
Attacks on Dynamic Protocol Detection of Open
Source Network Security Monitoring Tools

Jan Grashöfer
Karlsruhe Institute of Technology

Institute of Telematics

jan.grashoefer@kit.edu

Christian Titze
Karlsruhe Institute of Technology

Institute of Telematics

christian.titze@alumni.kit.edu

Hannes Hartenstein
Karlsruhe Institute of Technology

Institute of Telematics

hannes.hartenstein@kit.edu

Abstract
Protocol detection is the process of determining the
application layer protocol in the context of network
security monitoring, which requires a timely and pre-
cise decision to enable protocol-specific deep packet
inspection. This task has proven to be complex, as
isolated characteristics like port numbers are not suffi-
cient to reliably determine the application layer protocol.
Hence, more dynamic detection approaches have been
developed. In this paper, we analyze the Dynamic Pro-
tocol Detection mechanisms employed by popular and
widespread open-source network monitoring tools. We
show on the example of HTTP that all analyzed de-
tection mechanisms are vulnerable to evasion attacks,
which pose a serious threat to real-world monitoring
operations. We find that the underlying fundamental
problem of protocol disambiguation is not adequately
addressed in two of three monitoring systems that we
analyzed. To enable adequate operational decisions, this
paper highlights the inherent trade-offs within Dynamic
Protocol Detection.

1 Introduction
Common Network Security Monitoring and Intrusion
Detection Systems make use of Deep Packet Inspec-
tion (DPI) techniques to allow application layer specific
analysis of the monitored traffic. Once the application
layer protocol is identified, these systems attach appro-
priate decoders to extract detailed meta data about
or contents of the communication for further analysis.
While the primary focus of a Network Security Monitor-
ing (NSM) system is to provide as detailed information
about the observed traffic as possible, access to the
high-level semantics of the traffic is extremely valuable
for Intrusion Detection Systems as well. For example,
in case of signature-based intrusion detection, the addi-
tional information can be used to improve the accuracy
of signatures to reduce false positives. In the following,

we will refer to NSM systems in the sense of a super-
class, which includes network Intrusion Detection and
Prevention Systems (IDS/IPS).
Determining the correct application layer protocol

decoder for a connection based on port numbers has
proven insufficient. On the one hand, there are arbitrary
deviations from using standardized ports for multiple
reasons ranging from web interfaces operated on pe-
culiar ports to users or applications actively trying to
bypass port-based restrictions. On the other hand, there
are protocols that use unpredictable ports by design,
because ports are automatically negotiated. Popular
examples are FTP and SIP. Hence, the concept of Dy-
namic Protocol Detection (DPD) has evolved, which
denotes a flexible approach that takes the actual content
of a connection into account to determine the protocol
in use, i.e. to perform protocol disambiguation. DPD
has been introduced as a key element to virtually almost
all modern NSM systems, because failing to detect the
protocol in use prevents the appropriate decoding of
traffic and hence spoils the intended visibility.
In this paper, to attack the monitoring, we revisit

DPD and transfer general evasion strategies to DPD.
By analyzing state of the art DPD implementations,
we deduce two attack techniques, Deferred Start and
Misleading Start, which exploit the underlying problem
of protocol disambiguation. Applying the DPD attack
techniques for text-based protocols on the example of
HTTP, we implement three practical attack realizations.
Although most of the traffic is encrypted nowadays,
HTTP still represents a highly relevant use case: Apart
from scenarios in which the lack of encryption consti-
tutes the reason for careful monitoring, the presented
attacks would also affect monitoring operations that
deliberately decrypt HTTPS traffic for monitoring pur-
poses [1], [2]. We show that the attacks pose a threat to
real-world deployments by an evaluation of the behavior
of popular web servers, such as nginx, when facing our
attack traffic. We find that the web server behavior
exploited for the proposed evasion is quite common in
the top 500 websites. Based on the outlined attacks,

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/270087906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

we point out the inherent trade-offs within DPD and
discuss approaches to address them. Given the funda-
mental nature of the underlying problem, we intend to
raise the awareness for the need to carefully balance
these trade-offs.

This paper is structured as follows: First, we present
related work in 2. In 3 we define the attack scenario
and introduce our attack strategy. Then we analyze
the DPD mechanisms employed by two popular and
widespread open-source NSM tools, namely Bro1 and
Snort in 4. Building upon our insights, in Section 5, we
introduce two general DPD attack techniques that are
tailored to our attack scenario and construct different
types of attack traffic to conduct evasion attacks. In
6 we show that both analyzed NSM systems as well
as a third, popular IDS, Suricata, are vulnerable to
these evasion attacks. In this context, we also discov-
ered a Denial of Service (DoS) attack against Bro that
has since been reported and fixed. Furthermore, we
evaluate the real-world applicability and impact of the
presented attacks. Considering our findings, we discuss
the challenges of DPD in 7. Finally, we conclude our
paper including an outlook on future work in 8.

2 Related Work
Attacks on network monitoring in general are a well-
known problem [3]–[5]. Already in 1998, Ptacek and
Newsham [3] introduced a classification of monitoring
attacks, described corresponding attacks on IP as well
as TCP level and evaluated monitoring software against
these attacks. Ptacek et al. showed that all tested sys-
tems were vulnerable and came to the conclusion that
substantial efforts have to be undertaken to address
the shortcomings they discovered. Nevertheless, more
than a decade later Cheng et al. [5] still found pop-
ular NSM software vulnerable to well-known attacks.
Roelker [6] described techniques to evade detection in
context of HTTP focusing on exotic encoding to prevent
a comprehensive analysis. Despite previous work in the
NSM domain, our work demonstrates that already gath-
ered insights have not been transferred thoroughly to
DPD, which leaves state of the art monitoring software
vulnerable to attacks.

Traffic classification is a field related to DPD. Nu-
merous approaches have been suggested to infer the
type of traffic [7] or the application in use [8]. Machine
learning techniques have even been used to classify en-
crypted traffic [9]. However, there is a fundamental
difference between traffic classification and protocol de-
tection for NSM: Protocol detection requires a timely
and precise decision to enable protocol-specific DPI,
whereas traffic classification allows for a much higher
degree of fuzziness, as it usually aims at providing a

1In October 2018 Bro was renamed Zeek. As our analysis focused
on Bro version 2.5.1, we use the old name for the remainder
of this paper.

Figure 1: Attack scenario: The attacker aims at attack-
ing a monitored web server, while hiding the
attack traffic from the NSM.

rather coarse-grained overview of traffic composition.
To the best of our knowledge, the first scientific work

on DPD in context of NSM is the work of Dreger et al.
[10] that was published in 2006. Dreger et al. present
a tree-based approach for dealing with ambiguities in
the detection process. The authors carve out the fun-
damental trade-offs in protocol detection and foresee
attacks on the monitor in general. In contrast, we will
present attacks on the protocol detection mechanism
itself. We believe that Dyer et al. [11] were the first to
systematically investigate attacks on DPD in context
of DPI. However, their threat model is substantially
different from the established thread model for NSM:
They assume that both endpoints are controlled by the
attacker. To circumvent censorship, they tunnel traffic
by mimicking benign protocols. Our work employs the
established threat model for NSM [10], [12]: We assume
that only one of the monitored connection endpoints
is controlled by the attacker. This in turn requires at-
tacks on the monitor to be significantly more advanced.
Nevertheless, we show that DPD mechanisms can be
exploited to spoil the visibility defenders seek to gain
by deploying NSM systems.

3 Threat Model & Attack Strategy
In this section, we define the attack scenario that con-
stitutes our threat model (3.1) and present our attack
strategy (3.2).

3.1 Attack Scenario
In this work, we focus on text-based protocols using the
example of HTTP. The attack scenario is depicted in
Figure 1: The objective of the attacker is to execute
an attack on a web server without being accurately
observed by the NSM that monitors the traffic of the
web server. The fundamental assumption in the field
of NSM is that only a single connection endpoint is
controlled by the attacker. If both endpoints were
under the control of an attacker, the attacker would
be able to establish arbitrary covert channels, which
in turn are impossible to analyze by an observer [12].
In our scenario the attacker is able to send arbitrary
traffic to the web server, but has no additional means

2

to influence the server’s behavior, i.e. the web server
does not cooperate in hiding the attack traffic. As
the NSM receives a full copy of the traffic, the overall
attack is twofold: In addition to the primary objective
of attacking the web server, the attacker also needs to
attack the monitor. Therefor the attacker is required
to craft the attack traffic so that it is processed by the
web server but evades the NSM.

3.2 Attack Strategy
Our strategy to evade monitoring focuses on the detec-
tion of text-based application layer protocols like HTTP,
FTP or SMTP. If we are able to prevent the NSM to
correctly detect the protocol in use, we take away the
ability to adequately analyze the observed traffic and
thus spoil the visibility that operators of the NSM seek
to gain.

While text-based protocols allow for easy analysis by
a human observer, parsing these kinds of protocols often
represents a difficult task. Whereas binary protocols
encode the length of Application Data Units (ADUs),
either in the protocol’s definition or in form of a length
field, text-based protocol parsers need to accumulate
the stream of characters until the end of an instruc-
tion, i.e. a line ending, is identified. The accumulated
character string can then be parsed and interpreted
according to the protocol. Unfortunately, it is common
for text-based protocols not to limit the total length
of ADUs, which theoretically requires unlimited buffers
for accumulating a single ADU. However, a NSM has
to make a timely decision on the protocol. The less
information is available to decide on the protocol in
use, the likelier a decision cannot be definitive due to
ambiguities.
Application Data Units of text-based protocols are

typically represented as distinct lines. Lines are usually
separated using either a single linefeed symbol (LF)
or a combination of carriage-return (CR) and linefeed
[13]. To evade the monitor, we will exploit this general
structure of text-based protocols in the context of DPD.
Based on our analysis of protocol detection mechanisms
employed in popular NSM systems in the following
section, we will deduce two attack techniques, Deferred
Start and Misleading Start. These techniques will allow
us to artificially delay the point at which a proper
decision can be made or deliberately mislead the monitor
to make a wrong decision.

Our example focuses on HTTP, due to its prevalence
in the modern Internet. While all of the analyzed DPD
mechanisms can be extended to work on HTTP/2 in its
unencrypted form2, only one of the investigated mon-
itoring applications comes with an HTTP/2 analyzer.
Thus, we narrowed our analysis down to HTTP/1.1 and
below. Nevertheless, the techniques we apply can also
be used for other protocols.

2Note that the preface of a HTTP/2 connection is text-based.
[14]

Figure 2: Exemplary analyzer tree for an IP-based TCP
connection in Bro. Branches indicate parallel
execution of analyzers.

4 Protocol Detection Mechanisms
In this section we will describe the Dynamic Protocol
Detection mechanisms of two different open-source NSM
systems, namely Bro [15] and Snort 3 [16]. To detect
the protocol in use independently of the port, both
systems apply protocol-specific signatures. Yet, we will
see that the underlying architectures significantly differ.
Note that we omit in this section a detailed analysis
of Suricata due to its similarity to Snort. Furthermore,
libraries like nDPI [17] and libprotoident [18] do not
implement mechanisms to enable DPI based on their
protocol classification. As our work focuses on the
inherent trade-offs of such mechanisms, these libraries
are out of scope.

4.1 Bro
The Bro NSM serves as a flexible platform for the anal-
ysis of network traffic. Incoming packets are processed
by an event engine that utilizes protocol analyzers to
parse the traffic and generate a high-level event stream.
To detect which protocols are used in the observed

network traffic, Bro uses the DPD framework intro-
duced in 2006 by Dreger et al. [10]. It orchestrates
inspection of a connection by composing a pipeline of
protocol analyzers to which the given stream of traffic
is fed. Analyzers can be chained to account for proto-
cols nested into each other. As it is not always clear
which analyzer has to be attached, a protocol analyzer
may have multiple child analyzers. This results in each
connection managing its analyzers in the form of a tree
as shown in Figure 2. If an analyzer signals a serious
inconsistency with its protocol, the analyzer is removed
from the tree. Following this trial-and-error approach,
possible ambiguities in the protocol detection can be
solved eventually.

Figure 2 shows an exemplary analyzer tree for a TCP
connection. In this case the TCP Analyzer is set as
root analyzer and takes care of reassembling the stream.
By default, the Connection Size Analyzer (ConnSize),
which keeps track of the connection’s statistics like
bytes sent and received, and the so called Protocol
Identification Analyzer (PIA) are added as child ana-
lyzers. Furthermore, the initial analyzer tree is built
based on well-known ports (e.g. 80 for HTTP). Besides
well-known ports, each protocol analyzer might specify

3

signature dpd_http_client {
ip-proto == tcp
payload /^[[:space:]]*(OPTIONS|GET|HEAD|

POST|...)[[:space:]]*/
tcp-state originator

}

signature dpd_http_server {
ip-proto == tcp
payload /^HTTP\/[0-9]/
tcp-state responder
requires-reverse-signature dpd_http_client
enable "http"

}

Figure 3: Excerpt from Bro’s signature file that de-
fines a pair of patterns to detect the HTTP
protocol.

signatures to get triggered. For example, the SMTP
analyzer in Figure 2 might have been attached due to a
signature match. Figure 3 shows a pair of signatures for
HTTP: The client signature specifies a set of common
HTTP methods and the server signature matches the
generic beginning of an HTTP response. The HTTP
analyzer is triggered by the server signature, which
requires the client signature to have matched by spec-
ifying the requires-reverse-signature condition. The
PIA is responsible for matching the DPD signatures
and attaching new analyzers to the tree. To allow the
activation of additional analyzers in the course of a con-
nection, the PIA buffers the beginning of the connection.
The buffer size is configurable and by default set to 1024
bytes. If an additional analyzer is added to the tree,
the buffer is replayed to that analyzer. Once the buffer
is filled, the dynamic detection process is stopped.

4.2 Snort 3
Snort is likely today’s most popular open source IDS and
IPS solution and mainly focuses on matching patterns
in network traffic. The patterns are defined in the form
of rather low-level rules, matching on the binary stream
of network traffic. Snort 3 allows the restriction of
rules to certain application layer protocols like HTTP,
whereas previous versions only supported TCP, UDP,
ICMP and IP [19]. In August 2018, a beta version of
Snort 3 was released [20] but it has not been declared
production ready, yet. Nevertheless, in context of this
paper, we will consider Snort in version 3.

In Snort 3 application layer analysis is realized by so
called service inspectors. A service inspector consists
of a stream splitter that preprocesses the data stream
and splits it into protocol-specific ADUs, e.g. lines in
case of HTTP. The ADUs are subsequently processed
by the actual service inspector, which also manages the
protocol state.
DPD is implemented by a special service inspector.

To identify text-based protocols, patterns called spells
are matched. Spells are realized as acceptors, i.e. finite

http_methods = { ’GET’, ’HEAD’, ’POST’, ... }

default_wizard = {
spells = {

{ service = ’http’, proto = ’tcp’,
client_first = true,
to_server = http_methods,
to_client = { ’HTTP/’ } },

{ service = ’smtp’, proto = ’tcp’,
client_first = true,
to_server = { ’HELO’, ’EHLO’ },
to_client = { ’220*SMTP’, ’220*MAIL’ } }, ...

}, ...
}

Figure 4: Excerpt from snort_defaults.lua (default con-
figuration) that defines patterns called spells
to detect text-based protocols.

state machines that accept a regular language. Figure 4
shows the definition of the patterns for HTTP and
SMTP. Alongside the service identifier (service), which
is used for assigning the corresponding inspector, each
spell defines the patterns expected in a first message
to the server (to_server) and in its reply (to_client).
While the development notes and code architecture sug-
gest that the final decision on the application layer
protocol should be on the service inspector that is trig-
gered, as of writing this paper, Snort 3 relies on the
DPD done by the wizard inspector. Once the wizard
attached a service inspector, the classification of the
connection is fixed.

Summing up, we find three important facets of DPD:
First, traffic has to be buffered until a decision on the
protocol is made. Second, signatures are used to infer
the protocol in use and third, the applied heuristics
might not be definite so that the resulting ambiguities
need to be handled. Considering a third NSM system
for our evaluation in Section 6, we will see that Bro is
the only system that actively deals with ambiguities by
implementing an analyzer tree.

5 DPD Attack Techniques
In this section we present two techniques to conduct
novel insertion attacks on DPD in context of text-based
protocols (5.1 & 5.2) and develop three practical real-
izations of these techniques (5.3). Based on the practi-
cal realizations, we will evaluate the DPD mechanisms
implemented in popular open source NSM systems in
Section 6.

5.1 Deferred Start
A Deferred Start attack is based on the observation that
NSM systems are forced to focus on the beginning of a
connection to identify the protocol. The basic idea is
to defer the actual start of the connection by flooding

4

the monitor with useless data, causing the protocol
detection to fail.

Considering that every byte of the connection is rele-
vant for analysis, the monitored traffic has to be buffered
for analysis until the protocol is finally determined. This
requirement is further aggravated by the fact that the
beginning of a connection usually contains information
of particular interest: For example, request and response
headers in the beginning of an HTTP connection provide
meaningful meta data. As extensive buffering would
pose a Denial-of-Service vector, the buffer size has to
be limited, which requires the DPD mechanism to come
to a timely decision.
In general there are two possible approaches to deal

with the need to buffer traffic in the light of delayed
protocol determination: First, one could use a reason-
able sized fixed buffer. The size has to be chosen
large enough to make sure that the protocol can be
determined but as small as possible to save valuable re-
sources. If the protocol cannot be detected based on the
buffered traffic, the DPD mechanism would give up and
report a detection failure. Considering an attacker who
might be able to flood that buffer this approach seems
suboptimal, but in fact, this technique implements a
trade-off: For a protocol that is unknown to the moni-
toring software, the DPD mechanism will never be able
to detect the correct protocol. In this case, continuously
trying to detect the protocol would again waste valu-
able resources. Thus a fixed buffer implicitly realizes a
protocol detection timeout.

Second, a ring buffer could be used. In contrast to
a fixed buffer, a ring buffer of capacity n always pro-
vides access to the last n bytes of the connection under
consideration. This sliding window approach would be
able to mitigate a deferred start as described above.
In theory, a ring buffer also allows ongoing protocol
detection as there is no implicit limit that would stop
the process. Although continuous detection might be
undesirable, due to binding resources, the ring buffer
approach is more flexible as it allows to decouple the
buffering of connection data and the protocol detection
timeout.

5.2 Misleading Start
A Misleading Start attack exploits the focus on the
connection start as well. To detect a protocol on a
non-standard port, signatures are employed for identi-
fication of known protocols. For example, a signature
for HTTP might match version strings like HTTP/1.1
to trigger an HTTP-related analysis. Signatures can
be further divided into unidirectional and bidirectional
signatures. Whereas unidirectional signatures match
on flows independently, i.e. communication from client
to server as well as from server to client, bidirectional
signatures match on a combination of patterns across
both directions.

When using signatures to detect protocols, there is an

inherent trade-off with respect to the strictness of the
signatures. If a signature is too strict, it will fail to cor-
rectly flag all connections that use a given protocol. If a
signature is too loose, ambiguities will arise that have to
be resolved to come to a final decision. Both situations
might be exploited by an attacker: Strict signatures can
be evaded by leveraging edge-cases that are accepted
by liberal endpoint implementations but not covered by
the signature. Loose signatures can be misused to cause
additional load on the monitor either by tricking the
software into a resource-intensive inspection of actually
non-conforming traffic, or by complicating the process
of solving intentionally induced ambiguities.
For example, an HTTP request starts by specifying

the method. The HTTP method has to be assumed as
arbitrary string given the protocol’s extensibility [21].
Hence, after analyzing the first token of a line there can
be multiple options for the underlying protocol.

5.3 Practical Realization
Based on the previously presented DPD attack tech-
niques, we have deduced three approaches to realize
practical attacks:
CRLF Stuffing To realize a Deferred Start, we
prepend a valid HTTP request with whitespace char-
acters to deliberately delay the protocol detection. We
have chosen the combination of CR and LF characters
as they serve as line delimiter for HTTP and thus also
occur in valid requests [22].
Unknown Method The simplest possible approach
to realize a Misleading Start attack is to use an HTTP
method unknown to the monitoring software. We im-
plement this approach by sending a request that uses
the string UNKNOWNMETHOD as method.
HELO Method A more advanced option for a Mis-
leading Start is to exploit potential ambiguities that
are for example caused by overlapping signatures. We
implement this approach by using the string HELO as
method, which is also the first command in an SMTP
session.
The last two attacks make use of methods that are

not supported by the web server to avoid detection by
the NSM system. We added a Connection: keep-alive
to our first, manipulated request and send a second,
valid request after the first one. By reusing the same
connection we intend to hide the valid, potentially mali-
cious request from the monitor. The attack is successful
if the second request is not detected by the NSM system
but correctly processed by the web server.

6 Evaluation
In this section, we assess the real-world consequences of
the developed attacks with respect to the effect on the
monitoring software (6.1). For our tests, we use Bro,
Snort and Suricata, a third popular open-source NSM

5

system. Furthermore, we evaluate the susceptibility
of web servers to determine the effectiveness of our
attacks under real-world conditions (6.2). Finally we
will consider the combined effectiveness (6.3), as our
threat-model requires a twofold attack.

6.1 Attacking the Monitor
Our primary interest is the detection behavior for traffic
on non-standard ports, as we focus on the dynamic
detection of protocols. Nevertheless, the generated
traffic might also impact protocol detection on standard
ports. Hence we conducted our experiments utilizing
both a standard port for HTTP (80) as well as a non-
standard port (4242). Table 1 provides an overview
of our findings. Note that evasions for traffic on port
80 are of particular severity, because traditional port-
based heuristics would have covered them. To infer
the impact of the discovered attacks, we also assess the
consequences of successful attacks and discuss possible
mitigations.

Bro As described in Section 4.1, the Bro NSM uses
a fixed buffer to realize a cutoff threshold for protocol
detection. Given a default PIA buffer size of 1024
bytes, correct protocol detection on non-standard ports
is susceptible to the CRLF Stuffing approach, if a
request is prefixed by a sufficiently large number of
bytes. The standard detection signature for HTTP is
bidirectional, i.e. it encompasses patterns for request
and response headers. This means that the PIA needs to
buffer a complete request and at least the beginning of
a response to match the signature. Hence, the number
of stuffing characters required to exhaust the buffer
also depends on the length of the request. In theory
detection could be avoided using a sufficiently large,
valid HTTP request that suppresses the recognition of
the response header. The possibility of buffer exhaustion
has been foreseen by the creators of the DPD framework
and was legitimated as deliberate design decision [10].
To allow the user to balance the resulting trade-off, the
buffer size is configurable.

When confronted with the same traffic on a standard
port, Bro successfully detects and analyzes the HTTP
session. This is due to the fact that the HTTP analyzer
is already added based on the port when building the ini-
tial tree of analyzers. Furthermore, the HTTP analyzer
does not consider the consecutive CRLFs as protocol
violation but as empty request lines and thus keeps
attached to the session. However, each empty request
triggers a so called weird event causing hundreds of
events generated per packet. Because triggering events
on a per packet basis is already considered overly ex-
pensive [23], this allows to perform a Denial of Service
attack. We reported the Denial of Service attack to the
project and it was addressed in the Bro 2.5.5 security
release by introducing a sampling mechanism for these
events [24].

Aside from the Deferred Start, Bro’s protocol detec-
tion can be evaded in its standard configuration by
both Misleading Start attacks, Unknown Method
and HELO Method. To cause the HTTP analyzer to
be attached, the request part as well as the reply part
of the signature need to match. Because the request
part is based on known methods only, the signature
can easily be evaded using unknown methods. Like the
buffer size, the protocol signatures can be configured
freely by the user. There are two possible solutions to
relax the signature: First, the combined, bidirectional
signature can be split into two separate, unidirectional
signatures. In Table 1 this variant is listed as “Bro (uni-
directional)”. Second, the request part can be improved
by matching HTTP version information as well.

In case of Bro, evading protocol detection for HTTP
traffic prevents the protocol specific analysis. In par-
ticular, there will be no meta data about the session
in the http.log file and no HTTP specific event will
be generated. However, general meta data about the
connection, e.g. size and duration, is still being gath-
ered and written to the conn.log file. Although Bro is
vulnerable to all of the attacks in its standard configu-
ration, the system can be configured to withstand them.
With respect to the fixed size of the PIA buffer, which
causes the vulnerability to Deferred Start attacks, a
ring buffer approach is preferable, as it provides more
flexibility to counter this type of attack.

Snort 3 The Dynamic Protocol Detection mechanism
of Snort 3 is not vulnerable to the CRLF Stuffing
attack approach. As described in Section 4.2, the de-
tection of text-based protocols is realized by protocol
signatures called spells. The corresponding acceptors
explicitly ignore leading Spaces (SP), Tabs (TAB), Car-
riage Returns (CR) and Line Feeds (LF). The set of
ignored characters is hard-coded, leaving the opportu-
nity to defer the connection start by using other prefix
characters. While this is theoretically possible, Sec-
tion 6.2 will show that the approach is not exploitable
in practice. Although the DPD mechanism of Snort
3 is not vulnerable to the stuffing attack, we noticed
that the attached HTTP inspector is unable to reliably
parse the session. For example, in case of 512 CRLFs,
two responses and no request is found and in case of
32 CRLFs only one response could be parsed. This
observation likely indicates a reassembling issue, which
is, however, out of scope for this paper. Because spells
implement unidirectional protocol signatures, Snort 3 is
also not vulnerable to the Unknown Method attack
approach. Although the request in the attack traffic
does not trigger the HTTP detection, the following re-
ply causes a match and thus causes the whole session
to be flagged and analyzed as HTTP.
As Snort 3 does not explicitly consider the case of

multiple matching protocol signatures, it is vulnerable
to the HELO Method attack approach: Once an in-

6

Table 1: Dynamic Protocol Detection vulnerabilities of open source NSM software.

NSM System Attack: CRLF Stuffing Unknown Method HELO Method

Port: 4242 80 4242 80 4242 80

Bro 2.5.1 Evasion1 DoS Evasion – Evasion –
Bro 2.5.1 (unidirectional) Evasion1 DoS – – – –
Snort 3 –2 –2 – – Evasion Evasion
Suricata 4.1.2 Evasion1 Evasion1 – – Evasion Evasion
– stands for not vulnerable
1 To evade the (configurable) buffer has to be exhausted.
2 HTTP Inspector is attached but cannot cope with the traffic.

spector for a connection is selected, the decision cannot
be reverted. This can be used to trick Snort 3 into a
wrong classification, causing an evasion. Because the
HELO sequence triggers the SMTP inspector while the
sequence is not part of the pattern set to match HTTP
(see Figure 4), Snort 3 attaches the SMTP inspector
and from here on fails to decode the connection prop-
erly. Given that the attached inspector has to cope with
non-conforming traffic, this behavior bears the potential
for Denial of Service attacks.
Due to its strong focus on rule matching, the conse-

quences of evading DPD primarily concern this domain:
Snort 3 offers the possibility to refine rules by specifying
HTTP as the protocol (see Section 4.2) and match on
selected protocol elements like the headers. Note that
the latter also requires the attached HTTP inspector
to correctly parse the session, which turned out to be
problematic during CRLF Stuffing attacks. If a connec-
tion is not classified as HTTP and cannot be inspected
accordingly, Snort does not match any HTTP related
rule. To estimate the real-world impact, we have ana-
lyzed popular open rule sets with respect to their use
of HTTP-specific rules. Table 2 shows that these sets
contain a significant number of rules that can be evaded
by preventing the correct detection of HTTP traffic. To
work around this issue, one can weaken the specification
of the affected rules: The protocol constraints have to
be relaxed, e.g. using TCP instead of HTTP, and refer-
ences to protocol elements that would have been made
available by the inspector have to be converted into
more general expressions. While this allows the rule to
match again, it introduces overhead by increasing the
number of rules that have to be considered for match-
ing on lower protocol levels. Thus, the workaround
increases the chance of false positive matches. All in
all, a significant percentage of common rules can be
evaded, while the available workaround comes with a
substantial performance and quality degradation.

Suricata A third, popular open-source Network Secu-
rity Monitoring system is Suricata [25], which focuses on
intrusion detection and is heavily influenced by Snort.
For our experiments, we used Suricata in version 4.1.2
operated under a standard configuration. Our black-box
test revealed that Suricata is vulnerable to the CRLF

Table 2: HTTP related IDS rules, i.e. rules that rely
on correct protocol detection.

Rule Set Rules Total HTTP-related

ET Snort Edge open 19.673 8.530 43%
Snort 3 Community 829 487 58%
ET Suricata 4.0 open 19.328 10.654 55%
Positive Research 317 52 16%
All rule sets have been obtained on 12th of March 2019.

Stuffing attack. But, as the attack requires about one
hundred thousand CRLFs to evade protocol detection,
it does not pose a serious threat in real-world scenarios
as described in Section 6.2. In the course of our experi-
ments, we tried to mitigate the attack by increasing the
reassembly buffers for TCP without success. Suricata is
not vulnerable to the the Unknown Method attack.
However, we have been able to successfully execute
the HELO Method attack, leaving all tested systems
vulnerable.

In the case of Suricata, the consequences of evading
the Dynamic Protocol Detection are twofold: First, Suri-
cata is capable of generating an HTTP log that records
meta data about the observed HTTP sessions. Evading
the protocol detection mechanism prevents the software
from extracting the meta data and thus suppresses log-
ging of the corresponding information. Second, given
that Suricata was developed as an alternative to Snort,
it supports similar rule matching functionality. Like
for Snort, a significant number of rules for Suricata are
HTTP-specific as can be seen in Table 2. Again, at-
tacking the DPD mechanism allows evading these rules.
While Snort 3 is officially in beta state, Suricata is de-
ployed in productive environments. Hence, the severity
in case of Suricata should be considered even higher.

6.2 Susceptibility of Web Servers

The strategies presented to evade the different monitor-
ing solutions will only pose a threat if the used protocol
deviations do not affect the intended recipient, which in
our case is an HTTP server. In this section, we review
how popular web servers handle the protocol variations
we seek to use for monitoring evasion.

7

Table 3: Leading characters ignored by web servers.
Web Server Ignored Maximal
(Version) Characters Repetitions

Apache (2.4.49) CRLF 20
nginx (1.14.0) CR, LF >10m
IIS (8.5) TAB, SP, CR, LF 16.271
lighttpd (1.4.45) - -
nodejs (8.10.0) CR, LF 81.797

Deferred Start Our analysis of Bro’s DPD mechanism
revealed the possibility of a Denial of Service attack.
As the DoS vector is solely based on the request, it
can be exploited independently of the communication
endpoint. Furthermore, it is possible to evade correct
protocol classification for connections to non-common
ports, if we are able to fill the PIA buffer. For this attack
vector to pose a threat, we need to determine characters
that can be prepended to valid HTTP requests without
affecting the interpretation by the web server. To find
suitable prefixes, we generated requests preceded by
every possible 16 bit permutation, covering two ASCII
characters. We consider a prefix as ignored, if the
server replies with status code 200 (OK) to our request.
Table 3 lists ignored characters for each tested web
server together with the maximal number of repetitions
tolerated. While most of the tested web servers accept
any permutation of CR and LF, Apache just ignores
the CRLF sequence. Only lighttpd does not accept
any leading character. With respect to the default
buffering capabilities of Bro, the web servers nginx,
nodejs and IIS will offer the opportunity for an attack.
The ignored characters can be prepended to a request
without affecting its interpretation by the web server,
but will exhaust the DPD buffers of the NSM system.

Misleading Start To evade Snort 3 and Suricata, we
need to mislead the wizard inspector to recognize a
different protocol. As there should be no overlapping
between HTTP and another text-based protocol, this
requires to send invalid HTTP requests that will not
be processed by the web server. However, if the server
does not close the connection, we could send further
requests in the same connection that would evade proper
analysis by the NSM. Although we cannot send arbitrary
data, the first portion of an HTTP request constitutes
the method to use and is thus variable. According to
RFC 7230 [22], web servers should respond with the
status codes 501 (Not Implemented) or 405 (Method Not
Allowed) if the method is unknown to the server or not
allowed for the requested resource, respectively. Table 4
shows that nginx, IIS and the hardened Apache [26] keep
the connection open, leading to an exploitable situation.
According to a recent survey, these three web server
implementations are used to serve about 75% of all
websites [27]. Furthermore, we surveyed the web servers
hosting the top 500 websites based on the TRANCO
ranking [28]. We found that 28% of the reachable web

Table 4: Web servers confronted with an unimple-
mented request method*.

Web Server Reaction(Version)

Apache (2.4.29) 501 Not Implemented → closed
Apache (2.4.29†) 403 Forbidden → open
nginx (1.14.0) 405 Method Not Allowed → open
IIS (8.5) 405 Method Not Allowed → open
lighttpd (1.4.45) 501 Not Implemented → closed
lighttpd (1.4.45†) 501 Not Implemented → closed
nodejs (8.10.0) closed immediately
† The web server was set up to use a “hardened” configu-
ration, which limits the available request methods.
* For testing the unimplemented method behavior the
string “UNKNOWNMETHOD” was used as HTTP method.

servers keep connections open, when confronted with an
unimplemented method, which would offer a potential
attack surface. Note that a large request method string
might also be used to fill detection buffers as described
in Section 5.1.

6.3 Combined Effectiveness
As discussed in Section 3.1, the overall attack is twofold.
While all analyzed NSM systems can be evaded, the
attacker needs to combine an attack on the target web
server with a suitable evasion approach for the NSM
system in place. For example, the HELO Method
approach prevents the port-independent protocol de-
tection for all NSMs in their default configuration. In
case of Snort 3 and Suricata even traffic on well-known
ports remains undetected. To allow a follow-up request
after the misleading one, the web server is required to
keep the connection open in case of encountering an
unimplemented method. In this scenario, nginx, IIS
and the hardened Apache server would offer an attack
surface.

7 Discussion
The underlying issue in detecting an application layer
protocol is the fact that a connection’s ports serve as a
session identifier and at the same time only implicitly
codify the type of the session, i.e. the protocol in use.
The endpoints themselves know about the services they
operate by definition and only have to verify that the
other endpoint adheres to the corresponding protocol.
While the ports can be used by an observer to track
a session, an observer lacks the background informa-
tion about which services are operated on which ports.
Therefore, a more general solution to the problem would
be to make that information available to the monitor.
If it is not available to the monitor, e.g. because the
ports are dynamically negotiated, the protocol in use
has to be inferred based on the observed communication.
There are two fundamental challenges that have to be
addressed in this context.

8

First, ambiguities have to be explicitly considered:
The ideal acceptor for a protocol would be its analyzer.
As many protocols are based on high-level grammars, i.e.
they form context sensitive (Chomsky 1) or recursively
enumerable (Chomsky 0) languages, the corresponding
analyzers exhibit a significant complexity (or even face
decidability issues) [29]. Thus, to decide on the pro-
tocol in use, all analyzers would have to be executed
in parallel, which is inapplicable with respect to the
resulting performance needs. Hence, simpler signatures,
e.g. based on context-free grammars (Chomsky 2), are
used (see 4). While this approach allows for efficient
filtering of the possible options, it is obvious that the
protocol identification cannot be decided based on these
signatures. This means that, after matching signatures,
there are ambiguities, which leave multiple possible
options for further analysis. These options have to
be considered by design to come to a well-grounded
decision.
Second, the cost-benefit ratio of ongoing protocol

detection has to be taken into account: The trade-off
between performance and accuracy by either giving up
on a protocol as soon as any protocol violation is en-
countered or continuous protocol detection throughout
the stream was already described by Dreger et al. [10]
in the context of Bro. While they also described attacks
on the analyzers, attacks on the DPD mechanisms itself
have not been considered explicitly. But, an attacker
might try to mislead a protocol detection mechanism,
either by exploiting an ambiguity or by deliberately
switching the protocol in the course of the connection.
In the first case, dealing with ambiguities in general
also mitigates this attack. In the second case, the at-
tached analyzer starts to fail without a possibility to
resynchronize again. To address this situation, protocol
detection could be restarted when an analysis begins
to fail. This example underlines that buffering and
continuous detection are separate aspects: While the
process of detection is potentially ongoing, buffering
is only needed back to the point where the protocol
changes. Thus buffer size and the threshold for proto-
col detection should be decoupled. In addition, buffer
contents could optionally be stored in persistent storage
for later analysis if the protocol detection failed.
Recapitulating the presented attacks, we would also

like to emphasize the exemplary nature of the selected
scenario. Given the trend towards encryption of com-
munication, in particular regarding the Web and the
Internet, we expect the majority of HTTP traffic to
be encrypted sooner or later, which prevents content
analysis at arbitrary points of the communication path.
However, NSM is usually conducted within the scope of
a single management domain. Thus, the use of devices
that terminate encrypted connections and allow access
to the unencrypted traffic in a trusted environment
is common. Examples range from load balancing sce-
narios in which encrypted connections are terminated
upfront to the deployment of dedicated TLS-proxies

that decrypt traffic on the fly [1], [2]. Consequently,
the challenges and attacks presented in this paper also
apply to the analysis of decrypted traffic. Even without
access to the plain text of encrypted traffic, DPD re-
tains its relevance: On the one hand, DPD is relevant in
encrypted environments as collecting protocol-specific
meta data is still valuable (e.g., for TLS) and requires
the identification of the protocol in use. On the other
hand, apart from the Internet, there are numerous kinds
of networks in which monitoring is indispensable be-
cause of a lack of encryption. This can be either due
to external constraints, e.g. the requirement to oper-
ate legacy systems, or a deliberate decision in order to
provide transparency: The alternative to monitoring a
networked system in a scenario in which the communi-
cation cannot be observed anymore is to gather data on
the endpoints. However, this approach is inapplicable
if the endpoints cannot be trusted.

Furthermore, the investigation of DPD also brings
a new perspective to the discussion of Postel’s Law.
Postel’s Law, also known as the Robustness Principle,
refers to the implementation of protocols and states
that one should strictly adhere to the standards when
sending, but be liberal in what to accept when receiving
[30]. While the benefits of this approach are obvious,
numerous discussions have revealed significant issues for
the Internet ecosystem caused by following this rule [31],
[32]. So far security considerations primarily criticized
the increased complexity of liberal implementations,
which in turn increases the potential for introducing
bugs. Our work demonstrates that following the Robust-
ness Principle can also severely impede the observation
of a networked system: The lax handling of protocol
divergences and potential ambiguities result in a vast
amount of possible interpretations that have to be con-
sidered by a monitor. Facing this problem, Kreibich et
al. proposed to introduce a component that normalizes
traffic [4]. This way a consistent, unambiguous stan-
dard is enforced, which can be relied on by the monitor.
However, the suggested approach just shifts the attack
surface away from the monitor, towards the normalizer.
Overall, following Postel’s law introduces room for inter-
pretation that, in the end, allows for misinterpretation.

All in all, our work shows that the complexity of Dy-
namic Protocol Detection is prevalently underestimated.
Although well-suited approaches exist that allow to deal
with this complexity and balance the resulting trade-offs,
we showed that all tested NSM systems are vulnerable
to evasion by exploiting their DPD mechanisms. With
respect to the fundamental nature of the underlying
problem and the possible consequences for operating
NSM systems, awareness has to be raised: Developers
need to consider the lessons learned in their designs, to
allow practitioners to balance the inevitable trade-offs.

9

8 Conclusion
In this paper, we analyzed the Dynamic Proto-
col Detection mechanisms employed by two popular
and widespread open-source network monitoring tools.
Building upon our insights, we deduced different DPD
attack approaches that focus on the example of HTTP.
Confronting three network monitoring tools with the
generated traffic, we were able to evade all of them.
In addition, we discovered a DoS attack in one of the
systems, which has been reported and is now fixed.
Given the shortcomings of the state of the art DPD
mechanisms, we evaluated the real-world applicability
and impact of the presented attacks. Based on our re-
sults, we come to the conclusion that deficient protocol
detection can have a serious impact on the monitoring
and security operations. Considering our findings, we
discussed the main challenges of DPD for Network Se-
curity Monitoring: Detection decisions are neither clear
nor definite given potential ambiguities in the detec-
tion process and various trade-offs have to be carefully
taken into account when trading resources like compu-
tation time and memory for accuracy. The detection
process can be tuned in terms of strictness of the detec-
tion signatures (e.g., uni- or bidirectional), endurance
of the analysis (resource-saving cutoff vs. continuous
detection) as well as buffer type (ring vs. linear) and
size. For future work, we want to investigate mecha-
nisms that allow resynchronization of partial streams,
e.g. the mechanism employed by [33], with respect to
their resilience against attacks.

Ethical Considerations
Following the concept of responsible disclosure, we have
reported the DoS vulnerability we found in Bro during
our experiments to the developers. Accordingly, the
issue was fixed and a security release was published. In
contrast to the DoS attack, the possibilities to evade
monitoring are based on a fundamental problem. By
publishing our results we hope to raise the awareness of
the resulting trade-offs for practitioners, who have to
balance them, and developers, who have to provide the
means to do so.

References
[1] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sul-

livan, E. Bursztein, M. Bailey, J. Halderman, and
V. Paxson, “The security impact of HTTPS inter-
ception,” presented at the Network and Distributed
System Security Symposium (NDSS), Jan. 2017. doi:
10.14722/ndss.2017.23456.

[2] L. Waked, M. Mannan, and A. Youssef, “To intercept
or not to intercept: Analyzing TLS interception in
network appliances,” in Proceedings of the 2018 on
Asia Conference on Computer and Communications
Security - ASIACCS ’18, Incheon, Republic of Korea:
ACM Press, 2018, pp. 399–412. doi: 10.1145/3196494.
3196528.

[3] T. H. Ptacek and T. N. Newsham, “Insertion, evasion,
and denial of service: Eluding network intrusion de-
tection,” Secure Networks Inc. Calgary Alberta, 1998.

[4] C. Kreibich, M. Handley, and V. Paxson, “Network
intrusion detection: Evasion, traffic normalization, and
end-to-end protocol semantics,” in Proc. USENIX
Security Symposium, vol. 2001, 2001.

[5] T.-H. Cheng, Y.-D. Lin, Y.-C. Lai, and P.-C. Lin, “Eva-
sion techniques: Sneaking through your intrusion de-
tection/prevention systems,” IEEE Communications
Surveys & Tutorials, vol. 14, no. 4, pp. 1011–1020,
2012, issn: 1553-877X. doi: 10 . 1109 / SURV . 2011 .
092311.00082.

[6] D. Roelker, “HTTP IDS evasions revisited,” Sourcefire
Inc, 2003, DEF CON 11. [Online]. Available: https:
/ / www . defcon . org / images / defcon - 11 / dc - 11 -
presentations/dc- 11- Roelker/dc- 11- roelker-
paper.pdf (visited on 06/04/2019).

[7] T. T. Nguyen and G. Armitage, “A survey of tech-
niques for internet traffic classification using machine
learning,” IEEE Communications Surveys & Tutorials,
vol. 10, no. 4, pp. 56–76, 2008, issn: 1553-877X. doi:
10.1109/SURV.2008.080406.

[8] T. Bujlow, V. Carela-Español, and P. Barlet-Ros, “In-
dependent comparison of popular DPI tools for traffic
classification,” Computer Networks, vol. 76, pp. 75–89,
Jan. 2015, issn: 13891286. doi: 10.1016/j.comnet.
2014.11.001.

[9] S. Rezaei and X. Liu, “Deep learning for encrypted
traffic classification: An overview,” IEEE Communi-
cations Magazine, vol. 57, no. 5, pp. 76–81, May 2019,
issn: 0163-6804, 1558-1896. doi: 10.1109/MCOM.2019.
1800819.

[10] H. Dreger, A. Feldmann, M. Mai, V. Paxson, and R.
Sommer, “Dynamic application-layer protocol analysis
for network intrusion detection,” in 15th USENIX se-
curity symposium, USENIX Association, 2006, pp. 257–
272.

[11] K. P. Dyer, S. E. Coull, T. Ristenpart, and T.
Shrimpton, “Protocol misidentification made easy
with format-transforming encryption,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer &
communications security - CCS ’13, Berlin, Germany:
ACM Press, 2013, pp. 61–72, isbn: 978-1-4503-2477-9.
doi: 10.1145/2508859.2516657.

[12] V. Paxson, “Bro: A system for detecting network in-
truders in real-time,” Computer Networks, vol. 31,
no. 23, pp. 2435–2463, 1999. [Online]. Available: http:
//www.icir.org/vern/papers/bro-CN99.pdf.

[13] J. Forshaw, Attacking network protocols: a hacker’s
guide to capture, analysis, and exploitation. San Fran-
cisco: No Starch Press, 2017, 310 pp., isbn: 978-1-
59327-750-5.

10

[14] M. Belshe, R. Peon, and M. Thomson, “Hypertext
transfer protocol version 2 (HTTP/2),” RFC Editor,
RFC 7540, May 2015, Published: Internet Requests
for Comments. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc7540.txt.

[15] The Zeek Project. (2019). The bro/zeek network secu-
rity monitor, [Online]. Available: https://www.zeek.
org/ (visited on 08/29/2019).

[16] Cisco. (2019). Snort 3, [Online]. Available: https :
//www.snort.org/snort3 (visited on 08/29/2019).

[17] L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano,
“nDPI: Open-source high-speed deep packet inspec-
tion,” in 2014 International Wireless Communica-
tions and Mobile Computing Conference (IWCMC),
Nicosia, Cyprus: IEEE, Aug. 2014, pp. 617–622. doi:
10.1109/IWCMC.2014.6906427.

[18] S. Alcock and R. Nelson, “Libprotoident: Traffic clas-
sification using lightweight packet inspection,” 2012.
[Online]. Available: https://wand.net.nz/sites/
default/files/lpi.pdf (visited on 11/25/2019).

[19] M. Roesch and S. Team, Snort 3 user manual, 2019.
[Online]. Available: https : / / www . snort . org /
downloads (visited on 06/12/2019).

[20] Cisco. (Aug. 29, 2018). Snort blog, [Online]. Available:
https://blog.snort.org/2018/08/snort-3-beta-
available-now.html (visited on 08/29/2019).

[21] R. Fielding and J. Reschke, “Hypertext transfer proto-
col (HTTP/1.1): Semantics and content,” RFC Editor,
RFC 7231, Jun. 2014, Published: Internet Requests for
Comments. doi: 10.17487/RFC7231. [Online]. Avail-
able: http://www.rfc- editor.org/rfc/rfc7231.
txt.

[22] ——, “Hypertext transfer protocol (HTTP/1.1): Mes-
sage syntax and routing,” RFC Editor, RFC 7230, Jun.
2014, Published: Internet Requests for Comments. [On-
line]. Available: http://www.rfc-editor.org/rfc/
rfc7230.txt.

[23] The Zeek Project. (2019). Bro/zeek documentation,
[Online]. Available: https://docs.zeek.org/en/
stable/scripts/base/bif/event.bif.bro.html#
id-new_packet (visited on 08/29/2019).

[24] ——, (2019). Bro release notes, [Online]. Available:
https://www.zeek.org/manual/2.5.5/install/
release - notes . html # bro - 2 - 5 - 5 (visited on
08/29/2019).

[25] Open Information Security Foundation (OISF). (2019).
Suricata, [Online]. Available: https://suricata-ids.
org/ (visited on 08/29/2019).

[26] Open Web Application Security Project (OWASP).
(Apr. 4, 2016). SCG WS apache, [Online]. Available:
https://www.owasp.org/index.php/SCG_WS_Apache
(visited on 09/20/2019).

[27] Netcraft. (Aug. 15, 2019). August 2019 web server sur-
vey, [Online]. Available: https : / / news . netcraft .
com / archives / 2019 / 08 / 15 / august - 2019 - web -
server-survey.html (visited on 09/19/2019).

[28] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob,
M. Korczynski, and W. Joosen, “Tranco: A research-
oriented top sites ranking hardened against manipu-
lation,” in Proceedings 2019 Network and Distributed
System Security Symposium, San Diego, CA: Inter-
net Society, 2019, isbn: 978-1-891562-55-6. doi: 10.
14722/ndss.2019.23386.

[29] L. Sassaman, M. L. Patterson, S. Bratus, and A. Shu-
bina, “The halting problems of network stack insecu-
rity,” ;login:, vol. 36, 2011.

[30] B. E. Carpenter, “Architectural principles of the inter-
net,” RFC Editor, RFC 1958, Jun. 1996, Published:
Internet Requests for Comments. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc1958.txt.

[31] M. Thomson, “The harmful consequences of the ro-
bustness principle,” IETF Secretariat, Internet-Draft,
May 2019, Published: Working Draft. [Online]. Avail-
able: http : / / www . ietf . org / internet - drafts /
draft-iab-protocol-maintenance-03.txt.

[32] L. Sassaman, M. L. Patterson, and S. Bratus, “A patch
for postel’s robustness principle,” IEEE Security &
Privacy Magazine, vol. 10, no. 2, pp. 87–91, Mar. 2012,
issn: 1540-7993. doi: 10.1109/MSP.2012.31.

[33] R. Sommer, J. Amann, and S. Hall, “Spicy: A uni-
fied deep packet inspection framework for safely dis-
secting all your data,” in Proceedings of the 32nd
Annual Conference on Computer Security Applica-
tions - ACSAC ’16, Los Angeles, California: ACM
Press, 2016, pp. 558–569, isbn: 978-1-4503-4771-6. doi:
10.1145/2991079.2991100.

11

