

KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Elektrotechnisches Institut (ETI)
Prof. Dr.-Ing. Michael Braun

Prof. Dr.-Ing. Martin Doppelbauer
Prof. Dr.-Ing. Marc Hiller

Kaiserstr.12. 76131 Karlsruhe

www.kit.edu

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

Title: Resource optimal FPGA implementation of a Least-Squares-Estimator for fast and robust

online measurement of current slope and absolute value

Authors: Andreas Liske, Simon Decker, Michael Braun

Institute: Karlsruhe Institute of Technology (KIT)

Institute of Electrical Engineering (ETI)

Type: Conference Proceedings

Published at: Proceedings 2019 European Conference on Power Electronics and Applications

(EPE'19 ECCE Europe), Genova, Italy, 2019

Publisher: IEEE

Year: 2019

ISBN: 978-9-0758-1530-6

Hyperlinks: DOI: 10.23919/EPE.2019.8915548

https://doi.org/10.23919/EPE.2019.8915548

Resource optimal FPGA implementation of a Least-Squares-Estimator

for fast and robust online measurement of current slope and absolute value

Andreas Liske, Simon Decker, Michael Braun

Elektrotechnisches Insitut (ETI), Karlsruhe Institute of Technology (KIT)

Kaiserstr. 12, 76131 Karlsruhe, Germany

Email: Andreas.Liske@kit.edu

URL: http://www.eti.kit.edu

Keywords

≪Estimation technique≫, ≪Measurement≫, ≪Field Programmable Gate Array (FPGA)≫,

≪Software for measurements≫,≪Adaptive control≫

Abstract

This paper presents an improved Least-Squares-Estimator for the fast, non-recursive online measurement

of the first derivative and absolute value of a piecewise linear oversampled current signal. Core topic is

the partially online calculation of the pseudoinverse matrix in combination with an optimized small

lookup table, minimizing memory requirements significantly.

Introduction

In modern control methods for power electronics and electrical machines, the knowledge of the current

slope (or derivative) of each switching state of the used inverter is a very important measurement value.

It can be used for online machine parameter identification [1], modern adaptive control schemes [2, 3],

condition monitoring and encoderless control [4, 5] to name just a few examples. The shape of those

PWM-excited current curves in these applications can mostly be assumed to be made up of straight line

segments and each switching state of the inverter produces its own current slope (see figure 1).

One possibility to get the current slope is direct measurement with specially designed current slope

sensors (direct methods) [6]. Another possibility is to calculate the derivative of the absolute value of

the measurement signals (indirect methods) [7, 8, 9]. Among the many mathematical possibilities to do

this, the use of a Least-Squares-Estimator (LS-Estimator) has proven to be a good choice. This is mainly

because the LS-Estimator is capable to not only calculate the current derivative, but at the same time

filters noise and results the current’s absolute value at no extra cost. A valid absolute value is absolutely

necessary for any control algorithm, since every action of the control loop always is based on it. And

with the fast convergence of the LS-Estimator, only few samples are sufficient for valid values, so even

short measurement intervals can be used.

One very fast method for hard real-time applications is to use the pre-calculated values of the so-called

pseudoinverse matrix, which are then stored in a lookup table (LUT) [10]. With this method, each

sample is multiplied with its corresponding constant from the pre-calculated pseudoinverse and added to

the previous result (vector product). This can be done easily and very fast in an FPGA. The downside

hereby is the need for a large LUT to be implemented inside the FPGA. The memory requirement for this

LUT can easily sum up to some Megabyte (MB), which is only available in large and hence expensive

FPGAs or generates the need for or an external fast access memory device. A complete online calculation

of the pseudoinverse would be too complex for the hard real-time demands due to the necessary matrix

operations.

S8S1 S2S7
t

()i t

E,S1i
E,S7i

S2 AD(T)i n �

AD(T)e n �

ADT

E,S2i

t

E,S8i

PWMT / 2

X
S

Fig. 1: PWM-excited phase current of a 3-phase synchronous machine with the ideal current waveform

i(t) in red and the oversampled measured values as blue dots. The switching states SX of the first half of

a PWM-period with a 3-arm modulation pattern are illustrated at the bottom.

In this paper we present an improved LS-Estimator-Algorithm that has significantly reduced memory

requirements without any loss of the good real-time performance and accuracy. We mathematically

show that the pseudoinverse for equidistant and oversampled measurement values consists of straight

lines and hence can be calculated online in an FPGA. The former necessary large LUT that holds all

the elements of the pseudoinverse can be replaced by a significantly smaller LUT which holds only the

starting values and the increments of each straight line.

In the first section the LS-Estimator based on the pre-calculated pseudoinverse is explained to give a basic

understanding of the operation principle. Then the elements of the pseudoinverse are investigated in more

detail in the second section leading to the proposed improved implementation of the LS-Estimator. The

effects of quantization errors on the new implementation method is not neglectable and is discussed in

the third section. A section with measurement results of the proposed algorithm concludes the paper.

Least-Squares-Estimator based on a Lookup-Table with precalculated pseu-

doinverse matrixes

The current gradient and absolute value measurement with a Least-Squares-Estimator based on a Lookup-

Table with pre-calculated pseudoinverse matrixes is best explained with figure 1. The current curve i(t)
in this figure is a typical phase current of a three-phase machine, driven by an inverter (PWM-excited

current) during the first half of one PWM-period. Provided that the switching frequency is high enough,

the current will rise and fall linear in straight line segments, depending on the applied switching state SX.

Although the explanation of the LS-Estimator is given in this paper with the example of a machine cur-

rent, the LS-Estimator can be applied to other signals as well as long as the signal curve can be assumed

to consist of straight lines. The illustration of just the first half of the PWM period is intentionally to

enhance readability, but of course the algorithm can be implemented to run during each applied switch-

ing state during the whole modulation pattern. To get the current slopes of each of the applied switching

states, the current sensor signal is sampled by an analog-to-digital-converter (ADC) with an equidistant

time interval TAD. The sample-rate fAD = 1/TAD must be significantly higher than the PWM switching

frequency fPWM to make use of the LS-Estimator properly (oversampling). Hereby fAD is chosen as an

integer multiple of fPWM. With a typical PWM switching frequency of fPWM = 8 kHz and a sample rate

of fAD = 6 MSps, the number NSX
of samples per switching state SX depends on the applied duty cycle

and varies in one half of the PWM period (see figure 1) from zero to Nmax with

Nmax =
max. measurement time

sample time
=

TPWM/2

TAD

=
fAD

fPWM ·2
=

6MSps

16kHz
= 375 (1)

Each measured value iSX
(n ·TAD) of the current of each switching state can be described mathematical

as linear equation:

iSX
(n ·TAD) = iE,SX

− (n ·TAD) ·

(

di

dt

)

SX

+ e(n ·TAD) with n ∈ {0 . . .NSX
−1} (2)

Note that the linear equation is set up from the end value iE,SX
of each line segment. By doing this,

the LS-Estimator delivers not only the current slope but also the filtered absolute value at the end of

each switching state. This is very useful since the value at the end of a switching state is being used as

setpoint value in some control schemes. The index n stands for the n-th sample in a switching state and

NSX
describes the total number of samples in each switching state. For example, a duty cycle of 60% for

the switching state S2 in figure 1 would lead to NS2
= 0.6 ·375 = 225 measured values during S2.

In the following the index of the switching state SX is suppressed to improve readability. Equation (2)

can be understood as an ideal model of the current as a straight line superposed with an error e(n ·TAD).
For each sample, one equation like (2) is given. The complete set of equations for all N samples of one

switching state can be written as a set of N equations in matrix notation:

(i)N = (O)N · (p)N +(e)N (3)

with

(i)N =

























i(0 ·TAD)

i(1 ·TAD)

...

i(n ·TAD)

...

i(N −1 ·TAD)

























measurement vector: holds the N measurement values (4)

(O)N =





















1 −(N −1) ·TAD

...

1
...

1

1

...

−n ·TAD

...

−1 ·TAD

−0 ·TAD





















observer matrix: depends only on N and TAD (5)

(p)N =







iE
(

di

dt

)






parameter-vector: holds the searched quantities (6)

(e)N =

























e(0 ·TAD)

e(1 ·TAD)

...

e(n ·TAD)

...

e((N −1) ·TAD)

























error vector: holds the measurement errors (7)

What is of interest now is the parameter-vector (p)N : Its elements are the searched absolute value iE
and the current slope (di/dt), both filtered with the least-squares optimization criterion. As described

in [10], they can be obtained by simply multiplying the so-called pseudoinverse (O)+N of the observer

matrix (O)N with the measurement vector:

(p)N =







iE
(

di

dt

)






= (O)+N · (i)N with (O)+N =

[

(O)T
N (O)N

]−1

(O)T
N (8)

The calculation of (8) is perfectly suited for hard real-time applications, since all that has to be done

is a multiplication of all N samples of each switching state with the corresponding N elements of the

pseudoinverse and adding the results. This is done sequentially and sample-based: As soon as a new

measurement value is available from the ADC, the actual measurement value is multiplied with the

corresponding element of the pseudoinverse and added to the result of the previous multiplication. As

result, the absolute value and the current slope are available just one multiply-and-add-operation after

the last measurement value of a switching state. This reduces measurement latency and hence control

dead-time drastically.

To be able to do this, the necessary elements of the pseudoinverse (O)+N must be known. An online cal-

culation of the needed elements of (O)+N according to (8) though is comparatively complex and generates

huge computational effort due to the necessary matrix inversions. But since all elements of the observer

matrix are known constants (see (5)), the pseudoinverse can be calculated prior to normal operation and

stored in a lookup-table (LUT).

As already indicated by the index N, the number of elements in the pseudoinverse depends on the number

of samples N in each switching state. For each individual possible length of measurement intervals for

N = 1 . . .Nmax one corresponding pseudoinverse (O)+N has to be calculated. Since the observer matrix is a

(N,2)-matrix, the pseudoinverse is a (2,N)-matrix (see equations (5) and (8)). It consists of two rows, the

first row contains the elements EN,n for the calculation of the absolute value iE at the end of the considered

measurement interval (hence the index ’E’), the second row contains the elements SN,n for the calculation

of the current gradient or slope (index ’S’). The LUTPSI (index ’PSI’ stands for pseudoinverse) that stores

all N possible pseudoinverses for all N possible lengths of measurement-vectors (i)N is hence:

LUTPSI =





















(O)+1
(O)+2

...

(O)+N
...

(O)+Nmax





















=





































(

E1,1

S1,1

)

(

E2,1

S2,1

E2,2

S2,2

)

...
...

. . .
(

EN,1

SN,1

EN,2

SN,2

· · ·
· · ·

EN,n

SN,n

· · ·
· · ·

EN,N

SN,N

)

...
...

...
...

...
...

. . .
(

ENmax,1

SNmax,1

ENmax,2

SNmax,2

· · ·
· · ·

EN,n

SN,n

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

ENmax,Nmax

SNmax,Nmax

)





































(9)

The total number MPSI of entries for a LUT containing all N pseudoinverses for each possible measure-

ment interval is

MPSI =
Nmax

2
· (Nmax +1) ·2 = Nmax · (Nmax +1) (10)

With Nmax = 375 (see (1)) this leads to a LUT with 141000 entries (70500 for all EN,n and 70500 for all

SN,n). Given an exemplary word length of 32bit 4.512Mb would be necessary to store this LUT.

Least-Squares-Estimator with partially online-calculation of the pseudoin-

verse matrixes

To find a way to reduce the huge memory requirement for the implementation of the LS-Estimator in an

FPGA, we now take a closer look onto the equations and the inner structure of the N pseudoinverses. As

a first step we rewrite the observer matrix (5) with the substitution b =−TAD to improve the readability

of the following derivations:

(O)N =











1 (N −1) ·b
...

...

1 1 ·b
1 0 ·b











with b =−TAD (11)

The basis for the derivation is the definition of the pseudoinverse matrix (see also (8))

(O)+N =
[

(O)T
N (O)N

]−1

(O)T
N (12)

The first thing we look at is the inner matrix product of the transposed observer matrix (O)T
N with the

observer matrix (O)N that delivers matrix (A) with its elements A11, A12, A21, A22 as intermediate result:

(A) = (O)T
N (O)N =

(

1 · · · 1 1 1

(N −1)b · · · 2b 1b 0

)

·











1 (N −1) ·b
...

...

1 1 ·b
1 0 ·b











=

(

A11 A12

A21 A22

)

(13)

A11 = 1 ·1+1 ·1+ · · ·+1 ·1 =
N

∑
i=1

1 = N (14)

A12 = 1 · (N −1)b+ · · ·+1 ·2b+1 ·b+0 =
N

∑
i=1

(i−1) ·b =
N

2
(N −1)b (15)

A21 = 1 · (N −1)b+ · · ·+1 ·2b+1 ·b+0 =
N

∑
i=1

(i−1) ·b =
N

2
(N −1)b = A12 (16)

A22 = [(N −1)b]2 +[(N −2)b]2 + · · ·+[2b]2 +[b]2 +[0]2

=
N

∑
i=1

[(i−1)b]2 =
N−1

∑
i=0

[i ·b]2 = b2 ·
N−1

∑
i=0

i2 = b2 ·
N−1

∑
i=1

i2 (17)

A11 = N as well as A12 and A21 are obviously analytically solvable. And for A22, the series ∑
N−1
i=1 i2 is

well known in mathematics and delivers as result the so called ,,square pyramidal number“ [11]. The

n-th square pyramidal number Pn can be calculated with the formula

Pn =
n

∑
i=1

i2 =
n(n+1)(2n+1)

6
(18)

This leads to the following analytical representation of the last element A22 of matrix (A) (see eq.(17))

A22 = b2 ·
N (N −1)(2N −1)

6
(19)

The complete matrix (A) is hence:

(A) = (O)T
N (O)N =

(

N N
2
(N −1) ·b

N
2
(N −1) ·b N(N−1)(2N−1)

6
·b2

)

(20)

The next step is the inversion of matrix (A) (see eq. (12)). To prove the invertibility, the determinant is

calculated:

det(A) =
1

12
N4b2 −

1

12
N2b2 =

1

12
b2
(

N4 −N2
)

> 0 ∀ N ∈ N>1 (21)

This proves that matrix (A) is invertible for all measurement intervals with more than one sample, which

is always given in real measurement environments. The inverse matrix (A)N
−1

is

(A)N
−1 =

(

2(2N−1)
N(N+1) − 6

bN(N+1)

− 6
bN(N+1)

12
Nb2(N2−1)

)

(22)

Multiplication of this inverse matrix with the transposed observer matrix now gives the searched pseu-

doinverse matrix (see eq. (12) and compare to eq. (9)):

(O)+N = (A)−1
N · (O)T

N =

(

2(2N−1)
N(N+1) − 6

bN(N+1)

− 6
bN(N+1)

12
Nb2(N2−1)

)

·

(

1 · · · 1 1 1

(N −1)b · · · 2b 1b 0

)

(23)

=

(

EN,1 EN,2 · · · EN,n · · · EN,N

SN,1 SN,2 · · · SN,n · · · SN,N

)

(24)

As already mentioned above, the first row contains the elements EN,n for the calculation of the absolute

value iE, the second row contains the elements SN,n for the calculation of the current slope. Now we

take a closer look unto the elements of those two row-vectors, starting with the elements EN,n for the

calculation of the absolute value iE:

EN,1 =
2(2N −1)

N (N +1)
·1−

6

bN (N +1)
· (N −1)b =

2(2N −1)

N (N +1)
−

6(N −1)

N (N +1)

...

EN,(n-1) =
2(2N −1)

N (N +1)
·1−

6

bN (N +1)
· (N − (n-1))b =

2(2N −1)

N (N +1)
−

6(N − (n-1))

N (N +1)
(25)

EN,n =
2(2N −1)

N (N +1)
·1−

6

bN (N +1)
· (N −n)b =

2(2N −1)

N (N +1)
−

6(N −n)

N (N +1)
(26)

The elements SN,n for the calculation of the current slope look similar:

SN,1 =−
6

bN (N +1)
·1+

12

Nb2 (N2 −1)
· (N −1)b

...

SN,(n-1) =−
6

bN (N +1)
·1+

12

Nb2 (N2 −1)
· (N − (n-1))b (27)

SN,n =−
6

bN (N +1)
·1+

12

Nb2 (N2 −1)
· (N −n)b (28)

Calculating the difference between two consecutive elements in each vector analytically proves that each

element of a row EN,n and SN,n in a given pseudoinverse (O)+N has the same constant distance ∆EN and

∆SN to its predecessor EN,n−1 and SN,n−1 (see eq. (25)(26) and (27)(28)).

∆EN (N) = EN,n −EN,n−1 =
6

N (N +1)
(29)

∆SN (N) = SN,n −SN,n−1 =
12

−b ·N (N2 −1)
=

12

TAD ·N (N2 −1)
(30)

This is illustrated in figure 2. In figure 2(a) all 70500 elements EN,n for the above described setup with

Nmax = 375 are plotted. The elements for the SN,n are not plotted to enhance readability but look similar,

of course with a different co-domain. The strong, exponential descent of the envelope is obvious. In 2(b)

and 2(c), the x-axis was clipped to see the structure of EN,n in detail. Besides the mathematical proof of

the validity of the above equations, this illustrates pretty well that the elements of each single pseudoin-

0 2 4 6 8

10
4

-0.2

0

0.2

0.4

0.6

0.8

1

E
N,n

 with n > 0

(a) All 70500 elements of the LUT: The

strong exponetial descent of the am-

plitudes is obvious

100 200 300 400 500 600 700 800

0

0.2

0.4

0.6

0.8

1

E
N,1

E
N,n

 with n > 1

(b) Zoom in on the first 800 elements:

the straight lines on which the ele-

ments of each vector EN,n are lying

are becoming visible

50 60 70 80 90

0

0.2

0.4

0.6

0.8

1

E
10,1

E
10,2

E
10,3

E
10,4

E
10,5

E
10,6

E
10,7

E
10,8

E
10,9

E
10,10

E
11,1

E
11,2

E
11,3

E
11,4

E
11,5

E
11,6

E
11,7

E
11,8

E
11,9

E
11,10

E
11,11

E
12,1

E
12,2

E
12,3

E
12,4

E
12,5

E
12,6

E
12,7

E
12,8

E
12,9

E
12,10

E
12,11

E
12,12

E
13,1

E
13,2

E
13,3

E
13,4

E
13,5

E
13,6

E
N,1

E
N,n

 with n > 1

(c) Zoom in on elements 46 to 91:

those are the 4 vectors EN,n with

N = 10 . . .13 for the 4 measurement

intervals with N = 10 . . .13

Fig. 2: Lookup-Table LUTPSI that stores all elements EN,n of the N pseudoinverses

verse are lying on straight lines. In figure 2(c) it is pretty good visible, that with each next pseudoinverse

(O)+N+1, N is incremented by 1 and so the number of elements in the pseudoinverse is also 1 element

more compared to its predecessor (O)+N . With an increasing N, the distance between two consecutive el-

ements of a given pseudoinverse (O)+N gets smaller but remains constant within (O)+N . Hence each single

row vector of the pseudoinverses can be calculated not only by complex matrix operations according to

equation (8), but also by a simple linear equation

EN,n = EN,1 +(n−1) ·∆EN with n ∈ {1 . . .N} (31)

SN,n = SN,1 +(n−1) ·∆SN with n ∈ {1 . . .N} (32)

All that must be known are the first elements EN,1 and SN,1 (marked red in figure 2(b) and 2(c)):

EN,1(N) =
4−2N

N (N +1)
(33)

SN,1(N) =−
6

−b
·

1

N (N +1)
(34)

and the increments ∆EN and ∆SN that are given by the equations (29) and (30).

For an efficient implementation of the sample-based vector-product according to equation (8) in an

FPGA, the elements of the pseudoinverses can be calculated online with the first elements EN,1 and

SN,1 as basis and then for each following sample n by adding the corresponding increment ∆EN and ∆SN

to its predecessor (see equations (31) and (32)).

The first elements EN,1 and SN,1 and the increments ∆EN and ∆SN can be calculated offline and stored in

a now drastically smaller LUTSI (index ’SI’ stands for starting value and increment) in the FPGA:

LUTSI =











(SI)1

(SI)2
...

(SI)Nmax











=























(

E1,1

S1,1

∆E1

∆S1

)

(

E2,1

S2,1

∆E2

∆S2

)

...
...

(

ENmax,1

SNmax,1

∆ENmax

∆SNmax

)























(35)

The total number of elements in the proposed new LUTSI is

MSI = 4Nmax (36)

Advantage in terms of necessary memory space

Compared to the state-of-the-art implementation as described in section , the number of necessary ele-

ments that must be stored in a LUT in the FPGA is reduced by the factor (see eq. (10) and (36))

MPSI

MSI

=
Nmax(Nmax +1)

4Nmax

=
Nmax +1

4
(37)

In the described setup with Nmax=375 this means a massive reduction by the factor 94.

Quantization errors

Since the LS-Algorithm is calculated in an FPGA, the elements of the LUTs are stored as fixed-point

numbers and quantization errors occur similarly in LUTPSI as well as in LUTSI. In LUTPSI the maximum

quantization error is simply the smallest value that is representable by the chosen fixed-point format,

since every single element in LUTPSI is converted to fixed-point format separately. In a fixed-point

format with f fractional bits this is

eQ,PSI = eQ, f = 2− f (38)

In the proposed new algorithm this quantization error is the same for the stored elements in LUTSI.

But those are just the first elements and the increments, not yet the constants for the LS-Estimator. As

described above, they are calculated online by adding the increments ∆EN and ∆SN to the calculated

value of the previous sample (see eq. (31) and (32)). Hence, the quantization error of the increments

∆EN and ∆SN is also added repeatedly with every sample, leading to an increasing inherited error in the

values of the pseudoinverse. The resulting quantization error for the LS-Algorithm with the proposed

online calculation of the (EN,n) and (SN,n) is therefore

eQ,SI = (N −1) · eQ, f (39)

The longer the switching state, the bigger is N and the resulting quantization error. To achieve the same

accuracy in the LS-Algorithm as with the LUTPSI, the precision of the ∆EN and ∆SN has to be improved

by more fractional bits fS/I for these fixed-point values:

fSI = f + ⌈log2(N −1)⌉ (40)

So with Nmax=375, up to ⌈log2(374)⌉ = 9 additional fractional bits are necessary. But even if for all

elements in LUTSI the additional fraction bits are implemented according to (40), the necessary memory

is still reduced by a significant factor of 73, compared to an implementation with the complete LUTPSI

with a realistic word length of its elements of wPSI=32bit.

Measurement results

We implemented the proposed algorithm in a Cyclone IV-FPGA from Altera (EP4CE40F23C6) which

is used as modulator for the inverter in one of our institute’s automotive drive test benches. The algo-

rithm was tested in this test bench with an automotive 3-phase permanent magnet synchronous machine

as application. To measure the current, an A/D-Converter (THS1206) with a resolution of 12 bit was

operated at 6MSps. The switching frequency of the inverter was 8kHz. A complete description of the

implementation is not the main focus of this paper and is hence not explicated further.

The values of the absolute values and the slopes are reset to zero at the beginning of each half PWM-

period. The calculation of each switching state’s value is then started as soon as the switching state is

0 12.5 25 37.5 50 62.5
45

50

55

60

i U
(t

)
in

 A

Vector-Product-Reset

&

Start of PWM-Period End of F1

End of A1

End of A2

End of F2 &

Vector-Product-Reset

i
U

(t)

i
E

(F1)

i
E

(A1)

i
E

(A2)

i
E

(F2)

Fig. 3: Measurement results of the identification of the absolute values of the current

0 12.5 25 37.5 50 62.5

-60

-55

-50

-45

i U
(t

)
in

 A

i
U

(t) raw samples from ADC

post-processed curve-fit in FU

post-processed curve-fit in AU

post-processed curve-fit in AO

0 12.5 25 37.5 50 62.5

-2

0

2

4

6

d
i/

d
t

in
 A

/s

10
5

di/dt F1 calculated in FPGA

di/dt A1 calculated in FPGA

di/dt A2 calculated in FPGA

di/dt F1 post-processed

di/dt A1 post-processed

di/dt A2 post-processed

Fig. 4: Measurement results of the identification of the current slopes

active. During the switching state, the vector products for absolute value and slope as described above

are being calculated with each new sample. As soon as the specific switching state ends, the values are

held constant and are stored in buffers for later evaluation.

In fig. 3 the phase current iU(t) and the calculated absolute values are shown. The red curve iU(t) consists

hereby only of the raw, unfiltered samples from the ADC. The measurement shows, that the calculation

of the absolute values at the end of each switching period is working fine and correctly hits the value of

the current curve iU(t) at the corresponding point in time.

In fig. 4, the current samples that are measured by the AD-Converter are plotted red. The blue straight

line segments are post-processed linear curve-fits with Matlab’s ’polyfit’-function to generate a valid

value of the slopes to prove the results of the proposed algorithm that is running inside of the FPGA.

Those post-processed slopes for the three switching states F1, A1 and A2 are plotted as dashed lines in

the bottom picture of 4. The current slopes that are calculated by the proposed algorithm inside of the

FPGA are plotted as solid lines in the corresponding color. As with the absolute values, the measurement

results prove that the proposed algorithm delivers the correct values for the current slopes as well.

Conclusion

In this paper we presented an algorithm which allows an efficient and resource optimal implementation

of a Least-Squares-Estimator for the fast online measurement of the slope and the absolute value of a

current signal. One well-proven non-recursive LS-algorithm for fast online measurement was described,

which is based on a lookup-table that contains the complete set of pseudoinverse matrixes for all pos-

sible lengths of measurement intervals. A closer look onto this lookup-table led to the new proposed

algorithm. Its core topic, the partially online calculation of the pseudoinverse matrixes in combination

with an optimized, significantly smaller Lookup-Table was derived and presented. Since the algorithm

is designed for FPGA-implementation, the issue of quantization errors was addressed. Measurement

results from a realistic implementation inside an automotive drive test bench were presented, that prove

the theory completely.

With our proposed algorithm, the memory requirement for the implementation of a non-recursive LS-

Estimator is reduced significantly without any loss in accuracy and performance. The absolute value

and the current slope are available just one multiply-and-add-operation after the last measurement value

was available. The massive saving of valuable hardware-resources is an important step towards cost-

efficient implementation of fast online slope and absolute value identification of measurement signals.

This enables the implementation of advanced motor control and power electronics control schemes in

common control hardware.

References

[1] S. Decker, J. Richter, and M. Braun, “Predictive current control and online parameter identification

of interior permanent magnet synchronous machines,” in 2016 18th European Conference on Power

Electronics and Applications (EPE’16 ECCE Europe), Sep. 2016, pp. 1–10.

[2] P. Cortes, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and J. Rodriguez, “Predictive

control in power electronics and drives,” Industrial Electronics, IEEE Transactions on, vol. 55,

no. 12, pp. 4312–4324, 2008.

[3] A. Liske and M. Braun, “Direct adaptive current control - a universal current control scheme for

electrical machines,” in The 40th Annual Conference of the IEEE Industrial Electronics Society

(IECON), 2014, 2014, pp. 1–7.

[4] M. Schrödl, “Sensorless control of permanent magnet synchronous motors,” Electric Machines &

Power Systems, vol. 22, no. 2, pp. 173–185, 1994.

[5] P. Landsmann, D. Paulus, P. Stolze, and R. Kennel, “Saliency based encoderless predictive torque

control without signal injection,” in Power Electronics Conference (IPEC), 2010 International,

2010, pp. 3029–3034.

[6] S. Decker, A. Liske, D. Schweiker, J. Kolb, and M. Braun, “Measurement of two-level inverter

induced current slopes at high switching frequencies for control and identification algorithms of

electrical machines,” in 2018 International Power Electronics Conference (IPEC-Niigata 2018 -

ECCE Asia), May 2018, pp. 2848–2853.

[7] Y. Duan and M. Sumner, “A novel current derivative measurement using recursive least square

algorithms for sensorless control of permanent magnet synchronous machine: 2 - 5 june 2012,

harbin, china ; [also referred to as] ecce asia [as a part of ecce (ieee energy conversion congress and

exposition) worldwide series],” pp. 1193–1200, 2012.

[8] A. Liske, F. Stamer, and M. Braun, “Easy current slope detection for low cost implementation of the

direct adaptive current control for dc-dc-converters,” in 2015 IEEE Energy Conversion Congress

and Exposition (ECCE). Piscataway, NJ: IEEE, 2015, pp. 180–186.

[9] J. Wang and A. Binder, “Current slope calculation in fpga for sensorless control technique and

associated slope based predictive precise current control,” in 2013 IEEE International Symposium

on Sensorless Control for Electrical Drives and Predictive Control of Electrical Drives and Power

Electronics (SLED/PRECEDE). Piscataway, NJ: IEEE, 2013, pp. 1–8.

[10] C. L. Lawson and R. J. Hanson, Solving least squares problems, ser. Classics in applied mathemat-

ics. Philadelphia, Pa: Society for Industrial and Applied Mathematics (SIAM 3600 Market Street

Floor 6 Philadelphia PA 19104), 1995, vol. 15.

[11] J. H. Conway and R. K. Guy, The book of numbers. New York, NY: Copernicus, 2006.

