

Numerical investigations of temperature distribution in an AMTEC test cell and comparison with experimental data

A. Onea, W. Hering, S. Perez-Martin, N. Diez d.I. Rios Ramos, R. Stieglitz

11th PAMIR International Conference, July 1 – 5, 2019, Reims, France

Institute for Neutron Physics and Reactor Technology

KIT - The Research University in the Helmholtz Association

www.kit.edu

Outline

- Introduction
- AMTEC test cell
- Numerical model (ANSYS CFX)
- Numerical results and comparison with experimental data
- Conclusions

Introduction

- CSP concept* of solar tower plant with Na as HTF and AMTEC technology as topping cycle → R&D on materials and components
- CSP & AMTEC system for SEP**

Karlsruhe Institute of Technology

Motivation

- CFD model: Only one study reported so far[#]
- Development of a CFD model for AMTEC cell
 - thermodynamics
 - thermal radiation in sodium vapor
 - (later): sodium condensation model
 - (later): electrical model
- Validation of CFD data with the experimental data from ATEFA
- Studies for AMTEC power improvement
 - Decrease parasitic losses (thermal radiation)
 - Investigation of new cell configurations
- Models for calculation of AMTEC
 - Thermal model*
- Pressure loss model***

Electrochemical model***

Electric model** (2D)

- * Tournier et al. CONF 970115 (1997)
- ** Tournier, El-Genk J.A.Electrochem. 29 (1999)
- *** Tournier, El-Genk JTHT 13 (1999) [#] Lee et al., HMT 53 (2017)

AMTEC (Alkali metal-to-energy converter)

Heinzel et al., KEM 59, 1991

AMTEC test cell

Instrumentation:

Type K thermocouples (up to 1000°C) - BASE: max. error: ± 3.5 °C

- Condenser: max. error: ± 3.7 °C

Numerical model (ANSYS CFX)

- BASE: solid domain, CC: porous and solid domains, sodium side: vapor, condenser: solid domain (SS), air: gas
- Grid: ~ 5.3 Mio cells (Hexa: ~2 Mio., Tetra ~2.6 Mio)
- Na vapor (data from SAS-SFR*) defined as gas/steam with temperature dependent properties
- Air properties implemented as temperature dependent
- Steel specific heat capacity and thermal conductivity as temperature dependent**
- Na: laminar flow, MFR = 1 g/h
- Air: turbulent flow (SST TM), Re number: ~3300
- Temperature field at BASE implemented from experimental data from ATEFA
- No sodium condensation
- Location of the inner BASE/feedthroughs and cooling system implemented as "best approximate"

^{*}P. Breton - 3rd S.M. Sodium/fuel interaction FR ,1976 ** F. Richter - The Physical Properties of Steels

Numerical model (ANSYS CFX)

- Heat transfer by radiation and conduction dominant vs. convective HT
- All inner surfaces considered gray and diffuse
- Heat transfer:
 - Thermal energy model
 - Monte Carlo radiation model
 - Spectral model: Gray
 - Scattering model: isotropic
 - Histories: 100000-500000
- Components (walls, ceramic) emissivities implemented from literature as temperature dependent
- Sodium vapor radiation data (absorption, scattering) from Hattori et al.
- Surfaces: diffuse emitters
- Imbalances << 1 %</p>
- Residuals: ~ 10⁻⁴ 10⁻⁵

Numerical results

Temperature distribution along the height of the condenser

$T_{BASE} = 500^{\circ}C$								5mm	10mm	
	TE	SN04	SN06	SN07	SN08	SN10	SN11	SN10 A	SN10 B	ŏ
	Exp.	197	167.1	166.7	161.6	151.6	138.1	181.1	213.3	
	CFD	220.3	196.4	180.7	165.7	164.5	163.1	186.9	214.9	
	PD[%]	11.8	17.5	8.4	2.5	8.5	18.1	3.2	1	TC6
	$T_{BASE} = 600^{\circ}C$									
	TE	SN04	SN06	SN07	SN08	SN10	SN11	SN10 A	SN10 B	1 C101 SN10 €
	Exp.	222	176.1	174.8	175.8	163.6	137.8	206.6	236.3	SN13
	CFD	207.9	209.9	198.3	186	184.2	185.6	203	242	7
	PD[%]	6.3	19.1	13.4	5.8	12.6	34.7	1.7	2.4	

*N. Diez, PhD KIT, 2018

Temperature distribution

Temperature distribution in the cell

- Linear temperature decrease in the vapor domain, but no temperature decay at the wall
- Significantly lower temperature in the current collector (mesh in CC and flow)
- Good agreement between experiment and numerical model in the bulk vapor region

Karlsruhe Institute of Technology

Z[m] 0.115

0.08

0.06

Axial temperature distribution

- The pattern of the axial temperature distribution at the BASE is extending through the BASE-condenser space (quasi no convective effect)
- The pattern is continuously <u>smoothed</u> while approaching the wall -> discontinuous sodium film occuring on the condenser wall
- Significant influence of the CC and current feedthroughs on temperature

Karlsruhe Institute of Technology

Velocity field in Na and air

Karlsruhe Institute of Technology

Conclusions

- CFD model developed for sodium vapor flow considering thermal radiation within an AMTEC cell
- Good agreement obtained between experimental data and numerical data in the bulk vapor domain.
- CFD model overpredicts up to 20% the experimental data observed at the condenser due to the lack of consideration of a sodium condensation model in the numerical approach and to the fact that the position of the inner cell and of the cooling system are "best approximate"
- The differences observed at the wall are not constant, due to the fact that the condensation film is probably disrupted and not uniform
- The sodium temperature distribution in the vapor has a linear decay up to the condenser
- The current collector and current feedthroughs have a significant influence on the temperature profile in the BASE-condenser region

Thank you for your attention!

