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Abstract: On the occasion of this special issue, we start by briefly outlining some of the history and
future perspectives of the field of 3D metamaterials in general and 3D mechanical metamaterials
in particular. Next, in the spirit of a specific example, we present our original numerical as well as
experimental results on the phenomenon of acoustical activity, the mechanical counterpart of optical
activity. We consider a three-dimensional chiral cubic mechanical metamaterial architecture that is
different from the one that we have investigated in recent early experiments. We find even larger
linear-polarization rotation angles per metamaterial crystal lattice constant than previously and a
slower decrease of the effects towards the bulk limit.
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1. Introduction

Consider the three-dimensional (3D) micro-lattice shown in Figure 1 as an example. When giving
talks to a broad audience, an ever-reoccurring question is whether one should see such an artificial
crystal as a “structure” or as a “material”. The true answer is that both viewpoints are permissible.
However, treating such rationally designed lattices as material or “metamaterial” has the advantage
that the properties of the lattice can be mapped onto simple effective-medium parameters, such as, for
example, the effective Young’s modulus in mechanics. Working further with these effective-medium
parameters to design systems eases the treatment compared to looking at an entire system as a micro-
or nanostructure. By analogy, computer chips are successfully designed by using electric conductivities
etc., whereas the design would likely be impossible if the entire computer chip needed to be treated on
the level of individual atoms.

The “meta” in metamaterials emphasizes that these effective-medium properties go beyond the
properties of the ingredient materials, qualitatively or quantitatively [1]. Sometimes, they can even
go beyond what nature has to offer. However, one should be cautious when referring to nature.
Nature offers a multitude of amazing microstructured materials, ranging from 3D photonic crystals in
butterflies, beagles, and plants to mechanical materials such as wood, bone, or skin.

It should be said that the understanding of the notion of “metamaterials” has changed significantly
over the last 20 years [1]. Originally, metamaterials were solely associated with man-made lattices with
centimeter-scale periods leading to effective negative refractive indices in electromagnetism at GHz
frequencies. In fact, early definitions explicitly restricted metamaterials to electromagnetic waves [1].
Miniaturization of the unit cells by orders of magnitude brought the field to optical and even to visible
frequencies [2].

This ground sometimes made the publication of early work on mechanical metamaterials difficult.
One of us distinctly remembers reviewers’ comments such as “ . . . the authors misuse the term
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metamaterials . . . ”, “ . . . metamaterials require multiple different components. The structure discussed
here has only one . . . ”, “ . . . metamaterials must address waves, whereas the authors speak about
static properties . . . ”, “ . . . the static case lacks a characteristic length scale . . . ” or “ . . . the idea of
mechanical metamaterials is not new. Many examples have been published decades ago . . . ” etc. We
know from personal discussions that others in the field of mechanical metamaterials faced very similar
negative reactions early on. To some extent, these reactions were probably based on the fact that the
notion “metamaterial” was a cash cow for funding in the early years of this century after the notion had
been coined. For some, the idea of metamaterials just somehow sounded interesting and fashionable.

Having said that, we should humbly admit that the idea of artificial composite materials with
unusual properties is not new. The 2002 textbook by Graeme W. Milton “The Theory of Composites” [3]
summarizes the history as well as the underlying physics and mathematics on more than 700 pages.
The word “metamaterial” does not appear once in this book though. In mechanics, for example,
Roderik Lakes published early work on auxetics [4]. Milton and Cherkaev introduced the concept of
pentamodes (or “anti-auxetics”) [5], from which any linearly elastic material describable by Cauchy
elasticity can be constructed conceptually. However, experimental advances in nanofabrication and in
3D printing on the macro- and on the micro-scale have spurred interest tremendously and have in turn
stimulated novel designs and design approaches [1].

Mechanical metamaterials offer opportunities yet beyond those of optical metamaterials. In the
linear regime, mechanics is richer than optics. This statement has been proven mathematically [6] by
arranging the equations of mechanics and electromagnetism into the same form. Intuitively, mechanics
always comprises transverse and longitudinal excitations at the same time. In contrast, longitudinal
waves can appear in optics in only a few rare exceptions. In the nonlinear mechanical regime, nonlinear
geometric effects can lead to huge nonlinearities and multi-stable behavior even if the constituents
behave purely linearly elastic [7,8]. In contrast, nonlinear effects in optics are almost always very small
corrections of the linear properties. Recent reviews on mechanical metamaterials in general can also be
found in [9–11].

Nevertheless, some effects that have been known for decades in optics have not been observed in
mechanics until recently. Ultrasound acoustical activity emphasized in this paper is one such example.

More broadly, some of us have speculated previously [1] that the futures of 3D metamaterials and
3D printing may be closely linked: In 2D graphical printing (ink-jet or laser printing), one routinely
uses the concept of “dithering” to generate thousands of apparent or effective colors from just four
ink cartridges (black, cyan, magenta, and yellow). Looking through a microscope, one notices that
the 2D printer can actually only print dot patterns, with each dot originating from one of these four
cartridges. From a distance, the human eye cannot resolve this substructure anymore and the patterns
appear as different homogeneous effective colors. The analogue of the “dithering” substructure in
3D material printing is the metamaterial unit cell. By tailoring the unit cell structure, thousands of
different effective material properties can be achieved from just a few material cartridges of the 3D
printer. The 3D micro-architectures discussed below are even composed of only a single polymer
material and voids within.

2. Enhanced Acoustical Activity

The architecture shown in Figure 1 has been inspired by the one introduced in [12]. It is composed
of helical wire bundles, each bundle with four individual wires or beams. The different bundles are
connected via small cubic elements and are arranged on a simple-cubic translational lattice, leading
to a 3D cubic chiral mechanical metamaterial. The constituent material (gray) shall be describable
by ordinary linear Cauchy elasticity [13]. Chiral objects are distinct from their mirror image, hence
chiral structures lack centrosymmetry, mirror symmetries, and rotation-reflection symmetries [14–16].
However, any effect of chirality of the mechanical metamaterial goes beyond the regime of Cauchy
elasticity. In other words, chirality plays strictly no role in a Cauchy continuum [13]. In sharp contrast,
Eringen micropolar elasticity [17,18] (sometimes also loosely referred to as Cosserat elasticity) and
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Willis elasticity [19] can describe effects of chirality and have led to good agreement with previous
experimental results on 3D mechanical metamaterials [18] in the static regime. Various other chiral
mechanical lattices have recently also been investigated in the static regime [18,20].
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Figure 1. (a) and (b) are different views onto the blueprint of one cubic unit cell of the 3D chiral
mechanical metamaterial lattice considered here. The indicated geometrical parameters are: a = 250µm,
b = 10 µm, c = 50 µm, and d = 6.25 µm. Parameters of the constituent polymer material are: Young’s
modulus (or storage modulus) E = 4.18 GPa, Poisson’s ratio ν = 0.4, and mass density ρ = 1.15 g/cm3

(cf. [21]). For some of the calculations, we have added an imaginary part (or loss modulus) of 0.20 GPa
to the quoted real part of the polymer Young’s modulus. Whenever applicable, we will explicitly
mention this finite imaginary part, which describes damping of the elastic waves.

Here, we rather focus on the dynamic or wave regime of chiral architectures. The phenomenon
of “acoustical activity” (alternatively named mechanical activity or elastic activity)—the mechanical
counterpart of optical activity—was predicted theoretically years ago [22]. The notion “activity”
stands for the rotation of the linear polarization axis of a transversely polarized optical or mechanical
wave, with the rotation angle being proportional to the propagation distance and independent of the
orientation of the incident linear polarization. To avoid confusion, we emphasize that the material
itself is passive, meaning that neither external energy sources nor switchable material parameters are
required. This rotation due to acoustical activity must not be confused with Faraday rotation and is
due to the fact that the eigenmodes correspond to left-handed and right-handed circular polarization
and that these eigenmodes propagate with different phase velocities. Following the original theoretical
prediction [22], direct experiments on quartz crystals at about 1 GHz frequency were published [23].
Quartz is also a paradigm crystal for obtaining optical activity. Later, different continuum descriptions
of acoustical activity were compared [24,25], all for the case of infinitely extended, that is bulk, crystals.

More recently, we have presented an early experimental demonstration of acoustical activity in 3D
mechanical metamaterials [21]. The effects observed here [21] have been much larger than the effects
for ordinary crystals [23]. More importantly, one cannot change the optimum operation frequency for
ordinary crystals, whereas it can easily be tailored by choice of the lattice constant in the case of 3D
crystalline metamaterials. The aim of the present paper is to add a second experimental demonstration
on a different chiral metamaterial lattice (cf. Figure 1).

In Figure 2, we show numerically calculated phonon band structures (i.e., eigenfrequencies
versus wave number) of metamaterial beams based on the crystal unit cell depicted in Figure 1. The
geometrical and polymer material parameters are given in the caption of Figure 1. The calculations in
Figure 2 refer to metamaterial beams with a cross section of Nx × Ny unit cells (as indicated). The
metamaterial beams are infinitely extended along the propagation direction of the waves (z-direction,
wave number kz). These solutions have been obtained by using the eigenmode solver MUMPS in the
software package Comsol and by using Bloch-periodic boundary conditions along the z-direction.
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Figure 2. Calculated phonon band structures of metamaterial beams with a cross section of Nx ×Ny

unit cells in the xy-plane and with Nz = ∞ for wave vectors,
→

k , along the z -direction, i.e.,
→

k = (0, 0, kz)

with wave number kz. (a) Nx = Ny = 2, (b) Nx = Ny = 4, and (c) bulk with Nx = Ny = ∞. The
transverse (or shear or flexural) bands are highlighted in red. Without chirality, the two transverse
bands would be degenerate due to the four-fold rotational symmetry of the metamaterial crystal (see
dashed red curves). The blue bands correspond to longitudinal-like (or pressure-like) and the black
bands to twist-like modes, respectively. The higher bands are not important in the context of this paper
and are plotted in light gray for clarity. Parameters have been given in Figure 1; the imaginary part of
the polymer Young’s modulus is set to zero. In panel (a), the maximum splitting of the red bands, ∆kz,
is about half of π/a, corresponding to a rotation angle of about 45◦ per lattice constant, which approach
the fundamental bound of 90◦ per lattice constant.

For finite values of Nx = Ny, we use traction-free boundary conditions at the metamaterial beam
surface along the x- and the y-direction.

For Nx = Ny = ∞ (bulk case), we also use Bloch-periodic boundary conditions along the x-
and the y-direction. This overall procedure is the same as in [21], where it was used for a different
metamaterial architecture.

To ease the discussion, we have colored the bands in Figure 2 (see legend). However, this
coloration has to be taken with a grain of salt because most bands are mixed in character. For example,
in the presence of chirality, the longitudinal pressure bands (blue) and the twist bands (black) are mixed.
This mixture is the immediate dynamic counterpart of the (quasi-)static push-to-twist conversion [18]
(also see [21]). Furthermore, the transverse polarized bands or shear modes or TA phonons (red),
which are strictly speaking flexural modes for beams with finite cross section, exhibit avoided crossings
with localized (“optical”) modes at higher frequencies in the middle of the first Brillouin zone around
kz ≈

1
2
π
a . These higher-frequency bands are plotted in light gray because they are of lesser importance

in the context of this article. The dashed red curve shows the two degenerate transverse bands in the
achiral reference case. Here, each wire in the bundles of four (cf. Figure 1) is parallel to a principal
cubic axis, i.e., we have eliminated the twisting of the bundles (not depicted). By comparison with the
red chiral case in Figure 2, we see that chirality leads to a significant stiffening of the structure, thus to
an increase of the phase velocity of the transverse bands.

The two red bands or chiral phonons [21] in Figure 2 are important in the context of acoustical
activity. By the four-fold rotational symmetry along a principal cubic axis (hence also the z-axis), these
two bands are degenerate in absence of chirality (dashed red curves). In the presence of chirality, at a
given fixed angular frequency ω, the splitting of these two bands in phonon wave number, ∆kz(ω),
determines the polarization-rotation angle, ϕ, via the equation [21]

ϕ(ω) = ∆kz(ω)
Lz

2
(1)
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Here, Lz ≥ 0 is the propagation distance or length, and the factor ∆kz(ω) stems from the different
phase velocities of left-handed and right-handed circular polarization (see above) [21]. The modulus
of the rotation angle is fundamentally bounded by∣∣∣ϕ(ω)∣∣∣ ≤ π

2
Lz

a
(2)

that is, it cannot be larger than 90◦ per lattice constant a. This bound can be understood as follows. The
two red bands correspond to circular polarization, which require three- or fourfold rotational symmetry

along the axis of the wave vector
→

k = (0, 0, kz). As usual, the two wave numbers kz = ± π/a at the edge
of the first Brillouin zone are equivalent. When replacing kz → −kz , a left-handed circular mode turns
into a right-handed and vice versa. Therefore, the left- and the right-handed mode must be degenerate
at the Brillouin-zone edge. Thus, the maximum possible wave number difference for a propagating
wave in either the positive or the negative kz-direction at given frequency ω is

∣∣∣∆kz(ω)
∣∣∣ = π/a. From

here, the above bound follows immediately.
By comparison of Figure 2 with the band structures of another previously discussed 3D

metamaterial [21], we find that the anticipated rotation angles per lattice constant are larger in
the present paper by about a factor of two for a given value of Nx = Ny. The difference is largest for
the bulk case of Nx = Ny = Nz = ∞. This aspect is beneficial for potential applications, in which one
may want to convert one linear polarization into the orthogonal one (i.e., 90-degrees rotation) over a
propagation distance as short as possible.

The choice of the structure parameters shown in Figure 1 and used in Figure 2 as well as in the
experiments to be described in the following section has resulted from a trade-off between experimental
practicability, magnitude of acoustical activity, and bandwidth of acoustical activity. To help the reader
appreciating the complexity of the behavior, we show in Figure 3 a series of band structures for the
bulk case of Nx = Ny = Nz → ∞ . Here, as usual, the twist bands are completely absent due to the
three-dimensional Bloch-periodic boundary conditions. We fix the lattice constant a and vary the ratio
c/a, i.e., we vary the size of the inner cube in Figure 1. All other parameters are as in Figures 1 and 2.
We depict values ranging from c/a = 0.1 to c/a = 0.8. While the behavior remains qualitatively the
same when going from c/a = 0.2 (identical to Figure 2) to c/a = 0.1 in Figure 3, the red transverse
bands develop into a bubble-like structure towards intermediate values of c/a = 0.5. Here, the two red
bands are nearly degenerate of up to wave numbers of kz/a ≈ 1. This behavior means that little if any
acoustical activity appears below a certain minimum frequency of 150 kHz. Together with an upper
maximum frequency of the bands of about 210 kHz, acoustical activity is expected to appear only in
a narrow frequency range in this case. For yet larger ratios towards c/a = 0.8, the band structures
become again similar to the cases of c/a = 0.1 and 0.2.

On this basis, we have selected c/a = 0.2 (cf. Figures 1 and 2) for our experiments. While many
other geometrical parameters such as the b/a and the d/a ratio are not critical, it should be mentioned
that it is important that the individual wires in the sets of wire bundles are not unintentionally
connected on the way from one small cubic connection element to the next. Such connection would
substantially reduce the twist of these beams, and hence the aimed-at effect (not depicted). This aspect
has led us to stay away from yet smaller c/a ratios.
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𝑐/𝑎 =  0.8. For each 𝑐/𝑎 ratio, an inset illustrates the corresponding metamaterial unit cell. 

Figure 3. Calculated bulk phonon band structures (i.e., Nx = Ny = Nz → ∞) for the metamaterial
defined in Figure 1. The lattice constant a and the other parameters are the same as in Figure 2c, where
c/a = 0.2, but we vary the c/a ratio (as indicated). The bands are colored as in Figure 2. In particular,
the chiral transverse acoustical bands are again highlighted in red. (a) c/a = 0.1, (b) c/a = 0.2, (c)
c/a = 0.3, (d) c/a = 0.4, (e) c/a = 0.5, (f) c/a = 0.6, (g) c/a = 0.7, and (h) c/a = 0.8. For each c/a ratio,
an inset illustrates the corresponding metamaterial unit cell.

3. Experiments

To test the above prediction of large polarization rotation angles (cf. Figure 2) for the architecture
shown in Figure 1, we have manufactured corresponding polymer samples by standard 3D laser
microprinting. The target parameters have been defined in Figure 1. Concerning the fabrication details,
we refer the reader to Refs. [18,21] and the early work on “dip-in” mode [26], which is now widely
used for the making of microstructured polymer-based 3D mechanical metamaterials by 3D laser
nanoprinting [27]. We depict example electron micrographs in Figure 4. In contrast to our previous
work [21], we have not added a plate at the sample top.

We sinusoidally excite the samples at their bottom by a piezoelectric actuator at frequency
f = ω/(2π), with an amplitude of some 10 nm along the y-direction. We stroboscopically illuminate
the samples by short pulses of two light-emitting diodes (850 nm center wavelength, 1.5% duty cycle),
the repetition rate of which is synchronized with the piezoelectric excitation. We process the obtained
microscope images at the top of the sample and at the sample bottom by using image cross-correlation
analysis [18,21]. In this fashion, we can detect displacement vectors at different locations,

→
u
(
→
r
)
, the

moduli of which are much smaller than a pixel of the camera used for the recording and which are
much smaller than the illuminating wavelength. At the sample bottom, we track the markers (cf.
Figure 4); at the sample top, we track the ends of the four rods of the inner four unit cells, that is, 16
rod ends. By comparing the measured time-dependent displacement vectors at the sample bottom
and sample top at a given frequency, we extract the polarization rotation angle ϕ, that is, the strength
of acoustical activity. We refer interested readers to a more detailed description of this measurement
setup given in Ref. [21].



Materials 2019, 12, 3527 7 of 10

Materials 2019, 12, x FOR PEER REVIEW 6 of 10 

 

On this basis, we have selected 𝑐/𝑎 =  0.2 (cf. Figures 1 and 2) for our experiments. While many 

other geometrical parameters such as the 𝑏/𝑎  and the 𝑑/𝑎  ratio are not critical, it should be 

mentioned that it is important that the individual wires in the sets of wire bundles are not 

unintentionally connected on the way from one small cubic connection element to the next. Such 

connection would substantially reduce the twist of these beams, and hence the aimed-at effect (not 

depicted). This aspect has led us to stay away from yet smaller 𝑐/𝑎 ratios. 

3. Experiments 

To test the above prediction of large polarization rotation angles (cf. Figure 2) for the architecture 

shown in Figure 1, we have manufactured corresponding polymer samples by standard 3D laser 

microprinting. The target parameters have been defined in Figure 1. Concerning the fabrication 

details, we refer the reader to Refs. [18,21] and the early work on “dip-in” mode [26], which is now 

widely used for the making of microstructured polymer-based 3D mechanical metamaterials by 3D 

laser nanoprinting [27]. We depict example electron micrographs in Figure 4. In contrast to our 

previous work [21], we have not added a plate at the sample top. 

 

Figure 4. Selected oblique-view electron micrographs of a 3D chiral cubic polymer metamaterial 

sample manufactured by standard 3D laser micro-printing, following the blueprint illustrated in 

Figure 1. (a) Total view onto one metamaterial sample with 𝑁𝑥  ×  𝑁𝑦  ×  𝑁𝑧  =  5 ×  5 ×  12 unit cells 

and the bottom sample holder. Here, we use no plate at the top. (b) Zoom-in, showing the intricate 

interior composed of sets of twisted rods. 

We sinusoidally excite the samples at their bottom by a piezoelectric actuator at frequency 𝑓 =

 𝜔/(2𝜋), with an amplitude of some 10 nm along the 𝑦-direction. We stroboscopically illuminate the 

samples by short pulses of two light-emitting diodes (850 nm center wavelength, 1.5% duty cycle), 

the repetition rate of which is synchronized with the piezoelectric excitation. We process the obtained 

microscope images at the top of the sample and at the sample bottom by using image cross-correlation 

analysis [18,21]. In this fashion, we can detect displacement vectors at different locations, �⃗� (𝑟 ), the 

moduli of which are much smaller than a pixel of the camera used for the recording and which are 

much smaller than the illuminating wavelength. At the sample bottom, we track the markers (cf. 

Figure 4); at the sample top, we track the ends of the four rods of the inner four unit cells, that is, 16 

rod ends. By comparing the measured time-dependent displacement vectors at the sample bottom 

and sample top at a given frequency, we extract the polarization rotation angle 𝜑, that is, the strength 

of acoustical activity. We refer interested readers to a more detailed description of this measurement 

setup given in Ref. [21]. 

Figure 4. Selected oblique-view electron micrographs of a 3D chiral cubic polymer metamaterial sample
manufactured by standard 3D laser micro-printing, following the blueprint illustrated in Figure 1.
(a) Total view onto one metamaterial sample with Nx ×Ny ×Nz = 5× 5× 12 unit cells and the bottom
sample holder. Here, we use no plate at the top. (b) Zoom-in, showing the intricate interior composed
of sets of twisted rods.

4. Results and Discussion

Example raw data for three selected excitation frequencies f are depicted in Figure 5. Here,
Nx = Ny = 3 and Nz = 12. We show the individual x- and y-components of the displacement

vector
→
u =

(
ux, uy

)
versus time at the sample bottom (left column) as well as at the sample top

(middle column).
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Figure 5. Measured displacement-vector components (black and green) versus time, taken at the sample
bottom (left column) and at the top of the sample (middle column), respectively for three different
frequencies f. The right column shows the y-component versus the x -component for the bottom (blue)
as well as for the top (red). The sample is excited at its bottom by a piezoelectric transducer with
(a) f = 10 kHz, (b) f = 20 kHz, and (c) f = 30 kHz. The metamaterial beam has a cross section of
Nx ×Ny = 3× 3 unit cells and a height of Nz = 12 unit cells. From these example data, we derive a
polarization rotation angle of (a) ϕ = 2◦, (b) ϕ = 32◦, and (c) ϕ = 43◦.
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The right column shows the same data represented as y-component versus x-component for the
sample bottom (blue) and the sample top (red). The extracted rotation angles ϕ are indicated, too.

A summary of many experiments (open dots) similar to the one shown in Figure 5, plotted in the
form of rotation angleϕ versus frequency f , with Nx = Ny and Nz as parameters, is depicted in Figure 6.
The experiments are compared with numerical results from metamaterial-phonon band-structure
calculations (dashed curves) and with numerical results for the finite samples as in the experiment.
The finite length of the structure unavoidably leads to reflections. However, due to time-reversal
symmetry, the rotation of the polarization is reversed on its way back and has the same direction as the
excitation when it reaches the bottom of the sample again [21]. Therefore, the finite length of the sample
influences the amplitude of the measured wave, yet it leaves the polarization direction unaffected [21].
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Figure 6. Derived from data like those shown in Figure 5, we plot the rotation angle ϕ = ϕ( f ) versus
excitation frequency f for different beam cross sections,

(
Nx ×Ny

)
a2, and for different numbers of unit

cells, Nz, along the propagation direction. The measured results are depicted as circles; the solid curve
has been obtained from numerical finite-element frequency-domain calculations for finite-size samples
(as in the experiment, cf. Figure 5), accounting for a finite imaginary part of the Young’s modulus E
(cf. Figure 1); and the dashed curves have been obtained from phonon band-structure calculations (cf.
Figure 2), assuming zero imaginary part of E. In the upper right-hand side panel, we vary Nz at fixed
Nx = Ny. In the lower right-hand side panel, we show by the dashed black curve the expectation for
the bulk limit, obtained from phonon band-structure calculations, again with zero imaginary part of E.
Obviously, the Nx ×Ny = 5× 5 case (blue) is already very close to the bulk limit (dashed back curve).
At around f = 100 kHz, we obtain a polarization rotation as large as about 30◦ per lattice constant.

We find the largest rotation angle per lattice constant of 30◦ for Nx = Ny = 2. at f = 100 kHz. The
rotation angle generally decreases with increasing Nx = Ny. The 3D bulk limit (Nx = Ny → ∞ ) is
already approached at around Nx = Ny = 5, for which we obtain about 20◦ polarization rotation angle
per lattice constant at a frequency of f = 100 kHz. The bulk limit of L/a → ∞ leads to a finite value
of ϕ because the ratio of wavelength to lattice constant, λ/a, remains finite. Cauchy elasticity, for which
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the rotation effect would be zero, requires both, L/a → ∞ and λ/a → ∞ , i.e., the large-sample limit
and the static limit.

5. Conclusions

After briefly reviewing the history and the perspectives of the field of 3D mechanical metamaterials,
we have presented our original results on the design, calculation of phonon band structures,
manufacturing by 3D laser microprinting, and ultrasound experimental characterization of one
type of chiral 3D mechanical metamaterial exhibiting acoustical activity—the mechanical counterpart
of optical activity. Compared to our recent early corresponding results on a different kind of chiral
cubic 3D micro-lattice, we have found enhanced effects in terms of the rotation angle per lattice constant
in the ultrasound frequency range 10–100 kHz. The largest values found are around 45◦ rotation per
lattice constant, in good agreement between theory and experiment. Notably, these values approach
the fundamental bound of 90◦ rotation per lattice constant. Furthermore, the observed rotation angles
decrease more slowly with increasing number of unit cells towards the bulk limit compared to our
previous results. However, this advance comes at the price of a decreased robustness against fabrication
errors, especially concerning the elongated twisted nearby yet non-touching rods, which form the
heart of this chiral metamaterial.

By decreasing the cubic lattice constant from the value of a = 250 µm considered here, our results
can be scaled to lower or larger operation frequencies. This possibility of scaling is a major advantage of
chiral metamaterials compared to chiral ordinary crystals. For ordinary crystals, the maximum effects
are much smaller to begin with. More importantly, they appear at a certain frequency (typically on the
order of some THz), which is given by nature and which cannot be changed. Therefore, sizable effects
of acoustical activity are not available from natural crystals at kHz and MHz frequencies, whereas they
are available from 3D chiral mechanical metamaterials. Thereby, these metamaterials provide new
degrees of freedom to control the polarization of elastic waves. This enables applications such as mode
conversion from one incident transverse propagation to the orthogonal one.
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