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Separate-effects 
tests 

Bundle  
experiments 

Investigation of hydrogen source term and materials interactions during 
LOCA and early phase of severe accidents including reflood 

PWR fuel 
element 
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QUENCH separate-effects tests: Main setups 
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Core materials in Light Water Reactors 

UO2(/PuO2) fuel:     100-200 t 

Zry  cladding + grid spacers:       20-40 t 

Zry canister (BWR):               40 t 

Various steels, Inconel:          >500 t (incl. RPV) 

B4C absorber (BWR, VVER, …):  0.3-2 t 

AgInCd absorber (PWR):        3-5 t 

 

Environment 

Water, steam 

Air 

Nitrogen 
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After failure of RPV/primary circuit 
and in spent fuel pool PWR fuel 

assembly 
BWR control 

blade 
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Topics 

Generally, high-temperature (> 600°C) oxidation and materials interactions of 
zirconium alloys (cladding), absorber materials, and structure materials in 
well-defined atmospheres 
Quenching of pre-oxidized cladding 
Oxide shell failure criterion 
Interaction between Zr melt and ZrO2 (UO2) ceramic 
Zr alloy oxidation in steam, oxygen, air, mixtures 
Hydrogen release and absorption 
B4C absorber rod oxidation degradation 
AgInCd absorber rod failure 
ATF cladding materials 
… 

 SETs were made mostly in connection with corresponding bundle tests 
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Early experiments 

Martin Steinbrück                                     25th QUENCH Workshop     



7 22 Oct 2019 

Single-rod QUENCH tests 
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Reflood from 1400°C 

15-cm rods filled with ZrO2 
pellets 
Direct inductive heating 
Video recording 
Mass spectrometer for 
analysis of hydrogen release 
Parameters: 

Pre-oxidation 0-350 µm 
1000-1600°C at onset of 
quenching 
Quenching with hot/cold 
water or steam 
Flooding rate 1.5 cm/s 
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Single-rod QUENCH tests – Main results 
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150 µm 250 µm 

Through-wall crack for pre-
oxidation >200 µm with a 
density of 0.5 mm/mm2 

Oxidation of crack surfaces 
connected with hydrogen 
absorption by the metal 
Localized spalling of thick 
oxide scales 
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Oxide shell failure 
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SVECHA simulation: slow heating 

SVECHA simulation: rapid heating 
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UO2/ZrO2 dissolution by Zr melt (COLOSS project) 
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ZrO2 rod 

Y2O3 disc 

Dissolved UO2 

Dissolved ZrO2 

UO2 crucible 

Melt (initially Zry) 

(U, Zr)O2-x precipitates in melt and transition 
zone between melt and crucible 

SVECHA simulation: calculated and 
measured U content in the melt 
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Hydrogen uptake of Zircaloy-4 
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Sieverts’ law constant determined 
No difference between Zry-4 and M5® 
Reduced H solubility with increasing O content in the metal 
Fast establishment of equilibrium 
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Exothermal effect of hydrogen uptake 
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Oxidation of zirconium alloys  
and hydrogen behavior 
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High-temperature oxidation of zirconium alloys 
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In steam, oxygen, nitrogen, air, and various 
mixtures 
Temperature: 600-1600°C 

Element Zircaloy-4 D4 M5 E110 ZIRLO 

Nb - - 1 1 1 

Sn 1.5 0.5 0.01 - 1 

Fe 0.2 0.5 0.05 0.008 0.11 

Cr 0.1 0.2 0.015 0.002 < 0.01 
 

Most cladding alloys consist of 98-99 wt% zirconium  
plus some alloying elements (Sn, Nb, Fe, Cr, …) 
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Oxidation in steam (oxygen): Text book knowledge 

Parabolic oxidation correlations determined by the diffusion of oxygen 
through growing oxide scale 

ZrO2 

α-Zr(O) 

prior β-Zr 

20 min at 1200°C in steam 
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Deviation from parabolic kinetics 

Starvation conditions at low oxidant flow rates  

Cubic (sub-parabolic) kinetics for T < 1000°C (n < 0.5) 

Breakaway (n ≈ 1 after transition) 

Nitrogen (n ≈ 1 after transition) 
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Steam starvation 
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Dissolution of 
oxide scale 

Thinning of oxide scale and 
precipitation of α-Zr(O) in 
oxide 

Weakening of protective 
effect of  
ZrO2 oxide layer 

Oxidation Steam starvation at 1700 K 
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Oxidation in steam (oxygen) 
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Deviations from parabolic kinetics at temperatures <1050°C 
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Transition from (sub-) 
parabolic to linear 
kinetics after critical 
time / oxide thickness 
due to breakaway 
 
Similar kinetics of all 
alloys before transition, 
but strongly varying 
behavior at and after 
transition 
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Breakaway oxidation 
Loss of protective properties of oxide scale 
due to its mechanical failure. 

Breakaway is caused by phase 
transformation from meta-stable tetragonal 
to monoclinic oxide and corresponding 
change in density up to ca. 1050°C. 

Critical times and oxide thicknesses for 
breakaway strongly depend on type of alloy 
and boundary conditions  
(30-60 min at 1000°C and 8 h at 600°C). 

During breakaway significant amounts of 
hydrogen can be absorbed (>40 at.%, 7000 
wppm) due to local enrichment of H2 in 
pores and cracks near the metal/oxide 
boundary (“hydrogen pump”). 

3 h, 1000 °C 
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Hydrogen uptake during HT oxidation of Zry in steam 
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𝑍𝑍𝑍𝑍 + 2𝐻𝐻2𝑂𝑂 → 𝑍𝑍𝑍𝑍𝑂𝑂2 + 2𝐻𝐻2 
𝐻𝐻2 𝑔𝑔𝑔𝑔𝑔𝑔 ↔ 2𝐻𝐻 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  
Oxide scale acts as a barrier for uptake and release of hydrogen 
 

ZrO2 

α-Zr(O) 

prior β-Zr 

20 min at 1200°C in steam 
200 µm 

3h at 1000°C in steam 
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Correlation of H absorption and oxide morphology 
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In-situ investigation of hydrogen uptake during 
oxidation of Zry in steam by neutron radiography 
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Oxidation in atmospheres containing nitrogen 

… under prototypical conditions, including 
Pre-oxidation in steam/O2 
Tests in mixed air(N2)-steam atmospheres 

steam air 50/50 steam/air 

1 hour at 1200 °C in 

1.5 h steam 

1 h steam/N2 (50/50) Loss of barrier effect against FP product release  
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Mechanism of air oxidation 

1 

2 

3 

4 

1 – initially formed dense oxide ZrO2 
2 – porous oxide after oxidation of ZrN 
3 – ZrO2 / ZrN mixture 
4 – α-Zr(O) 

Diffusion of air through 
imperfections in the oxide 
scale to the metal/oxide 
interface 

Consumption of oxygen 

Remaining nitrogen reacts with 
zirconium and forms ZrN  

ZrN is re-oxidized by fresh air 
with continuing reaction 
associated with a volume 
increase by 48% 

Formation of porous and non-
protective oxide scales 

1000°C 
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Mechanism of air oxidation 
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Oxidation in mixed steam-nitrogen at 800°C 
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Oxidation in mixed steam-nitrogen at 800°C 

6 hour at 800 °C in steam 

Strong effect of nitrogen on oxidation and degradation 

Nitrogen acts like a catalyst (NOT like an inert gas) 

Enhanced hydrogen source term by oxidation in mixtures 
containing nitrogen 

6 hour at 800 °C in 50/50 steam/N2 
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In-situ NR of Zircaloy-4 in steam and steam-nitrogen 
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In-situ NR of Zircaloy-4 in steam-nitrogen 
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2 h at 900°C in 20/80 steam/nitrogen 
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Control rod behavior 

Martin Steinbrück                                     25th QUENCH Workshop     



31 22 Oct 2019 

Absorber materials in LWRs 
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Boron carbide 

• Used in boiling water 
reactors (BWR), VVERs,  
some pressurized water 
reactors (PWR) 

• Control rods (PWR) or cross-
shaped blades (BWR) 

• Surrounded by stainless steel 
(cladding, blades) and Zry 
(guide tubes, canisters) 

Zry guide tube 
Tmelt=1900°C 

SS cladding 
Tmelt=1450°C 

AgInCd 
Tmelt=800°C 

AgInCd alloy 

• Used in PWRs  
• Surrounded by 

stainless steel 
cladding and Zry 
guide tubes 

• Rods in Zry guide 
tubes combined 
in control rod 
assemblies 

PWR control rod 
assembly 

BWR control 
blade 

Zry guide tube 
Tmelt=1900°C 

SS cladding 
Tmelt=1450°C 

B4C 
Tmelt=2450°C 

PWR control rod BWR control rod 

http://upload.wikimedia.org/wikipedia/commons/c/cb/Brennelement_Gruppe.svg
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Degradation of B4C control rods (1-pellet) 
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Post-test appearance and axial cross section of B4C/SS/Zry specimens after 1 hour 
isothermal tests at temperatures between 1000 and 1600 °C 

Melt 
formation 

Oxide 
shell 

Failure and B4C/melt 
consumption 

1000°C               1200°C               1300°C              1400°C               1500°C               1600°C 
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Eutectic interaction of stainless steel with B4C 
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 4 wt.% B4C 

1 h at approx. 1250 °C 

 1 wt.% B4C 

 0.3 wt.% B4C 

Complete 
liquefaction 
of stainless 
steel 

1/3 of SS 
liquefied 
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Eutectic interaction of stainless steel with B4C 
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SS 
 

B4C 

Rapid and 
complete melting 
of SS at 1250°C 
starting at B4C/SS 
interface 

1 cm 
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Oxidation kinetics of B4C in steam 
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Oxidation of B4C absorber melts 
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Transient oxidation of B4C/SS/Zry-4 absorber melts  
 in steam between 800 and 1550 °C 

before oxidation after oxidation 
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Failure of AgInCd absorber rod 
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Ag-In-Cd control rods fail at temperatures 
above 1200°C due to the eutectic 
interaction between SS and Zry-4 

Failure is very stochastic (from local to 
explosive) with the tendency to higher 
temperatures for symmetric samples and 
specimens with inner oxidation 

No ballooning of the SS cladding tube was 
observed before rupture 

Burst release of cadmium vapour is 
followed by continuous release of indium 
and silver aerosols and absorber melt 

Zry guide tube
Tmelt=1900°C

SS cladding
Tmelt=1450°C

AgInCd
Tmelt=800°C
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Different failure types of AgInCd absorber rod 
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SIC-02 (asym. rod) 
Local failure at 1230°C 

SIC-05 (symmetric rod) 
Global failure at 1350°C 
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ATF cladding 
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KIT activities on ATF 
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QUENCH bundle tests with FeCrAl cladding in cooperation with 
ORNL 

Single-rod oxidation and quench tests with Cr-coated Zr alloy 

Ultra-high temperature oxidation tests with SiCf-SiC 

Development of MAX phase coatings for Zr alloys 

 
Participation in various international collaborations on ATF 

EC IL TROVATORE 
IAEA ACTOF 
OECD NEA EGATFL, TOPATF, and QUENCH-ATF (under discussion) 
Westinghouse CARAT 
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MAX-phase coated cladding alloys (Cr2AlC) 
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Annealing 

Magnetron sputtered Cr/C/Al nano layers Pure MAX phase  

 
Tang, KIT, PhD 2019 
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Oxidation of Kanthal-APM (FeCrAl) in steam 
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Otherwise, rapid and complete oxidation of the FeCrAl alloy 

Tang, JNM 551(2018) 496-507 
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Steam oxidation of SiC and quench from 2000°C  
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Post-test 
appearance 

of SiC-SiC 
sample 

Test conduct 
Avincola, NED 2015 
Avincola, KIT, PhD 2016 
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Takeaways 

Zirconium oxidation at high temperatures is a source of significant release of 
hydrogen and heat affecting nuclear accident progression. 

Oxidation is not always of parabolic kinetics and may be strongly dependent 
on experimental boundary conditions. 

Eutectic interactions may lead to melt formation far below the melting points 
of the individual materials. These melts may slowly relocate and severely 
oxidize. 

ATF claddings could strongly decrease the risk of temperature escalation and 
hydrogen detonation during BDB accidents as well as significantly increase 
the coping time for AMMs. 

Most experimental results were used to improve models, especially in 
cooperation with IBRAE, GRS, and IRSN as well as internally by H. Steiner and 
M. Große. 
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