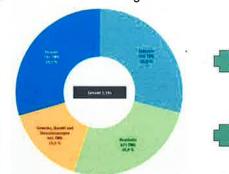


Institut für Technische Chemie


Integration thermochemischer Produktionsprozesse in das Energiesystem der Zukunft

Julia Slama, Hans - Joachim Gehrmann, Dieter Stapf

Hintergrund

Primärenergiebedarf der chemischen Industrie

19% des Gesamtenergiebedarfs Deutschland 2015

Energiewende

Gewährleistung eines stabilen Energiesystems trotz Fluktuation der regenerativen Energieträger

Alternative Einsatzstoffe

- Ersatz fossiler Rohstoffe
- Klimaschutzanstrengungen

Analyse der potenziellen Beiträge der großskaligen chemischen Industrie zu

- Versorgungssicherheit
- Speichertechnologien
- opositiver und negativer Netzregelleistung
- Verringerung von CO₂-Emissionen
- Steigerung der Energieeffizienz
- Steigerung der Exergieeffizienz
- effizienterer Rohstoffnutzung

Ressourcenschonung

G Biogene Reststoffe statt fossiler Rohstoffe

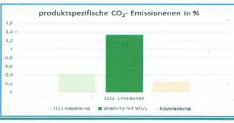
○ CO₂ als Rohstoff →wirtschaftliche Verwertung durch gut zugängliche und in großem Maß vorliegende CO₂ - Quelle

Erste Ergebnisse

Sektorkopplung

⊕ Industrie – Strom ⊕ Industrie – Wärme

- Entlastung durch
 Optimierte autarke Versorgung
- Regelleistung durch Elektrolyse & Gasturbine
- Abwärmenutzung im Industrieverbund
- Beitrag zur Fernwärme


→ Industrie - Gas

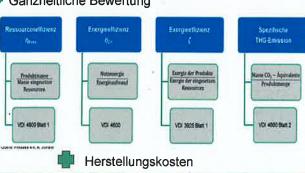
- CO₂ Quelle für Methanisierung
- Bedarf H₂- Versorgung
- Entlastung durch Nutzung von Restgasen

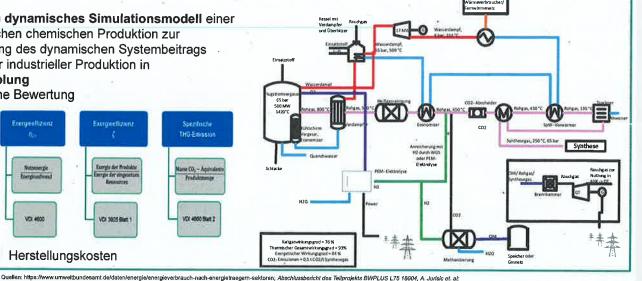
Effizienz

Effizienzkennzahlen in %

Klimarelevanz

Wirtschaftlichkeit


Vorgehensweise


Entwicklung dynamisches Simulationsmodell einer exemplarischen chemischen Produktion zur Untersuchung des dynamischen Systembeitrags großskaliger industrieller Produktion in

Sektorkopplung

Julia slama2@kit edu

Ganzheitliche Bewertung

