76)

analogous to Eq. (3.66). The finite remainder Ffin
LV is

defined in Appendix A.

Results for the gq channel can be obtained from the above
formulas in a straightforward manner, by replacing labels
1 ↔ 2.

3.4 NNLO: gluon–gluon channel

In this section, we describe the gg channel, see Eq. (3.2). This
case is particularly simple, since no soft or triple-collinear
singularities are present. As the result, only double-collinear
configurations need to be considered.

As a consequence, it is not necessary to partition the
phase space in any way and the singularity structure can be
dealt with as in NLO computations described earlier. We
parametrize the energies and angles of the emitted partons as

E4,5 = x1,2Emax, η41 = x3, η51 = x4. (3.77)

Singularities only appear when x3,4 is equal to either zero or
one. Because of the simplicity of the singularity structure,
we treat the two cases at once. To deal with them, we use
a similar but simpler strategy to the one discussed in the
preceding sections. We write

FLM,gg(1, 2, 4, 5)

= [
(I − C41 − C42) + C41 + C42

][
(I − C51 − C52)

+ C51 + C52
]
FLM,gg(1, 2, 4, 5)

= [
I − C41 − C42 − C51 − C52 + C42C51

+ C41C52
]
FLM,gg(1, 2, 4, 5)

+ [
C41 + C42 + C51 + C52 − C42C51

− C41C52
]
FLM,gg(1, 2, 4, 5),

(3.78)

where we used the fact that C41C51 = C42C52 → 0 when it
acts on the matrix element. The first term on the right hand
side in Eq. (3.78) is free of singularities and corresponds
to what we called dσ̂NNLO

1245 in the previous sections, while
the second term contains the subtraction counterterms. We
combine Eq. (3.78) with contributions from the PDF renor-
malization and write

dσ̂NNLO
gg = dσ̂NNLO

V+2,gg + dσ̂NNLO
V+1,gg + dσ̂NNLO

V,gg , (3.79)

where

dσ̂NNLO
V+2,gg = dσ̂NNLO

1245,gg,

dσ̂NNLO
V+1,gg = dσ̂NNLO

124,gg,

dσ̂NNLO
V,gg = dσ̂NNLO

(z,z̄),gg.

(3.80)

At variance to the cases discussed above, virtual corrections
do not contribute in this channel. The individual terms read
as follows.
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1. Tree-level terms with NNLO kinematics

dσ̂NNLO
1245,gg =

〈[
I − C41 − C42 − C51 − C52

+C42C51 + C41C52
]

×[d f4][d f5]FLM,gg(1, 2, 4, 5)

〉
, (3.81)

where again the construction of each term follows the
discussion in Sect. 3.2.1, but with the parametrization
shown in Eq. (3.77).

2. Tree-level terms with NLO kinematics

dσ̂NNLO
124,gg

= αs(μ)

2π

∑

x �=0

1∫

0

dz

[
P ′
qg(z) − P̂(0)

qg,R(z) ln

(
μ2

s

)]

×
〈
ÔNLO

[
FLM, fx g(z · 1, 2, 4) + FLM,g fx (1, z · 2, 4)

z

]〉
.

(3.82)

3. Tree-level terms with LO kinematics involving FLM(z ·
1, z̄ · 2)

dσ̂NNLO
(z,z̄),gg =

(
αs(μ)

2π

)2 ∑

x,y

1∫

0

dz dz̄

×
[
P ′
qg(z) − ln

(
μ2

s

)
P̂(0)
qg (z)

]

×
〈
FLM, fx fy (z · 1, z̄ · 2)

zz̄

〉

×
[
P ′
qg(z̄) − ln

(
μ2

s

)
P̂(0)
qg (z̄)

]
. (3.83)

4 Gluon-initiated color-singlet production

In this section, we consider the production of a color-singlet
final state H in gluon fusion at NNLO QCD. We refer to
this process as “Higgs production”, although, similar to the
“Drell–Yan process” discussed in the previous section, these
results are applicable to the production of any color-singlet
final state which proceeds through gluon fusion at LO. The
procedure of extracting the infrared divergences is identical
to what has already been discussed in the case of the qq̄ anni-
hilation and we do not repeat it. However, in gluon-initiated
processes, initial state radiation leads to spin correlations that
we have not discussed up to now. In the next section we show
how to deal with this complication.

4.1 Spin correlations

We have discussed spin correlations relevant to the compu-
tation of NNLO QCD corrections to the qq̄ → V process in
Ref. [30]. In that case, the spin correlations appeared because
of the splitting of a virtual gluon into two final state partons,
g∗ → f4,5. For the gg → H process, the situation is dif-
ferent in that spin correlations also appear in the initial state
radiation, including its triple-collinear limit. In this section,
we discuss this case.

We will begin with the discussion of NLO QCD correc-
tions to gg → H . The computation proceeds exactly as
for the qq̄ → V process, cf. Sect. 3.1. However, when the
collinear operator acts on the matrix element squared, we
find

〈C41FLM,gg(1, 2, 4)〉

= −
〈

g2
s,b

p1 · p4
Pgg,μν

(
z−1

)
Fμν

LM,gg (z · 1, 2)

〉
, (4.1)

where the splitting function reads

Pμν
gg (z)

= 2CA

[(
1 − z

z
+ z

1 − z

)[
−gμν

⊥,d−2

]

− 2(1 − ε)z(1 − z)
kμ
⊥kν⊥
k2⊥

]
. (4.2)

The transverse momentum k⊥ is defined using the Sudakov
decomposition

p4 = (1 − z) p1 + βp2 + k⊥, (4.3)

where k⊥ · p1 = k⊥ · p2 = 0. The metric tensor of the trans-
verse space g⊥,d−2 satisfies gμν

⊥,d−2 p1,ν = gμν
⊥,d−2 p2,ν = 0

and gμν
⊥,d−2k⊥,ν = kμ

⊥.
We write the four-momenta of the QCD partons as for

the qq̄ → V process. We introduce d−dimensional vectors
tμ = (1, 0) and eμ

3 = (0, 0, 0, 1, 0), and an additional vector
aμ that is orthogonal to both t and e3 and is normalized
a2 = −1. We write the four-momenta in terms of t , e3 and a
and obtain

p1,2 = E1(t ± e3), p4 = E4(t + cos θ41e + sin θ41a).

(4.4)

By comparing the two parametrizations of the vector p4, we
find

kμ
⊥kν⊥
k2⊥

= −aμaν . (4.5)

Since the transverse components of the gluon four-momentum
decouple from the hard matrix element in the collinear limit,
the vector aμ only appears in the splitting function. We can

123



Eur. Phys. J. C (2019) 79 :386 Page 19 of 31 386

then integrate the splitting function over the directions of the
vector aμ using
∫

d�
(a)
d−2 aμaν = −gμν

⊥,d−2

d − 2
�d−2. (4.6)

We find
∫

d�
(a)
d−2

�d−2
Pμν,gg(z

−1) Fμν
LM(z · 1, 2)

= 〈Pgg(z−1)〉 FLM(z · 1, 2), (4.7)

where

〈Pgg(z)〉 = 2CA

(
1 − z

z
+ z

1 − z
+ z(1 − z)

)
(4.8)

is the spin-averaged splitting function. It follows that aver-
aging over the directions of the transverse components of
the gluon momentum naturally appears in our construction
at NLO; as a consequence, the rest of the NLO QCD calcu-
lation is identical to the qq̄ case.

Before discussing spin correlations in the computation of
NNLO QCD corrections, we note that, in the particular case
of Higgs boson production, spin correlations are actually
not needed. Indeed, the spin-correlated matrix element for
gg → H is proportional to gμν

⊥,d−2. As the result, the spin-
averaged splitting function Pgg,μνg

μν
⊥,d−2 naturally appears

in the calculation. We emphasize, however, that this feature
is particular to the process gg → H , so that understanding
spin correlations is necessary in a more general context.

We then consider the generic NNLO case. Here, the situa-
tion is more complex since we have to consider the momenta
of the two radiated gluons becoming collinear to the direction
of the incoming partons. In the double-collinear partitions
the situation is identical to the NLO case since the averaging
over the transverse spaces of the two gluons is performed
independently. The triple-collinear partitions require some
discussion. We consider the case when collinear singularities
arise because of the emissions of gluons g4,5 off the gluon g1.
We parametrize the four-momenta of the final-state gluons
as [30]

p4 = E4 (t + cos θ4e3 + sin θ4a) ,

p5 = E5 (t + cos θ5e3 + sin θ5(cos ϕ45 a + sin ϕ45 b)) ,

(4.9)

where the vectors t, a, e3 have already been defined in the
discussion after Eq. (4.3) and the vector b satisfies t · b =
e3 · b = a · e3 = 0, as well as b2 = −1.

We begin with the double-collinear limits that develop spin
correlations. There are three possibilities: g4 is collinear to
g5, g5 is collinear to g1 and g4 is collinear to g1. The first case
is identical to the qq̄ → V process; it was discussed in Ref.
[30] and we do not repeat this discussion here. The second

case, p5||p1, relevant for sector (a), is discussed below. After
that we comment on the third case, relevant for sector (c).

Starting from the angular part of the phase space for sec-
tor (a) and considering the limit x4 → 0, corresponding to
θ51 → 0, we find

lim
x4→0

d�
(a)
45 =

[
1

8π2

(4π)ε

�(1 − ε)

]2 [
�2(1 − ε)

�(1 − 2ε)

]

×
[

d�
(b)
d−2

�d−2

d�
(a)
d−3

�d−3

]
dx3

x1+2ε
3

dx4

x1+ε
4

× dλ

π [λ(1 − λ)]1/2+ε
[128(1 − x3)]

−ε 2x2
3 x4,

(4.10)

see Ref. [30]. Also, in this limit

sin ϕ = √
4λ(1 − λ), cos ϕ = −1 + 2λ, λ ∈ [0, 1].

(4.11)

This follows immediately from the definition of sin ϕ and by
inverting the definition of λ in terms of cos ϕ. We then rewrite

lim
x4→0

d�
(a)
45 =

[
1

8π2

(4π)ε

�(1 − ε)

]2
[

d�
(b)
d−2

�d−2

d�
(a)
d−3

�d−3

]

2 dx3

[4x3(1 − x3)]ε
2 d(x3x4/2)

[4(x3x4)/2]ε
d�̃,

(4.12)

with

d�̃ =
[

16−ε �2(1 − ε)

�(1 − 2ε)

dλ

π [λ(1 − λ)]1/2+ε

]
,

∫
d�̃ = 1. (4.13)

We also have
∫

d�̃ cos ϕ sin ϕ = 0,

∫
d�̃ cos2 ϕ = 1

2(1 − ε)
,

∫
d�̃ sin2 ϕ = 1 − 1

2(1 − ε)
.

(4.14)

These identities imply that in the x4 → 0 limit

〈
κ

μ
5,⊥κν

5,⊥
〉
=
∫

d�
(b)
d−3

�d−3
d�̃

[
aμaν cos2 ϕ45

+ bμbν sin2 ϕ45+(bμaν +aμbν) cos ϕ45 sin ϕ45
]

= aμaν

2(1 − ε)
+ 1 − 2ε

2(1 − ε)

∫
d�

(b)
d−3

�d−3
bμbν

= aμaν

2(1 − ε)
+ 1 − 2ε

2(1 − ε)

[
−gμν

⊥,d−3

]

d − 3

= 1

2(1 − ε)

[
aμaν − gμν

⊥,d−3

]
=
[
−gμν

⊥,d−2

]

2(1 − ε)
.

(4.15)

Hence, in case of double-collinear limits with respect to
the incoming partons, integration over the transverse direc-
tions of the collinear gluons always leads to spin-averaged
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splitting functions. This implies that the subsequent com-
putational steps are conceptually identical to those of the
qq̄ → V process. Finally, we note that the above discussion
can be repeated verbatim for the limit p4||p1, relevant for
sector (c), if instead of Eq. (4.9) we use

p4 = E4 (t + cos θ4e3 + sin θ4(cos ϕ45 a + sin ϕ45 b)) ,

p5 = E5 (t + cos θ5e3 + sin θ5a) .

(4.16)

It remains to discuss the triple-collinear limit that corre-
sponds to the splitting g1 → g4 + g5 + g∗. This splitting
is described by the Pμν

ggg splitting function that contains spin
correlations, see e.g. Ref. [39]. This splitting function is a
symmetric rank-two tensor constructed from gμν

⊥,d−2, and the
vectors kμ

4(5),⊥. These vectors read, c.f. Eq. (4.9),

kμ
4,⊥ = E4 sin θ4a

μ,

kμ
5,⊥ = E5 sin θ5

(
aμ cos ϕ45 + bμ sin ϕ45

)
. (4.17)

In the triple-collinear limit, we need to integrate over the
directions of the vectors a and b. Note that the integration
over the angle ϕ45 is non-trivial since 2(p4 · p5) = s45

depends on it. To describe the integration of different ten-
sor structures over the directions of a and b, we introduce
the notation

∫
d�

(a)
d−2

�d−2

d�
(b)
d−3

�d−3
X = 〈X〉a,b,

∫
d�

(a)
d−2

�d−2
X = 〈X〉a,

∫
d�

(b)
d−3

�d−3
X = 〈X〉b. (4.18)

We find the following results for the four tensor structures
that contribute to Pμν

ggg

〈gμν
⊥,d−2〉 = gμν

⊥,d−2,

〈kμ
4⊥k

ν
4⊥〉a,b = k2

4,⊥
gμν
⊥,d−2

d − 2
,

〈kμ
5⊥k

ν
5⊥〉a,b = k2

5,⊥
gμν
⊥,d−2

d − 2
,

〈kμ
4⊥k

ν
5⊥〉a,b = E4 sin θ4E5 sin θ5

×〈aμ
(
aν cos ϕ45 + bμ sin ϕ45

)〉a,b

= k4,⊥ · k5,⊥
gμν
⊥,d−2

d − 2
. (4.19)

We write the spin-correlated splitting function as

Pμν
ggg = A1g

μν
⊥,d−2 + A2(k

μ
4,⊥k

ν
4,⊥ + kμ

5,⊥k
ν
5,⊥)

+A3(k
μ
4,⊥k

ν
5,⊥ + kν

4,⊥k
μ
5,⊥), (4.20)

and observe that Eq. (4.19) leads to

〈Pμν
ggg〉a,b = gμν

⊥,d−2

(
A1 + A2

d − 2
(k2

4,⊥ + k2
5,⊥)

+ A3

d − 2
(2k4,⊥k5,⊥)

)
. (4.21)

The same result is obtained upon replacing the spin-
correlated splitting function by its spin-averaged version

Pμν
ggg → Pggg,αβg

αβ
⊥,d−2

d − 2
gμν
⊥,d−2. (4.22)

Once this is done, the triple-collinear splittings in the gg →
H process can be treated in exactly the same way as in the
Drell–Yan qq̄ → V case.

4.2 Definition of partonic channels

After discussing spin correlations, we proceed with setting
up the NNLO QCD calculation for color-singlet production
in gluon fusion. Starting from Eq. (2.1), we find it convenient
to write the cross section for the generic process

pp → H + X (4.23)

as

dσH
f =

∫
dx1dx2 g(x1)g(x2)dσ̂H

gg

+
∫

dx1dx2

∑

a∈[−n f ,n f ]
a �=0

[
fa(x1)g(x2)dσ̂H

qg

+g(x1) fa(x2)dσ̂H
gq

]

+
∫

dx1dx2

∑

a∈[−n f ,n f ]
a �=0

fa(x1) f−a(x2)dσ̂H
qq̄

+
∫

dx1dx2

∑

a,b∈[−n f ,n f ]
a,b �=0, a �=−b

fa(x1) fb(x2)dσ̂H
qi q j

.

(4.24)

The first term is the gg channel which is the only partonic
channel contributing at LO. The terms on the second and
third line correspond to the quark–gluon channels and quark–
antiquark channel respectively, and enter at NLO. The qiq j

channel, where qi and q j can be (anti)quarks of either dif-
ferent or identical flavors, first appears at NNLO. We will
discuss each of these channels separately in the following
subsections. For simplicity, we will omit the “H” superscript
from now on. We express our results in terms of fully renor-
malized amplitudes for the pp → H + X process, where
H is a generic color-singlet state. In the case of Higgs pro-
duction in the mt → ∞ approximation, this implies that our

123



Eur. Phys. J. C (2019) 79 :386 Page 21 of 31 386

results include both the divergent and the finite renormaliza-
tion of the Hgg Wilson coefficient, see Appendix A for more
details.

4.3 LO and NLO

At leading order, only the gg channel contributes. We write

2s · dσ̂LO
gg = 〈

FLM,gg(1, 2)
〉
. (4.25)

NLO corrections have a similar structure to those discussed
in Sect. 3.1. The result for the gg channel reads

2s · dσ̂NLO
gg =

〈
Ffin

LV,gg(1, 2) + αs(μ)

2π

[
2π2

3
CA

−2γg ln

(
μ2

s

)]
FLM,gg(1, 2)

〉

+αs(μ)

2π

1∫

0

dz

[
P ′
gg(z) − P̂(0)

gg,R ln

(
μ2

s

)]

×
〈
FLM,gg(z · 1, 2) + FLM,gg(1, z · 2)

z

〉

+
〈
ÔNLOFLM,gg(1, 2, 4)

〉
, (4.26)

with γg = β0 = 11CA/6 − n f /3, and Ffin
LV,gg and the

various splitting functions are defined in Appendix A and
Appendix C, respectively.

NLO corrections to the gq and qg channel read

2s · dσ̂NLO
gq = αs(μ)

2π

1∫

0

dz

〈
FLM,gg(1, z · 2)

z

〉

×
[
P ′
gq(z) − P̂(0)

gq,R ln

(
μ2

s

)]

+
〈
ÔNLOFLM,gq(1, 2, 4)

〉
, (4.27)

and

2s · dσ̂ NLO
qg = αs(μ)

2π

1∫

0

dz

[
P ′
gq(z) − P̂(0)

gq,R ln

(
μ2

s

)]

×
〈
FLM,gg(z · 1, 2)

z

〉
+
〈
ÔNLOFLM,qg(1, 2, 4)

〉
,

(4.28)

respectively. Finally, the qq̄ channel starts contributing at
NLO but it is finite at this order and can simply be written as

2s · dσ̂NLO
qq̄ = 〈

ÔNLOFLM,qq̄(1, 2, 4)
〉 = 〈

FLM,qq̄(1, 2, 4)
〉
.

(4.29)

4.4 NNLO: gluon channel

This channel has the same singularity structure as the Drell–
Yan quark channels, cf. Sect. 3.2, and we use the same phase-
space parametrization and partitioning described there. This
means that the structure of the result is identical to what was
discussed in Sect. 3.2, and we can write it as

dσ̂
NNLO
gg = dσ̂

NNLO
H+2,gg + dσ̂

NNLO
H+1,gg + dσ̂

NNLO
H,gg , (4.30)

and

dσ̂
NNLO
H+2,gg = dσ̂

NNLO
1245,gg,

dσ̂
NNLO
H+1,gg = dσ̂

NNLO
124,gg + dσ̂

NNLO
virt124,gg,

dσ̂
NNLO
H,gg = dσ̂

NNLO
(z,z̄),gg + dσ̂

NNLO
(1,z),gg + dσ̂

NNLO
(z,2),gg

+ dσ̂
NNLO
(1,2),gg + dσ̂

NNLO
virt12,gg.

(4.31)

We now list all these terms separately.

1. Tree-level terms with NNLO kinematics

dσ̂NNLO
1245,gg

=
∑

(i j)∈dc

〈[
(I − C5 j )(I − C4i )

][
I − SS

][
I − S5

]

×[d f4][d f5]w4i,5 j FLM,gg(1, 2, 4, 5)

〉

+
∑

i∈tc

〈[
θ(a)

[
I − CCi

][
I − C5i

]+ θ(b)[I − CCi
][
I − C45

]

+θ(c)[I − CCi
][
I − C4i

]+ θ(d)
[
I − CCi

][
I − C45

]]

× [
I − SS

][
I − S5

][d f4][d f5]w4i,5i FLM,gg(1, 2, 4, 5)

〉
,

(4.32)

which is analogous to Eq. (3.23).
2. Tree-level terms with NLO kinematics

dσ̂NNLO
124,gg = αs(μ)

2π

1∫

0

dz

{
P̂(0)
gg,R(z)

〈
ln

ρ41

4
ÔNLO

×
[

w̃
41,51
5||1 FLM,gg(z · 1, 2, 4)

z

]

+ ln
ρ42

4
ÔNLO

[
w̃

42,52
5||2 FLM,gg(1, z · 2, 4)

z

]〉

+ 2n f P̂
(0)
qg,R(z)

〈
ln

ρ41

4
ÔNLO

×
[

w̃
41,51
5||1 FLM,qg(z · 1, 2, 4)

z

]

+ ln
ρ42

4
ÔNLO

[
w̃

42,52
5||2 FLM,gq (1, z · 2, 4)

z

]〉

+
[
P ′
gg(z) − P̂(0)

gg,R(z) ln

(
μ2

s

)]
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×
〈
ÔNLO

[
FLM,gg(z · 1, 2, 4) + FLM,gg(1, z · 2, 4)

z

]〉

+ 2n f

[
P ′
qg(z) − P̂(0)

qg,R(z) ln

(
μ2

s

)]

×
〈
ÔNLO

[
FLM,qg(z · 1, 2, 4) + FLM,gq (1, z · 2, 4)

z

]〉 }

+ αs(μ)

2π

〈
ÔNLO

[
�g · FLM,gg(1, 2, 4)

+ �r · [rμrνFμν
LM,gg(1, 2, 4)

]]〉
, (4.33)

which is analogous to Eq. (3.48). The splitting functions
in Eq. (4.33) are defined in Appendix C, and �g is given
in Eq. (3.49) with Cg = CA and γg = Xg = β0.

3. Tree-level terms with LO kinematics involving FLM(z ·
1, z̄ · 2):

dσ̂NNLO
(z,z̄),gg =

(
αs(μ)

2π

)2 1∫

0

dz dz̄

×
[
P ′
gg(z) − ln

(
μ2

s

)
P̂(0)
gg,R(z)

]

×
〈
FLM,gg(z · 1, z̄ · 2)

zz̄

〉

×
[
P ′
gg(z̄) − ln

(
μ2

s

)
P̂(0)
gg,R(z̄)

]
. (4.34)

4. Tree-level terms with LO kinematics involving FLM(z ·
1, 2) and FLM(1, z · 2)

dσ̂NNLO
(1,z),gg + dσ̂NNLO

(z,2),gg

=
(

αs(μ)

2π

)2 1∫

0

dz Tgg(z)

×
〈
FLM,gg(z · 1, 2) + FLM,gg(1, z · 2)

z

〉
. (4.35)

5. Tree-level terms with LO kinematics involving
FLM(1, 2):

dσ̂NNLO
(1,2),gg =

〈
FLM(1, 2)

〉
×
(

αs(μ)

2π

)2

×
{
C2

A

[
739

81
+ 4

3
ln 2 + 187π2

54
− 2 ln2(2)

+11

9
π2 ln 2 − 407

36
ζ3 + 13π4

144
+ π2

6
ln2 2

− ln4 2

6
− 7

2
ζ3 ln 2 − 4Li4

(
1

2

)

− ln

(
μ2

s

)(
37

6
+ 11π2

8
+ 23ζ3

)

+ ln2
(

μ2

s

)(
121

36
− 2π2

3

)]

+CAn f

[
− 214

81
− 227

216
π2 − 4

3
ln 2 − 2

9
π2 ln 2

+2 ln2 2 + 37

18
ζ3 + ln

(
μ2

s

)

×
(

94

27
+ π2

4

)
− 11

9
ln

(
μ2

s

)2 ]

+ n2
f

[
11π2

108
− 10

27
ln

(
μ2

s

)
+ 1

9
ln2

(
μ2

s

)]

+�bd

[
C2

A

(
−131

36
+ 11

3
ln 2 + π2

3

)

+CAn f

(
23

36
− 2

3
ln 2

)]}
. (4.36)

6. Terms involving virtual corrections with NLO kine-
matics

dσ̂NNLO
virt124,gg = 〈

ÔNLOF
fin
LV,gg(1, 2, 4)

〉
. (4.37)

7. Terms involving virtual corrections with LO kinemat-
ics:

dσ̂NNLO
virt12,gg =

〈
Ffin

LVV,gg(1, 2) + Ffin
LV2,gg

(1, 2)

+αs(μ)

2π

[
2π2

3
CA − 2γg ln

(
μ2

s

)]

×Ffin
LV,gg(1, 2)

〉
+ αs(μ)

2π

1∫

0

dz

[
P ′
gg(z)

− ln

(
μ2

s

)
P̂(0)
gg,R(z)

]

×
〈
Ffin

LV,gg(z · 1, 2) + Ffin
LV,gg(1, z · 2)

z

〉
. (4.38)

The above equations are analogous to Eqs. (3.56), (3.58),
(3.62), (3.65) and (3.66) in Drell–Yan production, respec-
tively. The finite remainders Ffin

LVV, Ffin
LV2 and Ffin

LV are defined

in Appendix A, the finite remainder Ffin
LV(1, 2, 4) is defined

in Appendix B, the function Tgg is given in the ancillary file,
and �bd is given in Eqs. (3.63, 3.64).

4.5 NNLO: quark–gluon channels

The structure of this channel is analogous to the qg channel
for the Drell–Yan process, discussed in Sect. 3.3. We don’t
repeat the discussion here, and limit ourselves to presenting
final results. To follow Sect. 3.3 as closely as possible, we
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focus on the gq̄ channel. We write

dσ̂
NNLO
gq̄ = dσ̂

NNLO
H+2,gq̄ + dσ̂

NNLO
H+1,gq̄ + dσ̂

NNLO
H,gq̄ , (4.39)

with

dσ̂
NNLO
H+2,gq̄ = dσ̂

NNLO
1245,gq̄ ,

dσ̂
NNLO
H+1,gq̄ = dσ̂

NNLO
124,gq̄ + dσ̂

NNLO
virt124,gq̄ ,

dσ̂
NNLO
H,gq̄ = dσ̂

NNLO
(z,z̄),gq̄ + dσ̂

NNLO
(1,z),gq̄ + dσ̂

NNLO
virt12,gq̄ .

(4.40)

We display the individual contributions below.

1. Tree-level terms with NNLO kinematics

dσ̂NNLO
1245,gq̄

=
∑

(i j)∈dc

〈[
(I − C5 j )(I − C4i )

][
I − S5

]

× [d f4][d f5]w4i,5 j FLM,gq̄ (1, 2, 4, 5)

〉

+
∑

i∈tc

〈[
θ(a)[I − CCi

][
I − C5i

]+θ(b)[I − CCi
][
I − C45

]

+ θ(c)[I − CCi
][
I − C4i

]+ θ(d )
[
I − CCi

][
I − C45

]]

× [
I − S5

][d f4][d f5]w4i,5i FLM,gq̄ (1, 2, 4, 5)

〉
. (4.41)

2. Tree-level terms with NLO kinematics

dσ̂NNLO
124,gq̄

= αs(μ)

2π

1∫

0

dz

{〈
ln

ρ41

4
ÔNLO

[
w̃

41,51
5||1

× P̂(0)
gg,R(z)FLM,gq̄ (z · 1, 2, 4) + P̂(0)

qg,R FLM,qq̄ (z · 1, 2, 4)

z

]〉

+
〈

ln
ρ42

4
ÔNLO

×
[
w̃

42,52
5||2

FLM,gq̄ (1, z · 2, 4)P̂(0)
qq,R(z)+FLM,gg(1, z · 2, 4)P̂(0)

gq,R(z)

z

]〉

+
[
P ′

gg(z) − P̂(0)
gg,R(z) ln

(
μ2

s

)] 〈
ÔNLO

[
FLM,gq̄ (z · 1, 2, 4)

z

]〉

+
[
P ′
qg(z) − P̂(0)

qg,R(z) ln

(
μ2

s

)] 〈
ÔNLO

[
FLM,qq̄ (z · 1, 2, 4)

z

]〉

+
〈
ÔNLO

[
FLM,gq̄ (1, z · 2, 4)

z

] [
P ′
qq (z) − P̂(0)

qq,R(z) ln

(
μ2

s

)]〉

+
〈
ÔNLO

[
FLM,gg(1, z · 2, 4)

z

] [
P ′

gq (z) − P̂(0)
gq,R(z) ln

(
μ2

s

)]〉}

+ αs(μ)

2π

〈
ÔNLO

[
�(qg) · FLM,gq (1, 2, 4)

]〉
. (4.42)

3. Tree-level terms with LO kinematics involving FLM(z ·
1, z̄ · 2):

dσ̂NNLO
(z,z̄),gq̄ =

(
αs(μ)

2π

)2 1∫

0

dz dz̄

[
P ′
gg(z)

− ln

(
μ2

s

)
P̂(0)
gg,R(z)

]

×
〈
FLM,gg(z · 1, z̄ · 2)

zz̄

〉

×
[
P ′
gq(z̄) − ln

(
μ2

s

)
P̂(0)
gq,R(z̄)

]
. (4.43)

4. Terms with LO kinematics involving FLM(1, z · 2):

dσ̂NNLO
(1,z),gq̄ =

(
αs(μ)

2π

)2 1∫

0

dz Tgq(z)
〈
FLM,gg(1, z · 2)

z

〉
.

(4.44)

5. Terms involving virtual corrections with NLO kine-
matics:

dσ̂NNLO
virt124,gq̄ = 〈

ÔNLOF
fin
LV,gq̄(1, 2, 4)

〉
. (4.45)

6. Terms involving virtual corrections with LO kinemat-
ics:

dσ̂NNLO
virt12,gq̄ = αs(μ)

2π

1∫

0

[
P ′
gq(z) − ln

(
μ2

s

)
P̂(0)
gq,R(z)

]

×
〈
Ffin

LV,gg(1, z · 2)

z

〉
. (4.46)

The splitting functions used in these equations are defined
in Appendix C, �(qg) is given in Eq. (3.72), Tgq is given in
the ancillary file, and the Ffin

LV finite remainders are defined
in Appendix A and B. Results for the qg channel can be
trivially obtained from the above formulas under a 1 ↔ 2
replacement.

4.6 NNLO: qq̄ channel

The singularity structure of this channel can be organized
as follows. There are purely collinear singularities, coming
from configurations where the q and the q̄ emit two t-channel
gluons that produce a Higgs. These singularities have the
same structure as those appearing in the gg channel for the
Drell–Yan process. Apart from these, there are other singular
contributions which don’t have a Drell–Yan equivalent. They
stem from extra gluon emission in the s-channel qq̄ → H+g
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process. These are of NLO origin, so they don’t pose any
particular challenge.

Because of its simple singularity structure, we don’t dis-
cuss this channel in detail. For completeness, we present
final formulas that are obtained using the same setup that
we employed for the gg channel in Sect. 4.4. We write

dσ̂
NNLO
qq̄ = dσ̂

NNLO
H+2,qq̄ + dσ̂

NNLO
H+1,qq̄ + dσ̂

NNLO
H,qq̄ , (4.47)

and

dσ̂
NNLO
H+2,qq̄ = dσ̂

NNLO
1245,qq̄ ,

dσ̂
NNLO
H+1,qq̄ = dσ̂

NNLO
124,qq̄ + dσ̂

NNLO
virt124,qq̄ ,

dσ̂
NNLO
H,qq̄ = dσ̂

NNLO
(z,z̄),qq̄ .

(4.48)

We now present the individual contributions:

1. Tree-level terms with NNLO kinematics

dσ̂NNLO
1245,qq̄

=
∑

(i j)∈dc

〈[
(I − C5 j )(I − C4i )

][
I − SS

][
I − S5

]

× [d f4][d f5]w4i,5 j FLM,qq̄(1, 2, 4, 5)

〉

+
∑

i∈tc

〈[
θ(a)

[
I − CCi

][
I − C5i

]

+ θ(b)[I − CCi
][
I − C45

]

+ θ(c)[I − CCi
][
I − C4i

]

+ θ(d)
[
I − CCi

][
I − C45

]]

× [
I − SS

][
I − S5

][d f4][d f5]w4i,5i

× FLM,qq̄(1, 2, 4, 5)

〉
. (4.49)

2. Tree-level terms with NLO kinematics

dσ̂NNLO
124,qq̄ = αs(μ)

2π

1∫

0

dz

{
P̂(0)
qq,R(z)

×
〈

ln
ρ41

4
ÔNLO

[ w̃
41,51
5||1 FLM,qq̄ (z · 1, 2, 4)

z

]

+ ln
ρ42

4
ÔNLO

[ w̃
42,52
5||2 FLM,qq̄ (1, z · 2, 4)

z

]〉

+ P̂(0)
gq,R(z)

〈
ln

ρ41

4
ÔNLO

×
[ w̃

41,51
5||1 FLM,gq̄ (z · 1, 2, 4)

z

]

+ ln
ρ42

4
ÔNLO

[ w̃
42,52
5||2 FLM,qg(1, z · 2, 4)

z

]〉

+
[
P ′
qq (z) − P̂(0)

qq,R(z) ln

(
μ2

s

)]

×
〈
ÔNLO

[
FLM,qq̄ (z · 1, 2, 4) + FLM,qq̄ (1, z · 2, 4)

z

]〉

+
[
P ′
gq (z) − P̂(0)

gq,R(z) ln

(
μ2

s

)]

×
〈
ÔNLO

[
FLM,gq̄ (z · 1, 2, 4) + FLM,qg(1, z · 2, 4)

z

]〉 }

+ αs(μ)

2π

〈
ÔNLO

[
�q · FLM,qq̄ (1, 2, 4)

+ �r · [rμrνFμν
LM,qq̄ (1, 2, 4)

]]〉
. (4.50)

3. Tree-level terms with LO kinematics involving FLM(z ·
1, z̄ · 2):

dσ̂NNLO
(z,z̄),qq̄ =

(
αs(μ)

2π

)2 1∫

0

dz dz̄

×
[
P ′
gq(z) − ln

(
μ2

s

)
P̂(0)
gq,R(z)

]

×
〈
FLM,gg(z · 1, z̄ · 2)

zz̄

〉

×
[
P ′
gq(z̄) − ln

(
μ2

s

)
P̂(0)
gq,R(z̄)

]
. (4.51)

4. Terms involving virtual corrections with NLO kine-
matics:

dσ̂NNLO
virt124,qq̄ = 〈

Ffin
LV,qq̄(1, 2, 4)

〉
. (4.52)

The splitting functions used in these equations are defined in
Appendix C, �q is given in Eq. (3.49) with Ci = CF , γq =
3CF/2,Xq = 3CA/2, and the Ffin

LV finite remainder is defined
in Appendix B. Note that, contrary to all the cases discussed
so far, Ffin

LV,qq̄ does not require any additional regularization.

4.7 NNLO: quark channels

The singularity structure of this channel is the same as that
of the gg channel for the Drell–Yan process. Because of this,
we use the same parametrization described in Sect. 3.4. We
write

dσ̂
NNLO
qi q j

= dσ̂
NNLO
H+2,qi q j

+ dσ̂
NNLO
H+1,qi q j

+ dσ̂
NNLO
H,qi q j

, (4.53)

with

dσ̂
NNLO
H+2,qi q j

= dσ̂
NNLO
1245,qi q j

,

dσ̂
NNLO
H+1,qi q j

= dσ̂
NNLO
124,qi q j

,

dσ̂
NNLO
H,qi q j

= dσ̂
NNLO
(z,z̄),qi q j

.

(4.54)
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Repeating the steps discussed in Sect. 3.4 we obtain the fol-
lowing results.

1. Tree-level terms with NNLO kinematics

dσ̂NNLO
1245,qi q j

=
〈[
I − C41 − C42 − C51 − C52

+C42C51 + C41C52
]

×[d f4][d f5]FLM,qi q j (1, 2, 4, 5)

〉
. (4.55)

2. Tree-level terms with NLO kinematics

dσ̂NNLO
124,qi q j

= αs (μ)

2π

1∫

0

dz

[
P ′
gq (z) − P̂(0)

gq,R(z) ln

(
μ2

s

)]

×
〈
ÔNLO

[
FLM,gq j (z · 1, 2, 4) + FLM,qi g(1, z · 2, 4)

z

]〉
.

(4.56)

3. Tree-level terms with LO kinematics involving FLM(z ·
1, z̄ · 2):

dσ̂NNLO
(z,z̄),qi q j

=
(

αs(μ)

2π

)2 1∫

0

dz dz̄

×
[
P ′
gq(z) − ln

(
μ2

s

)
P̂(0)
gq (z)

]

×
〈
FLM,gg(z · 1, z̄ · 2)

zz̄

〉

×
[
P ′
gq(z̄) − ln

(
μ2

s

)
P̂(0)
gq (z̄)

]
. (4.57)

5 Validation of results

In this section, we describe the numerical checks that have
been used to validate the results described in the preceding
sections. We use the processes pp → Z and pp → H as
test cases, since for both of these processes the NNLO QCD
corrections to the inclusive cross sections are known analyt-
ically [34,35]. This allows us to perform a high-precision
check of our formulas.

We begin by describing our setup. We consider proton-
proton collisions with 13 TeV center-of-mass energy. We
use mZ = 91.1876 GeV, mH = 125 GeV and mt =
173.2 GeV for the Z , the Higgs and the top quark masses,
respectively. We derive the weak coupling constant from
g2
W = 4

√
2m2

WGF , with mW = 80.398 GeV and GF =

1.16639 × 10−5 GeV−2. The weak mixing angle is com-
puted from sin2 θW = 1 − m2

W /m2
Z . We will consider both

on-shell pp → Z production and pp → e+e− production.
In the latter case, we include both the Z and the γ ∗ contri-
butions, and we use �Z = 2.4952 GeV.

For the Higgs case, we consider pp → H production in
the mt → ∞ approximation and describe the Higgs cou-
pling to gluons using the effective interaction Lagrangian
LI = −λHggHG(a)

μνGμν,(a), see Appendix A for details. The
coupling λHgg depends on the Higgs vacuum expectation
value v. For our results, we use v2 = (GF

√
2)−1. All com-

putations are done using the NNPDF3.0 parton distribution
set [40], with 5 active flavors. We employ LO/NLO/NNLO
sets for LO/NLO/NNLO predictions, respectively. We use
the value of the strong coupling and its evolution provided
by the PDF sets, with αs(mZ ) = 0.118 at (N)NLO, and
αs(mZ ) = 0.130 at LO.

We first consider fully inclusive on-shell Z production. We
compare results obtained within our framework to the ana-
lytic results of Ref. [34] that we implemented in HOPPET
[41]. We study each partonic channel individually, and addi-
tionally split some of the channels into contributions with
different color factors in order to validate all the different sin-
gularity structures independently. We show results for a sin-
gle fixed factorization and renormalization scale μ = 2mZ ,
although we have performed the same check for different
scales as well. We note that these inputs are not chosen for
their phenomenological relevance, but rather to provide strin-
gent checks on our results.

We summarize our findings in Table 1. It shows that
our framework allows for extremely high precision results,
with numerical errors at the per mille level or better.9 These
results are always fully compatible with the analytic ones
within the numerical uncertainties. We remind the reader that
these numbers refer to the NNLO coefficients, which implies
absolute precision on the physical cross section. Analogous
results for the case of Higgs production for equal renormal-
ization and factorization scales μR = μF = mH/2 are
shown in Table 2. Again, we find it convenient to perform
numerical checks for different partonic channels indepen-
dently. Also in this case, our numerical results have tiny
uncertainties and are in perfect agreement with the analytic
values obtained from Ref. [35].

Having fully validated our results, we now briefly inves-
tigate the performance of the framework when applied to
the computation of physically relevant predictions. Specifi-
cally, we explore the computational effort required to obtain
predictions for physical quantities at the per mille level. We
start by considering inclusive Higgs production, at the 13
TeV LHC. For this study, we set μR = μF = mH . Running

9 The larger error in some channels is caused by non-negligible can-
cellations between different contributions to the final result.
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Table 1 Different contributions
to the NNLO coefficient for
on-shell Z production at the 13
TeV LHC with μR = μF =
2mZ . All the color factors are
included in the numerical
results. The residual
Monte-Carlo integration error is
shown in brackets. See text for
details

Channel Color structures Numerical result (nb) Analytic result (nb)

qi q̄i → gg – 8.351(1) 8.3516

qi q̄i → q j q̄ j CFTRnup, CFTRndn −2.1378(5) −2.1382

CF (CA − 2CF ) −4.8048(3) × 10−2 −4.8048 × 10−2

CFTR 5.441(7)×10−2 5.438×10−2

qiq j → qiq j (i �= − j) CFTR 0.4182(5) 0.4180

CF (CA − 2CF ) −9.26(1) × 10−4 −9.26 × 10−4

qi g + gqi – −9.002(9) −8.999

gg – 1.0772(1) 1.0773

Table 2 Different contributions to the NNLO coefficient for on-shell
H production at the 13 TeV LHC with μR = μF = mH /2. The resid-
ual Monte-Carlo integration error is shown in brackets. The labels qq
and qq ′ refer to quark initial states with identical and different flavors,
respectively. See text for details

Channel Numerical result (pb) Analytic result (pb)

gg → gg 9.397(1) 9.398

gg → qq̄ −1.243(2) −1.243

qg + gq 0.7865(8) 0.7861

qq̄ 1.145(1) · 10−2 1.146 · 10−2

qq 2.139(3) · 10−2 2.140 · 10−2

qq ′ 5.967(5) · 10−2 5.970 · 10−2

for less than an hour on a single core of a standard laptop,
we obtain

σLO
H = 17.03(0) pb; σNLO

H = 30.25(1) pb;
σNNLO

H = 39.96(2) pb. (5.1)

As one can see from Eq. (5.1) the numerical uncertainty on
the full NNLO cross section is below one per mille. The
result is in full agreement10 with the benchmark predictions
reported in Ref. [42].

We now move to fiducial cross sections. We consider
pp → Z/γ ∗ → e−e+ production in the fiducial volume
defined by symmetric lepton cuts, as studied in Ref. [42].
Specifically, we require that the transverse momentum and
rapidity of each lepton satisfy

pT,� > 25 GeV |η�| < 2.47, (5.2)

and that the invariant mass of the lepton pair is in a window
66 GeV < me−e+ < 116 GeV. In this case, we use μR =
μF = mZ . Running on a single core of a standard laptop for
about an hour, we obtain

σLO
DY = 650.4 ± 0.1 pb; σNLO

DY = 700.2 ± 0.3 pb;
σNNLO

DY = 734.8 ± 1.4 pb. (5.3)

10 The different LO cross section w.r.t. Ref. [42] is due to a different
choice of LO PDFs.

We note that in this case the error is at the few per mille level.
We compared the NNLO K -factor against the benchmark
result presented in Ref. [42], and found agreement within
the numerical precision.

As a final comment, we note that although the processes
studied here are very simple, which makes it difficult to pre-
dict how the framework will perform for more complicated
ones, these results are very encouraging.

6 Conclusions

In this paper, we presented compact analytic formulas that
describe the fully-differential production of color-singlet
final states in hadron collisions. We studied final states that,
at leading order, can be produced either in qq̄ or in gg anni-
hilation.

Our calculation employs the nested soft-collinear subtrac-
tion scheme that we developed earlier in Ref. [30]. However,
compared to its original formulation, we found it useful to
modify it to allow for a simpler analytic integration of the
triple-collinear limits. We explained the required changes in
Sect. 2.

We validated our results by using them to numerically
compute NNLO QCD contributions to the total cross sections
of Z and H production in proton collisions, and comparing
them with results based on the convolution of known analytic
results for the partonic cross sections for these two processes
with parton distribution functions. For both Z and H pro-
duction, we found an agreement at a better-than-per-mille
level for NNLO coefficient functions. We also showed that
our computation can deal with fiducial cuts quite efficiently.

As far as we know, the results presented in this paper pro-
vide the first implementation of a fully local and fully analytic
NNLO QCD subtraction scheme. Although – as we already
emphasized in the introduction – it is difficult to say to what
extent these nice features of the subtraction scheme will help
with its efficiency, we hope that they will be helpful in that
respect. However, regardless of the performance issues, the
physical clarity and overall transparency of the obtained for-
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mulas give us hope that analytic, local NNLO QCD subtrac-
tions for arbitrarily complex hadron collider processes are
within reach.
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A Purely virtual contribution: definitions

We consider the UV-renormalized amplitude for the process
p1 + p2 → V

A(p1, p2; {pV }) = A0(1, 2) + αs(μ)

2π
A1(1, 2)

+
(

αs(μ)

2π

)2

A2(1, 2) + · · · . (A.1)

Following Ref. [43], we write

A1(1, 2) = I1(ε)A0(1, 2) + A1,fin(1, 2),

A2(1, 2) = I2(ε)A0(1, 2) + I1(ε)A1(1, 2) + A2,fin(1, 2),
(A.2)

with Ai,fin finite in four dimensions. The explicit form of the
Ii operators read [43]

I1(ε) = − eεγE

�(1 − ε)

(
Ci

ε2 + γi

ε

)
eiπε

(
μ2

s12

)ε

,

I2(ε) = −1

2
I2

1 (ε) − β0

ε
I1(ε) + e−εγE�(1 − 2ε)

�(1 − ε)

×
(

β0

ε
+ K

)
I1(2ε) + eεγE

�(1 − ε)

Hi

2ε
, (A.3)

with

β0 = 11

6
CA− 2

3
TRn f , K =

(
67

18
− π2

6

)
CA − 10

9
TRn f .

(A.4)

For qq̄ → V reactions, i = q and

Cq = CF , γq = 3

2
CF ,

Hq = C2
F

(
π2

2
− 6ζ3 − 3

8

)

+CACF

(
245

216
− 23

48
π2 + 13

2
ζ3

)

+CFn f

(
π2

24
− 25

108

)
, (A.5)

while for gg → V reactions i = g and

Cg = CA, γg = β0, (A.6)

Hg = C2
A

(
5

12
+ 11

144
π2 + ζ3

2

)
+ CAn f

(
−29

27
− π2

72

)

+CFn f

2
+ 5

27
n2
f . (A.7)

To express the virtual contribution to the cross-section, it
is also useful to define

I12(ε) = 2Re[I1(ε)]
= −2 cos(επ)

eεγE

�(1 − ε)

(
μ2

s12

)ε [
Ci

ε2 + γi

ε

]
. (A.8)

The NLO virtual correction can then be written as

2s · dσ̂
NLO,V =

(
αs(μ)

2π

)
I12(ε) 〈FLM (1, 2)〉

+ 〈
FLV,fin(1, 2)

〉
, (A.9)

with FLV,fin finite and proportional to 2Re
[
A0A∗

1,fin

]
. Sim-

ilarly, we can write the purely virtual corrections at NNLO
as

2s · dσ̂NNLO,VV

=
[
I 2
12(ε)

2
− β0

ε
I12(ε) + e−εγE�(1 − 2ε)

�(1 − ε)

×
(

β0

ε
+ K

)
I12(2ε) + eεγE

�(1 − ε)

Hi

ε

]

×
(

αs(μ)

2π

)2

〈FLM(1, 2)〉 + I12(ε)

(
αs(μ)

2π

)

×
〈
Ffin

LV(1, 2)
〉
+
〈
Ffin

LVV(1, 2)
〉
+
〈
Ffin

LV2(1, 2)
〉
, (A.10)

with Ffin
LVV and Ffin

LV2 finite and proportional to 2Re
[
A0A∗

2,fin

]

and |A1,fin|2, respectively.

A.1 Finite remainder: Drell–Yan

In this section, we report the finite remainders for the Drell–
Yan process, see e.g. [44]. We obtain

〈
Ffin

LV, fa fb (1, 2)
〉
|μ2=Q2
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= −8CF

( αs

2π

) 〈
FLM, fa fb (1, 2)

〉+ O(ε),

〈
Ffin

LV2, fa fb
(1, 2)

〉
|μ2=Q2

= 16C2
F

( αs

2π

)2 〈
FLM, fa fb (1, 2)

〉+ O(ε),

〈
Ffin

LVV, fa fb (1, 2)
〉
|μ2=Q2

=
( αs

2π

)2
[
C2
F

(
255

16
+ 29π2

12
− 15ζ3 − 11π4

90

)

+ CFCA

(
−51157

1296
− 107π2

72
+ 659ζ3

36
+ 31π4

240

)

+ CFn f

(
4085

648
+ 7π2

36
− ζ3

18

)]

× 〈
FLM, fa fb (1, 2)

〉+ O(ε), (A.11)

with Q2 = p2
V and αs = αs(Q). Results for generic μ

can easily be obtained from renormalization group evolution
(RGE) arguments.

A.2 Finite remainder: Higgs

In this section, we report the finite remainders for the Higgs
process. More precisely, we consider a theory where the
Higgs is coupled directly to gluons through the effective inter-
action Lagrangian

LI = −λHggHG(a)
μνG

μν,(a), (A.12)

where the (bare) Hgg coupling is given by

λHgg,b = − αs

12πv
C(αs)Zeff(αs). (A.13)

In this formula, αs = αs(μ) is the renormalized coupling
in a theory with 5 light flavors, v is the Higgs v.e.v. and the
divergent (Zeff(αs)) and finite (C(αs)) parts of the Wilson
coefficient renormalization are given in the MS scheme by

Zeff(αs) = 1 − β0

ε

( αs

2π

)
+
[

β2
0

ε2 − β1

ε

]( αs

2π

)2 + O(α3
s ),

C(αs) = 1 +
[

5

2
CA − 3

2
CF

] ( αs

2π

)

+
[

1063

144
C2

A − 25

3
CACF + 27

8
C2
F

−47

72
CAn f − 5

8
CFn f − 5

48
CA − CF

6

+ ln

(
μ2

m2
t

)(
7

4
C2

A − 11

4
CACF + CFn f

)]

×
( αs

2π

)2 + O(α3
s ), (A.14)

see e.g. [45]. In Eq. (A.14), mt is the top-quark mass, β0 has
been defined in Eq. (A.4) and

β1 = 17

6
C2

A − 5

3
CATRn f − CFTRn f . (A.15)

Combining the result for the Hgg form factor in e.g. [44]
with the finite part of the Wilson coefficient renormalization,
we obtain for the Higgs finite remainders

〈
Ffin

LV,gg(1, 2)
〉
|μ2=Q2

=
( αs

2π

) [
5CA − 3CF

] 〈
FLM,gg(1, 2)

〉+ O(ε),

〈
FLV 2,gg,fin(1, 2)

〉 |μ2=Q2

=
( αs

2π

)2
[
β2

0π2 +
(

5

2
CA − 3

2
CF

)2 ]

× 〈
FLM,gg(1, 2)

〉+ O(ε),
〈
Ffin

LVV,gg(1, 2)
〉
|μ2=Q2 =

( αs

2π

)2

×
{
C2

A

(
5105

324
− 17π2

3
− 253ζ3

36
+ π4

144

)

+ CAn f

(
−458

81
+ 481π2

216
− 49ζ3

18

)

+ CFn f

(
−67

12
+ 4ζ3

)
− 23

108
n2
f π

2

+
[

1063

72
C2

A + 27

4
C2
F − 50

3
CACF − 47

36
CAn f

− 5

4
CFn f − 5

24
CA − 1

3
CF

+
(

7

2
C2

A − 11

2
CACF + 2CFn f

)
ln

(
Q2

m2
t

)]}

× 〈
FLM,gg(1, 2)

〉+ O(ε), (A.16)

with Q2 = p2
H and αs = αs(Q). Results for generic μ can

easily be obtained from RGE arguments.

B Real-virtual contribution: definitions

We consider the one-loop amplitude for the process

f1 + f2 → V/H + f4, (B.1)

where V/H indicates either Drell–Yan or Higgs production,
as in Sects. 3 and 4. Following Appendix A, we write it as

A(p1, p2, p4; {pV }) = A0(1, 2, 4)

+αs(μ)

2π
A1(1, 2, 4) + · · · , (B.2)
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with

A1(1, 2, 4) = I1(1, 2, 4; ε)A0(1, 2, 4) + A1,fin(1, 2, 4).

(B.3)

In the above, I1(1, 2, 4; ε) is the equivalent of I1(ε) of
Eq. (A.2) for the f1 + f2 → V/H + f4 kinematic con-
figurations (cf. Ref. [43]), and A1,fin(1, 2, 4) is finite. We
then define

I124(ε) = 2Re
[
I1(1, 2, 4; ε)

]
, (B.4)

and write the real-virtual contribution to the NNLO cross-
section as

dσ̂NNLO,RV =αs(μ)

2π
〈I124(ε)FLM(1, 2, 4)〉

+
〈
Ffin

LV(1, 2, 4)
〉
,

(B.5)

with Ffin
LV,i j (1, 2, 4) finite. The explicit form of I124 depends

on the color structure of the process. Since the process
Eq. (B.1) must involve either a gluon and a qq̄ pair or 3
gluons, we can classify the most general case according to
the position of a gluon and write

I1i2 j4g = eεγE

�(1 − ε)

{
cos(επ)

(
μ2

s12

)ε

×
[
CA − 2Ci

ε2 + Xi − 2γi

ε

]

−
[(

μ2

s14

)ε

+
(

μ2

s24

)ε
][

CA

ε2 + Xi + γg

2ε

]}
,

I1g2i4 j = eεγE

�(1 − ε)

{(
μ2

s24

)ε [
CA − 2Ci

ε2 + Xi − 2γi

ε

]

−
[(

μ2

s14

)ε

+ cos(επ)

(
μ2

s12

)ε
]

×
[
CA

ε2 + Xi + γg

2ε

]}
,

I1i2g4 j = eεγE

�(1 − ε)

{(
μ2

s14

)ε [
CA − 2Ci

ε2 + Xi − 2γi

ε

]

−
[(

μ2

s24

)ε

+ cos(επ)

(
μ2

s12

)ε
]

×
[
CA

ε2 + Xi + γg

2ε

]}
, (B.6)

with

Xq = 3

2
CA, Xg = γg. (B.7)

Here si j = 2Ei E jρi j , with Ei, j > 0.

C Splitting functions

In this appendix we collect the relevant splitting functions
used in the main text. We write the LO Altarelli-Parisi split-
ting functions as

P̂(0)
i j (z) = P̂(0)

i j,R(z) + P̂(0)
i j,δ δ(1 − z), (C.1)

with

P̂(0)
qq,R(z) = CF

[
2

(1 − z)+
− (1 + z)

]
,

P̂(0)
qg,R(z) = TR

[
z2 + (1 − z)2],

P̂(0)
gq,R(z) = CF

[
1 + (1 − z)2

z

]
,

P̂(0)
gg,R(z) = 2CA

[
1

(1 − z)+
+ 1

z
+ z(1 − z) − 2

]
,

(C.2)

and

P̂(0)
qq,δ = γq = 3

2
CF , P̂(0)

gg,δ = γg = β0

= 11

6
CA − 2

3
TRn f , P̂(0)

qg,δ = P̂(0)
gq,δ = 0. (C.3)

The P ′
i j splitting functions are related to the O(ε) part of

the LO splitting functions, and read

P ′
qq(z) = CF

(
4

[
ln(1 − z)

1 − z

]

+
−2(1 + z) ln(1 − z) + (1 − z)) ,

P ′
qg(z) = TR

(
2
[
z2 + (1 − z)2] ln(1 − z) + 2z(1 − z)

)
,

P ′
gq(z) = CF

(
2

[
1 + (1 − z)2

z

]
ln(1 − z) + z

)
,

P ′
gg(z) = 2CA

(
2

[
ln(1 − z)

1 − z

]

+

+ 2

[
1

z
+ z(1 − z) − 2

]
ln(1 − z)

)
. (C.4)

D Transition functions

The transition functions Ti j introduced in the text are gener-
alizations of NLO Altarelli-Parisi splitting functions. They
depend on the scale μ of the process (though this dependence
is of course entirely determined by RGE arguments), on an
energy fraction z and, in general, on the choice of partition
functions through the factor

�ac ≡ −
〈[
I − C41

] [ ρ12

ρ41ρ42

] (
w̃

41,51
5||1 ln

ρ41

4

) 〉
. (D.1)

For the choice Eq. (3.22), we obtain

�ac = 1 + ln 2. (D.2)
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We now show results for a typical transition function, namely
the nonsinglet function relevant for Drell–Yan production. It
reads.

T NS
qq = C2

F
[
4D̃1(z)

]
�ac + C2

F

[
8D̃3(z)

+ 16D̃0(z)ζ(3) + (z + 1)

12
ln3(z)

+
3
(

2z2 + 2z − 7
)

ln2(z)

4(1 − z)
+
(

4(z + 1) ln(z + 1)

+22z2 + 5z − 17

2(1 − z)

)
ln(z) − π2(8 − 5z)z

3(1 − z)
+ (23z − 17)

2

− ln2(1 − z)

⎛

⎝2(1 − z) +
(

1 − 7z2
)

ln(z)

2(1 − z)

⎞

⎠+ ln(1 − z)

×
⎛

⎝19z

2
+

π2
(

3 − 5z2
)

6(1 − z)
+
(

7z2 − 2z + 7
)

ln(z)

1 − z
− 10

⎞

⎠

+ 4(z + 1)Li2(−z) −
⎛

⎝
2
(

2z2 − 5
)

1 − z
+
(

3 − 5z2
)

ln(1 − z)

1 − z

⎞

⎠

Li2(z) +
[

1 + z2

1 − z

]
×
(

− 5

2
ln(1 − z) ln2(z) − 4Li2(−z) ln(z)

− Li2(z) ln(z) + 2

3
π2 ln(z) + 8Li3(−z)

)

+
(

9z2 + 1
)

Li3(1 − z)

1 − z
−
(

1 − 3z2
)

Li3(z)

1 − z
+
(

3z2 + 7
)

ζ3

1 − z

]

+ CFn f

[
4

3
D̃2(z) − 20

9
D̃1(z) + D̃0(z)

(
34

27
− π2

3
+ 2 ln 2

3

)

+ (5z − 11)

18
− 1

3
(1 − z)

[
2 ln(1 − z) + ln 2

]

+
(

5z2 + 6z − 7
)

ln(z)

18(1 − z)
+
[

1 + z2

1 − z

]

×
(

−1

4
ln2(z) + 2Li2(z)

3
− π2

9

)]

+ CACF

[
− 22

3
D̃2(z) +

(
134

9
− 2π2

3

)
D̃1(z)

−
(

208

27
− 11π2

6
+ 2 ln 2

3
− 9ζ3

)
D̃0(z)

+
(

7z2 − 12z + 27
)

ln2(z)

8(1 − z)
−
(

83z2 + 114z − 109

18(1 − z)

+2(z + 1) ln(z + 1)

)
ln(z) − 2

9
(17z − 5)

+
π2

(
19z2 − 6z + 31

)

36(1 − z)
+ ln(1 − z)

×
(

58 − 55z

6
− (1 − z) ln(z)

)

− 2(z + 1)Li2(−z) −
2
(

4z2 − 3z + 10
)

Li2(z)

3(1 − z)

+
[

1 + z2

1 − z

](
7 ln3(z)

12
− ln2(1 − z) ln(z) + 2Li2(−z) ln(z)

+ π2

3
ln(z) + π2

6
ln(1 − z) + [

ln(z) − ln(1 − z)
]
Li2(z)

− 5Li3(1 − z) − 4Li3(−z) − 4Li3(z) + ζ3

)

+ 1

3
(1 − z) ln 2

]
+ ln

(
μ2

s

){
β0CF

(
4D̃1(z)

−10

3
D̃0(z) −

(
1 + z2

)
ln(z)

1 − z
+ z − 1

⎞

⎠

+ CACF

⎡

⎣
(

π2

3
− 4

3

)
D̃0(z) −

(
1 + z2

)
ln2(z)

2(1 − z)

−3(1 − z) − (z + 1) ln(z)] + C2
F

[
− 12D̃2(z) − 12D̃1(z)

− 2(z + 1)Li2(1 − z) +
(

3z2 + 1
)

ln2(z)

2(1 − z)

−
(

4z2 + 2z − 3
)

ln(z)

1 − z
+ 2 ln(1 − z)

(
2z2 ln(z)

1 − z
− z + 1

)
+ 2(1 − z)

]}

+ ln2

(
μ2

s

)⎧⎨

⎩C2
F

⎛

⎝4D̃1(z) + 6D̃0(z)

−
(

3z2 + 1
)

ln(z)

2(1 − z)
+ z − 1

⎞

⎠− CFβ0D̃0(z)

⎫
⎬

⎭ , (D.3)

where we have defined

D̃i (z) ≡
[

lni (1 − z)

1 − z

]

+
− 1

2
(1 + z) lni (1 − z), (D.4)

and as usual β0 = 11CA/6 − n f /3. Expressions for all the
other relevant transition functions have the same form as
Eq. (D.3), and can be found in the ancillary file.
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