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Abstract In recent years a vast number of distance measures for time series
classification has been proposed. Obviously, the definition of a distance measure
is crucial to further data mining tasks, thus there is a need to decide which
measure should we choose for a particular dataset. The objective of this study is
to provide a comprehensive comparison of 26 distance measures enriched with
extensive statistical analysis. We compare different kinds of distance measures:
shape-based, edit-based, feature-based and structure-based. Experimental results
carried out on 34 benchmark datasets from UCR Time Series Classification
Archive are provided. We use an one nearest neighbour (1NN) classifier to
compare the efficiency of the examined measures. Computation times were
taken into consideration as well.
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1 Introduction

Nowadays, we are collecting more and more data of different types. Typically,
we differentiate time series problems from other data analysis tasks, because the
attributes are ordered and we may look for a discriminatory feature that depends
on the ordering (Bagnall et al, 2017). In the last 20 years interest in the area of
time series has soared and many tasks have been deeply investigated, such as:

– classification (Bagnall et al, 2017),
– clustering (Keogh and Lin, 2005),
– indexing (Keogh, 2006),
– prediction (Weigend and Gershenfeld, 1994),
– anomaly detection (Weiss, 2004),
– motif discovery (Lin et al, 2004) and more.

In our opinion, there is a problem that appears throughout almost all of these
topics: How to compare two given time series in the most appropriate way?

The problem of pairwise similarity of time series is based on the underlying
distance measure (which are not necessarily metrics or even dissimilarity
measures). To the best of our knowledge, about 40 distancemeasures have already
been proposed in the literature. Some of them are based on certain features of data,
while others use predictions, underlying models or some transformations. Such a
variety may be confusing and makes it hard to find the most appropriate measure,
especially for application-oriented scientists. Available research include only 2
papers providing a partial comparison of selected distance measures.
Wang et al (2013) provide an extensive comparison of 9 different similarity

measures and their 4 variants, which was applied to 38 time series datasets from
UCR archive (Dau et al, 2018). The authors of the paper conclude, that they did
not find any measure, that is “universally better” for all datasets – some of them
are better than the rest, while being worse on other datasets. However, Dynamic
Time Warping (DTW; Berndt and Clifford (1994)) – slightly ahead of some edit
based measures: Longest Common Subsequence distance (LCSS), Edit Distance
for Real Sequences (EDR) and Edit Distance with Real Penalty (ERP) – seems
to be superior to others. And it is in line with the widespread opinion – that
DTW is not always the best but in general hard to beat (Xi et al, 2006; Spiegel
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et al, 2014). On the other hand, the study points out that Euclidean distance
remains a quick and efficient way of measuring distances between time series.
Especially, when the training set increases, the accuracy of elastic measures
converges to that of Euclidean distance.
Serrà et al (2012) compare 7 similarity measures on 45 datasets from UCR

archive. The authors of the paper suggest that, in the set of investigated distances,
there is a group of measures with no statistically significant differences: DTW,
EDR and MJC. Another finding is that the Time Warp Edit Distance (TWED)
measure seems to consistently outperform all the considered distances. Euclidean
distance is said to perform statistically worse than TWED, DTW, EDR and
Minimum Jump Cost distance (MJC), and even its performance on large datasets
was “not impressive”. What is more, an interesting remark is made about various
post-processing steps that may increase classification accuracy:

– the complexity-invariant correction (Batista et al, 2011),
– the hubness correction for time series classification (Radovanović

et al, 2010) and
– unsupervised clustering algorithms to prune nearest neighbor candidates

(Serrà et al, 2012).

Despite giving interesting results, both studies take into account only some
distance measures, while in the meantime, there are about 40 of them available.
As it is computationally expensive, in this paper we compare 26 of them, but we
plan to continue our experiment in the nearest future. Our contribution is to give
an extensive comparison, supported by deep statistical analysis. We would like
to create a benchmark study, that could be used not only by researchers from
different application fields, but as well by authors of new distance measures, to
assess their effectiveness. We are going to give only basic descriptions of the
used similarity measures, provided along with some reference, as our intention
is not to develop distance measures themselves, but rather to compare their
efficacy. In out paper we focused on classification, however we should be aware
that there are a lot of other tasks which can be done with time series, e.g.

– clustering,
– segmentation,
– registration,
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– prediction,
– anomaly detection or
– change point detection,

where distance measures may be used in one way or the other.

2 Distances’ Classification and Description

To the best of our knowledge there exist about 40 distance measures, thus there
is a strong need to classify them. Montero and Vilar (2014) proposed to group
measures into four categories: model free measures, model-based measures,
complexity-based measures and prediction-based measures. Wang et al (2013)
in their research named four groups of distance measures:

a) lock-step measures,
b) elastic measures,
c) threshold-based measures and
d) pattern-based measures.

In our opinion the most universal categorization, covering almost all distances,
has been proposed by Esling and Agon (2012):

– shape-based measures,
– edit-based measures,
– feature-based measures and
– structure-based measures.

We are going to follow the last classification. In this following subsections we
give a brief description of the 26 distance measures compared in this paper.
For the interested reader, we shortly list distances that are already known,
while for the moment, we did not include them into our research due to
computational / technical reasons:

– Derivative Dynamic Time Warping (DDTW; Keogh and Pazzani (2001)),
– Parametric Derivative Dynamic Time Warping (DDDTW; Górecki and

Łuczak (2013)),
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– dissimilarity measure based on a combination of DTW and LCSS
distances (Górecki, 2018),

– LB-Keogh for DTW (Keogh and Ratanamahatana (2005)),
– Edit Distance on Real Sequence (EDR; Chen et al (2005)),
– Edit Distance with a Real Penalty (ERP; Chen and Ng (2004)),
– Time Warp Edit Distance (TWED; Marteau (2009)),
– prediction-based (Vilar et al, 2010),
– Dissim distance (Frentzos et al, 2007),
– Maharaj distance (Maharaj, 2000),
– Cepstral-based distance (Kalpakis et al, 2001),
– Shape-based Pattern Detection distance (SpADe; Chen et al (2007)),
– Global Alignment Kernels (GAK, Cuturi (2011)).

2.1 Shape-Based Distance Measures

This group of distance measures compare the overall shape of series, focusing
mostly on the raw values.

Lp Distances
Lp distances are directly derived from Lp norms. They are widely used mainly
thanks to their simplicity and ease of computation (Yi and Faloutsos, 2000).
However, their drawbacks are: poor performance (Antunes and Oliveira, 2001),
measuring only time series of equal length and being highly influenced by
outliers, noise, scaling or warping.

Table 1: Lp distances.

Distance p Formula

Manhattan (MAN) p = 1
∑T

i=1 |xi − yi |

Euclidean (ED) p = 2
√∑T

i=1(xi − yi)2

Minkowski (MIN) 1 ≤ p < ∞ p

√∑T
i=1 |xi − yi |p

Infinite norm (INF) p = ∞ maxi=1,...,T |xi − yi |

Note: An overview of the used abbreviations can be found in the appendix on page 19.
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Given two time series XT = (x1, x2, ..., xT ), YT = (y1, y2, ..., yT ) we compute
them with formulas from Table 1. For the Minkowski distance we made an
arbitrary choice of p = 3.

Short Time Series Distance (STS)
The Short Time Series distance was proposed by Möller-Levet et al (2003).
The main idea of STS is to adapt measurement to irregularly sampled series.
It is given by

dSTS(XT ,YT ) =

√√√
T−1∑
i=1

(
yi+1 − yi

ti+1 − ti
−

xi+1 − xi
t′
i+1 − t′i

)
, (1)

where t and t
′ are the temporal indexes of series XT and YT respectively.

Dynamic Time Warping Distance (DTW)
DTW (Berndt and Clifford, 1994) is one of the most popular distance measures
due to its ability to deal with warping of the time axis. The objective of DTW
is to find the optimal alignment between two series by looking for the shortest
warping path in a distance matrix.

As one of the main drawback of DTW is long computation time (Aßfalg
et al, 2008; Papadopoulos, 2008), several lower bounding and temporal
constraints techniques have been proposed. In Section 4 we denote DTW with
Sakoe-Chiba Band as "DTWc" and we use the window size as in Dau et al
(2018). For more details about DTW we refer to (Bagnall et al, 2017; Keogh
and Ratanamahatana, 2005; Mori et al, 2016).

Complexity-Invariant Dissimilarity Measure
Many dissimilarity measures tend to put time series with high complexity
level further apart than simple ones (Batista et al, 2011). In order to fix this
distortion, a correction factor has been proposed by Batista et al (2011). A general
complexity-invariant dissimilarity measure (CID) is defined as follows

dCID(XT ,YT ) = CF(XT ,YT ) · d(XT ,YT ), (2)

where d(XT ,YT ) is a distance which may be adjusted (in our experiment we use
Euclidean distance), CF(XT ,YT ) is a complexity correction factor defined as

CF(XT ,YT ) =
max{CE(XT ),CE(YT )}

min{CE(XT ),CE(YT )}
, (3)
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where CE(XT ) stands for a complexity estimator of XT . From (2), we can
observe, that when the complexity of both time series is equal, we get
dCID(XT ,YT ) = d(XT ,YT ) and from (3) that an increase of complexity dif-
ference results in increase of distance between time series. As a complexity
estimator Batista et al (2011) proposed

CE(XT ) =

√√√
T−1∑
t=1
(Xt − Xt+1)2. (4)

2.2 Edit-Based Distance Measures

Edit-based distances use theminimal number of operation necessary to transform
one series into another.

Longest Common Subsequence Distance (LCSS)
The LCSS distance was proposed by Vlachos et al (2002) and measures the
similarity between time series in terms of the longest common subsequence,
with addition that gaps and unmatched regions are permitted. LCSS is robust to
noise and we expect that it should be more accurate than DTW in the presence
of outliers and noise. We set δ parameter to 100% and as ε parameter we used
a value equal to the smallest standard deviation between the two sequences that
were examined at any time (Górecki, 2018).

2.3 Feature-Based Distances

These distances looks at some aspect of the time series by extracting certain
feature. Then, based on it, a similarity measure is calculated.

Distance Based on Pearson’s Correlation
Based on Pearson’s correlation coefficient, we can define two distance measures
(Golay et al, 2005):

dPC1(XT ,YT ) =

(
1 − PC
1 + PC

)β
, (5)

dPC2(XT ,YT ) = 2 (1 − PC), (6)
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where PC denotes Pearson’s correlation coefficient and β is a positive parameter.
When the parameter is specified, we use the dPC1, in the other case dPC2.

Distance Based on the Cross-Correlation
Based on cross-correlation, Warren Liao (2005) defined the following distance
measure

dCC(XT ,YT ) =

√
(1 − CC0(X,Y ))∑max

k=1 CCk(X,Y )
, (7)

where CCk(X,Y ) is the cross correlation between two series at lag k. By default,
we set the maximum lag to T − 1.

Autocorrelation-Base and Partial Autocorrelation-Based Distances
Let ρ̂XT

= (ρ̂1,XT , ..., ρ̂L,XT )
T , ρ̂YT = (ρ̂1,YT , ..., ρ̂L,YT )

T be the estimated auto-
correlation vectors ofXT ,YT (respectively), for some L such that ρ̂i,XT , ρ̂i,YT ≈ 0
for i > L. Peña and Galeano (2000) proposed the following distance:

dACF(XT ,YT ) =

√
(ρ̂XT

− ρ̂YT )
TΩ(ρ̂XT

− ρ̂YT ), (8)

where Ω is a matrix of weights, which define the importance of correlation
at different lags. We set Ω as an identity matrix. Similarity measure based
on partial autocorrelation function may be defined analogously, taking PACFs
instead of ACFs.

An Adaptive Dissimilarity Index Combining Temporal Correlation and
Raw Value Behaviors
The first order temporal correlation coefficient is defined by

CORT(XT ,YT ) =

∑T−1
i=1 (Xt+1 − Xt )(Yt+1 − Yt )√∑T−1

i=1 (Xt+1 − Xt )
2
√∑T−1

i=1 ((Yt+1 − Yt )2
. (9)

The CORT coefficient reflect the dynamic behavior of the series (Montero and
Vilar, 2014) and is similar to Pearson’s coefficient: it belongs to the interval
[−1,1], the value of 1 indicates similar dynamic behavior (their growths in time
are similar in direction and rate), the value of −1 implies opposite behavior,
while the value of 0 shows no relation. A related dissimilarity measure was
proposed by Chouakria and Nagabhushan (2007) and it is defined as
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dCORT(XT ,YT ) = φk [CORT(XT ,YT )] · d(XT ,YT ), (10)

where φk(·) is an adaptive tuning function to automatically modulate a conven-
tional data distance according to the temporal correlation. Chouakria and Nagab-
hushan (2007) proposed φk(u) = 2

1+exp (ku), k ≥ 0. The advantage of dCORT

distance is that it measures both the proximity of observations and temporal
correlation for the behavior proximity estimation (Montero and Vilar, 2014).

Fourier Coefficients Based Distance
The simple idea behind this distance is to compare Discrete Fourier Transform
coefficients of the series. The value of these coefficients reflects the associated
frequency. As note by Agrawal et al (1993), in case of many time series, most
of the information is kept in their first n coefficients, where n < T

2 + 1.
Given two time series XT and YT with Fourier Coefficients (respectively)
(a0, b0), ... , (aT

2
, bT

2
), (a′0, b

′

0), ... , (a
′

T
2
, b
′

T
2
) we define mentioned distance as

FC(XT ,YT ) =

√√
n∑
i=0
((ai − a′i)

2 + (bi − b′i)
2). (11)

TQuest Distance
Aßfalg et al (2006) proposed a distance measure based on Threshold Queries,
using given τ parameter as a threshold in order to transform a time series into
a sequence of time stamps, when the threshold is crossed. It is an interesting
feature extraction idea, but – in our opinion – highly dependent on user’s
specialist knowledge, as the τ parameter must be set. In case of parameter
choice, we followed remarks made by Ding et al (2008) with the simplification,
that we picked up mean value. The full construction of the distance, the equation
and a synthetic description is given by Mori et al (2016).

Periodogram-Based Measures
The periodograms ofXT andYT are given (respectively) by:IXT (λk) and IYT (λk)
for k = 1, ...,n. Based on it, Caiado et al (2006) proposed the Euclidean distance
between the periodogram coordinates

dP(XT ,YT ) =
1
n

√√
n∑

k=1

(
IXT (λk) − IYT (λk)

) 2
. (12)
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Alternatively, Casado de Lucas (2010) introduced a distance measure based on
integrated periodogram, arguing that – due to some properties of integrated
periodogram – it presents several adventages over the one based on periodogram.
Casado de Lucas proposed the following equation:

dIP(XT ,YT ) =

∫ π

−π
|FXT (λ) − FYT (λ)| dλ, (13)

where FXT (λj) = C−1
XT

∑j
i=1 IXT (λi) and FYT (λj) = C−1

YT

∑j
i=1 IYT (λi), with

CXT =
∑

i IXT (λi), CYT =
∑

i IYT (λi).

Dissimilarity Measures Based on Nonparametric Spectral Estimators
Kakizawa et al (1998) proposed a general spectral disparity measure between
two time series as

dLLR(XT ,YT ) =

∫ π

−π
W̃

(
fXT (λ)

fYT (λ)

)
dλ, (14)

where fXT and fYT are spectral densities of XT and YT . W̃ = W(x) +W(x−1),
W(x) = log(αx + (1 − α)) − α log x, with 0 < α < 1. W(·) is a divergence
function satisfying regular quasi-distance conditions for dLLR. Alternatively,
Díaz and Vilar (2010) proposed two distances – the first one is defined as

dGLK(XT ,YT ) =

n∑
k=1

[
Zk − µ̂(λk) − 2 log(1 + eZk−µ̂(λk ))

]
−

n∑
k=1

[
Zk − 2 log(1 + eZk )

]
,

(15)

where Zk = log(IXT (λk)) − log(IYT (λk)) and µ̂(λk) is the local maximum log-
likelihood estimator of µ(λk) = log( fXT (λk) − log( fYT (λk) computed by local
linear fitting. The second distance is given by

dISD(XT ,YT ) =

∫ π

−π

(
m̂XT (λ) − m̂YT (λ)

) 2 dλ, (16)

where m̂XT (λ) and m̂YT (λ) are local linear smoothers of the log-periodograms
obtained with the maximum local likelihood criterion.
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Dissimilarity Based on the Symbolic Representation SAX
The symbolic approximation representation (SAX) has been introduced by Lin
et al (2003) and became one of the best symbolic representation for most time
series problems (Keogh, 2018). The original data are first transformed into
the piecewise aggregate approximation (PAA) representation (Yi and Falout-
sos, 2000) and then into a discrete string. For the full outline of MINDIST
dissimilarity measure based on SAX representation see Lin et al (2007). Concern-
ing the parameter choice, we followed Lin et al (2007), with the simplification
that we set w = T

3 , where T is the length of time series.

2.4 Structure-Based Distances

The last group of distance measures tries to find some higher-level structures and
then compare time series on these basis. This category can be subdivided into
two further groups: model-based – aiming to fit a model and then to compare
coefficients through a certain distance function and compression-based which
work by compression ratios.

Piccolo Distance
For the class of invertible ARIMA processes, denoting the vectors of AR(k1)

and AR(k2) for XT and YT respectively by Π̂XT = (π̂1,XT , ..., π̂k1,XT ) and
Π̂YT = (π̂1,YT , ..., π̂k2,YT ), Piccolo (1990) proposed the following dissimilarity
measure:

dPIC(XT ,YT ) =

√√√ k∑
j=1

(
π̂
′

j ,XT
− π̂

′

j ,YT

) 2
, (17)

where k = max(k1, k2), π̂
′

j ,XT
= π̂j ,XT if j ≤ k1 and π̂

′

j ,XT
= 0 otherwise and

analogously π̂′j ,YT = π̂j ,YT if j ≤ k2 and π̂
′

j ,YT
= 0 otherwise.

Compression-Based Dissimilarity
Keogh et al (2004) proposed compression-based dissimilaritymeasure defined as

dCDM(XT ,YT ) =
C(XT ,YT )

C(XT )C(YT )
. (18)
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The CDM distance is descended from normalized compression distance (NCD)
proposed by Lin et al (2004), using the compressed size of XT – C(XT ) – as an
approximation of Kolmogorov complexity. C(XT ) may be computed as the size
of XT compressed using data compressors for example: bzip2 or gzip.

Permutation Distribution Clustering
Dissimilarity measures based on permutation distribution clustering (PDC) use a
permutation Π(X

′

T ) of m-dimensional embedding of XT . Dissimilarity between
two time series XT and YT is expressed in terms of the divergence between
distribution of these permutations, denoted by P(XT ),P(YT ). Specifically,
Brandmaier (2011) proposed the α-divergence between P(XT ) and P(YT ) as a
dissimilarity between time series XT and YT .

3 Experimental Design

We performed experiments on 34 datasets with time series that come from the
UCR time series repository (Dau et al, 2018). The datasets originate from a
plethora of different domains, including medicine, robotics, astronomy, biology,
face recognition, handwriting recognition, etc. Within the data, the number
of classes ranges from 2 to 50, the number of time series per dataset ranges
from 56 to 9236, and time series lengths range from 60 to 1882 samples. We
limited only to smaller datasets from the repository because of computational
limitations. In our opinion, this sample is big enough to obtain interesting
insight about examined distances.

In our paper, we will follow the methodology proposed by Keogh and Kasetty
(2003), which assumes evaluating the efficacy of distance measures by the
prism of classification accuracy of the 1NN classifier (error rate on a test
subset). While one should be aware that the proposed approach cannot deliver
the overall evaluation of a distance measure, there seems to be more pros
than cons of the chosen method. For example, Wang et al (2013) pointed out
three aspects: simplicity of implementation, performance directly dependent
on distance choice, and relatively (to other, often more complex classifiers)
good performance. For more information we refer to Batista et al (2011); Ding
et al (2008); Tan et al (2005); Tomašev and Mladenić (2012); Xi et al (2006).
Additionally, the 1NN classifier is probably one of the most popular algorithms
in data mining (Wu et al, 2008).
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Table 2: Error rates (in %) of all considered distance measures on 1NN classifier. Best classifier for
each dataset was bold. In the last row we computed number of wins for each distance.

Dataset ED M
A
N

M
IN

IN
F

C
C

ST
S

D
TW

D
TW

c
LC

SS
FC TQ A
C
F

PA
C
F

PI
C

C
D
M

C
ID

PC
2

CO
RT IP P

SA
X

N
C
D

G
LK IS
D

LL
R

PD
C

50ww 37 33 40 47 40 48 31 24 32 37 43 73 67 74 95 34 37 39 67 60 43 93 80 74 80 90
Adiac 39 40 38 38 38 42 40 39 97 39 75 44 45 84 88 37 39 40 44 51 95 88 81 76 63 89
Beef 33 37 33 30 37 30 50 33 57 33 57 57 47 53 80 37 33 33 53 57 63 77 63 63 60 67
Car 27 28 27 28 27 33 27 23 57 27 35 62 67 70 77 27 27 25 32 45 40 75 52 42 57 55
CBF 15 11 20 58 26 66 0 0 4 15 32 32 59 50 44 2 15 21 38 31 21 43 45 43 42 61
CinC 10 6 13 20 13 21 35 7 7 10 31 49 15 38 48 8 10 9 36 19 31 47 13 11 27 1
Coffee 0 4 0 0 0 7 18 0 50 0 39 7 0 14 46 0 0 0 0 7 43 50 21 18 14 50
CrickX 42 37 50 67 58 86 22 23 26 43 50 53 68 75 84 37 42 47 50 41 48 83 69 68 64 87
CrickY 43 37 47 62 56 84 21 24 21 43 53 61 77 80 83 42 43 41 54 47 54 85 78 75 71 87
CrickZ 41 34 45 65 58 79 21 25 24 41 48 50 68 79 84 41 41 44 52 39 46 83 71 65 65 87
Diatom 6 7 6 4 7 11 3 6 70 7 12 8 12 39 61 7 7 6 7 7 69 62 26 22 44 34
ECG2 12 11 11 13 11 15 23 12 12 12 22 26 20 24 33 11 12 12 20 22 16 32 20 15 16 38
ECGF 20 21 21 29 17 38 23 20 6 20 23 1 23 32 40 22 20 24 3 0 46 39 28 26 17 38
FaceF 22 16 27 45 31 48 17 11 18 22 12 47 56 69 69 19 22 23 41 34 22 57 58 51 52 56
FacesU 23 20 27 41 27 35 10 9 10 23 25 26 41 65 88 23 23 26 41 23 38 87 55 52 51 85
FISH 22 21 20 21 21 19 17 15 85 22 60 60 45 76 81 22 22 21 29 37 80 82 70 65 70 72
GunP 9 5 12 15 9 9 9 8 27 9 19 8 5 33 33 7 9 7 9 11 29 31 22 23 10 34
Haptics 63 64 61 61 62 69 62 59 69 63 62 75 69 73 85 58 63 58 62 65 69 83 74 75 66 72
InlineS 66 65 67 71 67 77 62 61 78 66 75 80 53 66 83 63 66 65 66 70 80 83 25 18 65 53
Light2 25 18 34 31 39 49 13 13 18 25 39 23 36 48 39 25 25 30 25 28 30 38 36 31 38 49
Light7 42 29 53 55 49 68 27 29 42 42 48 48 63 78 66 40 42 47 67 41 44 63 68 62 53 79
Mallat 9 8 9 12 8 15 7 9 46 9 31 53 29 39 80 7 9 9 15 13 55 78 35 31 16 41
MedI 32 29 32 33 32 39 26 25 33 32 49 35 39 46 61 31 32 31 44 44 55 61 42 40 45 57
MoteS 12 13 18 26 19 28 17 13 14 12 17 28 43 46 39 21 12 17 45 42 28 39 44 43 43 17
OliveO 13 17 13 17 17 17 13 13 83 13 80 23 20 47 20 13 13 13 17 17 80 20 60 63 50 50
OSUL 48 45 48 47 47 61 41 39 37 48 50 52 48 66 70 44 48 46 36 48 50 71 36 32 35 57
Plane 4 4 4 4 4 3 0 0 19 4 5 4 3 2 66 4 4 4 2 4 20 66 11 5 1 50
Sony 30 31 29 31 50 32 27 30 29 30 39 27 32 27 44 18 30 21 22 39 37 41 15 12 17 49
SonyII 14 13 16 22 24 17 17 14 16 14 17 23 23 16 44 12 14 14 13 21 20 45 21 14 12 37
SwedL 21 21 22 29 25 44 21 15 71 21 44 25 39 45 82 12 21 19 12 23 76 80 39 27 27 64
SynthC 12 12 12 19 48 65 1 2 6 11 15 37 45 48 78 5 12 26 51 36 18 78 39 34 34 57
Trace 24 24 23 31 21 41 0 1 26 24 46 20 7 18 50 14 24 28 0 16 54 44 0 0 0 47
TwoL 25 27 26 27 24 15 10 13 48 25 27 15 27 36 41 23 25 22 7 21 45 36 27 31 23 38
WordsS 38 37 41 51 41 50 35 25 33 38 47 70 69 76 88 36 38 41 63 63 46 87 77 73 77 85
# wins 2 2 2 2 2 1 10 11 0 2 0 0 2 0 0 5 1 2 3 1 0 0 1 4 2 1
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For each dataset we calculated the classification error rate on a test subset. An
appropriate distribution of the training and test sets was proposed by the authors
of the repository (each dataset is divided into a training and testing subset).
Specifically, for each dataset, we computed the classification error rate on a
test subset. When a parameter to train the 1NN classifier was needed, we tried
to use values proposed already in the literature (referred to in Section 2). The
computations were carried out using Intel Xeon E5-2697 architecture provided
by Poznań Supercomputing and Networking Center.

4 Results

The results are presented in Table 2. We present the absolute error rates on the
test subset with the 1NN classifier for each of 26 distance measures. In Table 3
we computed average ranks for all considered distances.

Table 3: Average ranks in ascending order for considered distances across all datasets.

DTWc CID DTW MAN FC ED PC2 CORT MIN CC IP LCSS P
4.0 6.0 6.2 7.4 8.3 8.4 8.4 8.5 10.2 11.8 12.0 13.0 13.0

INF LLR ACF PACF ISD TQ STS GLK SAX PIC PDC NCD CDM
13.6 15.0 15.2 15.8 15.9 16.1 16.3 18.0 18.4 19.9 21.9 23.4 24.1

Note: An overview of the used abbreviations can be found in the appendix on page 19.

If we look at the overall result, we can observe that none of the compared
distances achieves the best performance for all, or even the most of datasets. In
fact, the lowest error rate is computed for DTWc (11 wins) and DTW (10 wins),
far ahead of other distances. On the other hand, looking at average ranks, one
may be surprised by the good performance of Lp norms: MAN – 7.4, ED – 8.4,
MIN – 10.2. It is also worth mentioning that Complexity-invariant distance
(CID) achieved the second best average rank (equal 6.0), while in fact it only
improves the Euclidean distance by a simple complexity correction factor.
Looking at certain datasets, we see, that some of them are almost perfectly

classified (e.g. CinC ECGF, Coffee, ECG2, Plane), which could mean that their
classes are relatively easy to recognize by the algorithm. Another interesting
fact is, that there are datasets, which are better classified by some group of
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distances. For example, performance of Lp norms is relatively good for Coffee,
Mallat, SynthetC, while clearly worse for CrickX, CrickY, Haptics, which may
indicate cases, where we should pay attention to shape (without editing) or not.
Correlation-based distances (e.g. ACF, PACF, CC) may be considered as a good
choice for datasets ECGF and Trace.

Figure 1: Datasets Coffee (left) and Trace (right).

In Figure 1, we present plots of two datasets, which show a comparison between
a good performance of LP norms and weak of DTW (dataset Coffee) and
the opposite situation (dataset Trace) – a weak performance of Lp norms and
good of DTW. It happens, because sometimes elastic measures may tray to
force matching, when it is not desirable (e.g. dataset Coffee). On the other
hand, sometimes peaks are slightly shifted and using elastic measures can bring
significant increase of accuracy (e.g. dataset Trace).
To assess the differences between the examined methods, we performed a

statistical comparison. Firstly, we employed the test proposed by Iman and
Davenport (1980), which is a less conservative variant of Friedman’s ANOVA
(Friedman, 1940). If the hypotheses, that there is no significant difference
between classifiers, is rejected, we can proceed with the post hoc test to
provide all pairwise comparisons. In this way we can detect the statistically
significant differences between certain classifiers. Garcia and Herrera (2008)
proved that the procedure presented in Bergmann and Hommel (1988) is the
most powerful post hoc comparison test.

The p-value from the Iman and Davenport’s test is equal to 0. We can therefore
proceed with the post hoc tests. The results of multiple comparisons are given
in Table 4. We have chosen for the comparison 7 distance measures, which
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achieved the best average ranks. Based on it, we see that there is a group of
distances distinct from others: DTW, DTWc and CID. They are in most cases
statistically significantly different from the others, which is also in line with the
interpretation of average ranks.

Table 4: p-values in the Bergmann-Hommenl post hoc test for best 7 measures (taking into account
average ranks). Statistically significant differences (p < 0.05) are in bold.

ED MAN DTW DTWc FC CID PC2

ED n/a 1.000 0.005 0.000 1.000 0.040 1.000
MAN 1.000 n/a 0.181 0.001 1.000 0.679 1.000
DTW 0.005 0.181 n/a 0.679 0.011 1.000 0.005
DTWc 0.000 0.001 0.679 n/a 0.000 0.181 0.000
FC 1.000 1.000 0.011 0.000 n/a 0.064 1.000
CID 0.040 0.679 1.000 0.181 0.064 n/a 0.040
PC2 1.000 1.000 0.005 0.000 1.000 0.040 n/a

Note: An overview of the used abbreviations can be found in the appendix on page 19.

Regarding the computation time, we present figures 2, 3 and 4. In Figure 2
we can see, that most of measures are quite fast, with medians around several
minutes, while there are some distances taking even several hours for one dataset.
Having measured computations times and efficiency, it is reasonable to see, if
we can distinguish groups of measures based on these features. Figure 3 presents
results of k-means clustering. The optimal number of clusters is equal 3. In
Figure 4, mean ranks and mean times of each measure are shown. Additionally,
measures are grouped according to clusters. These results suggest, that we
may distinguish the 3 following groups: weak and slow (grey), highly efficient,
but with various speed (green), moderately powerful, but quite fast (red). This
plot may be interpreted also as a "price to value" plot. It is worth noting, that
in some cases it may be enough to use CID or ED distances to ensure fast
computations. On the other hand, when we expect high efficacy, DTW or DTWc
may be a reasonable choice.
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Figure 2: Box plot of time in minutes needed for computations for each measure across all datasets.
Y-axis labels are colored according to the category of a measure: shape-based (grey), edit-based (blue),
feature-based (yellow), structure-based (red).
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Figure 3: Results of clustering using k-means algorithm.
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Figure 4: Mean time and mean rank for each measure. Boxes are colored according to the category
of a measure: shape-based (grey), edit-based (blue), feature-based (yellow), structure-based (red).
Measures are grouped in 3 clusters based on the k-means algorithm.

5 Conclusion

In this article, we have compared the efficacy of 26 distance measures on 34
datasets, based on the prism of 1NN classifier accuracy. Similarly to Serrà
et al (2012); Wang et al (2013), we have observed, that there is no measure
distinctly better than the others or appropriate for a majority of datasets. Thus,
there is still a place for new ones, maybe connecting some properties of already
existing measures. On the other hand, best average ranks were achieved by
DTWc and DTW which shows that processing the shape of time series in a
smart way may be a direction for future researches. We have also observed that
there are some datasets that are classified better with some groups of measures.
It would be highly desirable to find a set of metadata, which could help us to
choose the most appropriate measure. We have also shown, that – taking into
consideration computation times and efficiency of measures – we can distinguish
3 groups of distances: weak and slow, highly efficient, but with various speed,
moderately powerful, but quite fast.
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Since this study only discussed 26 of about 40 available distance measures,
there is still potential to extend the presented comparison. We plan to cover
all available distance measures in the nearest future and, as well, extend the
number of datasets for testing them. It would be also interesting to confront
conclusions made during these analyses with different time series mining
tasks, e.g. with clustering.
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Appendix
ACF Autocorrelation based distance
CC Distance based on the Cross Correlation
CDM Compression based Dissimilarity
CID Complexity Invariant Distance
CORT Dissimilarity Index Combining Temporal Correlation and Raw

Value Behaviors
DTW Dynamic Time Warping distance
DTW_c Dynamic Time Warping distance with Sakoe-Chiba band
ED Euclidean Distance
FC Fourier Coefficients based distance
INF Infinite Norm Distance
IP Integrated Periodogram based distance
LCSS Longest Common Subsequence distance
LLR, GLK, ISD Dissimilarity measures based on nonparametric spectral estimator
MAN Manhattan distance
MIN Minkowski distance
NCD Normalized Compression Distance
P Periodogram based distance
PACF Partial Autocorrelation based distance
PC1, PC2 Distances based on Pearson’s Correlation
PDC Dissimilaritymeasure based on PermutationDistributionClustering
PIC Piccolo Distance
SAX Dissimilarity based on the Symbolic Representation SAX
STS Short Time Series distance
TQ Threshold Queries (TQUEST) distance
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