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Abstract

Hierarchical neural networks with large numbers of layers are the state of the art for most computer vision problems
including image classification, multi-object detection and semantic segmentation. While the computational demands
of training such deep networks can be addressed using specialized hardware, the availability of training data in
sufficient quantity and quality remains a limiting factor. Main reasons are that measurement or manual labelling are
prohibitively expensive, ethical considerations can limit generating data, or a phenomenon in questions has been
predicted, but not yet observed. In this position paper, we present the Digital Reality concept are a structured
approach to generate training data synthetically. The central idea is to simulate measurements based on scenes that
are generated by parametric models of the real world. By investigating the parameter space defined of such models,
training data can be generated in a controlled way compared to data that was captured from real world situations. We
propose the Digital Reality concept and demonstrate its potential in different application domains, including industrial
inspection, autonomous driving, smart grid, and microscopy research in material science and engineering.
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Introduction
Recent advances in machine learning, in particular deep
learning, have revolutionized not only all kinds of image
understanding problems in computer vision, but also the
approach to general pattern detection problems for
various signal processing tasks. Deep learning methods [1]
can be applied to data that originates from almost any
type of sensor, including image data from arbitrary modal-
ities and most time-dependent data. Roughly speaking, in
machine learning a very general computational model
with a large number of free parameters is fitted to a
specific problem during a training phase. The parameters
are iteratively adjusted such that the computation
performed by the model has minimal deviation from a de-
sired result. In the case of supervised learning, the desired
computation is specified by a finite set of input-output
pairs, the training data. The machine learning model
attempts to interpolate or extrapolate between the training
data points using some concept of smoothness such that

reasonable output for data not in the training set can be
predicted. This is generally referred to as the ability of the
model to generalize, which can be evaluated by a second
set of input-output pairs, the test data. The particular
success of supervised learning approaches in computer
vision primarily stems from the tremendous advances in
the achievable accuracy for classification tasks. Provided
that the computational model has sufficient capacity and
the training data set is large enough, particularly
hierarchical neural networks can approximate a very wide
range of functions and can be trained efficiently using
backpropagation [2].
However, the availability of training data is the main

problem of deep learning methods. For the task of
general image understanding in computer vision, several
standardized databases with millions of labelled images
exist [3–5]. The databases have been created by joint
efforts of the computer vision research community and
constitute a considerable investment in machine learning
research. For the application of deep learning methods
to more specific problems, either scientific or industrial,
labelled training data from in-vivo sources (see textbox
for definition) does not exist in general. In-situ creation
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of the data, can be a problem for numerous reasons. (1)
If the data acquisition involves expensive measurement
equipment or sample preparation, the cost of generating
sufficient quantities of training data can be prohibitive.
(2) In many application, there are ethical questions
involved in acquiring training data, for example radiation
exposure of patients or data from traffic accidents with
human casualties. (3) Particularly for the case of semantic
segmentation (per-pixel classification), labelling the
training set can constitute a tremendous effort. (4) In
many scientific applications, a phenomenon that was
predicted from theory, but not yet observed, should be
detected. In such cases, in-vivo and in-vitro training
data is unavailable for principle reasons.
An additional concern with in-vivo training data relates

to the clustering of data around common phenomena. In
most scenarios, certain situations occur more frequently
than others. In a production environment, most data will
show undamaged parts while actual defects are rare. Even
defective parts typically have a heterogeneous distribution
where some defect types are common and others highly
uncommon. Often, situations that are relevant to be
detected occur rarely.

Definition: in-vivo, in-vitro, and in-silico data

In-vivo data is captured from real-life situations that were not primarily
created or modified for the purpose of capturing the data. Examples are
video streams from autonomous vehicles driving through a city, black-
box data of accidents, and images of product defects from production.

In-vitro data is captured using physical sensors under lab conditions.
Examples are footage of crash-tests, images of products that were
intentionally damaged in the lab to capture the data, or images of
surface materials taken in the lab under controlled lighting conditions.

In-silico data is generated without the use of physical sensors by
software simulations. Examples are renderings of traffic scenes from a
driving simulator, rendered images of defect products, or virtual crash-
tests performed by simulations using the finite element method.

Consequently, in-vivo training data sets typically consist
of large quantities of relatively uninteresting situations
with rare instances of exceptional, but highly relevant
situations. If used to train a machine learning system, this
situation immediately translates to a class imbalance
problem. In principle, this problem can be mitigated to
some degree by manually filtering or selecting training
data, and by some computational compensation for class
imbalance. Nevertheless, the rate of occurrence of rare
phenomena might be very low.
A vivid example of an exceptional situation is the child

running in front of an autonomous driving vehicle. Cars
in Germany drove 7.3·1011 km in 2016 [6] and created
4195 severe accidents with children [7]. Consider
subdividing all driven distance to chunks of 5 m length
to obtain individual training data samples. One can
estimate that approximately three out of 1011 such
chunks contain images of children prior to a severe

accident. For obvious reasons, in-vitro generation of the
data is not possible. Resolving the class imbalance
problem by capturing enough data and normalizing class
balance by manual sorting is also not a valid option.
Even if one could afford the sheer amount of work, the
ethical implications of the approach is that one would
need to wait for these 4195 severe accidents to happen
to record the data required to avoid them rather than
using in-silico data generation and preventing that the
accidents must happen.
The core contribution of this position paper is the

introduction of a concept called “Digital Reality” that
solves these issues.
Figure 1) displays this generic blueprint of how

machine learning models can be trained and validated
using such synthetic training data. The approach applies
to all data driven methods, particularly data-driven
supervised or unsupervised learning with deep neural
networks, and deep reinforcement learning [8].
The process starts by (1) creating partial models of

reality by modeling, capturing, or learning individual
aspects such as geometry, behavior, or physical
properties including materials or lighting. (2) stating
models are composed of parametric scenarios would
invert the part-whole relation by manual configuration,
data fitting, or machine learning. (3) Setting all parame-
ters of such a scenario to fixed values creates a concrete
instance of the scenario, corresponding to a simulation-
ready 3D scene. (4) The scene is then rendered by a
forward-simulation of the imaging process. (5) The
resulting synthetic images are used to train a machine
learning system.
The remainder of this paper is organized as follows: We

first present a more detailed description of the individual
steps of the Digital Reality concept. In section 2, we
describe how partial models are obtained, and in section 3
we elaborate how training data can be generated from
parametric models using sensor simulations. In section 4,
we discuss how considering the parametric models from a
sampling perspective can provide useful insights into data
generation. In section 5, we present several Use Cases
from different application areas to illustrate the Digital
Reality concept on concrete examples, and in order to
give some evidence that the concept is feasible.

Parametric models of the real world
The first step of the Digital Reality concept is the
creation of partial models of the real world. Each of
these partial models covers one specific aspect of reality
in the context of a narrow field of application.
For example, in the context of defect detection in a

production environment, partial models can cover the
shape properties of the products, shape and characteristics
of the defects, material properties of the product surfaces,
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lighting setup at the production site, or properties and
physics of the imaging system. In the context of
autonomous driving vehicles, a much longer list of
partial models is perceivable. The list includes, among
others, geometry and material properties of individual
elements of a traffic scene such as roads, buildings,
traffic signs, plants, vehicles, or pedestrians [9], layout
of traffic scenes, behavior models of vehicles, traffic
lights, and pedestrians, models of lighting conditions
and weather, as well as models of the sensory systems
available to the car including optical cameras, lidar, and
the physics of the imaging process of each modality.
The partial model is called parametric because each
model is controlled by a set of input parameters and
describes a part of a scene in a simulation environment
as a function of these parameters.
Clearly, creating partial models of reality closely

relates to science. However, there are differences
between models created for the purpose of Digital
Reality and general scientific models. Science aims to
understand one aspect of reality, in the most general
way possible. Therefore, models are only accepted if
they are described in a form that is interpretable by
humans. The value of a model is highly dependent on
the range of its applicability. This means, a model is
considered valuable if it can be applied to a wide variety of
situations and explains one aspect of reality. Consequently,
capturing data about a phenomenon without generating an
abstract insight and interpretation is considered incomplete
science.
In the context of Digital Reality, neither understanding

nor generality of partial models are primary concerns.
Instead, for the immediate purpose of training a machine

learning system, a generative model with a narrow
applicability to the problem is sufficient. The model does
not necessarily need to be formulated in a way that is
particular prone to human interpretation. Rather, any
parametric model that is capable to generate the desired
output is sufficient. Obviously, the partial models can still
be created manually. The manual approach is ideal when
obtaining of a deeper understanding of aspects of reality is
of interest for reasons beyond machine learning. In other
cases, capturing or learning a phenomenon is often more
effective.
If a model has only little manually created structure but a

large number of parameters that are automatically fitted
against data, we refer to the process of creating the model
as capturing. Typical examples for captured models are
object geometries, surface properties of materials, emission
properties of light sources, animation snippets, and many
more. In the following, we give some examples of recent
progress in capturing various types of models. In the
special case that the architecture used for the model
capturing is a neural network, we refer to the process as
learning the model.

Capturing of appearance models
The most commonly captured type of partial model is the
geometry of objects. Surface geometry is traditionally
captured by 3D laser scanners. The scanners generate an
unstructured set of points on the surface of an object. A
model is then fitted to these points to establish connectivity
and create a mesh. A viable alternative to laser scanners
that is increasingly used in the computer game and movie
industry is photogrammetry [10]. Apart from the obvious
point that a digital camera is sufficient to perform a scan,

Fig. 1 The Digital Reality Concept. The process starts by creating partial models of reality by modeling, capturing, or learning individual aspects such
as geometry, physical properties including materials, behavior, or lighting. The partial models are composed of parametric scenarios by manual
configuration, data fitting, or machine learning. The composition is performed in such a way that all aspects of reality relevant to a specific simulation
are provided. Setting all parameters of such a scenario to fixed values creates a concrete instance of the scenario, corresponding to a simulation-ready
3D scene. The scene is then rendered by a forward-simulation of the imaging process. The resulting synthetic images are used to train a machine
learning system
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photogrammetry has the advantage of capturing surface
color and texture along with the shape. However, the
captured textures include lighting information that must be
removed in a non-trivial post-processing step called
delighting [11]. Most 3D scanning approaches are limited
to strictly diffuse objects. A fully automatic solution to
handle glass and mirror surfaces has just been presented
recently [12].
Geometry alone is insufficient for photorealistic

rendering, as the appearance of objects strongly depends
on their optical properties. The most basic model of the
optical properties of material surfaces for rendering
images is the Bidirectional Reflection Distribution
Function (BRDF). Capturing BRDF has been a topic in
computer graphics research for a long time, and various
measurement devices and algorithms of different levels
of complexity have been developed for this purpose [13].
In practice, most renderers use lower dimensional
parametric models that are fitted against measured
BRDF data. Small details in the surface geometry and in
the BRDF are stored as a set of texture images for
diffuse color, position (also called displacement), surface
normal direction, reflectivity, roughness, and so on.
An interesting observation for many entertainment

applications is that the characteristic features in color
variation and the small geometric features captured in a
surface normal are more important for the human
perception of materials than the precise modelling of
reflectance characteristics. A common workflow for
capturing materials therefore consists of generating a
high resolution elevation model of the surface using
photogrammetry. Material textures are then generated
from this model and the remaining free parameters of

the material model are set manually to fit the model
appearance.
Once partial aspects of the real world are modelled,

the partial models can be composed to parametric
scenarios in a simulation environment (Fig. 2). The
scenario can be configured via a parameter space that
consists of all parameters of the partial scenarios and
potentially additional, scenario-specific parameters. If all
parameters are set to concrete values, the generative
model can produce a concrete instance of a scenario that
corresponds to a simulation-ready scene.

Behavior model generation
When moving from static images to video, parametric
models must include time dependent aspects, including
behavior models. Particularly the behavior of digital
human models (DHM) is of key importance because of
their high-level of variability and the importance of
correctly detecting humans. The control of DHMs can
be separated into at least two major aspects. On the one
hand, a controller which drives the basic mechanics of
the artifact that represents the body of a human (not
necessarily making use of physics for this purpose) and,
on the other hand, an intelligent agent that drives the
high-level behavior of the DHM.
In principle, human motion synthesis can be

addressed with varying approaches and levels of detail,
depending on the requirements of the specific domains.
A recent overview of motion synthesis approaches is
given in [14]. Current motion generation approaches for
full body animation can be classified as either analytical
or data-driven. Analytical motion synthesis aims to gen-
erate realistic motions based on intrinsic mathematical

Fig. 2 An example of a parametric scenario, a microchip with a defect. The scenario is composed of different partial models that cover one aspect of
reality each. Partial models concern the shape of the mold, the shape of the defect, the geometry of the connections, surface properties of mold and
connections, as well as the camera and lighting setup. The parameter space of the parametric scenario is the union of the input parameters of all
partial models and additional, scenario-specific parameters
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or physics models [15]. In particular, inverse-kinematics-
based approaches [16] are often utilized to manipulate
motions of articulated avatars. In contrast to the analytical
approaches, data driven or example-based motion synthe-
sis approaches rely strongly on reference and example
datasets, which are predominantly recorded by means of
motion capturing. These approaches can be further
subdivided into different categories: motion blending,
which interpolates example clips [17, 18], motion graphs,
which concatenate discrete segments or poses [19], and
machine learning, in particular deep learning-based
approaches, which approximate a function or statistical
model [20, 21]. Recently, machine learning approaches
using deep neural networks have shown promising results
with comparatively little manual effort in the preprocess-
ing [22, 23].
One level of abstraction above animation is the high-

level control of a DHM. Work on the modelling of intelli-
gent behavior goes back to the fifties of the past century.
At that time researchers concentrated on developing
general problem solvers, which worked in any given
environment if it could be described in a formal manner.
However, the success of such systems was rather limited
because of the computational complexity of the presented
problems. In the current state of the art on DHMs, behav-
ior trees or belief, desire, intention (BDI) reasoning are
mostly used in complex applications. In how far it is
possible to combine these approaches with the planning
from first principle approach of a general problem solver
is a research question. In fact, whether and how it is
possible to learn basic behavior, possibly using deep
learning techniques, and combine it with symbolic reason-
ing approaches remains an open problem.

For autonomous driving, the behavior of
pedestrians and bicyclists is the most difficult part to
model, as in-vivo data is only partially available and
cannot be obtained in many situations due to ethics
and effort (Fig. 3). Current synthetic driving simula-
tors either do not include pedestrians at all [24] or
only display default game engine animations with
predefined trajectories [25–27]. A review on models
of pedestrian behavior in urban areas is presented in
[28]. The work has a focus on route choice and
crossing behavior. Most importantly for a Digital
Reality, the authors propose a multi-level behavior
model, very similar to the definition of multi-agent
systems.

Shallow models in two dimensions
So far, we have considered the case that partial models
are built close to the real world. In this case, models
exist in a three-dimensional world space, and object
properties are modelled from a relatively deep physical
understanding of the measurement process. This allows
the generation of in-silico images using low-level phys-
ical simulation of the measurement process, such as
physics-based rendering or radar simulation. Such an ap-
proach is conceptually very clean and has clear advan-
tages in terms of generality.
However, the capturing of all required models can

constitute a tremendous effort, and the low-level sensor
simulations can have very high computational cost.
Though, in many situations, in-silico data can be gener-
ated in sufficient quality from more shallow models.
Hereby, a typically two-dimensional model is generated

Fig. 3 A second example of a parametric scenario, a traffic scene. Again, the scenario is composed of different partial models that cover one aspect of
reality each. The real-world environment exhibits a much larger number of parameters and variation compared to chip production depicted in Fig. 2.
As the scenario is potentially imaged using different sensory modes (optical camera plus radar or lidar), partial models must provide the sensor-
modality specific inputs for the simulation
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purely from in-vitro or in-vivo data without the need to
integrate a deeper physical understanding of the real
world. Such image-based models are typically expressed
in image processing terms such as intensities, frequen-
cies and pixel-distances.
An example of such a shallow model is modeling of

cracks in microchips, which can be used to train an
optical inspection system. The model consists of a
background texture with a crack model painted over the
background, which is generated from a texture atlas
using an exemplar-based inpainting approach for texture
synthesis. The crack model itself consists of a polygon
line of random width that extends in a primary direc-
tion, but deviates from that direction at random steps in
random angles. The intensity profile of the crack is
modeled by superimposing several semi-transparent
lines with identical corner positions but different trans-
parencies and line widths. All random parameters of the
model are drawn from statistical distributions that were
generated by manually measuring a set of 80 in-vitro
images of cracks. The overall parametric model is
depicted in Fig. 4.

Scientific model generation
Typical length scales relevant to production or traffic
environments are the millimeter to meter scale. For
many scientific applications, we are interested in much
smaller or much larger length scales and sensory
systems suitable for these scales. Paradoxically, our
quantitative understanding of both matter and the
imaging thereof is much more precise on both

microscopic scale and on astronomical scales compared
to the every-day environment that we live in. Using, for
example, force field simulations as consistency check, we
can model microstructure at the atomic level much
more reliably than we can model objects at the every-
day scale, such as cars, buildings, furniture, or humans.
It is much easier to achieve a quantitatively correct
simulation of an electron microscopy image compared
to a quantitatively correct rendering of, for example, a
human face at the visual optical spectrum. As Richard
Feynman put it [29], it is possible to know everything
about matter, all one would have to do is to look at it
and see where the atoms are. With recent advances in
imaging and analytical characterization techniques, it is
nowadays possible to generate a good description of the
atomic structure of materials.
For example, with the advent of aberration corrected

transmission electron microscopy (TEM) [30] and
increasingly sensitive detectors, it is possible to create a
two-dimensional projection of the atomic structure of a
thin object. This can be extended by in-situ TEM
characterization to image the structural dynamics at the
atomic level in response to external stimuli such as heat,
electrical currents, strain, or specific gas environments
[31–33]. The main challenge is to create a three-
dimensional model from the atomic scale projections.
However, using convolutional neural networks, significant

advances have been achieved, for example by identifying and
tracking atomic positions in a metal nanoparticle exposed to
a defined gas environment to follow the structural response
of the nanoparticle [34]. Also in atom probe tomography

Fig. 4 An example of a shallow parametric model. The background is generated from image examples with a texture synthesis approach
using exemplar-based inpainting. The crack is generated using a polygonal model. All parameters of the polygon such as step length,
angle at each corner, line width and cross-section intensity profile are drawn as random variables from a statistical model. The model
was generated by measuring real cracks
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(APT) [35, 36], tremendous improvements have been
achieved, which enable determination of the three-
dimensional coordinates of around 50% of the atoms in
nanoscale needle-shaped samples. With this progress, state-
of-the-art analytical techniques are getting closer to fulfill
Feynman’s vision.

Sensor simulation and label generation
In-silico training data is generated from a scene using
conventional simulation of the measurement process
and sensor. In the case of optical camera systems, the
simulation consists of rendering an image. Specific
questions of how to render optical images accurately and
efficiently have been the topic of computer graphics
research for decades such that the problem is well
understood and there exists a large number of both
commercial and free software packages to address the task.
In the case of other sensor modalities such as lidar,

radar, or X-ray imaging, the image formation is also well
understood, but the range of available software for the
simulation is smaller compared to optical systems. In
either way, we assume that simulation software exists for
all required sensor modalities.
In the case of in-vitro or in-vivo training data, the data

must be labelled manually or using semi-automatic
methods. Creating accurate labels per pixel is a tedious
and time-consuming process. Trading reduced labelling
precision for additional data is an option if sufficient
images are available, but does not increase segmentation
performance in general [37]. Per-pixel labels can be com-
bined with per-image labels in suitable architectures [38].
In some cases, labels can even be generated automatically
using a secondary sensory mode. For example, a network
for the automatic segmentation of cells in optical micros-
copy images was trained using labels automatically gener-
ated by means of fluorescence microscopy [39]. This
approach is very elegant but highly specific to the scenario
and not available in general.
Besides generating the in-silico sensor data, the simu-

lation system must also generate class labels. The exact
format depends on the problem that should be solved by
the network. In the case of supervised deep neural
networks for image classification, the provided label is
simply a class ID per image. For multi-object detection,
the labels are a set of bounding boxes in the image space
and an additional class label is assigned to each box. For
semantic segmentation, the labels are a separate image
channel that contains a class ID per pixel. Obviously, the
required class label format corresponds to the output
format of the network.
Fortunately, generating class labels directly from a

parametric model is much easier than first rendering in-
silico images and then generating the labels from these
images. In many cases, the parametric model is

constructed in such a way that one or more parameters
directly correspond to class labels. In the example of the
defective chip, the model contains a parameter hasCrack
that triggers if a crack is generated in the scene or not
and can directly be mapped to a class label. In the case
of semantic segmentation, the rendering system can be
configured to generate an object ID pass as a separate
image or image channel, where the object ID is set to
one for all pixels that cover the crack and to zero for all
pixels not covering the crack. For multi-object detection
networks, image space bounding box information can be
generated trivially from the object ID images.
The generation of the class labels can be slightly more

complicated than this, e.g. if one needs to consider the
case that an object is generated in the scene but not
visible for a specific camera position or setup, or if the
model parameters do not map one-to-one to the class
labels. Still, the parametric model was generated from an
understanding of the problem domain, and as such, the
terminology used to define the parameter space of the
model is usually closely related to the desired class
labels.

Sampling the parameter space
One key advantage of the Digital Reality approach for
the generation of training data is that class balance can
be achieved in an elegant and generic way by means of
controlled sampling of the parameter space. If the
parameter space is well-behaved, a simple uniform
random sampling of the parameter space is sufficient.
Each parameter is set to a random or pseudo random
value, and the corresponding simulation model is then
generated.

Well-behaved parameter spaces
A parameter space is called well-behaved, if the
following conditions are met. First, all parameters
should be limited. A parameter is limited, if there exists
an interval [lower, upper], such that the parameter needs
only be sampled inside the interval to cover all
variability in the model. Enum-like parameters (i.e. pa-
rameters that are selected from a finite set of possible
values) are always limited. Second, all parameters should
have approximate constant influence over the entire
parameter range. We define the influence of a parameter
p by means of an image similarity measure N such as
peak signal-to-noise ratio or structural similarity index.
Consider a configuration C in parameter space. A
second configuration C′ is generated by adding a small
value ε to the parameter p. The images corresponding to
configuration C and C′ are rendered and compared by
the image similarity metric N. The influence of the
parameter p is then the partial derivative dN / dp. Intui-
tively, this answers the question: how much influence
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does the parameter have on the rendered image. For
the parameter space to be well-behaved, we demand
that the influence of all parameters is approximately
constant over their respective range. If this condition
is violated, it can typically be compensated by meas-
uring the influence along the parameter range of p
and remapping the parameter p via some monotonous
mapping function p’ = f(p). f(p) is chosen such that dN
/ df(p) is approximately constant. This mapping func-
tion can include a constant scaling factor to ensure
that the influence of all parameters has the same
magnitude.
As example for such a mapping, consider a scene

consisting of an isolated object on a neutral background.
In such a scene, the camera position is typically specified
in a coordinate system consisting of the two Euler angles
and the distance of the camera to the object. The
rendering of the object covers a number of pixels that is
approximately proportional to the inverse of the squared
distance to the camera, a phenomenon widely known as
inverse square law. The distance between two images
measured by an image similarity metric is approximately
proportional to the number of pixels affected for most
metrics. Consequently, the distance of the camera to the
object should be specified on a quadratic scale, such as
1 cm, 2 cm, 4 cm, and so on. This ensures that increasing
the distance by one step will lead to a constant amount
of change in the image.

An initial goal in sampling a parameter space is to avoid
class imbalance. This means that every output class of the
model should be trained using approximately the same
number of data points in the training set (Fig. 5a-b).

Black box adaptive sampling and importance sampling
using the confusion matrix
In some situations, individual classes are more difficult to
differentiate than others. In this case, a sampling that aims
for a uniform number of training data points per output
class might not be optimal. Consider a hypothetical
scenario from autonomous driving. The system should
detect several classes of traffic signs including stop and
right of way signs, advertisement signs, pedestrians, and
vehicles. Clearly, pedestrians exhibit a much larger variety
of appearances compared to stop signs and consequently,
a larger number of training samples is requred.
We propose an adaptive sampling scheme using the

confusion matrix. The sampling is initialized by generating
a fixed set of training samples optimized to achieve class
balance as described above. The data set is used to train a
network and evaluate it on a validation set. The confusion
matrix for the validation set is computed. If occurrences of
class A are often mistaken for class B, additional data of
class A and B are generated. In the simplest case, additional
samples corresponding to class A and B are generated
using uniform random sampling. A more elaborate
approach is to generate training data in pairs (Fig. 5e).

Fig. 5 Different sampling strategies to generate additional training data. a) Consider a parametric model with two parameters. Every point in the
parameter space (white crosses) corresponds to a concrete instance of a scenario (simulation ready scene). b) As a first sampling strategy, class balance can
be achieved by generating the same number of instances in the parts of the parameter space that corresponds to every output class. In the example, six
scenarios are generated for each class a, b, and c. After training and running initial classification experiments, it becomes clear that the system has
difficulties differentiating certain instances of class b and c (black crosses). c) A straight forward sampling strategy is to generate additional samples in the
classes b and c using uniform random sampling. d) A more controlled approach is to use some version of importance sampling to generate additional
samples close to known misclassified samples. This requires bookkeeping of the parameters for each training data point. e) Additional training data can
also be generated in pairs. Hereby, two similar data points are generated that differ in one parameter only but fall in the different classes
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Hereby, the two samples of the pair should be identical in
all but one parameter, but one sample corresponds to class
A, the other sample corresponds to class B. For example, if
advertisements signs showing humans are frequently
misclassified as pedestrians, a scenario could fix a street
scene with respect to street and building layout, lighting
conditions, camera position and so on, but replace one
advertisement sign with a pedestrian.
If the system stores the parameters used to generate each

sample in the training data set, additional importance
sampling can be performed (Fig. 5d-e). Starting from the
confusion matrix, the sampling algorithm can determine
the parameters of individual, incorrectly classified samples.
If this information is mapped to the parameter space,
regions in the parameter space can be identified that have
lower detection rates than others. For example, the system
could determine that the detection rates for certain classes
are lower in regions of the parameter space where the
camera faces westwards and the sun position corresponds
to late evening. Additional training data can then be
generated by means of importance sampling specifically in
these regions.

White box adaptive sampling
Semi-automated approaches for generating training data
can also rely on inspecting the used neural network. The
easiest way to visualize the inner workings of a neural
network is to draw the activations during the forward pass
[40]. Activation maps with zero values can help to indicate
dead filters, e.g. through high learning rates. Besides
activations, it is possible to display the weights, respectively
the learned kernels [40]. A well-trained network usually
resembles quite smooth kernels without noise. Noisy
patterns could indicate low regularization, which means the
model is overfitted.
Another option to visualize how a deep neural network

works is to track the maximal neuron activation. In
particular, it can help to understand what a neuron is
looking for in its corresponding receptive field, as shown
in [41] and using guided backpropagation as in [42]. One
more option to identify where a classification originates
from is to plot the probability of a class as function of the
position of an occluding object resulting in an occlusion
map [43]. Further progress towards the mentioned
examples are gradient-based class activation maps [44].
The computed plots are similar to heatmaps and show the
contributions of image parts to a classification, which
facilitates interpretation compared to originally introduced
saliency maps [45].
Impressive work on how neural networks build up

their understanding of images has been collated and
applied to many example images in [46]. The authors
show how optimization can be used for visualizing
neural networks and interactions between neurons.

Going one step further, possible interfaces that arise when
combining interpretability techniques are explored in [47].
All of the above mentioned inspection techniques are

potentially useful the make informed decisions about
what training data to add for improving the performance
of a model. However, a systematic approach with clear
procedures how to address this is missing today.

Use-cases
In order to illustrate the Digital Reality concept on
concrete examples and to give some evidence of the
feasibility of the approach, we now present several Use
Cases from different domains.

Use case ‘Optical Inspection in Production’
Decreasing production tolerances and increasing quality
constraints in manufacturing create a demand for inline
inspection. Quality assurance takes place not only on the
final product but increasingly at every intermediate step of
the production line. On the one hand, this trend is
supported by sensors with significantly higher resolution
than possible in the past, as well as an increase of
computational power of the corresponding signal
processing platforms. On the other hand, the demand to
quickly reconfigure production lines for new or changing
products to the extreme case of individualized products in
an Industry 4.0 context makes the automated inspection
algorithmically more difficult. How can the inspection
algorithm make a decision if a deviation is a defect or an
intended configuration if every product is configured
individually? In this context, deep neural networks may
become an integral part of inline inspection. Rather than
learning the product and interpreting every deviation as
defect, the system learns typical defects, such as cracks,
and can then detect these defects on a wide range of
similar, but not identical, products.

Use case ‘Use of Synthetic Data for Simulated
Autonomous Driving’
In recent years, there has been tremendous progress in
the application of deep learning and planning methods
for scene understanding and navigation learning of
autonomous vehicles [48]. However, the accomplishment
of pedestrian safety by means of trusted, verifiable, and
efficient methods of artificial intelligence (AI) remains a
key challenge for autonomous driving. Critical traffic
scenarios with life threatening situations for pedestrians
or car passengers are too rare and diverse in comparison
to other road situations that can be encountered. Creating
such critical scenarios for analysis is ethically impossible.
Furthermore, the manual labeling of acquired in-vivo or
in-vitro data may be prohibitively expensive. Labeled in-
silico images for simulated critical traffic scenes can be
automatically generated with appropriate frameworks
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[49], driving simulators and several large collections of
synthetic ground truth data for benchmarking scene ana-
lysis solutions in the context of autonomous driving are
available [50]. Deep learning based semantic segmentation
with a domain adapted VGG16 network over mixtures of
labeled in-silico and unlabeled data can perform consider-
ably better compared against purely using in-vivo data
[51].
However, scene understanding alone does not help to

solve the problem of collision-free navigation by self-
driving cars. Available real or synthetic dataset of critical
traffic scenes are either insufficient in quantity and quality,
or not freely available. An established standard database
does not exist as of today. Therefore, the training and
validation of deep reinforcement learning-based methods
for safe and smooth navigation of simulated autonomous
cars requires the synthesizing of these scenes based on real-
world studies of accidents like GIDAS [52, 53].
The Association for Standardization of Automation

and Measurement Systems (ASAM) [54] already
established description formats for some aspects of the
street environment. OpenCRG is a description format
for road surfaces, OpenDrive allows the representation
of street networks and OpenScenario is a definition
language for driving tasks. The language also allows the
description of predefined, trajectory based motion paths.
However, other aspects such as complex pedestrian and
bicyclist behavior and motion are not yet describable by
established formats.
Several commercial driving simulators like NVidia

Drive Constellation [55], SCANeR [56]. OpenDS [27],
and Tronis [24] focus on the simulation of driving
scenarios, including the generation of high quality
optical images. The solutions mostly lack quantitative
sensor-specific simulation because of limitations in the
simulation technology and the material representation.
For example, available pedestrian models do not include
material descriptions for radar simulation, etc.
One interesting question is, what impact a suggested

new sensor has on the driving performance of an
autonomous vehicle. Particularly, one would like to know
whether a certain type of accident could have been
avoided if the car had been equipped with a specific lidar,
radar, or camera.

Use case ‘In-Situ Microscopy of Graphene formation’
Graphene and graphenoid materials have attracted a lot of
interest because of their unique mechanical and electrical
properties [57]. While defect-free, large area preparation of
graphene sheets for practical applications is technically
challenging, progress has been made in preparing nanocrys-
talline graphene (ncg) by pyrolysis of polymer precursors
[58]. In addition to the easy fabrication, the main advantage
of ncg is, that it can be patterned to achieve different shapes

and by varying the polymer precursor and the pyrolysis
conditions, the structure and thus the properties of the thin
films can be tailored.
However, a better understanding of the graphitization

process and the structural evolution during pyrolysis is
necessary for a targeted preparation of ncg with defined
properties. Low-voltage in-situ TEM techniques have
been demonstrated to enable direct imaging of the struc-
tural changes of ncg during pyrolysis close to atomic
scale resolution [59]. Besides, new reaction pathways,
which are strongly influenced by the high defect density
in ncg have been identified [33].
Nevertheless, a more complete understanding of the

reactions in ncg, which is the interaction of small graphene
flakes, is necessary to tailor the pyrolysis conditions. This
requires a much more automated tracking of reaction hot
spots to enable a statistically meaningful analysis of various
reaction sites and to follow the structural changes at the
hot spots by high-speed in-situ TEM imaging. Most
important, more advanced image analysis methods are
required to identify the local atomic arrangement in the
image series and to correlate the observed changes with the
corresponding molecular modelling.

Use case ‘Smart Home and Smart Grid’
Due to climatic change, renewable energy sources and
higher energy efficiency are key factors of the economy.
More or less all renewable energy sources are very
variable so that the stability of energy networks is much
more difficult to guarantee. More buffer capacity for
energy storage combined with a transformation of energy
networks into smart grids are possible ways to cope with
the challenge.
Smart grids require intensive load balancing and a regional

compensation of energy generation and consumption. Smart
homes are important elements of a smart grid. For an
optimized load balancing a smart grid should be enabled to
control and precisely predict energy consumption and
generation by smart homes and its devices such as solar
panels, solar heat, large battery packs, combined heat and
power generation plants, or washing machines based on
individual patterns and profiles. For a good user acceptance,
external controls must fit to individual consumer habits and
requirements. Machine learning, in particular deep learning
is considered essential for an effective extraction and
prediction of those patterns, but requires training phases of
at least 1 year to cover all “energy periods”. Furthermore, it is
hard, if not impossible, to train neural networks based on
real-world data on energy-related effects of very rare weather
conditions such as once-in-a-hundred-years summers or
winters, long, unusual rain periods, or large-scale regional
damages of solar panels due to thunderstorms. In this
respect, synthetic (in-silico) data of simulated energy-related
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events can help to find appropriate intervention possibilities
and to improve the prediction. Simulation might also be
useful in generating meaningful data to predict effects of
more or better equipped, higher automated, or even autono-
mous smart homes.

Conclusions
We present the Digital Reality concept as a generic
blueprint for the training of Deep Neural Networks
using in-silico training data. Aspects of the real world
are represented by parametric models, which in turn can
be composed to form parametric scenarios. Concrete in-
stances of the scenarios, where all parameters are fixed,
are simulation-ready scenes, which can then be used to
generate in-silico training data using forward simulations
of the measurement process.
The choice of parameter values allows a fine granular

level of control over the composition of the training data
set. By performing random sampling with a uniform
sampling density, class imbalance problems can be
avoided. The training can further be improved if training
data is generated on-demand following a specific adap-
tive sampling pattern that can be obtained from careful
investigation of the parameter space of the model. Adap-
tive sampling can start, for example, from investigating
the confusion matrix, or by visual inspection of the
network. Thus, the composition of the training data set
can follow the requirements of the training process
rather then been dictated by the arbitrary distribution of
an in-vivo data generation process.
The Digital Reality approach offers an elegant and

generic solution to most training data problems. It is
particularly useful in cases where the in-situ generation of
training data involves expensive sample acquisition, if the
manual labelling of in-situ data constitutes a prohibitive
effort, if training data cannot be obtained in sufficient
quantity for ethical reasons, or if the phenomenon in
question has been predicted, but not yet been observed.
Use cases include the optical inspection in production
environments in an Industry 4.0 context, autonomous
driving vehicles, scientific applications for example in
microscopy, or automated decision making in smart grid
applications.
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