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Abstract

Software systems are usually described through multiple models that address di�erent

development concerns. These models can contain shared information, which leads to

redundant representations of the same information and dependencies between the models.

These representations of shared information have to be kept consistent, for the system

description to be correct. The evolution of one model can cause inconsistencies with

regards to other models for the same system. Therefore, some mechanism of consistency

restoration has to be applied after changes occurred. Manual consistency restoration

is error-prone and time-consuming, which is why automated consistency restoration is

necessary. Many existing approaches use binary transformations to restore consistency

for a pair of models, but systems are generally described through more than two models.

To achieve multi-model consistency preservation with binary transformations, they have to

be combined through transitive execution.

In this thesis, we explore transitive combination of binary transformations and we study

what the resulting problems are. We develop a catalog of six failure potentials that can

manifest in failures with regards to consistency between the models. The knowledge about

these failure potentials can inform a transformation developer about possible problems

arising from the combination of transformations. One failure potential is a consequence

of the transformation network topology and the used domain models. It can only be

avoided through topology adaptations. Another failure potential emerges, when two

transformations try to enforce con�icting consistency constraints. This can only be

repaired through adaptation of the original consistency constraints. Both failure potentials

are case-speci�c and cannot be solved without knowing which transformations will be

combined. Furthermore, we develop two transformation implementation patterns to

mitigate two other failure potentials. These patterns can be applied by the transformation

developer to an individual transformation de�nition, independent of the combination

scenario. For the remaining two failure potentials, no general solution was found yet and

further research is necessary.

We evaluate the �ndings with a case study that involves two independently developed

transformations between a component-based software architecture model, a UML class

diagram and its Java implementation. All failures revealed by the evaluation could be

classi�ed with the identi�ed failure potentials, which gives an initial indicator for the

completeness of our failure potential catalog. The proposed patterns prevented all failures

of their targeted failure potential, which made up 70% of all observed failures, and shows

that the developed implementation patterns are applicable and help to mitigate issues

occurring from transitively combining binary transformations.
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Zusammenfassung

Softwaresysteme werden häu�g durch eine Vielzahl an Modellen beschrieben, von denen

jedes unterschiedliche Systemeigenschaften abbildet. Diese Modelle können geteilte Infor-

mationen enthalten, was zu redundanten Beschreibungen und Abhängigkeiten zwischen

den Modellen führt. Damit die Systembeschreibung korrekt ist, müssen alle geteilten Infor-

mationen zueinander konsistent beschrieben sein. Die Weiterentwicklung eines Modells

kann zu Inkonsistenzen mit anderen Modellen des gleichen Systems führen. Deshalb ist es

wichtig ist einen Mechanismus zur Konsistenzwiederherstellung anzuwenden, nachdem

Änderungen erfolgt sind. Manuelle Konsistenzwiederherstellung ist fehleranfällig und

zeitaufwändig, weshalb eine automatisierter Konsistenzwiederherstellung notwendig ist.

Viele existierende Ansätze nutzen binäre Transformationen, um Konsistenz zwischen

zwei Modellen wiederherzustellen, jedoch werden Systeme im Allgemeinen durch mehr

als zwei Modelle beschrieben. Um Konsistenzerhaltung für mehrere Modelle mit binären

Transformationen zu erreichen, müssen diese durch transitive Ausführung kombiniert

werden.

In dieser Masterarbeit untersuchen wir die transitive Kombination von binären Trans-

formationen und welche Probleme mit ihr einhergehen. Wir entwickeln einen Katalog

aus sechs Fehlerpotentialen, die zu Konsistenzfehlern führen können. Das Wissen über

diese Fehlerpotentiale kann den Transformationsentwickler über mögliche Probleme beim

Kombinieren von Transformationen informieren. Eines der Fehlerpotentiale entsteht als

Folge der Topologie des Transformationsnetzwerks und der benutzten Modelltypen, und

kann nur durch Topologieänderungen vermieden werden. Ein weiteres Fehlerpotential

entsteht, wenn die kombinierten Transformationen versuchen zueinander widersprüchli-

che Konsistenzregeln zu erfüllen. Dies kann nur durch Anpassung der Konsistenzregeln

behoben werden. Beide Fehlerpotentiale sind fallabhängig und können nicht behoben

werden, ohne zu wissen, welche Transformationen kombiniert werden. Zusätzlich wurden

zwei Implementierungsmuster entworfen, um zwei weitere Fehlerpotentiale zu verhindern.

Sie können auf die einzelnen Transformationsde�nitionen angewendet werden, unabhän-

gig davon welche Transformationen letztendlich kombiniert werden. Für die zwei übrigen

Fehlerpotentiale wurden noch keine generellen Lösungen gefunden.

Wir evaluieren die Ergebnisse mit einer Fallstudie, bestehend aus zwei voneinander

unabhängig entwickelten binären Transformationen zwischen einem komponentenba-

sierten Softwarearchitekturmodell, einem UML Klassendiagramm und der dazugehörigen

Java-Implementierung. Alle gefundenen Fehler konnten einem der Fehlerpotentiale zuge-

wiesen werden, was auf die Vollständigkeit des Fehlerkatalogs hindeutet. Die entwickelten

Implementierungsmuster konnten alle Fehler beheben, die dem Fehlerpotential zugeord-

net wurden, für das sie entworfen wurden, was 70% aller gefundenen Fehler ausgemacht

hat. Dies zeigt, dass die Implementierungsmuster tatsächlich anwendbar sind und Fehler

verhindern können.
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1 Introduction

Formalized representations of information are used by many disciplines and for di�erent

reasons. In the development of software systems, for example, many artifacts are produced

that describe di�erent properties of the developed system, which are important for a

speci�c stake holder. Each artifact can be understood as a model of the system. This

includes, for example, the system’s requirements, design documentation, implementation

and system test descriptions. Because these artifacts describe properties of the same

system, some information is shared and duplicated between them. Such information has

to be consistently evolved for all artifacts that contain it.

In many cases, manual consistency preservation is used to ensure that all artifacts are

consistent. However, manual consistency preservation is error-prone and time-consuming.

For one, the person responsible for updating the models might themselves receive little

immediate bene�t from doing so, therefore, the motivation is low and the task is delayed

or might be forgotten. Secondly and more importantly, it is not always clear which

documents have to be adapted, because the tracing information is not stored explicitly.

Instead, dependencies between elements are often only implicitly documented through

similar naming conventions. On top of causing additional e�ort to �nd all dependencies

in case of a change, this kind of implicit tracing can easily break down if a simple name

change is not properly propagated.

In the model-driven software development context, the problems of manual consistency

preservation are mitigated by using model transformations to automate the process and

by using explicit tracing information.

1.1 Consistency Preservation through Model Transformations

Model transformations can be used for many purposes, such as system analysis, code

generation and consistency preservation. Derived models, like a Java class implementa-

tion that is derived from its UML design, generally need to be extended with additional

information. Otherwise the original design model would have su�ced. Simply generating

a new variant of the derived model, in case of design changes, would overwrite the addi-

tional information in the derived model. It is therefore necessary to use an incremental
transformation to avoid losing information. Additionally, if editing the generated model is

allowed, then we may need to propagate the changes back to the design document to keep

both models consistent. Therefore, the transformation also needs to be bidirectional.
Software systems are generally concerned with more than two models, which implies the

necessity for multiary transformations or a combination of multiple binary transformations.

One solution to the problems caused by redundancies between multiple models is to avoid

them by unifying all information regarding the software system and its development

1



1 Introduction

process into a redundancy-free single underlying model (SUM) [1]. However, in practice

this is hardly achievable, because of the complexity of combining multiple heterogeneous

models. Even if such a model is found, it would most likely be impractical to use in real

world scenarios.

By contrast, the Vitruvius project [24, 10] encapsulates the multiple models needed to

develop one system in a virtual SUM (VSUM). The VSUM hides the fact that it actually

consists of multiple individual models by only allowing the user to edit the models through

well-de�ned views. Internally, the models are kept consistent through explicit consistency

preservation mechanisms that automate their synchronization instead of preventing redun-

dancy altogether. For this purpose, the Vitruvius project provides transformation languages

to de�ne consistency-preserving transformations between the involved domains.

Instead of de�ning additional models or multiple binary transformations, a multiary

transformation could directly preserve the consistency of all involved models. For example,

the Query View Transformation standard [19] provides the declarative transformation

language QVT-R, which promises real multi-model transformation capabilities. However,

Macedo et. al.[14] showed that the QVT-R standard is still underspeci�ed and proposed

extensions to solve these shortcomings. Additionally, the more models are involved, the

more complex the transformation development becomes.

Multiary transformations require the transformation developer to knows all involved

models in detail. However, in practice a developer only knows a speci�c set of models,

which are relevant to him, in su�cient detail to be able to formalize all dependencies

between them. Therefore, a combination of partial speci�cations is necessary. Binary

transformations are the smallest building blocks for a transformation network and we

therefore focus on binary transformations.

1.2 Transitive Transformation Combination

In a strictly directed generative transformation pipeline, each transformation takes one

input model and outputs a new model, which functions as the input for the next trans-

formation. With regards to the �rst input and the last output model, all transformation

steps in between function as one combined transformation. As already stated, we need

bidirectional, incremental transformations for consistency preservation. Because of the

incrementality, the pipeline then propagates changes instead of whole models. An abstract

example of this is depicted in Figure 1.1. We call this process transitive change propagation.

In general, the transformation network topology does not have to be linear. Without

proper care of the network composer, the combined transformations can even try to

enforce con�icting notions of consistency. This complicates the consistency preservation,

because the propagation process can produce con�icting changes, potentially leading to

information loss or even non-terminating propagation loops. Figure 1.2 shows a concrete

example, where a software component of a Palladio Component Model (PCM)[2, 21], the

UML design of its implementation, and the actual Java implementation need to be kept

consistent. In this small example, multiple problems can manifest depending on the used

transformations and consistency de�nitions.

2



1.2 Transitive Transformation Combination

Model A Model B Model C

→ 41

User Input

41 → 42

Transf. TA↔B

42 → 43

Transf. TB↔C

Figure 1.1: Example for transitive change propagation. The user input 41 is transformed

and propagated through the transformation network, which ideally restores

consistency among the three models.

SEFF

ComponentImpl

+ method()

class ComponentImpl {

void method() {

// behavior

}

}

PCM UML Java

TPCM↔UML TUML↔Java

TPCM↔Java

Component

Figure 1.2: A concrete example used to demonstrate transformation combination problems.

The dashed arrows represent the dependencies between the elements. PCM

refers to the Palladio Component Model. A Service E�ect Speci�cation (SEFF)

describes the component behavior for a provided service.

• Without the transformation TPCM↔Java the component behavior, described by the

Service E�ect Speci�cation (SEFF), cannot be synchronized with the method imple-

mentation in the component’s java implementation class.

• With the transformation TPCM↔Java as part of the transformation network, the

network now contains a cycle. On creation of the PCM component, there are two

transformation paths that can produce the Java implementation class, potentially

leading to a duplication.

• If the implementation actually is duplicated, for example by TPCM↔Java , this change

can then propagate back to PCM via TUML↔Java and TPCM↔UML, creating a duplicate

PCM component and ultimately resulting in a loop.

• If the implementation is not duplicated, the transformations may still try to enforce

di�erent consistency de�nitions. Assume for example that TPCM↔Java requires the

Java implementation class to share the same name as the PCM component and that

TPCM↔UML requires the implementation name to end with the su�x “-Impl”. These

constraints obviously contradict each other, but are otherwise reasonable de�nitions.

3



1 Introduction

1.3 Research Goals

In this thesis, we explore the problems of transformation combination through transitive

change propagation for the purpose of multi-model consistency preservation. We answer

the following research questions:

Q1 How does the application of transitive change propagation for a single bidirectional

transformation result in failure?

Q2 What problems emerge from the transitive combination of model transformations,

that do not already occur in binary transformations?

Q3 How can speci�c problems be solved in case-agnostic way?

First, we decompose the de�nition of consistency on a model-level into sets of consis-

tency constraints that de�ne consistency for the semantic overlap between two model

elements, which we call correspondence types. Furthermore, we de�ne a correspondence
graph as a network of elements that are linked by their semantic dependencies, which are

described through correspondence types. Such correspondence graphs allow us to observe

how changes may propagate through a transformation network based on element-level

propagation paths, rather than low-resolution model-level propagation paths. The bene�t

of these element-level change propagation paths is that they reveal the interaction between

the general change propagation process and the case speci�c consistency constraints in

more detail.

We then select sets of properties of the transformation process and explore how they

can produce failures, with regards to multi-model consistency, using minimal arti�cial

correspondence graph examples and di�erent change sequences. Based on the observed

failures, we develop a catalog of failure potentials to answer questions Q1 and Q2. The

knowledge about these failure potentials can then inform a transformation developer

about possible problems arising from the combination of transformations.

Furthermore, we develop transformation implementation patterns that mitigate speci�c

failure potentials, but are independent of the combination scenario, as an answer to

questions Q3. These patterns can then be applied by the transformation developer to

an individual transformation de�nition, which increases the chance that the individual

transformation can be successfully combined with others.

The �ndings are evaluated using a case study that combines the transformations

TPCM↔ UML between the Palladio Component Model and UML class diagrams, andTUML↔ Java

between UML class diagrams and Java. The transformation TPCM↔ UML was developed for

this thesis, whereas the transformation TUML↔ Java was independently developed by Chen

[3].

1.4 Thesis Structure

First, in Chapter 2, we introduce the foundations regarding model transformations and

transformation properties, as well as the frameworks and domains that are used in the

case study and some of the examples throughout the contribution chapters.
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1.4 Thesis Structure

In Chapter 3, we �rst develop the concept of a correspondence graph and explore

how failures can occur as a result of transformation combination. Based on these fail-

ures, we then develop the failure potentials catalog to answer questions Q1 and Q2. In

Chapter 4, we address question Q3 and we develop two transformation implementation

patterns to prevent element-creation con�icts and to prevent the propagation of deprecated

information.

Chapter 5 provides detailed descriptions of the consistency constraints that are imple-

mented by the two transformations TPCM↔ UML and TUML↔ Java. In Chapter 6, we then

combine said transformations and apply them to a realistic software architecture model

scenario in order to evaluate the relevance of the identi�ed failure potentials and to clarify

the generalizability of the proposed patterns.

Lastly, Chapter 7 gives an overview of related work in the �elds of model consistency

preservation and transformation combination and we conclude this thesis in Chapter 8

by restating the contributions and evaluation results and by suggesting topics for future

work.

5





2 Foundations

In this chapter, we introduce the foundations necessary for the rest of this thesis. First, we

introduce model-driven software development, meta-modeling and consistency between

models. Then we introduce model transformations and relevant transformation properties.

Lastly, we introduce the frameworks and domain models, which we use in the evaluation

case study and in some of the examples throughout the contribution chapters.

2.1 Model-driven So�ware Developement

Model-driven Software Development (MDSD) is a software development technique that

aims to improve productivity and increasing code quality, by treating models as essen-

tial artifacts of the development process. Domain speci�c models and domain speci�c

languages (DSL) abstract from the underlying general purpose models or languages, by

encoding domain speci�c reoccurring complexity and redundancy behind higher-level

concepts. This complexity is then re-injected into lower-level models, like program code,

by transformations that know how to translate the higher-level concept into lower-level

concepts or instructions, without the model developer having to know the implementation

details. This frees mental capacity and increases productivity by avoiding reoccurring

tasks. It also improves the solution quality, because it forces the application and evolution

of a single solution pattern for a reoccurring problem, rather than co-evolving multiple

case speci�c variations that have to be kept in sync. A transformation could also perform

complex optimizations in the process, further increasing the quality of the solution.

In order to make models more accessible to machine processing, they have to be formally

de�ned. This is achieved through metamodeling, de�ning higher-abstraction models that

themselves de�ne how lower-abstraction models are de�ned.

2.2 Meta-modeling

A model is an abstraction of a set of objects, often a compositum and its parts, and their

relations with regards to a speci�c purpose. According to Stachowiak [25], a model can

be characterized by three qualities. It reproduces some properties of an original object or

system (mapping) while omitting others (reduction). Which properties are mapped and

which are reduced, is decided based on the purpose for which the model is constructed

(pragmatism). A common example for a model in software development is a UML class

diagram. It represents the structure of the software system’s implementation, while

abstracting the implementation details in order to allow design on a higher abstraction

level and to serve as a documentation. This example also shows that the original, in this
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case the program code, does not have to exist before the model is created. Instead the

model can be a blueprint for the original and prescribe some of the properties the original

should possess. And the original can itself be a model of some other object or system. In

the example, the code is a model of the program behavior while abstracting from some of

the hardware and platform speci�cs.

A metamodel is a special type of model that formally de�nes how its instances have

to be structured. This formality makes the instances of a metamodel better accessible

to machine processing and metamodels are therefore often a focus in MDSD. According

to Stahl [26] a metamodel is de�ned by four artifacts: abstract syntax, concrete syntax,

static semantic and dynamic semantic. The abstract syntax de�nes concepts that can be

instantiated in the model instances, for example, objects and relations between objects are

commonly modeled concepts. The concrete syntax de�nes a formalism how the concept

instances of a model are expressed, either textually (e.g. programming languages) or

visually (e.g. UML class diagrams). While a metamodel has exactly one abstract syntax,

there can exist multiple equivalent concrete syntaxes for di�erent purposes. For example,

the visual representation of a UML diagram is far easier for a human to comprehend and

to evolve than an encoding of the same model as a XML document, which is easier for a

program to process. The static semantic of a metamodel de�nes additional constraints on

the well-formedness of a model instance. These constraints have to be statically analyzable,

without having to execute the model (if the model is executable). And lastly, the dynamic
semantic de�nes the meaning of the modeled elements. In the following, we will consider

a model to be correct if it conforms to its abstract syntax and static semantic.

Just like a model is an instance of a metamodel, a metamodel can itself be an instance

of another meta-metamodel, which prescribes rules and constraints on the elements of the

metamodel. This de�nition chain can be continued, until a self-describing metamodel is

found. Each level in the hierarchy is called a meta-level or meta-layer, with the real object

on the lowest layer, sometimes called M0.

2.3 Consistency

A software system can be developed using more than one model and because these models

describe di�erent properties of the same system, they often represent some information

common to both models. These semantic overlaps should be kept in sync to prevent

errors in the development process. This is especially important in MDSD, because the

con�icting speci�cations could cause problems for the code generator. Nuseibeh [17]

de�nes inconsistency as “any situation, in which two descriptions do not obey some

relationship that is prescribed to hold between them.” We will call these prescribed

relationships consistency constraints. For practical purposes, we will de�ne consistency as

the inverse of inconsistency and claim a set of models is consistent, if all their consistency

constraints are satis�ed, even though such a de�nition is probably false, because it is

unlikely that a list of consistency constraints is truly complete. It is important to note that

a set of models does not have to be consistent (global consistency), even if every possible

subset of models is consistent when looked at in isolation (local consistency), as has been

proven by Nuseibeh in [16], Appendix A.
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Source Model

Transformation

Engine

Target Model

input output

Source

Meta-Model

Transformation

De�nition

Target

Meta-Model

applyinstantiates instantiates

Transformation

Language

Meta-Meta-

Modelinstantiates instantiates

instantiates

Figure 2.1: Basic model transformation framework example

Model transformations can be used to ensure model consistency, by propagating changes

in one model to all related models. In this context, it is possible to de�ne consistency

constraints explicitly through a declarative DSL that generates the necessary transforma-

tions, like the QVT-R standard [19] or the Commonalities Language [6]. Alternatively,

the consistency constraints can be de�ned implicitly through the e�ects of an imperative

transformation.

2.4 Model Transformations

A model transformation describes how one or more target models can be generated from

one or more source models. It is usually de�ned on the metamodel level and applied to

concrete models. Important to note is that transformations do not have to be de�ned

between di�erent metamodels. For example, a name refactoring on a Java class would be

a transformation from Java code to Java code.

Mens [15] separated the following terms. A transformation rule de�nes how one or more

concepts of the source domain can be transformed into one or more concepts of the target

domain. A transformation de�nition is a set of transformation rules. A transformation is

the application of a transformation de�nition to a concrete source model.

The execution of a transformation is performed by a transformation engine by application

of the transformation rules, which are provided by the transformation de�nition, to

the provided source model. Figure 2.1 depicts how models, transformation engine and

transformation de�nition interact in a model transformation framework. Depending on the

intended properties of the transformations, the transformation engine can take multiple

models, change deltas or additional information like trace models as a transformation’s

input.

The following subsections describe transformation properties and possible transforma-

tion network topologies.
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2.4.1 Transformation Properties

In this section we describe the arity, directionality and the incrementality as possible

properties of a transformation.

The arity of a transformation describes the number of models that transformation

operates on. The most common di�erentiation is made between binary transformations

and mutiary (more than two models) transformations, because binary transformations are

the minimal example.

A transformation de�nition has a directionality that represents which domains are the

input and which are the output. A transformation de�nition can be bidirectional, which

indicates that it de�nes mapping rules for both directions, from the source to the target

model and the other way around. Two opposite directed transformations can be similar

to a bidirectional transformation when they are combined, but they will always need

at least two transformation steps to change both model sets, whereas a bidirectional

transformation can change both the source and target model sets in a single step.

A transformation can have varying degrees of incrementality, based on how much

information it investigates in the source model (source-incremental) and how much of

the target model is changed (target-incremental). A transformation that is not incre-

mental takes the complete source model and generates a completely new target model

from it. A source-incremental transformation looks only at parts of the source model,

usually the parts that have changed, which necessitates some facility to track changes. A

target-incremental transformation only changes limited parts of the target model, which

necessitates some facility to store the trace information in order to determine which target

object was generated from which source object. Both forms of incrementality usually go

hand in hand to some degree. Incrementality is especially important in cases where both

models are subject to manual changes and/or express di�erent semantics. Consider for

example, a code generator that produces Java code from a UML class diagram. A batch

transformation would generate the whole Java class anew, discarding potential changes

done by a developer, even if only the name of a method changed. In contrast, a highly

incremental transformation might only generate one new method or rename the old one,

leaving the manual implementation intact.

2.4.2 Transformation Topologies

Transformations can be combined to form transformation networks. Every metamodel

represents a node and transformations represent edges that connect these nodes. This

is in theory true for transformations with any arity, however, commonly only binary

transformations are combined. And even multiary transformation descriptions, de�ned

with speci�c DSLs like the Commonalities Language [6], might be internally implemented

as sets of binary transformation. We di�erentiate three types of transformation networks

topologies that are build from binary transformations.

A star topology, with one central metamodel and all other metamodels as leaves, results

in the minimal number of transformations necessary. However, every change needs to be

propagated across a minimum of two edges, through the central metamodel. This means

that the central metamodel has to be capable of expressing every concept of all other
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models. Otherwise, some concepts cannot be synchronized between the leaves of the

network.

A tree topology can reduce the design e�ort, by grouping metamodels with a high

level of semantic overlap under a common inner parent node. That way some of the

concepts might not have to pass through the root metamodel. But this still does not

guarantee that all semantic overlaps can be synchronized and there are now multiple pass-

through metamodels. Therefore changes potentially need to be propagated across a longer

transformation path, which leads to an increased risk of encountering incompatibilities

between the individual transformations. If a network has a tree topology, where each node

has exactly one child and one parent, we will call this a linear network.

The third option is amesh topology that does not pose any particular topology constraints

aside from connectedness. As a result, network cycles are allowed. In its extreme form,

a mesh topology re�ects a fully connected network. This type of topology can ensure

that all concepts can be synchronized by introducing direct transformations between all

models with dependent information. However, these additional transformations introduce

cycles into the network, which introduce ambiguities in transformation execution order

and the potential for non-terminating transformation loops.

2.5 Frameworks and Case Study Domains

In this section, we introduce the frameworks and domain models, which we used in the

evaluation case study and in some of the examples throughout the contribution chapters.

2.5.1 Meta Object Facility and Eclipse Modeling Framework

The Meta Object Facility (MOF)[18] is a self describing meta-metamodel standard. The

Essential Meta Object Facility (EMOF) is a reduced variant of the MOF, containing the

meta-metamodel elements necessary to describe object-oriented metamodels. We use the

EMOF formalism throughout this thesis as basis for model or metamodel discussions.

The Eclipse Modeling Framework (EMF)[30] is an extensions to the integrated devel-

opment environment Eclipse, adding support for model-driven development. The ecore

meta-metamodel is a concrete implementation of the EMOF standard and is provided by

the EMF. It functions as the meta-metamodel for all domain metamodels used in the case

study and takes the role of meta-metamodel in Figure 2.1.

2.5.2 Vitruvius Project

The Vitruvius project [24, 10] provides a framework for a model-driven development

approach and builds on the Orthographic Modeling approach by Atkinson [1]. Vitruvius

encapsulates the multiple models needed for the system design in a Virtual Single Underly-

ing Model (VSUM). The VSUM hides the fact that it actually consists of multiple individual

models by only allowing the user to edit the models through well de�ned views. Internally

the models are kept consistent through explicit consistency preservation mechanisms

that automate their synchronization. For this purpose, the Vitruvius project provides
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Figure 2.2: Simpli�ed representation of the Vitruvius consistency preservation framework

for the Reactions language.

transformation languages to de�ne consistency-preserving transformations between the

involved domains.

One of the provided transformation languages is the Reactions language [23, 9], a DSL

for manually de�ning incremental model transformations based on atomic changes that

occur in the participating models. It is of particular interest for this thesis, because the

transformations used in the case study are implemented using the Reactions language.

2.5.3 Reactions Language

The Reactions language [23, 9] is an imperative transformation language provided by the

Vitruvius project. It is used to de�ne binary, incremental and change-driven transfor-

mations. A transformation de�nition is composed of multiple rules, so called reactions,

that call consistency-restoring routines to ensure consistency between two models. The

reactions are triggered and executed in response to changes of the source model. The

combination of two opposite facing transformations, implicitly de�nes a set of consistency

constraints between both models.

Figure 2.2 shows how these reactions �t into the Vitruvius consistency preservation

framework. The framework monitors both models in order to detect changes performed

by the system developer. When a change is detected, it is tracked and, if necessary, decom-

posed into atomic change operations. The framework then checks the de�ned reactions

to �nd those that trigger for the observed change and executes them, thereby restoring

consistency with the second model. In order to �nd the correct elements to modify in the

target model, the reactions access the correspondence model of the Vitruvius framework

and add or retrieve the tracing information necessary. For that purpose, binary tuples,

called correspondences, are stored in the correspondence model. Correspondences in the

Vitruvius framework do not have inherent semantic and they have to be explicitly gener-

ated and deleted by the transformation implementation, putting the responsibility in the

hands of the transformation developer, whereas other DSLs might automatically produce

object traces based on the transformation rules. However, because the correspondences

serve as the trace model for a transformation and the transformation enforces a speci�c

set of consistency constraints, the correspondences usually re�ect the semantic depen-

dencies between model elements. In the following contribution chapters, we re-de�ne

and use the word “correspondence” as an explicit and formalized relation between model
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elements based on consistency constraints. But because the used transformations are

implemented using the Reactions language, the formalized “correpsondence”-relation is

then implemented through the Vitruvius correspondences.

2.5.4 Case Study Domains

For the evaluation case study, we use two transformations between the three domains that

we describe in the following.

The Palladio Component Model (PCM)[2, 21] is used to design and analyze component-

based software systems. This thesis only uses a part of the PCM model, namely the

repository model. It contains data type de�nitions, contractual interfaces and component

de�nitions that can then be used to compose a software system architecture. Additionally,

the PCM supports the modeling of abstracted component behavior. The components

de�ned in the repository can be used in an assembly model to compose the architecture of

a software system. Furthermore, it can model the target environment (servers, computation

power, network latency, etc.) and how the system components are supposed to by deployed

across the servers.

The Uni�ed Modeling Language is a standard for system design. This thesis only uses

UML class diagrams and for the transformations and we rely on the UML implementation

provided by the Eclipse platform (UML2)[29, 20].

Lastly, we use the Java metamodel provided by the Java Model Printer and Parser

(JaMoPP)[8, 7]. The general purpose programming language Java is not based on the

EMOF standard and the ecore implementation thereof. Therefore, our transformations

based on the EMOF metamodels cannot directly edit Java implementation �les. The

JaMoPP provides an ecore-compatible metamodel of the Java language. The source �les

are parsed and printed, and the Java elements can then be accessed and edited as if they

were just another model.
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3 Failure Potentials of Transitive Change
Propagation

The goal of this thesis is to explore how we can use transformation combination and transi-

tive change propagation to achieve multi-model consistency preservation. Speci�cally, we

focus on the combination of binary transformations, because they represent the minimal

building blocks of a transformation network, yet they still pose signi�cant problems in

practical scenarios.

An incremental binary model transformations can be used to synchronize both its

source and its target mode, so that they conform to the consistency constraints that de�ne

consistency between them. In the context of this thesis, model synchronization is the

process of applying a consistency-restoring transformation to a set of models. If all models

in the transformation network can be evolved, then it is important, that the transformations

are target-incremental instead of generative, so that information that is unique to the

target model can be preserved. Model synchronization is a form of model transformation,

with the focus on inter-model consistency instead of model generation, but we often use

these terms synonymously. It is di�erent from transitive change propagation, in that

transitive change propagation is the process, by which we attempt to simulate a multi-

model transformation through transitive execution of binary transformations, whereas

model synchronization is the application of said simulated transformation. Other works

sometimes associate the term “synchronization” with concurrent model modi�cation or

immediate model updates. We do not make this distinction. In general we assume that user

changes can accumulate in a single model before the synchronization process is started

and the synchronization terminates before the user can directly edit any of the models in

the transformation network again.

We can combine two binary transformationsT1 andT2, if the target model ofT1 functions

as the source model of T2, to form a transitive transformation T2 ◦ T1, by transitively

executing one after the other. Figure 3.1 shows an exemplary combination of two binary

transformations, one between PCM and UML and one between UML and Java. In doing

so, we hope to extend the synchronization of information from either pair of models to

now also synchronize PCM models with Java models. The combination of transformations

forms a transformation network, where each domain represents a network node, and each

transformation represents an edge of the network. For Figure 3.1, this results in PCM,

UML, and Java representing network nodes and T1, and T2 are the edges between them.

Now we describe what we mean by transitive change propagation. Assume a single

binary and directed transformation, and both source and target model are consistent with

each other. When a user modi�es the source model, then the target model may no longer

by consistent to it. The delta between the original and the new source model state can be

described as a change. Depending on the granularity with which changes are de�ned, the
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PCM UML Java
T1 T2

T2 ◦T1

T1 ◦T2

Figure 3.1: This example combines two binary transformations,T1 between PCM and UML

and T2 between UML and Java, to realize a transitive transformation between

PCM and Java.

delta can be described as a single complex change or a list of smaller changes, down to a

list of atomic changes. After the change occurred, the transformation has to be executed

in order to restore consistency. If the models were inconsistent before the transformation,

then the transformation modi�es the target model and produce a new delta, described

through a new change. We call this change propagation.

Now we return to the example transformation network in Figure 3.1. A change to a

PCM model has to be propagated to the UML model, where a new change occurs. Then

the same mechanism starts again to propagate the change from the UML model to the

Java model. We e�ectively propagate the change from PCM to Java through transitive

transformation execution, and we therefore call this process transitive change prop-
agation. If we want to allow the user to modify other models as well, then we need

bidirectional transformations, so that changes can also be propagated from Java to PCM.

In general transformation networks, the network topology may have branches and, as

a result, a single change may produce multiple propagated changes. We try to achieve

multi-model consistency preservation for all domains in the network through transitive

change propagation.

The intention of this chapter is to identify and de�ne failure potentials, which can

manifest in inconsistency, loss of information, or transformation failure during the model

synchronization process, that emerge from the interplay between transitive change prop-

agation and the consistency constraints that are implemented by the involved transfor-

mations, even if the individual binary transformations may function as intended in the

normal non-transitive execution setting. We speak of failure potentials and not of plain

failure causes, because they do not always have to end in synchronization failures. Table

3.1 gives an overview of the failure potentials, which we identify in this chapter, and

relate them to the factors that enable their emergence, as well as their possible failure

manifestations. With the exception of incompatible consistency constraints, we assume

that these potentials can be mitigated or even eliminated through combinations of

• better transformation implementation,

• more sophisticated transformation support structures (like trace models based on

semantics),

• adaptations to the transformation network topology,

• transformation engine behavior (like change consolidation),
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3.1 Correspondence and Correspondence Type

• or through deliberate user disambiguation, if none of the above prove su�cient.

But in order to think about solutions, it is necessary to identify the problems �rst.

In Section 3.1, we de�ne correspondences as a possible trace model and explain their

relation to model consistency. Then in Section 3.2, we develop some assumptions regarding

correspondences and change propagation, which are necessary for the following sections.

And from Section3.3 onward, we explore how properties of the transitive change propaga-

tion process can lead to synchronization failures, using abstract or concrete examples, and

identify the emergent failure potential in the speci�c scenario. A short overview of possible

causes is shown in Table 3.1. For all examples, we assume incremental, delta-based, binary

transformations with access to a global trace model, as opposed to a transformation local

trace model. We use explicitly de�ned consistency constraints to argue about transforma-

tion behavior, instead of providing concrete transform rule de�nitions and arguing about

alternate implementations of implicit constraints. This allows us to stay independent of

the employed transformation language. Furthermore, we assume metamodel de�nitions

based on the EMOF formalism (Section 2.5.1).

3.1 Correspondence and Correspondence Type

First, we de�ne the term "correspondence". Then we explain how correspondences are

represented and used for argumentative reasoning about transformation rule behavior.

Model instances of di�erent metamodels can represent similar concepts through di�erent

sets of elements and relations. For example, a UML class diagram is an abstraction of

a Java implementation, or a component model (like a PCM model) can represent the

composition structure of some of the implemented classes. In both cases, the model pairs

share a semantic overlap that has to be synchronized after modi�cations in order to stay

consistent. The semantic overlap of two models is composed of multiple semantic overlaps

between concrete elements of those models. For example, a uml::Interface uI instance that

abstracts from a java::Interface jI , shares a semantic overlap with said jI . The rules that

have to hold between two overlapping elements can be expressed through consistency

constraints. If all consistency constraints of overlapping elements are satis�ed, then we

consider the elements to be consistent. By extension, a pair of models is consistent if

all the consistency constraints of their contained elements are satis�ed. The consistency

constraints have to be developed by a domain expert and their enforcement has to be

implemented by the transformation developer.

We propose to de�ne the consistency constraints between metamodel classes instead

of instantiated elements, so that they can be de�ned independent of the concrete models.

Then we can construct a set of consistency constraints for each metamodel pairing. Each

set contains multiple consistency constraints that describe under which condition elements

are considered to share semantic overlap (mapping constraints) and what predicates have to

hold for those elements to be considered consistent (feature constraints). Examples for such

constraints can be seen in Tables 3.2 and 3.3. It is important to note that a single metatmodel

class can be referenced by multiple mapping constraints if the semantic interpretation of

that class’s instances is dependent on the context of that instance and therefore instances

of said metamodel class can have di�erent semantic overlaps. Therefore, we de�ne a
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3.1 Correspondence and Correspondence Type

separate correspondence type for each possible semantic overlap and decompose the

complete set of consistency constraints between a pair of metamodels into subsets, which

are represented by correspondence types.

Def. Correspondence Type:

A correspondence type corrT describes a possible semantic overlap between

elements of A and B. It is de�ned by

• RcorrT ⊆ A × B | A ∈ MA,B ∈ MB , a relation between two metamodel

classes A, B of the metamodels MA, MB ,

• PcorrT = {p1, ..,pn}, a set of consistency constraints that de�ne consis-

tency for the tuples in RcorrT .

We sometimes represent a correspondence type through the classes that are

involved in its de�nition if it is the only correspondence type between those two

classes.

• corrT ⇔ A ∼ B

By evaluating the constraints of all correspondence types for two concrete models, we

can check whether the models are consistent with each other. But we ideally want to

use correspondence instances as a trace model that tracks, which elements have to be

synchronized with each other. The instantiation of a correspondence type can be required

by a mapping constraint of some other correspondence in order to restore consistency. We

therefore have to infer when to create correspondence, based on the mapping constraints

in other correspondence type de�nitions.

Def. Correspondence:

A correspondence (instance) corr of the correspondence type corrT is a tuple

(a,b) in RcorrT and it demonstrates that the elements a and b share the semantic

overlap described by corrT .

We represented the participation of two elements a, b in corr as:

• a ∼corrT b (⇔ (a,b) ∈ RcorrT | a ∈ A,b ∈ B)

A correspondence type is instantiated by the consistency restoring transfor-

mation, when a mapping constraint pm of another context correspondence

c2 = (d ∼corrT 2 e) requires the existence of that instance in order to achieve

consistency c2.pm(d , e) ⇒ a ∼corrT b | a ∈ A,b ∈ B.

Tables 3.2 and 3.3 show two correspondence type de�nitions, one between a uml::Interface

and a java::Interface, and one between a uml::Operation and a java::Method. The

uml::Interface∼java::Interface correspondence type has a mapping constraint that requires

the instantiation of the uml::Operation∼java::Method correspondence type.

In later sections, we often use exemplary correspondence instances to discuss speci�c

problem cases, without providing the full correspondence type de�nition or showing

the full context that required the instantiation of the correspondence. Instead, we only
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3 Failure Potentials of Transitive Change Propagation

UJ-Interface uI : uml::Interface ∼ jI : java::Interface

feature constraints

same name, uI.name == jI.name

corresponding super

interfaces

uG.general ∼UJ-Interface jT.classi�er (bijective), with

uG ∈ (uI.generalizations),

jT ∈ (jI.extends)

mapping constraints

method mapping uM ∼UJ-Method jM (bijective), with

uM ∈ (uml::Operation ∩ uI.ownedOperations),

jM ∈ (java::Method ∩ jI.members)

Table 3.2: Exemplary correspondence type de�nition for the semantic overlap between a

uml::Interface and a java::Interface.

UJ-Method uM : uml::Operation ∼ jM : java::Method

feature constraints

same name, uM.name == jM.name

mapping constraints

ordinary parameter uP ∼UJ-In-Parameter jP (bijective), with

uP ∈ (uM.ownedParameters.�lter(param.direction == IN),

jP ∈ (jM.parameters)

return parameter uM.returnParameter ∼UJ-Return-Parameter jM

Table 3.3: Exemplary correspondence type de�nition for the semantic overlap between a

uml::Operation and a java::Method.

uI : uml::Interface

uM : uml::Operation

name

jI : java::Interface

jM : java::Method

name

context

correspondence

uM.name == jM.name

correspondence

Figure 3.2: Correspondence instantiation example for a uml::Operation and a java::Method,

as de�ned in Table 3.3. The correspondence type of the context is de�ned in

Table 3.2.
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3.1 Correspondence and Correspondence Type

pI :

pcm::Interface

pM :

pcm::Signature

name

uI :

uml::Interface

uM :

uml::Operation

name

jI :

java::Interface

jM :

java::Method

name

context

pM.name

== uM.name

context

uM.name

== jM.name

Figure 3.3: This is an extension of the example in Figure 3.2. It now also includes the

similarly correspondences between a pcm::Signature and the uml::Operation.

show the relevant context for the problem case we discuss and instead of a complete

correspondence type de�nition, we provide only the constraints, which are relevant to the

argumentation, next to the dashed correspondence arrow. Mapping constraints are often

relatively verbose and are therefore omitted. Instead, relevant mapping constraints are

implied by the context of the corresponding elements and by the fact that we show a valid

instantiation of the correspondences. An example of this can be seen in Figure 3.2, where

correspondence instances for both correspondence types de�ned by Tables 3.2 and 3.3 are

depicted. The correspondences are shown as dashed bi-directional arrows. Elements are

assigned role-labels uM and jM , so that they can be referenced in the constraint, which

are annotated to the correspondence arrows. The signature mapping constraint of the

Interface correspondence uI∼jI is only implied by the fact that the Operation and Method

actually participate in an established correspondence, as a result of their context.

To further simplify the discussed �gures, aspects that introduce unnecessary complexity

are often withheld. For example in Figure 3.2, it is not mentioned that an interface has

a name or that methods can have parameters. For correspondence types that require

more complex and lengthy consistency constraint de�nitions, the correspondence relation

is labeled and the consistency constraints are de�ned in the �gure description or the

surrounding text.

In the following sections, we often have to discuss how transformation rules and the

transformation engine may behave, when multiple correspondences and their consistency

constraints are relevant. We therefore often shown correspondences together and show

how they combine to form a correspondence graph.

Def. correspondence graph:

A correspondence graph cg is formed by the maximal set Cmax of all

instantiated correspondences, so that cg is still connected.

• nodes = {e1, e2 | (e1, e2) ∈ Cmax } • edges = Cmax

Such correspondence graphs allow us to observe how changes may propagate through

a transformation network based on element-level propagation paths, rather than low-

resolution model-level propagation paths. The bene�t of these element-level change

propagation paths is that they reveal the interaction between the general change propaga-

tion process and the case speci�c consistency constraints in more detail.

21



3 Failure Potentials of Transitive Change Propagation

An example of a correspondence graph can be seen in Figure 3.3, which now extends the

exemplary correspondence instantiation of Figure 3.2 to include a correspondence with a

similar correspondence type de�nition between a pcm::Signature and the uml::Operation.

The element uM now participates in two correspondences, one correspondence with pM
(pM∼uM) and one correspondence with jM (uM∼jM). If we now interpret all elements

as nodes and all correspondences as edges between those nodes, then we can �nd two

connected graphs, each containing 3 elements and 2 edges. Neither graph can be extended

to include another element or correspondence, without then being disconnected. Conse-

quently, Figure 3.3 contains two correspondence graphs; the afore mentioned pM∼uM∼jM
graph and its context graph pI∼uI∼jI .

In this section we propose correspondence types as a way of de�ning possible types

of semantic overlap between elements and as a means to systematically decompose and

group consistency constraints. We propose correspondence instances as a trace model,

because they directly link the elements that need to be synchronized with each other.

Lastly, we introduce correspondence graphs, because they reveal interactions between the

general change propagation process and the case speci�c consistency constraints, which

is relevant for the following examples, where we try to identify failure potentials.

3.2 General Observations about Transitive Change
Propagation

This section discusses general observations about transitive change propagation. These

observations are not supposed to derive problems emerging from transitive change propa-

gation just yet, but instead they should explain some properties and assumptions that are

necessary for the following sections.

First we argue, that it is su�cient to examine consistency constraints and their imple-

menting transformation rules, based on a set of corresponding elements and their relevant

context, instead of examining the combination of complete transformation de�nitions.

Building on that, we show that linear transformation networks can still exhibit cyclic

change propagation paths, when examined at the correspondence graph and transforma-

tion rule level. Therefore linear transformation networks can be expected to exhibit the

similar problems as a cyclic transformation networks.

Next, we show that limiting the direction, in which changes may be propagated through

a transformation network, also limits the consistency constraints that can be expressed.

Because of that, we assume changes to be able to propagate along any transformation

edge in the network, irrespective of the previous path. And lastly, we argue that multiple

changes can accumulate across the models of a transformation network, and therefore

change-driven transformations and the transformation engines need to be able to handle

batches of changes.

3.2.1 Argument for Context-Based Transformation Examination

As a whole, a transformation de�nition for practical application is very complex, because it

consists of many transformation rules, that may even interact with each other. A transfor-
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3.2 General Observations about Transitive Change Propagation

i1 : uml::Interface

m1 : uml::Operation

i1’ : java::Interface

m1’ : java::Method

- not yet created -

i2 : uml::Interface

m2 : uml::Operation

i2’ : java::Interface

m2’ : java::Method

Figure 3.4: Double instantiation of the correspondence type described in Figure 3.2.

mation rule has to synchronize elements that share some semantic overlap and semantics

are often derived from the context of the element. This context includes the upward con-

tainment hierarchy of the element, its features (attributes and references), and information

of the trace model. In practical examples of source incremental transformations, such a

context is usually limited to a subset of elements that is smaller than the complete model.

Take the example in Figure 3.4, two uml::Interfaces i1 and i2, each containing a method

m1 and m2 respectively, correspond to two java::Interfaces i1’ and i2’. The transforma-

tion is supposed to synchronize the corresponding interface instances, which includes

synchronizing the methods de�ned by each interface. Upon creation of m1, the executed

transformation rule needs to check whether m1 is to be synchronized and where the

element to synchronize it with should be. By retrieving the context of m1, which is i1, and

noticing that i1 corresponds to i1’, it becomes clear that a corresponding method m1’ has

to be created, initialized and added to i1’. If i2 were a parent interface of i1, that would

would result in the inclusion of i2 in the context of i1, and then it would be relevant for the

synchronization of i1. But it still would not in�uence the synchronization of m1, so long

as neither m1 and i2 nor m1 and i2’ share any implicit or explicit consistency constraints.

So we can �nd a cut-o�, that limits the context that is relevant for the transformation rule.

The existence of i2 and m2 along with their corresponding elements, and whether i1
and i2 share the same containing model, is irrelevant for the synchronization of m1. For

the purposes of applying this transformation rule, each interface-instance could be its own

model, as long as the trace model still reveals which uml::Interface should be synchronized

with which java::Interface. The same would be true for feature changes, e.g. a name change

of i1. The only element that shares a consistency constraint with i1.name is i1’.

Because of the observation in this section, we discuss the e�ects and di�culties of

transitive change propagation mostly independent of the concrete transformation network

topology and rather base conceptual observations on correspondence graphs.
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3 Failure Potentials of Transitive Change Propagation

M1 M2 M1’

a

b

c

a’

(a) correspondence cycle

M2 M1 M2’

b

c

a

b’

c’

(b) correspondence tree

Figure 3.5: Trivial abstract correspondence cycle example in a linear network.

3.2.2 Cyclic Correspondence Graphs in Linear Transformation Networks

Given the observation, that we can de�ne and analyze a single transformation rule based

on the minimal necessary semantic context of the changed object, we can then extend

this idea to networks of multiple semantically overlapping and therefore corresponding

contexts, which we call correspondence graphs. It is relatively easy to construct an example,

where one element shares some semantic overlap with, and therefore corresponds to, two

separate elements in another model. It is then obvious, that the combination of two such

correspondence graphs can form either a tree or a cycle, even though the transformation

network only forms a line. A trivial, though on the surface useless, example of this

would be the synchronization of a model with a copy of itself, by propagation through

another model. In �gure 3.5, an instance of this abstract example can be seen. And

because changes are propagated along correspondences, even such linear transformation

networks can exhibit the problems one would intuitively associate with branching or

cycle containing networks. But in practical scenarios, one would expect the frequency,

with which particular correspondence graph patterns occur, to di�er depending on the

transformation network topology. For example, in a network that combines specialization

relations with predominantly natural one-to-one concept mappings, one would expect

relatively few cyclic correspondences.

A concrete example of a correspondence graph cycle can be seen in Figure 3.6. A

pcm::Signature and a java::Method correspond not only to the uml::Operation, but also to

a uml::Parameter , because return types are represented structurally di�erent in the UML

domain.

Technically it is even possible to create a cyclic correspondence graph in a single binary

transformation, if in each model two elements correspond with both other elements,

building a bipartite correspondence graph.

3.2.3 Argument for Undirected Transitive Change Propagation

In the later discussions, we often look at single bidirectional transformations combined with

transitive change propagation, because some failure potentials can already manifest in this

simpli�ed scenario. And we can expect that any unsolved problem in this minimal scenario

is bound to be at minimum equally problematic in general transformation networks. Some

of the problems may be solvable by a su�ciently abstract transformation language that

then generates the appropriate checks to avoid the speci�c problem. In that case, the
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3.2 General Observations about Transitive Change Propagation

pcmSig

: pcm::Signature

umlOp

: uml::Operation

umlParam

: uml::Parameter

return parameter

javaMethod

: java::Method

pcmSig.returnType

∼ umlParam.type

umlParam.type

∼ javaMethod.type

Figure 3.6: Concrete correspondence cycle example in (PCM↔ UML↔ Java)-network.

transformation language developer would still have to know about the failure potentials

and �nd general solutions. Also, that would only �x a single transformation de�nition,

because the language can only generate expected checks for changes produced by the

transformation itself, not necessarily for changes introduced by other independently

developed transformations. We therefore do not di�erentiate between the transformation

developer and the transformation language developer.

In this section, we argue that it is necessary to allow undirected transitive change

propagation, even if that introduces cycles to the propagation graph, and as a result

bidirectional transformations are minimal cyclic networks. By �rst looking at strictly

directed change propagation, we see that some sets of consistency constraints cannot

be restored by it. Therefore, we have to allow transformations to modify their source

model, which necessitates the backpropagation of changes, and leads to the necessity for

undirected transitive change propagation in general.

We �rst look at strictly directed change propagation, where changes cannot be prop-

agated backward along already traversed transformations. Such a limitation could be

enforced by a transformation engine. Stevens [27] discusses the possibility of using an

authority set, meaning a set of models in a transformation network that may not be

changed through the synchronization process. By setting the source model of a change

to be an authoritative model, it is possible to disallow the backpropagation of changes.

With a tiered notion of authority, it would be possible to impose an intended direction of

information �ow onto a transformation network. In this scenario, the propagation path

through a cycle-free transformation network is always de�ned and any once synchronized

pair of models stays consistent if the initial transformation achieved consistency. The

introduction of cycles would lead to ambiguity in transformation execution order and

con�uence of information (see Section 3.4), but the propagation graph would still be

acyclic.

However, strictly directed change propagation limits the set of possible consistency

constraints that can be enforced, because some inter-model constraints might implicitly

impose intra-model constraints that can only be restored through changes in the source

model. To demonstrate this, examine the example in Figure 3.7 and assume that the corre-

spondence graph has already been instantiated. The explicit constraints (comp-compPkg)

and (comp-compImpl) imply an implicit naming constraint between compPkg and com-
pImpl. If now a change c1 = set(compPkg.name, newname) occurs, for example through

user input, and the transformation from UML to PCM cannot modify compImpl, then the
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3 Failure Potentials of Transitive Change Propagation

transformation also cannot restore consistency. Furthermore, because the propagated

change c2 = set(comp.name, newname’) cannot be propagated back, the models stay incon-

sistent. In the example above, it might arguably be better to disallow changes to the UML

elements in that context, and only allow modi�cations through a restricted view of the

underlying models, which then modi�es the PCM element. But such an approach might

not be appropriate for all possible sets of constraints and if the elements are created as a

result of other transformations, then the initialization should still terminate in a consistent

state.

comp :

pcm::Component

name

compPkg :

uml::Package

name

compImpl :

uml::Class

name

lowerCase(comp.name)

== compPkg.name

comp.name + ”Impl”

== compImpl.name

Figure 3.7: Reduced correspondence graph for a pcm::Component and its corresponding

uml::Package and uml::Class.

a : A b : B

f

b

(a)

a : A b : B

f

b

r f

rb

(b)

Figure 3.8: Possible decomposition of a bidirectional transformation.

As we just saw, it is necessary to allow a binary transformation to modify both models.

This can be done in di�erent ways, depending on the directionalization of the transfor-

mation de�nition. Any bidirectional transformation needs to be operationalized into

di�erent application directions for forward and backward execution. This is a necessity

to enforce the roles of the source model as the updated version, and the target model as

the model that needs to be updated. Without this directionalization, any transformation

could trivially restore consistency by discarding any new changes and returning to some

previous consistent state.

Figure 3.8 shows two possible ways to directionalize a binary transformation. Based

on transformation language and implementation, a transformation de�nition might only

implement strictly directed transformation rules (Fig. 3.8.a) that can only modify the

target model. In that case, it would be necessary to perform a backward transformation

after any forward transformation in order to change the source model. This could be
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3.2 General Observations about Transitive Change Propagation

done automatically, because we know that it might be necessary, or through undirected
transitive change propagation, where changes in the target model trigger the backward

transformation. In the example above, c2 = set(comp.name, newname’) would propagate

back to UML and result in a third change c3 = set(compImpl.name, newname”). At this point,

we would already have the risk of a cyclic propagation loop through alternating forward

and backward transformations and the rule implementation would have to perform checks

in order to avoid this loop.

Alternatively, the transformation language could produce transformation rules that can

alter both the source and the target model. The transformation could be conceptually split

into a preparatory refactoring step and the usual forward transformation (Fig. 3.8.b). The

refactoring could be used to brings the source model to a state, for which the forward

transformation is enough to restore binary consistency. This would make it possible to

restore the problematic consistency constraints in Figure 3.7 with a single transformation

execution, and allow us to avoid undirected change propagation for a single bidirectional

transformation.

However, if we now move up one level and look at a minimal transformation network

of two transformations, like the one in Figure 3.9, we can see that the changes that result

from a refactoring step may need to be propagated back through the propagation graph,

because they might break constraints between other model pairs. Therefore, it is now

necessary to use undirected transitive change propagation, in order to propagate and

resolve the refactoring changes.

Going forward, we assume that any change can be propagated independent of its previ-

ous propagation path. As a consequence, any bidirectional transformation is automatically

a minimal possible cyclic transformation network of two opposite directed transformations

and has to be implemented in a way that avoids transformation loops.

a : A

name

b : B

name

c : C

name

change

→ 1

1→ 2 2→ 3

4← 3

Figure 3.9: Example for the necessity of undirected transitive change propagation.

3.2.4 Accumulated Change Assumption

A change-driven transformation engine and transformation language process change

events to trigger transformation rules. The intuitive assumption, when implementing a

transformation rule, is that there is exactly one change that needs to be synchronized. But

in reality there could be multiple changes, potentially even multiple changes to the same

element.

The number of changes that accumulate before a model synchronization step is started

partially depends on the timing, when the synchronization is started, and on the change

granularity. For example, the user could choose to synchronize the model after every

single change or only after a arbitrary number of changes. In the second case, we could

arti�cially reduce the number of changes that need to be processed per synchronization

27



3 Failure Potentials of Transitive Change Propagation

phase to one, by either automatically synchronizing, or by grouping small changes into

one large change. But then the question is, what constitutes a change.

The smallest possible changes would be atomic changes, like for example:

• create a single uninitialized element

• set the value of a single-valued feature

• unset the value of a single-valued feature

• insert a single element into a list-feature

• remove a single element from a list-feature

• delete a single element

But some atomic changes cannot occur alone. For example, a create usually has to be

followed by an insert into the model containment hierarchy, and a delete also has to remove
and unset any references to the removed element.

The largest possible changes could be composed of any number of atomic changes, up

to the creation of a fully initialized model. At some point the scope of the change becomes

so large that the incremental nature of the transformations is lost, and it is unlikely that

the change can be processed by a single or small set transformation rules. Therefore, the

change might have to �rst be decomposed, before it can be processed.

For the sake of argument, we assume for a moment that each synchronization is started

with only a single change, regardless of the change granularity. Now we have to look at

the transformation behavior, because each transformation may be succeeded by multiple

others. A single transformation rule can produce multiple atomic changes in the target

model. For example in Figure 3.7, a composed (create + insert)-change for a pcm::Component
can result in two create changes for the uml::Package and the uml::Class along with the

necessary set changes to initialize both new elements. Again, depending on the change

granularity, one could still argue that this constitutes a single new composed change, that

has to be handled by the subsequent transformations.

However, independent of change granularity, the number of un-synchronized changes in

the network can still multiply and distribute across multiple models, as well as accumulate

in a single model, based on the network structure. Figure 3.10 shows, how the number

of changes can multiply or accumulate at branching network paths, depending on the

propagation direction.

Therefore we always have to assume that there can be multiple queued changes, inde-

pendent of synchronization interval and change granularity.

Going forward, we assume that for any change propagation, there can be multiple

queued changes. Also, in order to avoid having to repeatedly explain what constitutes a

single composite change, we assume atomic change granularity for the rest of this thesis.

3.2.5 Summary of Assumptions

The following is a small overview of the assumptions we just argued for and which we

assume to hold for the rest of this chapter.
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a : m1::A

b : m2::B

c : m3::C

d : m4::D
user

→ c1

c1→
c2

c4←
c2

c
5 ← c

3

c
1 → c

3

multiply

accumulate

c
2 → c

6

c3→
c7

accumulate

Figure 3.10: Change multiplication and accumulation example.

• Transformation rules can be validly discussed based on correspondences and the

context of their participants.

• Because correspondences and their contexts are su�cient to express transformation

rules, changes can be assumed to propagate along correspondence graphs.

• Cyclic change propagation problems can emerge in linear transformation networks,

because such networks can contain cyclic correspondence graphs.

• Undirected change propagation is necessary to express all consistency constraints.

• Bidirectional transformations form minimal cyclic transformation networks as a

consequence of undirected change propagation.

• We have to assume multiple queued changes, as results of possibly branching corre-

spondence/transformation graphs.

• And we assume atomic changes for simpler discussion in the following sections.

3.3 Change Application and Change Resolution

A change-driven model transformation engine processes change events and triggers

transformation rules depending on the processed event. We di�erentiate between the

change as “that which a�ects the model” and the change event as “that which describes

the e�ect of a change”. The application of a single change to the model under modi�cation

does not have to coincide with the time, at which the respective change event is processed

by the transformation engine. To demonstrate this, we �rst di�erentiate two terms.

• To apply a change means to modify the model a�ected by the change, so that

the new state is reached and the e�ects of the change are visible when retrieving

information from that model.

• To resolve a change (event) means that the transformation engine processes the

change event and triggers transformation rules in order to propagate the change

through the transformation network.

Now, assuming a batch of queued changes, the intuitive strategy is to apply and resolve

each change one at a time. We call this strategy apply-on-resolve. Alternatively, it would
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user input c1 c11 c111

c112c12

c13 c131

causes

depth-�rst

breadth-�rst

Figure 3.11: Abstract example for depth-�rst versus breadth-�rst change resolution.

be possible to �rst apply all changes together and then resolve the change events. We

call this strategy batch-apply. The latter is operationally easier, because the executed

transformations can simply modify the a�ected models directly, thereby automatically

applying all changes, and the transformation engine only has to monitor the a�ected

models and record the occurring change events. In contract, with apply-on-resolve, the

engine would have to record the changes on a temporary model, or roll them back, before

re-applying them individually.

3.3.1 Apply-on-Resolve

First consider the apply-on-resolve strategy. It ensures the intuitive assumption of the

transformation developer that the information of the change event is in sync with the

state of the source model. However, because the executed transformations can trigger

new changes, without knowing about the already queued changes or their respective

new changes, it is possible for old and new changes to be in con�ict with each other.

A change con�ict occurs whenever a change negates the e�ects of another, or when

element creation changes are unintentionally duplicated. The former can be intended,

for example when the user overwrites a prior feature assignment. The latter cannot be

intentional, because two element creations do not cancel or interfere with each other,

unless both elements were intended to be the same and the duplication results in an

inconsistent correspondence graph. These change con�icts can occur in the source model

or in the target model, depending on the resolution strategy.

Figure 3.11 illustrates the di�erence in change resolution order between a depth-�rst

and a breadth-�rst resolution approach, with the help of an abstract change propagation

scenario. We can track all changes by their causal relation: parent change cx caused (a

transformation to produce) the child change cy . If we interpret the tuples in that relation as

edges of a graph, we obtain a cycle-free tree structure. We de�ne the resolve-depth-�rst
strategy as �rst resolving all child-changes before resolving the siblings. In contrast, the

resolve-breadth-�rst strategy resolves siblings before children. Using resolve-depth-

�rst there is a chance that changes are propagated back to the source model before all

queued changes of the source model are resolved. Resolve-breadth-�rst instead runs

the risk of producing con�icting or duplicate changes to the target model, because later

transformations do not yet see the changes created by the earlier executed transformations.

Take for example an established instance of the correspondence type in Figure 3.12 and

two unresolved name changes on the same model element a. Figure 3.13 shows how the

changes are resolved when using apply-on-resolve and di�erent resolution orders. First
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a

name

b

name

a.name == b.name

Figure 3.12: Correspondence instance example for two named elements.

input set(a.name, n1) set(b.name, n1) set(a.name, n1) ...

set(a.name, n2) set(b.name, n2) set(a.name, n2) ...

Figure 3.13: A causal relation tree example for two name changes and apply-on-resolve. It

shows how new changes are caused by the resolution of other changes (black

arrow) depending on the used resolution order: depth-�rst (blue, dashed) or

breadth-�rst (red, dotted).

This is not the same as a change propagation graph, because changes may

well be propagated along cyclic paths through the transformation network,

but each change can only be caused by a singe other change (or user input),

which results in the acyclic tree structure.

examine the depth-�rst resolution. The �rst change on a.name is propagated to b.name
and not propagated back, since the correspondence is already synchronized according to

the speci�cation that both names have to be the same. Next, the second name change is

resolved in a similar manner, so that both a.name and b.name are set to n2. The second

change e�ectively overwrites the �rst change. This might have been the intended outcome

of a user overwriting an earlier decision or an unintended side e�ect in some transformation

rule, but at least it does not cause further problems.

Now examine the breadth-�rst resolution. The resolution of the �rst change on a.name
creates a new name change (c3 = set(b.name, n1)) and adds it to the queue. The resolution

of the second change then creates a new name change (c4 = set(b.name, n2)) and also adds it

to the queue. Now we are faced with the same situation as before, but simply propagating

the equivalent changes in the other direction. The propagation is stuck in a propagation
loop.

Even this simple example fails when using breadth-�rst resolution. To demonstrate the

problem with apply-on-resolve and depth-�rst resolution, consider the correspondence

graph de�ned in Figure 3.14. Assume the correspondences are not yet initialized and both

elements a and c are created together, but their changes create(a) and create(c) are not yet

resolved. On resolving create(a), b is created, which then resolves to create an element

c’, because the transformation can not yet know that the creation of c has been queued

but not applied. Afterwards create(c) is applied and now two elements exist, which are

supposed to be the same. Using breadth-�rst resolution in this scenario could result in

di�erent outcomes depending on the concrete transformation implementation:

• If the resolution of create(c) tries to create b’, because it does not yet see the b created

by the resolution of create(a), then there is duplication of b.
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a

name

c

size

b

name

size

a.name == b.name

c.size == b.size

Figure 3.14: Extended Fig. 3.12 to demonstrate element duplication scenarios.

• Otherwise, if the transformation rule triggered by create(c) checks if the context re-

quires the synchronization of c, namely that a participates in an a∼b correspondence,

then the creation of b’ can be avoided.

– But maybe b and c are not synchronized, ...

– unless the resolution of create(b) detects the existing c.

• And without the depicted containment, the context clue to avoid a duplication of b’
could either not be detected, or the context would have to be de�ned much broader.

Both depth-�rst and breadth-�rst resolution fail in one of the scenarios because the

executed transformations can not see queued changes and therefore run the danger of

generating con�icting changes. Since the transformations can not intervene in those cases,

the transformation engine has to deploy a mechanism for consolidating con�icting changes.

This may work for set-feature con�icts where a con�ict is detectable by identifying that

two value changes that a�ect the same feature are not equivalent. However, it is unclear

how to detect element-creation con�icts when much of the semantic meaning of an

individual element is derived from the constraints enforced through transformations, but

not inherent to the element’s model.

3.3.2 Batch-Apply

The batch-apply strategy di�ers in that all queued changes are applied before the change

events are resolved. As a result, transformations triggered by a change event early in the

event queue can see the applied e�ects of later changes. Because of that, transformation

rules can be formulated in a way that avoids creating unintended con�icting changes. The

possibility, but also the responsibility, to prevent such con�icts lies with the transformation

developer. However, now using the batch-apply strategy, the developer faces the problem

that the information about a change, provided by a change event, may be deprecated, if

the subsequent application of a later change invalidated the change associated with the

change event in question. This forces the developer to di�erentiate between valid and

deprecated change events based on the information available from the source model.

Take the example in Figure 3.12 and again assume two consecutive name changes c1
= set(a.name, n1) and c2 = set(a.name, n2). Both changes are applied and c2 overwrites c1
so that a.name is set to n2 before the change events are resolved. Since c1 is the earlier

change, it is resolved �rst, but the change event claims that a.name has been set to n1 even

though the model shows a.name == n2. The developer can now either rely on the change

events or on the information present in the models.
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p : Parameter

t : Type

p’ : Parameter

t’ : Type

p.type ∼corr . p’.type

Figure 3.15: Simple parameter and type correspondence example.

Examine �rst the implications of relying purely on change event information. Because

the assumption is that the change is up-to-date, as if apply-on-resolve had been used,

the results are similar. A breadth-�rst resolution leads to the same propagation loop. A

depth-�rst resolution terminates and correctly synchronizes to a.name = n2 = b.name,
however in the process there are multiple unnecessary transformation steps, because

the resolution of c1 �rst synchronizes to a.name = n1 = b.name, overwriting the initially

applied change c2, before resolving c2 and reaching the target state.

By instead using an incremental state-based transformation rule, where the scope

is determined by the event (which elements and/or which of their features), but the

propagated information are retrieved from the model, the number of transformation steps

can be reduced and the propagation loop can be prevented. The resolution of both change

events try to propagate the same information and the resolution of c2 does not generate

follow-up changes. One drawback is that this only works if the transformation can be

implemented state-based, as the change sequence can not be retrieved from the model, only

from the change events, but we assume that most practical examples can be implemented

in such a way.

If changes that have not yet been resolved, but are visible to transformations, are

propagated using state based transformation rules, then a new problem can emerge, where

the retrievable context cannot yet be correctly propagated, because correspondences of

referenced elements might not exist yet. The correspondence type example in Figure 3.15

can demonstrate how this manifests. Assume the following batch of changes c1 = create(p),
c2 = create(t), c3 = set(p.type, t). All three changes are simultaneously applied and then

resolved in the named order. The resolution of c1 sees p and that p.type is set to reference t
and therefore the transformation rule creates p’ and attempts to set p’.type to t’, but t’ does

not yet exist. At this point, depending on the implementation, the transformation might

notify the user that an error has occurred, because an element can not be synchronized, or

it might even abort the propagation. But if the transformation engine continues to resolve

the other changes, creates t’ and sets p’.type = t’, then the intended �nal consistent state

can be reached. So there is an error potential in the visibility of unresolved changes,
that can at least in such simple cases be healed by later changes.

Such temporarily unsynchronizable constraints are in most cases a result of change event

resolution order. If for example the changes establishing the necessary correspondences

were executed �rst (in the above example resolve create(t) �rst), then such reference-

resolution failures can be prevented. However, in the general case where cyclic reference-

dependencies (in the simplest case bidirectional references) can occur, this is not solvable

through propagation re-ordering. Instead the propagation of previously not synchronizable
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information has to be triggered again, after the prerequisite changes are resolved. This can

be realized through additional change events for the elements and features in question. But

because partial information are propagated, the transformation developer has to be careful

that the partial information is not propagated back to the source model and overwrites

the still pending changes.

3.3.3 Summary

Apply-on-resolve is an appealing strategy, because it provides the transformation de-

veloper with consistent information across models and change events. However, because

pending changes and their e�ects are not visible during the execution of earlier transforma-

tions, this can result in unintended con�icting changes which may lead to propagation

loops or element duplications, without giving the transformation developer a chance to

intervene through adequate checks. Therefore, the transformation engine would need an

intervention mechanism to consolidate con�icting changes itself, but a general solution

seems unlikely, as some of an elements semantics come from the constraints implemented

by the transformations.

In contrast, batch-apply provides the transformation developer with the necessary

information to intervene by making later changes visible. The downsides are potentially

deprecated change events and visible but unresolved changes, which need to be

handled by the transformation developer. But unless a generic transformation engine

solution is found to manage con�icting changes, batch-apply is the operationally realistic

strategy, even with the increased transformation development e�ort. Another observation

is that depth-�rst resolution strategy seems to produce less disruptive or at maximum as

bad failures as breadth-�rst resolution in both discussed scenarios, apply-on-resolve and

batch-apply.

Going forward, we assume batch-apply unless otherwise speci�ed.

3.4 Confluence Problems

Bi-directional transformations need to derive di�erent operational transformation rules

for forward and backward execution, so that changes can be propagated from the source

to the target model, and the other way around, depending on where the pending changes

occurred. As we argued in section 3.2.3, we need undirected change propagation to express

all consistency constraints. But this also leads to potential propagation cycles along the

forward and backward transformation directions. And because we have a chance of

propagation path cycles, multiple transformed versions of an initial change can reach the

same model.

Figure 3.16 depicts the possible directionalization options for bidirectional transfor-

mation (strictly directed or with refactoring) along a single correspondence. Without

regards for the underlying transformation implementation that should prevent loop-

ing or unnecessary transformation steps, a change to element a, introduced by the

user, can be propagated along any number of paths. It could be resolved after a sin-

gle forward transformation(path=(f )), an additional backward step (path=(f ,b)) or any
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a : A b : B

f

b

a : A b : B

f

b

r f

rb

Figure 3.16: Possible decomposition of a bidirectional transformation (copy of Figure 3.8).

longer path of alternating forward and backward steps (path=(f ,b, f ,b, f )). In the

second example the path could also contain repeated interspersed refactoring steps

(path=(r f , r f , f ,b, f , rb ,b, f )). In order to prevent con�icting changes, both forward and

backward transformation need to check, if the information of a change is already present

in the target model, before propagating it. Otherwise even simple resolution paths like

p1=(user->create(a), forward->create(b), backward->create(a)) lead to a con�uence of

information, where two create(a)-changes reach the initial model and produce an element

duplication.

In our context, con�uence always refers to a scenario where changes are propagated

to a model or element along multiple paths through the transformation network. The basis

for transitive change propagation is the idea that a transformation propagates a change

from its source to its target model. A change propagation path can then be de�ned by a

tuple of the transformations that propagated the change to a speci�c model.

Def. con�uence:

Two paths through a graph structure are con�uent, if they reach the same node

along di�erent edges. Let:

• graph G = (N , E), nodes N , edges E ⊆ N × N

• path p = (t1, ..., ti , ti+1, ..., tn), with i ∈ [1,n], ti .end = ti+1.start , ti ∈ E
p.start = t1.start , p.end = tn .end

then two paths p1,p2 are con�uent, if

• (p1 , p2) ∧ (p1.start = p2.start) ∧ (p1.end = p2.end)

Def. transformation path con�uence (model level):
If we de�ne a change propagation path as a tuple of transformations and the

graph structure as follows:

• graph G = transformation network TN

• nodes N = models M of the transformation network TN

• edges E = transformations T ⊆ {t = (m1,m2) | m1,m2 ∈ M}

then we can use the con�uence de�nition above to determine if two such

transformation paths are con�uent.

Because correspondences are de�ned in such a way, that they link the elements that need

to be synchronized, a change to one element of a correspondence has to be propagated to
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a : M1::A

b : M2::B

c : M3::C

d : M4::D

e : M4::E

user

Figure 3.17: An example correspondence graph to show that in general transformation

path con�uence , correspondence path con�uence.

the other element. We can therefore also track the propagation path of a change based on

the traversed correspondences.

Def. correspondence path con�uence (element level):
A similar path con�uence de�nition can be formulated for paths through a

correspondence graph:

• graph G = correspondence graph

• nodes N = instantiated elements

• edges E = correspondences between the elements

Using correspondence paths, we get a higher resolution of the propagation path, on an

element level. The example in Figure 3.17, demonstrates how the correspondence propa-

gation paths of a change can be con�uence free, while the transformation propagation

paths are con�uent, because the elements d and e are part of the same model. For a change

introduced to model M1, the transformation paths tp1 = ((M1,M2), (M2,M4)) and tp2 =
((M1,M3), (M3,M4)) are con�uent, while the correspondence paths cp1 = ((a,b), (b,d))
and cp2 = ((a, c), (c , e)) are not con�uent. Assuming the change really only needed the

modi�cation of the corresponding elements, then the transformation propagation path

con�uence might falsely indicate a failure potential, even though on an element level, the

propagated changes operate on di�erent parts of the target model.

Whenever a con�uence of information occurs, it leads to a possibility for con�icting

changes to be generated, and as observed in previous sections, such con�icts can cause

propagation loops or loss of information by overwriting each other. Depending on the path

taken, the con�uent changes might also contain di�erent information, because di�erent

metamodels might use di�erent default values for their elements. As a result, even if a

convergent terminal state is reached, it is not guaranteed that a di�erent equally valid

propagation path would lead to the same state.

Figure 3.18 shows an example of a cyclic correspondence graph and one exemplary

change propagation path. The depicted resolution steps results in an element duplication

of c. Even if the duplication of c is avoided, the value initialization for c.y my be inde-

terminate, because it depends on the change resolution order. The default value of one

metamodel is propagated �rst and subsequently overwritten by the default value of the

other (yA or yD could be default values of the metamodels or of the transformation de�ni-

tions). There are multiple alternative propagation paths that produce similar con�uence
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a : A

x

y

b : B

x

c : C

y

d : D

x

y

a.x == b.x b.x == d.x
a.y == c.y c.y == d.y

user

create(b)

create(a),

set(a.x, xB)

create(c),
set(c.y, yA)

create(d),
set(d.x, xB )

create(c),

set(c.y, yD)

Figure 3.18: Con�uence example with element duplication and inconsistent value initial-

ization.

problems for di�erent elements. Assume for example using depth-�rst resolution, then

the transformation engine might resolve the b-a correspondence �rst, which produces a

path (b-a-c-d-b) back to b and either a duplicate b’ is created or b.x == xB is overwritten

by xD . Set-value-change con�uence is less problematic then create-changes when used

with batch-apply, because it often converges to some value, even if the concrete value is

dependent on resolve order. Create-changes and set-value-changes that produce element

creations in other models have a much higher risk of producing propagation loops, if the

transformation developer does not address them. A counter example, where a set-value

change can produce a propagation loop, would be a string mapping rule that appends

some su�x with each transformation step.

3.5 Change Granularity and Unsynchronizable States

Consistency constraints can disallow a subset of model states, by declaring them incon-

sistent, independent of the state of the corresponding model, even if they are conform

to the metamodel de�nition. Such a constraint may be in place, because both involved

metamodels represent the same concept di�erently, and some con�gurations of model A
cannot be represented by model B. We call such model states unsynchronizable states.

Assume a consistency-restoring transformation, that is executed after a change c tran-

sitions model A to an unsynchronizable state. Per de�nition, the transformation cannot

bring B to a consistent state with A, without changing A. There are now three possible

operationalizations for the transformation:

1. revert the change c that produced the unsynchronizable state,

2. perform complementary changes on A, until it can be synchronized,

3. or leave the models inconsistent.

Option 1) leads to a loss of information in model A and either directly overwrites a user

input, which is irritating to the user, or it overwrites a change initiated by a previous trans-

formation, in which case the overwrite has to be propagated back and potentially causes
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pcmP

: pcm::Parameter

pcmC

: pcm::CollectionDataType

pcmT

: pcm::DataType

innerType

umlP

: uml::Parameter

umlT

: uml::Type

corr-1

corr-3

type type
corr-2

* corr-1 = (pcmP.type ∼corr−3 umlP.type ∧ umlP.multiplicity==(1..1))

∨ (pcmP.type ∈ pcm::CollectionDataType ∧ pcmP.type ∼corr−2 umlP)

* corr-2 = pcmC.type ∼corr−3 umlP.type ∧ umlP.multiplicity==(0..*)

Figure 3.19: An example of a valid instantiation for a pcm::Parameter∼uml::Parameter
correspondence with a type reference to a pcm::CollectionDataType.

problems for other transformations. Option 2) runs the risk of selecting an unintended

target state, if there are multiple possibilities. And option 3) breaks the assumption that

both models are consistent afterwards. None of these options is clearly preferable to the

others. The concrete transformation implementation has to be decided on a case by case

basis, to �nd the most appropriate solution in the given context.

Furthermore, unsynchronizable states can be necessary in order to transition between

two synchronizable states. The example in Figure 3.19 shows a correspondence graph

in which an element can have two synchronizable value-con�gurations and two un-

synchronizable states. More speci�cally, a uml::Parameter can have the two multiplicity

con�gurations, (1..1) and (0..*) (written as <lower-bound>..<upper-bound> where "*" stands

for "unlimited"), that conform to the consistency constraints. In order to transition from

one con�guration to the other, either (0..1) or (1..*) has to be passed, both of which cannot

be resolved to a consistent state of the PCM-context.

p1L : _::Lower

lower

p1U : _::Upper

upper

p2 : _::Param

lower

upper

p3 : _::Param

lower

upper

p1L.lower

== p2.lower

p1L.upper

== p2.upper

p2.multiplicity

== p3.multiplicity

∈ {(1..1), (0..*)}

synchronized

together

Figure 3.20: This is an abstract example to demonstrate problematic interaction between

change granularity and unsynchronizable states.
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Problems concerning unsynchronizable states are in part a consequence of the change

granularity, with which changes are detected and processed. By accumulating changes

to a model and postponing the synchronization until a synchronizable state has been

reached, the problem can be avoided for a single binary transformation. But how atomic

changes are bundled, so that they form a synchronizable and resolvable change, cannot

be generally solved by the transformation engine, because the consistency constraints

de�ne what constitutes a synchronizable state for a speci�c transformation de�nition.

Therefore the ideal change granularity may di�er between sets of constraints and con-

text. Figure 3.20 shows an abstract example scenario, again concerned with parameter

multiplicity. One transformation requires a complex change that changes both the lower

and upper multiplicity boundaries together, the other transformation(s) do not have the

same constraints and therefore are �ne with independent changes to those features. Also,

by combining independently developed transformation de�nitions, it cannot generally

be assume that other transformations know not to produce such constraint speci�c un-

synchronizable states. This can be seen in the example above, where changes to p1L and

p1U can be propagated independently, and therefore trigger two independent changes

of p2, even though the following propagation to p3 might be better able to process a

bundled change. Even if both changes to p1L and p1U translate to a synchronizable state

of p2 (e.g. p2.multiplicity=(1..1) afterwards), if the transformation p2→ p3 cannot detect

that the second change is coming, then it might overwrite the �rst change, which then

also necessitates the overwrite of the second change. So as a consequence of transitional

unsynchronizable states, a synchronizable state may be rejected.

3.6 Concept Bottlenecks

Metamodels are often developed with di�erent concerns and therefore di�erent concepts in

mind. Most metamodel pairs share some semantic overlap, but also model some concepts

unknown to the respective other. A model transformation can at best keep the overlapping

concepts consistent. By transitively combining transformations, the set of concepts, which

can by synchronized along a single path, is reduced to the set of concepts common to

all models along that path. This implies that a concept shared between the end-points

cannot be propagated or synchronized along said path, if a single model along the way

cannot express that concept. The model that cannot express the shared concept functions

as a bottleneck for the information that can by synchronized. We therefore call this a

concept bottleneck. Now if there exists no alternate path in the transformation network,

along which the shared concept can be synchronized, then the end-point models can

desynchronize if such a concept is instantiated or modi�ed. While this does not produce

transformation failures for a single binary transformation, because each transformation

can still correctly synchronize the models to a locally consistent state, the set of all models

in the transformation network can still be globally inconsistent. Therefore a transformation

network, with concept bottlenecks and no alternate paths, potentially fails at multi-model

consistency preservation. This e�ect is linked to Nuseibeh’s observation ([16], Appendix

A) that local consistency does not equal global consistency.
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Figure 3.21 shows an example of a concept bottleneck. Even though model A and C
share the same concept y and it is possible to formulate a constraint that would enforce

consistency, changes to a.y can not be propagated without a direct transformation from A
to C, because B does not have a concept to represent y. If now a user inputs di�erent values

for a.y and c.y, then models are globally inconsistent and the synchronization process

cannot �x or even detect this circumstance.

a : A

x
y

b : B

x
c : C

x
y

a.x == b.x b.x == c.x

a.y == c.y

Figure 3.21: Concept bottleneck example

One option, for solving the concept bottleneck in the example, is to adapt the metamodel

of B so that the concept in question can be expressed. However, with metamodels that are

used for practical applications, this approach is hardly possible, because the pass-through

metamodels run the danger of becoming overly complex and the number of metamod-

els that have to be adapted grows with path length. Additionally, when standardized

metamodels are used, it might not even be possible or allowed to change the metamodels.

Another option is to add additional transformation de�nitions to the transformation

network, so that concept bottlenecks can be bypass. But the additional transformations

are likely to introduce new cyclic dependencies, thereby increasing the number of failure

potentials associated with cycles, which we discuss in section 3.4.

3.7 Incompatible Consistency Constraints

The previous sections were concerned with interoperability issues. This section discusses

incompatibility between transformations, each of which implement a sets of consistency

constraints. While interoperability issues emerge through transitive change propagation,

transformation incompatibility exists when the combination of the underlying constraints

either does not result in the intended global consistency or some of the constraints directly

contradict themselves.

One example for incompatible consistency constraints are structurally di�erent mapping

assumptions. Take the two transformations PCM↔ UML and the other UML↔ Java.

Now assume that PCM↔ UML maps between externally de�ned pcm::PrimitiveDataTypes
and uml::PrimitiveType instances and the other transformation uses manually de�ned

uml::PrimitiveType and maps them to the Java standard primitive types. Were the transfor-

mations combined as they are, it would not be possible to synchronize the type of a method

parameter to the same semantic primitive type across all three models, because there are no

rules implemented, that specify when prede�ned and manually created uml::PrimitiveType
instances are semantically equivalent. In fact, it is hard to argue how that would work, if

the method parameter can only be assigned one type.
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Secondly, incompatible consistency constraints can lead to contradictions when com-

bined. Figure 3.22 shows an example of this. A pcm::Component is mapped to its implemen-

tation class, but one transformation appends a su�x “Impl” to make this relationship clear

to the user, whereas the other transformation omits the su�x. The constraints (p.name

== u.name) and (u.name == j.name) together imply (p.name == j.name), which directly

contradicts the constraint (p.name + “Impl” == j.name).

p :

pcm::Component

name

u :

uml::Class

name

j :

java::Class

name

p.name == u.name u.name == j.name

p.name + "Impl" == j.name

Figure 3.22: Consistency constraint contradiction example.

The category of incompatible consistency constraints is relatively weakly de�ned to

capture most problems stemming from the consistency speci�cations of the transformation

network, because these problems cannot be �xed by a smarter implementation of each

independent transformation. This broad classi�cation runs the danger of ignoring or

grouping more speci�c problem causes. Future work might reveal, if this category should

be split into sub-classes, and how to formulate consistency constraints in order to increase

the chances for compatible, yet (mostly) independent developed transformations.

3.8 Indeterminate Change Order in Distant Models

This section is mainly argumentative, because non of the examined models and transfor-

mations explicitly relied on speci�c change sequences. As a result we cannot provide an

example where the preservation of the change sequence is relevant.

But we assume that if a transformation’s output relies on the order in which changes

occur and are processed, then it is important to preserve the relevant sequence or even

reorganize pending changes accordingly. And we can show, that in general it is not possible

to ensure this in a transformation network with independently developed transformations.

First, if we assume a single transformation de�nition, then we can either rely on an

informed user to provide the information in the required order, or we can limit the editor

in such a way, that the necessary change order is enforced, perhaps through an input

dialog. Now assume a single transformation that produces multiple changes in the target

model. The order of the resulting changes, directly relies on the implementation of the

transformation. Therefore, if the resulting target changes need to be ordered, this can

be accomplished by a proper implementation. If multiple transformation rules need to

trigger, then the resulting target change order is dependent on the rule execution order.

Furthermore, if a transformation relies on incremental transformation rules that only

synchronize a limited context, mostly independent of each other, then the rule execution

order might not be explicitly de�ned, but rather accidental based on some arbitrary
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ordering of the de�nitions. Then the target changes would only be partially ordered,

which could pose a thread to the proper execution of the following transformation.

Now, even if we assume that the execution of all transformation rules are ordered for

a transformation de�nition, we still cannot assure that the resulting changes occur in

the intended order, because other transformations in the same transformation network

might have modi�ed the target model as well. The transformation engine would have to

know in which order to execute the transformations, so that the concatenation of their

changes still preserves the requirement. Furthermore, if transitive change propagation is

also considered and changes can be propagated back to the source model, then the problem

is suddenly even more complex, as it is unclear if the backpropagation of a target change

should be resolved before or after the forward propagation of the next transformation.

Even if the change order can be controlled on a per-transformation basis, the transfor-

mation execution order may depend on the network topology and engine implementation.

As a result, a speci�c intended change sequence cannot be guaranteed for the general case.

3.9 Summary of Proposed Failure Potentials

We have identi�ed six failure potentials of transitive change propagation. with the goal

of multi-model consistency preservation. An overview is provided by Table 3.1 at the

beginning of this chapter, and now we want to summarize the failure potentials in more

detail.

A change con�ict occurs when a later change invalidates the e�ects of an earlier one.

Examples include: two set changes that a�ect the same element’s feature with di�erent

values, a remove that reverts an element insert into a list-feature, or the collision of two

create changes that were supposed to create one and the same element. Change con�icts

can be produced by the user, in which case we would not classify them as failures, through

postponed change application, as is the case for the apply-on-resolve strategy, or as a

consequence of change con�uence.

A change event is deprecated if the described e�ect of the change does no longer

match the model state that is present at the time when the event is resolved and the

subsequent transformation rule is executed. This can occur as a consequence of immediate

change application (batch-apply) and the accumulation of multiple changes to the same

model, when for example a second change directly overwrites the �rst one, and both

are applied before the resolution of the �rst change. A transformation that relies on the

information provided by the change event might then propagate a false model state.

The e�ects of still unresolved changes can be visible to transformation rules if multi-

ple changes accumulate at one model and all changes are immediately applied. Because

the e�ects can be retrieved from the source model state at the time of transformation

execution, a state-based transformation rule may attempt to synchronize a reference in the

target model, for which the corresponding referenced element has not yet been created.

An unsynchronizable states is a source model states, for which there is no consistent

target model state, without modi�cation of the source model. Such states are a consequence

of the consistency constraints between two models, and they can become problematic, if

the change granularity, with which changes are applied or propagated, does not support
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the circumvention of such states. Take for example two atomic source model changes that

would together transition the source model to a synchronizable state, but when applied

alone, either change results in an unsynchronizable state and potential information loss.

Concept bottlenecks are a consequence of the transformation network topology and

the information that can be represented by the involved metamodels. If a concept cannot

be represented in a domain, then the instances of that concept cannot be synchronized

along a transformation path through said domain, which may lead to global inconsistency.

And lastly, incompatible consistency constraints are constraints that either lead to

a direct contradiction when combined or imply structurally di�erent mappings, which

cannot be implemented together. We assume this to be the only failure potential that is

unsolvable if we do not change the consistency constraints, which means that it is not

solvable through generic adaptations to the synchronization process or transformation

implementation patterns.

We do not include indeterminate change order (Section 3.8) in this list, because we

cannot provide an example of a failure scenario. But it is theoretically possible to produce

a failure, if the outcome of an involved transformation relies on a particular change order.
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The last chapter discussed the properties and failure potentials that emerge from transi-

tive change propagation and transformation combination with regards to multi-model

consistency preservation. In this chapter we now propose patterns for transformation

implementation that mitigate some of the explored failure potentials in a generalizable

way.

Not all failure potentials can be can be prevented from manifesting a synchronization

failure through implementation patterns. Incompatible consistency constraints and con-

cept bottlenecks are problems of the transformation network speci�cation. Incompatible

consistency constraints can only be �xed if we change the consistency constraints. Concept

bottlenecks are a result of the chosen metamodels and transformation network topology.

If a concept cannot be expressed in a pass-through model, then no binary transforma-

tion implementations can synchronize the concept through said model. Change con�icts

that occur as a consequence of delayed change application (Section 3.3.1) also cannot be

avoided through better transformation implementation. Because the transformation rules

cannot see the queued changes during their execution, they cannot detect whether a target

model change would con�ict with later changes, and consequently cannot avoid producing

such con�icts. However, where transformations can detect the chance of a con�ict or the

con�ict itself, there is a possibility for intervention.

One goal should therefore be to con�gure the change propagation process and the

transformation engine in such a way that we can detect as many failure potentials as

possible, at least so long as the engine cannot prevent the failure potential. To that end

we proposed in Section 3.3.2 the immediate application of all accumulated changes to

a model, before resolving individual change events. This allows the transformations to

detect the e�ects of later changes and to adapt the output accordingly. But the immediate

change application results in new failure potentials, one of them being the chance of

deprecated change events, where the delta described by the change no longer represents

the information present in the underlying model.

In the following we explain, how we can detect whether a change events is valid or

deprecated, using change event validity checks. This is followed by a discussion about how

to avoid element-creation change con�icts, based on possible element retrieval strategies,

which we can use as existence checks to determine whether a target element already exists.
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4.1 Dealing with Deprecated Change Events

Deprecated change events are change events, whose described e�ect no longer represents

the underlying model state, because later changes modi�ed the same feature of the same

element before the event was resolved. They are a direct consequence of feature change

con�icts, where the same feature of the same element is modi�ed multiple times. Therefore,

the occurrence of deprecated change events is unavoidable as long as feature change

con�icts can occur. However, feature changes con�icts can be necessary if the user may

perform multiple subsequent changes before the synchronization is started and metamodels

provide di�erent default values. Furthermore, feature changes con�icts can also occur as a

consequence of change con�uence in propagation process or suboptimal transformation

implementation.

The example we use throughout this section consist of two subsequent, opposite replace

changes that a�ect the feature f of an element e: c1 = replace(e.f, x→ y), c2 = replace(e.f, y
→ x). If both are immediately applied, before either is resolved, then the model state is

e.f = x when c1 is being processed. Therefore the claim of c1 that the new value for e.f is

y no longer is true, and c1 is considered deprecated. If the triggered transformation rule

relies on the event information, then it might propagate deprecated information.

4.1.1 Context-local State-Based Transformations

One simple way to avoid propagating deprecated information is to only propagate the

current model state, ignoring the value information provided by the events. We can derive

the local context that has been modi�ed by a change from the change event, and we

therefore know which elements might have to be synchronized. Take again the example

change c1 = replace(e.f, x→ y). We know that c1 modi�ed the feature e.f . Therefore the

triggered transformation has to restore all consistency constraints that reference e.f and

we can retrieve the current value from the model, which provides us with the information

e.f = x, because of the e�ect of c2. The resolution of c1 propagates the information e.f =
x, event though the event description of c1 claims e.f = y. We thereby avoid propagating

deprecated information.

After the local context of an element and feature has been synchronized as the result of

a change event, any subsequent change event that a�ects the same element and feature,

whose change was already applied, becomes redundant, because its e�ects have already

been propagated. But from a transformation rule’s point of view, the redundant change

events are indistinguishable from events that still need to be resolved. This possibly results

in multiple propagations of the same information and unnecessary computation overhead.

Another downside is that we cannot retrieve information about previous model states

from the current state. As a result, cleanup routines may be ambiguous or computationally

more expensive, because they rely on the detection of broken constraints and heuristically

determining the appropriate action.

This approach is often at least partially necessary, irrespective of deprecated change

events, because consistency constraints may require the examination of more context

information than is provided by the individual change event’s description.
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4.1.2 Validity Check for Change Events

When a change event is deprecated and its e�ect description no longer matches the current

state of the model that is a�ected by said change, then we can compare the change event

description to the model state in order to detect that the change event is deprecated. The

simplest example is that if a change event c = set(e.f, z) claims that value z has been set for

feature f of element e, but the model state reveals that the value of e.f is set to something

other than z, then c is deprecated. We call such a check an event validity check, and how

to perform the check is dependent of the change event. Changes that remove an element

from a list have a di�erent semantic and therefore also require a di�erent check routine.

We can use event validity checks in order to detect deprecated change events and �lter

them out if necessary. Whenever we �lter out deprecated events, we assume that at least

one valid change event remains, because somehow the feature must have been set. This

quasi enforces state-based propagation, thereby preventing propagation of deprecated

information, because it ensures that the change event description is at least compatible

with the present model state, and it reduces the number of repeated propagations of the

same information in so far, as discarded change events no longer trigger transformations.

We can get the bene�t of accurate change events, which we would normally have using

apply-on-resolve, and we can still detect the e�ects of yet unresolved change events,

thereby having a chance to prevent the propagation of con�icting changes. Additionally,

if a transformation relies on change application order, this order can still be reconstructed

from the change events.

Depending on the used change types, there are di�erent ways their events can become

deprecated, and how deprecated changes have to be handled can depend on the way

change events are generated. For some changes it is unclear what the appropriate response

to a deprecated event is. Take following example: element e has a single-valued feature

f that is set to value x, and is now overwritten to hold the value y. The transformation

engine could generate di�erent change events: set(e.f, y), unset(e.f, x), replace(e.f, x→ y)
as a combinations thereof, or all of these change events. The set event provides the new

information that needs to be propagate. The unset event provides information about the

previous state, which may be helpful for cleanup. The replace provides both of the above,

but it can be partially invalid as a result of the combination of information, because the old

value may have been overwritten, but the new value is no longer up-to-date. For example

in the change sequence c1 = replace(e.f, x→ y), c2 = replace(e.f, y→ z), c1 correctly states

that x has been overwritten and may require cleanup, but y no longer provides the correct

current model state. We could therefore treat c1 as if it represented a valid unset(e.f, x) and

a deprecated set(e.f, y). The value y was only temporarily set and it is arguable, whether

the transitional state may require cleanup. We propose preserving events with information

about past transitional states, to keep all possible intervention options available to the

transformation developer.

In Table 4.1, we provide a list of predicates to check whether or not a change event

is valid, for a selected set of possible change-event de�nitions. Event validity checks for

create and delete events are unnecessary, because the absolute nature of existence versus

non-existence leaves little room for such events to become deprecated in the �rst place. A

delete change cannot be deprecated, because any element that could replace the previously
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change event c isDeprecated(c)

element existance changes

create(element) N/A

delte(element) N/A

single valued feature changes

set(element.feature, newValue) (element.feature != newValue)

unset(element.feature, oldValue) (element.feature == oldValue)

replace(element.feature,

oldValue, newValue)

((element.feature != newValue)

∨ (newValue == oldValue))

list feature changes

insert(element.feature, newValue) !(element.feature.contains(newValue))

remove(element.feature, oldValue) (element.feature.contains(oldValue))

Table 4.1: Change event validity checks.

existing one, is still a new and distinct element. For a create change, we could argue that

it is deprecated by a subsequent delete, however, then we should no longer be able to

reference the created element in the �rst place, and therefore the changes to that element

would all have to have been discarded. We therefore assume that event validity checks for

create and delete events are unnecessary.

4.1.3 Change Consolidation by the Transformation Engine

Change consolidation is the process of consolidating changes or change events that e�ect

each other in order to reduce the number of individual changes. It cannot be implemented

by the transformation, because each transformation (rule) can only see the one change

event by which it has been triggered. As a result, this pattern has to be implemented by the

transformation engine, as a preparatory step before the transformation rules are actually

executed.

Using the introductory example change sequence c1 = replace(e.f, x→ y), c2 =
replace(e.f, y→ x) again, we can reduce both changes based on their e�ects because they

both operate on the same element. From c1 and c2, we can derive replace(e.f, x→ y→
x) = replace(e.f, x→ x) and replacing x through x e�ectively does nothing, so the event

is unnecessary. E�ectively no change occurred between the model state before c1 and

after c2. If both transformations triggered by the replace events would be processed free

of intended side e�ects and we do not require cleanup for the transitional value y in

other models, then we can safely discard both changes. However, we don’t know if that is

generally the case.

Now assume a slightly di�erent change sequence, where the changes are not the inverse

of each other: replace(e.f, x→ y), replace(e.f, y→ z). We can reduce the sequence to a single

change replace(e.f, x→ z). This again discards the information that y was temporarily

set, which would be preserved with event validity checks, but in contrast to the purely
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state-based transformation in Section 4.1.1, we at least preserve the information about the

original model state.

Change consolidation prevents the propagation of deprecated information, and it maxi-

mally reduces the number of events that have to be processed and with it the number of

repeated propagations of the same context.

4.1.4 Summary regarding Deprecated Change Events

We propose using event validity checks to discard events that describe a deprecated model

state (e.g. set(e.f, deprecatedValue). As a result only the current model state is propagated

and the number of repeated propagations of the same context is potentially reduced. We

further propose preserving events with information about past transitional states (e.g.

remove(e.f, transitionalValue), to keep all possible intervention options available to the

transformation developer.

Well developed change consolidation strategies may be advantageous if transitional

states prove unproblematic, and it is therefore a question for further research.

4.2 Avoiding Element-Creation Conflicts

As we discussed in Section 3.4, in a transformation network with transitive change prop-

agation, we can have con�uence of information along multiple paths. Therefore the

information that would have to be propagated by a transformation may already be present

in the target model, either through some other propagation path or because the currently

processed source change was the result of a previous change in the target model, and is

now being evaluated in the backpropagation direction. If the triggered transformation

does not �rst check whether the target model already contains the information, then it

might produce con�icting changes in the target model.

Intended feature changes by the user for single-valued features are unproblematic, as

long as the transformations are compatible and produce the same value along multiple

paths, because a second change that reaches the same element and sets the same value

does not modify the model state and therefore no further changes are generated. As a

result, the propagation process can converge to the same value and terminate. However,

if an element is instantiated through user input, the transformation tries to propagate

the metamodel default-values, and that default-value �nds a propagation path back to

the user input, then it may unintentionally overwritten an intentional user input. The

propagation may still converge and terminate, but the intended input is still lost. Such

feature change con�icts are hard to detect, because overwrites can be necessary to restore

consistency after a user change, and a single transformation cannot di�erentiate whether

the incoming change represents an intended new value or a con�icting value propagated

along another path.

By contrast, con�icting changes that create (and insert) a new element in the target

model cannot converge, because any new element is a unique instance. It either replaces

the previous element in a single-valued feature or it results in an additional (unintended)

entry in a list feature. Both scenarios generate new changes, even if the replaced element
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is equal to the new one, and may leading to a propagation loops if subsequent element

creations also replace and duplicate. However, it is usually not intentional to replace one

element through a new and unique but semantically equivalent instance, or to �ll a list

with semantically equivalent instances (duplicates). We interpret such occurrences as

element-creation change con�icts. And we expect the transformation that would produce

the element-creation change con�icts to identify if the target element already exists and if

it exists, then the transformation should adapt its feature values in order to achieve model

consistency, instead of replacing or duplicating it. Because the existence of an element is

absolute and cannot be deprecated (only its feature values can be deprecated) it is easier

to detect if a transformation might produce an element-creation change con�ict than to

detect if a transformation might produce an feature change con�ict.

We focused on a solution to prevent creation change con�icts, because they can more

easily produce serious propagation failures, while also being better detectable than feature

change con�icts.

4.2.1 Element Existence Check

The simplest example for an element creation that leads to a creation loop is when a

bidirectional transformation creates a new element in the target model that corresponds

to the element created by the user, and the transformation then does not check if the user

element already exists on the change backpropagation. Now a duplicate element exists

on the original input side and the ping-pong continues. The solution to this scenario is

obvious; the transformation has to check in either direction whether the corresponding

element already exists. We call this straight forward pattern existence check.

In the simple bidirectional scenario above, this can easily be accomplished by checking

the trace model to determine whether or not the correspondence to the target element

exists. In general, however, the element may have been created in the target model without

the instantiation of the direct correspondence linking the source and the target elements,

for example if the target element was created along another transformation path. In that

case, we have to explore additional sources of information in order to �nd the target

element. This includes correspondences of the source model context, the target model

context and global trace information (correspondence paths through domains foreign to

the transformation that performs the check). If we can retrieve the element, then it exists,

and we can instantiate the direct correspondence for faster and unambiguous subsequent

retrievals, followed by the necessary synchronization. Only if it cannot be retrieved, then

the transformation has to create the target element itself.

In the following subsections we discuss how best to design the element retrieval, based

on generic considerations, and we rank-order the di�erent retrieval strategies, according

to their reliability to �nd the intended element. We use the example shown in Figure

4.1 to explore how the di�erent retrieval strategies might work, so that a transformation

rule, which is triggered by the change that created the pcm::Repository repo, can detect the

existence of the uml::Package contractsPkg in order to avoid creating a duplicate. Assume

that the same change �rst propagates from PCM to Java and then further to UML. All

elements are already instantiated as a result, but the correspondences between contractsPkg
and repo, and between contractsPkg and repo are still missing.
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repo:

pcm::Repository

contractsPkg:

uml::Package

repoPkg:

uml::Package

datatypesPkg:

uml::Package

jRepo :

java::Package

jContracts :

java::Package

jDatatypes :

java::Package

C-1

C-2

un-inst.

C-3

un-inst.

* C-1: repo.name == repoPkg.name

* C-2: contractsPkg.name == "contracts"

* C-3: datatypesPkg.name == "datatypes"

Figure 4.1: This is an extended correspondence graph for a pcm::Repository mapping and

its corresponding uml::Packages and java::Packages. The example includes a

direct transformation from PCM to Java, and possible correspondences that

would be relevant, which were not part of the case study.

4.2.1.1 Direct Element Retrieval via Correspondence

In most cases, we can use trace information to navigate between two domains and, in our

case with correspondences, we should be able to directly retrieve the target element if the

correspondence exists. So a �rst retrieval attempt could be trying to directly retrieve the

element from the correspondence model. In many cases it is enough to �lter the existent

correspondences by the type of the searched element, but if that is not enough, then we

can annotate the correspondences with their exact correspondence type. This allows the

exact retrieval of the target elements based on the correspondence type de�nition, if the

correspondence exists and the element cannot participate in multiple instances of the

same correspondence type. The set of contractsPkg-candidates in the example would be

empty, because the direct correspondence to the contractsPkg does not yet exist, but in the

fully instantiated correspondence graph we could retrieve it.

However, as we just discussed, changes can potentially reach the target model along

other paths, and may have already instantiated the target element (contractPkg) without

instantiating the correspondence type. In that case we cannot retrieve the target element

through direct correspondences, but at the same time we cannot yet conclude that the

element doesn’t already exist.

4.2.1.2 Context-based Element Retrieval

We can instead try to heuristically retrieve the element from the context, by limiting the

number of elements that could potentially be the correct corresponding element. If the
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element has a container in the target model, which we can retrieve, then we can navigate

the context and �lter the candidates based on their feature values.

In general, a transformation only has to create an element if its existence is necessary

in order to restore a consistency constraint. Then the consistency constraint de�nition

has to prescribe where the element should be inserted in the model, which is the target

context. Now that we have the context, we can then see if any of the elements in that

context already ful�lls the consistency constraint, but the correspondence is just not

instantiated yet. The element that ful�lls the consistency constraint is the target element.

However, depending on the correspondence graph structure, the target element may not

yet be fully/correctly initialized, because some values may only be set along a speci�c

correspondence path. In that case, we cannot use the consistency constraint in its full

de�nition. Instead, if we can identify a feature that has to be unique among the candidates

and it matches the consistency constraint, then we can, with relative con�dence, uniquely

identify the target element if it exists.

In our example we can navigate to the main uml::Package repoPkg for the pcm::Repository,

and search its nested-packages-feature for possible candidates. The name of the nested

packages can be used as a unique and therefore identifying feature, and the consistency

constraints require the contracts package to be called "contracts". So if there exists a

uml::Package nested within the repoPkg, which is named "contracts", then we can be rela-

tively sure, that it is the correct target element. But without the constraint on the name,

we might have also found the datatypesPkg, or any other sub-package of repoPkg that is

not depicted in the correspondence graph, as a potential contractsPkg-candidates.

4.2.1.3 Indirect Element Retrieval via Correspondence Graph

If we have no direct way of retrieving the target’s context, we might instead be able to

transitively resolve the instantiated correspondences and retrieve the target element that

way. This assumes, that if the target is created by another transformation path, then it

might participate in a correspondence types de�ned between another set of metamodels.

And if the transformation graph has a cycle and the semantic interpretation of the element

stays the same, then the representations should be at least structurally similar along both

paths. Otherwise we could never achieve network-wide consistency, because the consis-

tency constraints would contradict each other. In the example, we would retrieve {jRepo,
jContracts, jDatatypes, repoPkg, contractsPkg, datatypesPkg, repo}, restricted to the target

metamodel and target element type, this still leaves {repoPkg, contractsPkg, datatypesPkg}.
Here, di�erently than with the retrieval from direct correspondences, we cannot rely

on the correspondence types. For one, the correspondence types de�ned for other binary

transformations are supposed to be independently developed and therefore unknown to

the transformation rule, which we try to apply. Secondly, even if the correspondence types

where known, we would have to �nd a deterministic way of classifying the correspondence

path and match it to a direct correspondence type, without prior knowledge about which

transformations will be combined. But with a set of candidates, we can again try to

constrain them based on features.
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4.2 Avoiding Element-Creation Con�icts

Def. retrieveOther( s : Element, corr : CorrepondenceType):

1. candidateSet ← directRetrieval(s, corr)

2. if(candidateSet.isEmpty) then :

3. contextCandidates ← contextRetrieval(s, corr)

4. indirectCandidates ← indirectRetrieval(s, corr)

5. candidateSet ← intersect(contextCandidates, indirectCandidates)

6. if (candidateSet.isEmpty) then :

7. candidateSet ← contextCandidates

8. if (candidateSet.isEmpty) then :

9. candidateSet ← indirectCandidates

10. if (candidateSet.size == 1) return candidateSet.first

11. else if (candidateSet.size == 0) return null

12. else return userDisambiguate(candidateSet)

Table 4.2: Combined element-retrieval pseudo-code for the Existence Check pattern.

4.2.1.4 Combination of Retrieval Methods

Now that we have described three ways of retrieving a target element for a speci�c

correspondence type, we combine them in order to improve the reliability. The direct

retrieval via the correspondence instance of the searched correspondence type, retrieves

exactly the one target element we search, if the correspondence exists. This is enough of

a check, if we are only looking at a single binary transformation, because then both the

forward and the backward transformation would instantiate the correspondence as soon

as all relevant elements exist. But with transformation networks, there are other paths

along which a change can propagate and therefore the correspondence does not have to

be instantiated. Direct retrieval is precise, because it only returns one element, but it may

be insu�cient to show the absence.

Context retrieval tries to search the context of where the target element would be if it

existed. The idea is that in order for an element duplication to occur, we have to create

and insert the duplicate into the target model. So if we have a place where we would

insert it, then we can check if a matching element already exists. But in some cases, there

may be ambiguity as to which element is the target element. Through the consistency

constraints and sometimes because the metamodel de�nition, inappropriate candidates

can be �ltered out. We cannot generally avoid the possibility of multiple candidates, as

that is often consistency constraint speci�c. However, if the target element exists, then it

is contained in the set of candidates, and if we can �nd a key feature speci�cation for the

constraint, then we can identify the correct candidate.

Similarly, indirect element retrieval, by transitively navigating the existing correspon-

dences, can produce a set of candidates. But unlike with the context retrieval, it does not

guarantee that only elements in the context are found, because other transformations
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could impose other constraints and produce similar elements, that are still not the intended

target. Also, depending on consistency constraints of the other transformations, the target

element may not be reachable along any other path of the correspondence graph than

through the missing direct correspondence. The advantage of this method is that it can

avoid user interaction, if the context of the searched element cannot be determined any

other way.

Because of the advantages and problems we just outlined, we suggest to combine these

retrieval methods as shown in the pseudo code example in Table 4.2. The direct retrieval is

precise and should therefore be considered �rst. If it does not �nd the element, we should

attempt the context retrieval, and we can try to limit the number of found candidates

by calculating the intersection between the set of candidates found via context retrieval

and the set found via indirect retrieval. If this intersection turns out to be empty, then

we can check the context retrieval set on its own. Whether the indirect retrieval set

should be considered as a standalone last option is questionable, because it is theoretically

possible to �nd elements completely outside the context of the target element. If multiple

possible candidates remain, at any step along this elimination process, then we should

defer the disambiguation between the elements to the user, in order to avoid incorrect

correspondences.
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5 Correspondence Type Definitions
between PCM, UML and Java

The case study that is used for the evaluation of this thesis uses two binary and bidirectional

transformations:

• The transformation TPCM↔UML between the Palladio Component Model (PCM) do-

main and the Uni�ed Modeling Language (UML) domain.

• The transformationTUML↔Java between the UML domain and the Java domain, which

is modeled by the JaMoPP metamodel.

Both transformations are implemented using the Vitruvius framework and the Vitruvius

Reactions Language. The domains and framework are explained in the foundations-chapter,

Section 2.5.

The transformation TPCM↔UML was developed in the context of this thesis, based on

the consistency mappings described by Langhammer ([12], p.68-77). For the case study,

it is combined with the transformation TUML↔Java, which was already implemented by

Chen [3], in order to evaluate the behavior and synchronization failures of this minimal

transformation network.

The PCM domain was limited to PCM Repository models, which represent repositories

for component based software development. This limitation excludes PCM models for

system assembly, component deployment and behavior analysis. And the UML domain

was limited to UML class diagrams, explicitly excluding all other diagram types. Simi-

larly, the synchronization scope of the JaMoPP metamodel was limited to relatively basic

java constructs, excluding for example nested classi�ers and generic class and method

de�nitions.

This chapter provides a detailed list of the correspondence type de�nitions and the

underlying consistency constraints, split up according to the transformations that imple-

ment these consistency constraints. We introduce correspondence types in Section 3.1,

as formalizations for possible types of semantic overlap between elements of di�erent

domains. Table 5.1 shows how we de�ne correspondence types. The consistency con-

straints associated with each correspondence type specify what constitutes consistency

for elements that participate in correspondences of that type, thereby also de�ning how

elements have to be mapped by the transformations.

This list of the correspondence type de�nitions has a dual purpose. By explicitly de�ning

each implemented correspondence type, we invite the reader to decide for themselves,

whether or not the used notion of consistency is appropriate with regard to the used

metamodels. Secondly, the correspondence types will be the main unit of measure for

counting errors in the evaluation. In order for the reader to follow the argumentation for
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5 Correspondence Type De�nitions between PCM, UML and Java

<Correspondence-

Type-Name>

<role-labels and metamodel types of elements

that can participate in correspondences of this type>

<abbreviated

description>

<consistency constraint speci�cation>

...
...

<abbreviated

description>

<consistency constraint speci�cation>

Table 5.1: The syntax we use to de�ne correspondence types. Each correspondence type

is assigned a unique name, and the participating classes are given role labels, by

which they can be referenced in the consistency constraint speci�cations.

or against an error classi�cation, we need to reference the correspondence type that could

not be properly synchronized.

5.1 PCM↔UML Correspondence Type Definitions

In this section, we lists the correspondence type de�nitions relevant to the transformation

TPCM↔UML. The correspondence types are grouped by the concepts that are represented

through the elements in the PCM domain, so that we can discuss the structural di�erences

of how the concept is represented and why a concept may need multiple correspondence

types to be represented in the opposite domain.

5.1.1 Concept: Component Repository

A component repository for a component based software system architecture contains

datatype de�nitions, architectural interfaces, and component de�nitions, which a software

architect can then use to compose and analyze a software system. These artifacts can be

stored in di�erent packages of a code repository, which lead to the correspondence types

de�ned in Tables 5.2, 5.3, and 5.4.

5.1.2 Concept: Data Types

In order to de�ne contractual interfaces between components, the types of information,

that can be passed through an interface’s signatures, have to be de�ned. To that end, a

pcm::Repository provides datatype de�nitions, which need to be resolvable to uml::Types
with the same meaning.

5.1.2.1 Concept: Primitive Type

The pcm::PrimitiveDataType represent minimal chunks of meaning and the number of

primitive types is limited by the metamodel. As a result it is not necessary for a user to re-
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5.1 PCM↔UML Correspondence Type De�nitions

PU-RepositoryPkg pRepo : pcm::Repository ∼ uRepoPkg : uml::Package

same name lowerCase(pRepo.name) = uRepoPkg.name

contracts package pRepo ∼PU-ContractsPkg uContractsPkg (injective), with

uContractsPkg ∈ uRepoPkg.nestedPackages

datatypes package pRepo ∼PU-DatatypesPkg uDatatypesPkg (injective), with

uDatatypesPkg ∈ uRepoPkg.nestedPackages

component mapping pComp ∼PU-ComponentPkg uComponentPkg (injective), with

pComp : pcm::RepositoryComponent ∈ pRepo.components,

uCompPkg : uml::Package ∈ uRepoPkg.nestedPackages

Table 5.2: Correspondence type de�nition for the semantic overlap between a

pcm::Repository and the uml::Package that represents the main package of the

repository.

PU-ContractsPkg pRepo : pcm::Repository ∼ uContractsPkg : uml::Package

package name uContractsPkg.name = "contracts"

interface mapping pI ∼PU-Interface uI (bijective), with

pI : pcm::OperationInterface ∈ pRepo.interfaces,

uI : uml::Interface ∈ uContractsPkg.ownedElements

Table 5.3: Correspondence type de�nition for the semantic overlap between a

pcm::Repository and the uml::Package that represents the contract package of

the repository.

PU-DatatypesPkg pRepo : pcm::Repository ∼ uDatatypesPkg : uml::Package

package name uDatatypesPkg.name = "datatypes"

primitive type

mapping

pPT ∼PU-PrimitiveType uPT, with

pPT ∈ PCM standard primitive types,

uPT ∈ UML standard primitive types

composite type

mapping

pCD ∼PU-CompositeType uCD (bijective), with

pCD : pcm::CompositeDataType ∈ pRepo.datatypes,

uCD : uml::Class ∈ uDatatypesPkg.ownedElements

Table 5.4: Correspondence type de�nition for the semantic overlap between a

pcm::Repository and the uml::Package that represents the datatype package of

the repository.
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5 Correspondence Type De�nitions between PCM, UML and Java

PU-PrimitiveType pT : pcm::PrimitiveDataType ∼ uT : uml::PrimitiveType

no constraints! Externally de�ned types are �nal

and only mapped, not synchronized.

Table 5.5: Correspondence type de�nition for the semantic overlap between a

pcm::PrimitiveDataType and a corresponding uml::PrimitiveType. The PU-

PrimitiveType does not impose constraints, because at some point minimal

concepts cannot be further broken down, but instead have to be mapped. There-

fore, these correspondences function as tuples in the mapping relation.

PU-CompositeType pT : pcm::CompositeDataType ∼ uT : uml::Class

same name pT.name = uT.name

attribute mapping pAtt ∼PU-Attribute uCD (bijective), with

pAtt : pcm::InnerDeclaration ∈ pT.innerDeclarations,

uAtt : uml::Property ∈ uT.ownedAttributes

parent type

mapping

pParent ∼PU-CompositeType uParent (bijective), with

pParent : pcm::CompositeDataType ∈ pT.parentTypes,

uParent : uml::Class ∈ uT.generalizations.general

Table 5.6: Correspondence type de�nition for the semantic overlap between a

pcm::CompositeDataType and its implementing uml::Class.

de�ne the same primitive types for every repository. Instead, the user can reuse prede�ned

pcm::PrimitiveDataType instances, that are provided through an externally de�ned primi-

tive datatype repository. Similarly, there are reusable prede�ned primitive type models

for UML, albeit the UML metamodel does not limit the number of unique primitive types.

We chose to use two such externally provided models with primitive type de�nitions,

and only map the elements to each other, instead of using manually created instances.

Because the prescribed primitive type mapping is relevant as soon as a pcm::Repository is

instantiated, and the consistency constraints that de�ne the mapping are predicated on

the existence of an element in the containment hierarchy, the constraints are enforced by

the PU-DatatypesPkg correspondence type. The only function of correspondences de�ned

by Table 5.5 is to track tuples in the the mapping relation.

5.1.2.2 Concept: Composite Type and Attribute

Composite data types can be created through composition of other data types. Such com-

posite data types can be represented in both domains, through pcm::CompositeDataType
and through uml::Class (Table 5.6). Internally each attribute of a composite data type needs

to be mapped between the domains. The correspondence type for that semantic overlap is

de�ned in Table 5.7.
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5.1 PCM↔UML Correspondence Type De�nitions

PU-Attribute pAtt : pcm::InnerDeclaration ∼ uAtt : uml::Property

same name pAtt.name = uAtt.name

type correspondence ((pAtt.datatype ∼PU-PrimitiveType uAtt.type

∨ pAtt.datatype ∼PU-CompositeType uAtt.type)

∧ uAtt.multiplicity=(1..1))

Y (pAtt.datatype ∈ pcm::CollectionDataType

∧ pAtt.datatype ∼PU-CollTypeProp uP)

Table 5.7: Correspondence type de�nition for the semantic overlap between a

pcm::InnerDeclaration and a uml::Property. Multiplicity is written as <lower-

bound>..<upper-bound> where "*" stands for "unlimited".

PU-CollTypeParam pCD : pcm::CollectionDataType ∼ uP : uml::Parameter

collection multiplicity uP.multiplicity=(0..*)

type correspondence pCD.innerType ∼PU-PrimitiveType uP.type

∨ pCD.innerType ∼PU-CompositeType uP.type

Table 5.8: Correspondence type de�nition for the semantic overlap between a

pcm::CollectionDataType and a uml::Parameter , whose multiplicity and type to-

gether represent the same collection type. Multiplicity is written as <lower-

bound>..<upper-bound> where "*" stands for "unlimited".

5.1.2.3 Concept: Collection Type

Collection data types represent collections with arbitrary multiplicity of instances of an

inner type. In the PCM, such types are represented by a pcm::CollectionDataType, that

intentionally does not provide a more detailed speci�cation, in order to have a high level

of abstraction from the actual implementation on the software architecture level. In a

UML domain, such a type can be expressed through the instantiation of a generic type,

to form a concrete type, that can then be referenced by uml::Parameters or uml::Properties
(in the role of attributes). Alternatively, collection typed parameters and attributes can

be expressed through their multiplicity. In that case, a parameter or attribute shares a

semantic overlap with a pcm::CollectionDataType, as de�ned by the correspondence types

in Tables 5.8 and 5.9. We chose the latter option, for compatibility to the existing UML-Java

transformation and to preserve the abstraction from references to concrete collection

implementations.

5.1.3 Concept: Interface

Components communicate via contractual interfaces and the signatures therein. These

concepts can be relatively similarly be expressed in both the PCM and the UML, which

leads to relatively natural one-to-one mappings.
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5 Correspondence Type De�nitions between PCM, UML and Java

PU-CollTypeProp pCD : pcm::CollectionDataType ∼ uP : uml::Property

collection multiplicity uP.multiplicity=(0..*)

type correspondence pCD.innerType ∼PU-PrimitiveType uP.type

∨ pCD.innerType ∼PU-CompositeType uP.type

Table 5.9: Correspondence type de�nition for the semantic overlap between a

pcm::CollectionDataType and a uml::Property, whose multiplicity and type to-

gether represent the same collection type. Multiplicity is written as <lower-

bound>..<upper-bound> where "*" stands for "unlimited".

PU-Interface pI : pcm::OperationInterface ∼ uI : uml::Interface

same name pI.name = uI.name

signature mapping pM ∼PU-Signature uM (bijective), with

pM : pcm::OperationSignature ∈ pI.signatures,

uM : uml::Operation ∈ uI.ownedOperations

parent interface

mapping

pSupI ∼PU-Interface uSupI (bijective), with

pSupI : pcm::OperationInterface ∈ pI.parentInterfaces,

uSupI : uml::Interface ∈ uI.generalizations.general

Table 5.10: Correspondence type de�nition for the semantic overlap between a

pcm::OperationInterface and a uml::Interface, which are relevant on the soft-

ware architecture level.

The correspondence type for an interface, which is relevant on the software architecture

level, is de�ned between a pcm::OperationInterface and a uml::Interface and is provided by

Table 5.10.

5.1.3.1 Concept: Signature and Parameter

The information �ow through an interface is de�ned by the method signatures of the

interface and the data types referenced by the parameters of those signatures. Signatures

can be expressed directly in both PCM and UML and the correspondence type for that

semantic overlap is de�ned by Table 5.11. But the way return values are represented is

di�erent in the two domains.

Where a pcm::OperationSignature has a feature for its return type, a uml::Operation
instead contains return parameters, in addition to its ordinary parameters. Therefore,

a pcm::OperationSignature shares a semantic overlap with a uml::Operation, de�ned by

Table 5.11, and that operation’s return parameter, de�ned by Table 5.12 The roles of a

uml::Parameter is di�erentiated by its "direction". All regular uml::Parameters (those with

"IN", "IN_OUT", or "OUT" directions) are bijectively mapped to pcm::Parameters, and their

directions are mapped to the pcm::Parameters’ modi�ers. This correspondence type is

de�ned by Table 5.13.
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PU-Signature pM : pcm::OperationSignature ∼ uM : uml::Operation

same name pM.name = uM.name

regular parameter

mapping

pP ∼PU-RegularParam uP (bijective), with

pP : pcm::Parameter ∈ pM.parameters,

uP : uml::Parameter ∈ uI.ownedParameters

∧ uP.direction , RETURN

return parameter

mapping

pP ∼PU-ReturnParam uP (injective), with

pP : pcm::Parameter ∈ pM.parameters,

uP : uml::Parameter ∈ uI.ownedParameters

∧ uP.direction = RETURN

Table 5.11: Correspondence type de�nition for the semantic overlap between a

pcm::OperationSignature and a uml::Operation.

PU-ReturnParam pM : pcm::OperationSignature ∼ uP : uml::Parameter

parameter name uP.name = "returnParam"

parameter direction uP.direction = RETURN

type correspondence ((pM.returnType∼PU-PrimitiveType uP.type

∨ pM.returnType∼PU-CompositeType uP.type)

∧ uP.multiplicity=(1..1))

Y (pM.returnType∈ pcm::CollectionDataType

∧ pM.returnType∼PU-CollTypeParam uP)

Table 5.12: Correspondence type de�nition for the semantic overlap between a

pcm::OperationSignature and the return uml::Parameter of its corresponding

uml::Operation.

PU-RegularParam pP : pcm::Parameter ∼ uP : uml::Parameter

same name pP.name = uP.name

parameter direction uP.direction , RETURN

∧ (pP.modi�er, uP.direction) ∈ pcm-uml modi�er mapping

type correspondence ((pP.datatype ∼PU-PrimitiveType uP.type

∨ pP.datatype ∼PU-CompositeType uP.type)

∧ uP.multiplicity=(1..1))

Y (pP.datatype ∈ pcm::CollectionDataType

∧ pP.datatype ∼PU-CollTypeParam uP)

Table 5.13: Correspondence type de�nition for the semantic overlap between a

pcm::Parameter and a uml::Parameter .
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PU-ComponentPkg pComp : pcm::RepositoryComponent ∼ uPkg : uml::Package

same name �rstToLowerCase(pComp.name) = uPkg.name

implementation map-

ping

pComp ∼PU-ComponentImpl uImpl (injective), with

uImpl : uml::Class ∈ uPkg.nestedPackages

Table 5.14: Correspondence type de�nition for the semantic overlap between a

pcm::RepositoryComponent and a component uml::Package.

PU-ComponentImpl pComp : pcm::RepositoryComponent ∼ uImpl : uml::Class

implementation name pComp.name + "Impl" = uImpl.name

implementation is �-

nal

uImpl.isFinal

constructor mapping pComp ∼PU-ComponentConstr uConstructor (injective), with

uConstructor : uml::Operation ∈ uImpl.ownedOperations

required role mapping pRequired ∼PU-RequiredAtt uAtt (injective), with

pRequired : pcm::RequiredRole ∈ pComp.requiredRoles,

uAtt : uml::Property ∈ uImpl.ownedAttributes

provided role mapping pProvided ∼PU-Provided uIR (injective), with

pProvided : pcm::ProvidedRole ∈ pComp.providedRoles,

uIR : uml::Realization ∈ uImpl.interfaceRealizations

assembly context map-

ping

(pComp instanceOf pcm::ComposedProvidingRequiringEntity)

⇒ pAC ∼PU-ACProp uProp (injective), with

pAC : pcm::AssemblyContext ∈ pComp.assemblyContexts,

uAtt : uml::Property ∈ uImpl.ownedAttributes

Table 5.15: Correspondence type de�nition for the semantic overlap between a

pcm::RepositoryComponent and an implementation uml::Class.

5.1.4 Concept: Component

A software component is an encapsulated unit of software that designed for blackbox

reuse and composition. As part of the blackbox principle, a component implementation is

encapsulated in its own component package, together with the rest of the supporting code

that is required for the component implementation. And a component needs a constructor

that provides a signature for proper initialization of the component. Because a constructor

is not explicitly modeled in the UML class diagram, we instead use a uml::Operation, and we

have to enforce that the name of the operation matches the uml::Class that represents the

implementation through consistency constraints. Therefore, a pcm::RepositoryComponent
shares a semantic overlap with a uml::Package (Table 5.14), a uml::Class (Table 5.15), and a

uml::Operation (Table 5.16).
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PU-

ComponentConstr

pComp : pcm::RepositoryComponent ∼ uConstr :

uml::Operation

implementation name pComp.name + "Impl" = uConstr.name

required role mapping pRequired ∼PU-RequiredParam uParam (injective), with

pRequired : pcm::RequiredRole ∈ pComp.requiredRoles,

uParam : uml::Parameter ∈ uConstr.ownedParameters

assembly context map-

ping

(pComp instanceOf pcm::ComposedProvidingRequiringEntity)

⇒ pAC ∼PU-ACParam uParam (injective), with

pAC : pcm::AssemblyContext ∈ pComp.assemblyContexts,

uParam : uml::Parameter ∈ uConstr.ownedParameters

Table 5.16: Correspondence type de�nition for the semantic overlap between a

pcm::RepositoryComponent and the uml::Operation constructor of the compo-

nent implementation.

PU-Provided pProvided : pcm::ProvidedRole ∼ uIR : uml::Realization

contract correspon-

dence

pProvided.interface ∼PU-Interface uIR.contract

Table 5.17: Correspondence type de�nition for the semantic overlap between a

pcm::ProvidedRole of a component and the interface uml::Realization of the

component implementation.

5.1.4.1 Concept: Provided- and Required-Role

The ability to compose software systems of multiple components is ensured through

contractual interfaces between components, that specify what services are provided by a

component and what services are required for the component to function. The providing

role, a component engages in, is realized through the implementation of the provided

interface. Therefore, a pcm::ProvidedRole shares a semantic overlap with a uml::Realization,

as de�ned in Table 5.17.

A pcm::RequiredRole of a component Comp1 represents the need for a service, provided

by another component Comp2. The type of service that is required is speci�ed through

the required interface reference of the pcm::RequiredRole. In order for C1 to properly

delegate the calls to this service to the correct deployed component during execution,

the implementation of C1 needs a �eld to store the reference to c2 and a constructor

parameter to set said �eld upon initialization. Therefore, a pcm::RequiredRole shares a

semantic overlap with a uml::Property, de�ned in Table 5.18, and a uml::Parameter , de�ned

in Table 5.19.
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PU-RequiredProp pRequired : pcm::RequiredRole ∼ uProp : uml::Property

same name pRequired.name = uProp.name

single-valued uParam.multiplicity = (1..1)

contract correspon-

dence

pRequired.interface ∼PU-Interface uProp.type

Table 5.18: Correspondence type de�nition for the semantic overlap between a

pcm::RequiredRole of a component and the uml::Property, which stores the

component, whose services are required.

PU-RequiredParam pRequired : pcm::RequiredRole ∼ uParam : uml::Parameter

same name pRequired.name = uParam.name

parameter direction uParam.direction = IN

single-valued uParam.multiplicity = (1..1)

contract correspon-

dence

pRequired.interface ∼PU-Interface uParam.type

Table 5.19: Correspondence type de�nition for the semantic overlap between a

pcm::RequiredRole of a component and the constructor uml::Parameter required

for the component initialization.
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PU-ACProp pAC : pcm::AssemblyContext ∼ uProp : uml::Property

same name pAC.name = uProp.name

single-valued uProp.multiplicity = (1..1)

component correspon-

dence

pAC.innerComponent ∼PU-ComponentImpl uProp.type

Table 5.20: Correspondence type de�nition for the semantic overlap between a

pcm::AssemblyContext and a uml::Property.

5.1.4.2 Concept: Composed Components and Assembly Context

Components can in turn be composed of components. In PCM, this is realized through

pcm::CompositeComponent and pcm::SubSystem, which are both concrete subclasses of

pcm::ComposedProvidingRequiringEntity and pcm::RepositoryComponent. Subclasses of

pcm::ComposedProvidingRequiringEntity can contain pcm::AssemblyContext elements that

represent instantiated internal components. Therefore, each pcm::AssemblyContext is

mapped to a uml::Property with a type reference to the implementation of the internal

component, as de�ned in Table 5.20.

The provided and required roles of the components represented by assembly contexts

are linked via pcm::AssemblyConnectors among each other and delegated outwards to the

containing composed component’s provided and required roles via pcm::ProvidedDelegate-
Connectors and pcm::RequiredDelegateConnectors respectively. These connections de�ne

how the internal components need to be passed to each other on initialized, and how they

are assigned to their respective assembly context properties. This information could be

transformed to code of the composite component’s constructor, but UML class diagrams

cannot express method behavior. As a result, PCM connectors are not synchronized and

therefore are not subject to mappings or constraints.

5.1.5 Unmapped Concepts

UML class diagrams do not support the speci�cation of method behavior, but some PCM

elements do contain abstract behavior descriptions. This disparity of expressible concepts

leaves some aspects of a component repository without a mapped correspondence. Simi-

larly UML can express concepts that are not required for the representation of a component

repository.

The following PCM elements are not mapped to UML representations, because they

represent method or constructor behavior:

• Service E�ect Speci�cation (SEFFs) – A SEFF allow the component developer to

abstractly de�ne the behavior of services provided by a component.

• pcm::AssemblyConnector – These de�ne how provided and required roles of

pcm::AssemblyContexts are delegated between contexts.

• pcm::ProvidedDelegateConnectors – These de�ne how provided roles of pcm::Assembly-
Contexts are delegated to the provided roles of the containing component.
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• pcm::RequiredDelegateConnectors – These de�ne how required roles of pcm::Assembly-
Contexts are delegated to the required roles of the containing component.

5.2 UML↔Java Correspondence Type Definitions

In this section, we lists the correspondence type de�nitions relevant to the transformation

TUML↔Java.

Because UML class diagrams are a tool for modeling object oriented systems and Java

is a object oriented programming language, many of the concepts can be mapped quite

naturally, but for limited structural variations. One di�erence between UML and Java

is that a UML class diagram can represent a complete system in one model with a clear

hierarchical containment structure between all relevant elements, whereas a Java code

project consists of many separate �les, which can be interpreted as separate models, and

cross-references are solved through a prescribed package folder structures and string

comparisons. The JaMoPP provides an EMOF compatible Java metamodel that allows clear

navigation of single Java �les, represented by java::CompilationUnit, but navigation across

�le boundaries are sometimes di�cult. Therefore, we will use simpli�ed expressions

in such cases, instead of correctly re�ecting the underlying metamodel or �le system

structure. This mainly impacts descriptions of java::Package and java::TypeReference.
Throughout the evaluation process, TUML↔Java was adapted multiple times in order to

�x already documented synchronization failures and to reveal additional failures that were

inhibited by more fundamental ones. An example for the necessity of such adaptations

is that if an interface creation leads to a propagation loop, then we cannot study the

synchronization of the inner signatures without �rst �xing the cause of the propagation

loop. We provide the consistency constraints and correspondence types as they are de�ned

after the adaptations of the evaluation.

5.2.1 Concept: Package

A uml::Package is mapped to java::Package and the semantic overlap is de�ned by the

correspondence type in Table 5.21. In the Java metamodel, the nesting structure of packages

is not represented through containment references, but rather through a list of namespaces.

The UML models’ containment references allow to derive an equivalent list. Apart from this

di�erence, all contained elements are bijectively mapped, which includes enumerations,

interfaces, classes and sub-packages.

5.2.2 Concept: Classifier

Both the UML and the Java metamodel de�ne concepts for enumerations, interfaces and

classes. These classi�ers are directly contained in a package in a UML model. In the Java

metamodel, each classi�er C1 is either contained in a java::CompilationUnit with a name

matching C1’s name, or within the containment hierarchy of another classi�er C2, if C1
is a nested classi�er. For simplicity, we do not map nested classi�ers. Therefore a UML

classi�er maps to a CompilationUnit and the mapped Java classi�er. And because a Java
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UJ-Package uPkg : uml::Package ∼ jPkg : java::Package

same name uPkg.name = jPkg.name

set namespaces uPkg.namespace = jPkg.namespaces

nested package

mapping

uNested ∼UJ-Package jNested (bijective), with

uNested : uml::Package ∈ uPkg.nestedPackages,

jNested : java::Package ∈ jPkg.subpackages

class compilation-

unit mapping

uC ∼UJ-ClassCU jCU (bijective), with

uC : uml::Class ∈ uPkg.ownedElements,

jCU : java::CompilationUnit ∈ jPkg.compilationUnits

interface compilation-

unit mapping

uI ∼UJ-InterfaceCU jCU (bijective), with

uI : uml::Interface ∈ uPkg.ownedElements,

jCU : java::CompilationUnit ∈ jPkg.compilationUnits

enum compilation-

unit mapping

uE ∼UJ-EnumCU jCU (bijective), with

uE : uml::Enumeration ∈ uPkg.ownedElements,

jCU : java::CompilationUnit ∈ jPkg.compilationUnits

Table 5.21: Correspondence type de�nition for the semantic overlap between a

uml::Package and a java::Package.

UJ-EnumCU uE : uml::Enumeration ∼ jCU : java::CompilationUnit

fully quali�ed name uE.quali�edName + ".java" = jCU.name

enum mapping uE ∼UJ-Enum jE (bijective), with

jE : java::Enumeration ∈ jCU.classi�ers

Table 5.22: Correspondence type de�nition for the semantic overlap between

a uml::Enumeration and a java::CompilationUnit for the corresponding

java::Enumeration.

classi�er and its CompilationUnit share an implicit consistency constraint on their names,

the uml classi�er also shares a name constraint with the java::CompilationUnit, which we

make explicit.

5.2.2.1 Concept: Enumeration

A uml::Enumeration is mapped to a java::Enumeration and the containing java::Compilation-
Unit and the semantic overlap are de�ned by the correspondence types in Tables 5.22 and

5.23. All enumeration literals are bijectively mapped and only overlap in their names,

which is de�ned in Tables 5.24.
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UJ-Enum uE : uml::Enumeration ∼ jE : java::Enumeration

same name uE.name = jE.name

enum constant

mapping

uEL ∼UJ-EnumConst jEC (bijective), with

uEL : uml::EnumerationLiteral ∈ uE.literals,

jEC : java::EnumerationConstant ∈ jE.constants

Table 5.23: Correspondence type de�nition for the semantic overlap between a

uml::Enumeration and a java::Enumeration.

UJ-EnumLiteral uEL : uml::EnumerationLiteral

∼ jEC : java::EnumerationConstant

same name uEL.name = jEC.name

Table 5.24: Correspondence type de�nition for the semantic overlap between a

uml::EnumerationLiteral and a java::EnumerationConstant.

5.2.2.2 Concept: Interface

A uml::Interface is mapped to a java::Interface and the containing java::CompilationUnit
and the semantic overlap are de�ned by the correspondence types in Tables 5.25 and 5.26.

For interfaces both the super-interfaces and the signatures have to be mapped bijectively.

5.2.2.3 Concept: Class

A uml::Class is mapped to a java::Class and the containing java::CompilationUnit and the

semantic overlap are de�ned by the correspondence types in Tables 5.27 and 5.28.

Classes can inherit/extend from super-classes. In UML multi-inheritance is allowed,

whereas Java only allows single inheritance for classes. As a result, the bijective mapping of

a java::Class’ super-class also constrains the corresponding uml::Class to single inheritance.

But in both domains, classes can realize multiple interfaces, which leads to a natural

mapping

UJ-InterfaceCU uI : uml::Interface ∼ jCU : java::CompilationUnit

fully quali�ed name uI.quali�edName + ".java" = jCU.name

interface mapping uI ∼UJ-Interface jI (bijective), with

jI : java::Interface ∈ jCU.classi�ers

Table 5.25: Correspondence type de�nition for the semantic overlap between a

uml::Interface and a java::CompilationUnit for the corresponding java::Interface.
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UJ-Interface uI : uml::Interface ∼ jI : java::Interface

same name uI.name = jI.name

super interface

reference mapping

uSuperRef ∼UJ-SuperInterfaceRef jSuperRef (bijective), with

uSuperRef : uml::Generalization ∈ uI.generalizations,

jSuperRef : java::TypeReference ∈ jI.extends

method mapping uM ∼UJ-InterfaceMethod jM (bijective), with

uM : uml::Operation ∈ uI.ownedOperations,

jM : java::InterfaceMethod ∈ jI.members

Table 5.26: Correspondence type de�nition for the semantic overlap between a

uml::Interface and a java::Interface.

UJ-ClassCU uC : uml::Class ∼ jCU : java::CompilationUnit

fully quali�ed name uC.quali�edName + ".java" = jCU.name

class mapping uC ∼UJ-Class jC (bijective), with

jC : java::Class ∈ jCU.classi�ers

Table 5.27: Correspondence type de�nition for the semantic overlap between a uml::Class
and a java::CompilationUnit for the corresponding java::Class.

A second structural di�erence for classes is that Java explicitly models java::Constructors.
We therefore have to di�erentiate contained uml::Operations by their name, and map them

accordingly.

5.2.3 Concept: Inheritance and Realization

In both domains, the super-interface and super-class references are represented through

separate elements in both models, uml::Generalization and java::TypeReference respectively,

instead of a simple reference in the interfaces. Additionally, depending on the context a

uml::Generalization/java::TypeReference has to point to an interface or a class in order to

be conform to the metamodel. Therefore we de�ne two correspondence types between

a uml::Generalization and a java::TypeReference for the speci�c contexts (Tables 5.29 and

5.30).

The fact that a class realizes a speci�c interface is modeled similarly. The correspondence

type for that is de�ned in Table 5.31, between a uml::Realization and a java::TypeReference.

5.2.4 Concept: Method

UML class diagrams do not represent method behavior, therefore, they only need to specify

the method signature, which is done using uml::Operation. And uml::Operations are used

for interface signatures and class methods alike. In Java these concepts are di�erentiated:

• A java::InterfaceMethod has to be public, but does not need to model implementation.
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UJ-Class uC : uml::Class ∼ jC : java::Class

same name uC.name = jC.name

synchronized

modi�ers

(uC.isFinal = jC.isFinal)

∧ (uC.isAbstract = jC.isAbstract)

∧ (uC.isAbstract , uC.isFinal)

super class

reference mapping

uCRef ∼UJ-SuperClassRef jC.extends (bijective), with

uCRef : uml::Generalization ∈ uC.generalizations

implemented interface

reference mapping

uIRef ∼UJ-ImplementsRef jIRef (bijective), with

uIRef : uml::Realization ∈ uC.interfaceRealizations,

jIRef : java::TypeReference ∈ jC.implements

constructor mapping uM ∼UJ-Constructor jM (bijective), with

uM : uml::Operation ∈ uC.ownedOperations

∧ uM.name = uC.name,

jM : java::Constructor ∈ jC.members

method mapping uM ∼UJ-ClassMethod jM (bijective), with

uM : uml::Operation ∈ uC.ownedOperations

∧ uM.name , uC.name,

jM : java::ClassMethod ∈ jC.members

attribute mapping uAtt ∼UJ-Attribute jAtt (bijective), with

uAtt : uml::Property ∈ uC.ownedAttributes,

jAtt : java::Field ∈ jC.members

Table 5.28: Correspondence type de�nition for the semantic overlap between a uml::Class
and a java::Class.

UJ-SuperInterfaceRef uSuperRef : uml::Generalization ∼ jSuperRef :

java::TypeReference

super interfaces

correspond

uSuperRef.general ∼UJ-Interface jSuperRef.classi�er

Table 5.29: Correspondence type de�nition for the semantic overlap between a

uml::Generalization and a java::TypeReference that both represent a reference

to a super interface.

UJ-SuperClassRef uCRef : uml::Generalization ∼ jCRef : java::TypeReference

super classes

correspond

uCRef.general ∼UJ-Class jCRef.classi�er

Table 5.30: Correspondence type de�nition for the semantic overlap between a

uml::Generalization and a java::TypeReference that both represent a reference

to a super class.
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UJ-ImplementsRef uIRef : uml::Realization ∼ jIRef : java::TypeReference

implemented

interfaces

correspond

uIRef.contract ∼UJ-Interface jIRef.classi�er

Table 5.31: Correspondence type de�nition for the semantic overlap between a

uml::Realization and a java::TypeReference that both represent a reference to

an implemented interface.

UJ-InterfaceMethod uM : uml::Operation ∼ jM : java::InterfaceMethod

same name uI.name = jI.name

interface methods

are public

uM.isPublic ∧ jM.isPublic

ordinary parameter

mapping

uParam ∼UJ-OrdinaryParam jParam (bijective), with

uParam : uml::Parameter ∈ uM.ownedParameters

∧ uParam.direction = IN,

jParam : java::OrdinaryParameter ∈ jM.parameters

return parameter

mapping

uReturnParam ∼UJ-ReturnParam jM (bijective), with

uReturnParam : uml::Parameter ∈ uI.returnParam

Table 5.32: Correspondence type de�nition for the semantic overlap between a

uml::Operation and a java::InterfaceMethod.

• A java::ClassMethod can have di�erent visibility modi�ers, be abstract or �nal, and

has to be able to represent some implementation.

• A java::Constructor is similar to a java::ClassMethod, but has no name of its own,

because it automatically takes that of the containing java::Class.

We therefore de�ne three separate correspondence types, each de�ning the semantic

overlap between a uml::Operation and one of the above mentioned java::Method-sub-types,

in Tables 5.32, 5.33 and 5.34.

Ignoring the di�erences, each of these three correspondence types uses the same map-

ping constraints for its method parameters and return type. Because uml::Operations
represent the return type through a return parameter, whereas java::Methods have a

reference "type" that represents that methods return type. Therefore, there exists a se-

mantic overlap between the return uml::Parameter and the java::Methods. Additionally

Java does not support output parameters with reference passing, as might be suggested by

uml::Parameter with a direction modi�er of "OUT" or "IN_OUT", and therefore this also

limits the uml::Parameter’s direction to the enumeration value "IN".
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UJ-ClassMethod uM : uml::Operation ∼ jM : java::ClassMethod

same name uM.name = jM.name

matching visibility uM.visibility matches jM.visibility

synchronized

modi�ers

(uC.isFinal = jC.isFinal)

∧ (uC.isAbstract = jC.isAbstract)

∧ (uC.isAbstract , uC.isFinal)

ordinary parameter

mapping

uParam ∼UJ-OrdinaryParam jParam (bijective), with

uParam : uml::Parameter ∈ uM.ownedParameters

∧ uParam.direction = IN,

jParam : java::OrdinaryParameter ∈ jM.parameters

return parameter

mapping

uReturnParam ∼UJ-ReturnParam jM (bijective), with

uReturnParam : uml::Parameter ∈ uI.returnParam

Table 5.33: Correspondence type de�nition for the semantic overlap between a

uml::Operation and a java::ClassMethod.

UJ-Constructor uM : uml::Operation ∼ jM : java::Constructor

matching visibility uM.visibility matches jM.visibility

ordinary parameter

mapping

uParam ∼UJ-OrdinaryParam jParam (bijective), with

uParam : uml::Parameter ∈ uM.ownedParameters

∧ uParam.direction = IN,

jParam : java::OrdinaryParameter ∈ jM.parameters

return parameter

mapping

uReturnParam ∼UJ-ReturnParam jM (bijective), with

uReturnParam : uml::Parameter ∈ uI.returnParam

Table 5.34: Correspondence type de�nition for the semantic overlap between a

uml::Operation and a java::Constructor .
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5.2.5 Concept: Typed Element

Method parameters, methods themselves and class attributes are typed elements and their

types need to be synchronized between UML and Java. In all three cases, what constitutes

a consistent type assignment between corresponding elements is relatively similar, we

therefore discuss the commonalities on the example of the attribute correspondence type

de�ned in Table 5.35, between a uml::Property uAtt and a java:Field jAtt .
If jAtt .type references a classi�er (enumeration, interface or class), then jAtt .type and

uAtt .type are consistent if they participate in the respective correspondence.

Alternatively, if either element references a primitive type, like a java::Integer for exam-

ple, then they are consistent if the primitive types match according to the implemented

mapping. We do not model this primitive type mapping through correspondences, because

in the Java metamodel primitive types are metamodel classes, which would imply a corre-

spondence across modeling levels. Instead we de�ne a mapping between the Java primitive

type metamodel classes and uml::PrimitiveType instances that are de�ned in an externally

model for standard UML primitive types, the same model, which we used in the PCM to

UML transformation, for compatibility. Then jAtt .type and uAtt .type are consistent if the

metamodel class of jAtt .type matches the uml::PrimitiveType instance of uAtt .type .

Because a java:Field need a type reference to produce a syntactically correct output

in the actual .java-�le, the jAtt .type should default to the classi�er "java.lang.Object" if

uAtt .type is unset.

In addition to the type reference, the uml::Property uAtt also has a multiplicity. To

represent this in Java, the corresponding java:Field’s jAtt has to reference a classi�er

that implements or extends "java.lang.util.Collection" with a TypeArgument T , and now

uAtt .type has to match T instead of jAtt .type . Technically, Java primitive type now have

to be wrapped by their respective wrapper class, for example a primitive "int" now has

to be wrapped as "java.lang.Integer" to function as a TypeArgument, but because this

mapping is prede�ned for the Java domain, there is no transformation ambiguity, and we

omitted this aspect in the correspondence type de�nitions.

The correspondence type UJ-OrdinaryParam between a uml::Parameter and a

java::OrdinaryParameter , which is de�ned in Table 5.36, uses the same consistency con-

straints for the type references as in the attribute example. The correspondence type

between a return uml::Parameter and a java::Method, which is de�ned in Table 5.37, uses

similar consistency constraints, but "void" may be a more appropriate default type for a

java::Method.
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UJ-Attribute uAtt : uml::Property ∼ jAtt : java::Field

same name uAtt.name = jAtt.name

same �nal value (uAtt.isFinal = jAtt.isFinal)

types correspond (uAtt.multiplicity=(1..1)

∧match(uAtt.type, jAtt.type))

∨ (uAtt.multiplicity=(0..*)

∧ jAtt.type implements Collection<T>

∧match(uAtt.type, T))

withmatch(uT, jT) :=

(uT = NULL ∧ jT = OBJECT)

∨ ((uT, jT) ∈ primitive type mapping)

∨ (uT ∼UJ-Enum jT) ∨ (uT ∼UJ-Interface jT) ∨ (uT ∼UJ-Class jT)

Table 5.35: Correspondence type de�nition for the semantic overlap between a

uml::Property and a java::Field.

UJ-OrdinaryParam uP : uml::Parameter ∼ jP : java::OrdinaryParameter

same name uI.name = jI.name

ordinary parameter

direction

uParam.direction = IN

types correspond (uP.multiplicity=(1..1)

∧match(uP.type, jP.type))

∨ (uP.multiplicity=(0..*)

∧ jP.type implements Collection<T>

∧match(uP.type, T))

withmatch(uT, jT) :=

(uT = NULL ∧ jT = OBJECT)

∨ ((uT, jT) ∈ primitive type mapping)

∨ (uT ∼UJ-Enum jT) ∨ (uT ∼UJ-Interface jT) ∨ (uT ∼UJ-Class jT)

Table 5.36: Correspondence type de�nition for the semantic overlap between a

uml::Parameter and a java::OrdinaryParameter .
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UJ-ReturnParam uP : uml::Parameter ∼ jM : java::Method

return parameter

direction

uP.direction = RETURN

types correspond (uP.multiplicity=(1..1)

∧match(uP.type, jM.type, VOID))

∨ (uP.multiplicity=(0..*)

∧ jM.type implements Collection<T>

∧match(uP.type, T, OBJECT))

withmatch(uT, jT, jDefault) :=

(uT = NULL ∧ jT = jDefault)

∨ ((uT, jT) ∈ primitive type mapping)

∨ (uT ∼UJ-Enum jT) ∨ (uT ∼UJ-Interface jT) ∨ (uT ∼UJ-Class jT)

Table 5.37: Correspondence type de�nition for the semantic overlap between a return

uml::Parameter and a java::Method.
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6 Evaluation

The �rst goal of this thesis is the identi�cation of failure potentials that can lead to

model synchronization failures with regards to multi-model consistency. In Chapter 3

we identi�ed six such failure potentials that can lead to synchronization failures and we

provided at least abstract scenarios per failure potential, in which a synchronization failure

manifests, as proof of concept.

In this evaluation, we want to answer the following questions regarding the identi�ed

failure potentials:

• How prevalent are the identi�ed failure potentials relative to each other?

– measured as the percentage of total failures

• How severe is the impact of a failure potential when a failure manifests?

– relative severity estimate based on failure expression type (propagation loop /

information loss / inconsistency)

• Can we explain all observed failures through the identi�ed failure potentials?

• How distinct are the identi�ed failure potentials with regard to failure expression

and classi�cation?

– the number of di�erent failure expression for a speci�c failure potential

– the number of failures that required classi�cation with more than one failure

potential

Failure potentials can be accounted for by di�erent means and their manifestation can

be dependent on the occurrence of speci�c changes. Therefore we have to expect that not

all failure potentials resulting in actual failures and instead remain undetected. Concept
bottlenecks can be solved through the introduction of additional transformations into

the transformation network. Incompatible consistency constraints are a speci�cation prob-

lems regarding proper consistency in the designed system. When the system is correctly

designed, there should not be any contradicting consistency constraints or structurally in-

compatible mappings (Section 3.7). Without contradicting consistency constraints, feature
change con�icts should automatically converge, because then all propagation paths pro-

duce the same intended feature value. Element-creation change con�icts can be prevented

with the existence check pattern, described in Section 4.2.1. Without change con�icts from

transformations, deprecated change events only occur as a result of contradictory user

input before a synchronization step or because models are initialized with di�erent default-

values based on the metamodels, and even those can be �ltered out with the validity check
pattern described in Section 4.1.2. This leaves unsynchronizable states and the visibility of
unresolved changes as the only unaddressed failure potentials.
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However, in the general scenario, we have to assume a faulty system speci�cation.

The transformation network can have concept bottlenecks, the implemented consistency

constraints may contain unidenti�ed contradictions and the implemented consistency

constraints may not match the intended global consistency constraints. The question is,

how many failure potentials remain in the system, which are not accounted for by the

transformation network topology or the transformation implementation, and how severe

is their impact on the correct operation of the system.

If we assume transformation implementations without trivial implementation errors,

then not all failure potentials are unaddressed. Additionally, the models used for this

evaluation do not test all possible metamodel concepts or possible model modi�cation

sequences. As a result, we cannot claim that the observed failures reveal all possible failure

potentials (instances) of that particular system. We therefore discuss the prevalence and

the impact of the failure potential types relative to each other, based on the number of

observed failures that can be traced back to the individual failure potential type.

Furthermore, a model can contain multiple instances of the same concept, for example

multiple pcm::BasicComponents or multiple java:Classes, and for each instance the same

transformation rules apply with the same unsolved problems. This e�ectively in�ates the

number of observed failures per unaddressed failure potential by the number of concept

instances present in the case study model. Therefore, we trace the failure expression back

to the correspondence type that was incorrectly synchronized and the circumstances that

produced the failure. Repeated failures that stem from the same circumstances are counted

as one.

The second goal was the development of solutions to prevent the manifestation of

the identi�ed failure potentials. In Chapter 4, we developed the element existence check
pattern to prevent element-creation change con�icts. And we developed the event validity
check pattern to prevent information loss from unintentional overwrites and to prevent

propagation loops after deprecated change events occur. In this evaluation, we want to

answer the following questions regarding the identi�ed patterns:

• To what degree can element-creation related failures be solved through element
existence check?

– percentage of element-creation related failures prevented

• Is it necessary to use element retrieval methods other than the direct correspondence

retrieval to prevent element-creation related failures? (e.g. context based retrieval

or indirect correspondence retrieval)

• To what degree can deprecated change event related failures be solved by event
validity check?

– percentage of deprecated change event related failures prevented

Concept bottlenecks are only solvable through additional transformations, not through

implementation adaptation, and are therefore outside the scope of this thesis. Incompatible

consistency constraints are solvable though the re�nement of the intended consistency

speci�cation for the target system, but this has to be handled problem speci�c and is
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therefore also not a part we can evaluate. We did not �nd generic approaches to pre-

vent unsynchronizable states, or synchronization problems produced by the visibility of

unresolved changes.

6.1 Methodology

We introduced the domains used in the case study for this evaluation in Chapter 2.5. The

transformation network used consists of three domains, PCM, UML and Java, and two

bidirectional, delta-based, transformation de�nitions, TPCM↔UML between PCM and UML,

and TUML↔Java between UML and Java. The consistency constraints that are implemented

by these transformations are de�ned in Chapter 5. Both transformations are implemented

using the Reactions language of the Vitruvius framework. The Vitruvius framework’s

transformation engine uses immediate change application (batch-apply), it provides the

possibility for transitive change propagation and uses depth-�rst change event resolution,

and it provides a trace model, the correspondence model, that can be globally accessed

from either transformation.

It is important to note that the transformation TPCM↔UML was developed in the context

of this thesis, with transitive change propagation in mind, even in the simple binary case

without transformation combination. Therefore, it already used existence checks and

event validity checks before the evaluation. In contrast, the TUML↔Java was developed

independently outside of this theses and it was implemented with non-transitive change

propagation in mind.

6.1.1 Models used for the Evaluation

The arti�cial software system that is used as a case study is the "media store repository

model" of the media store system [22, 28], which is a case study for the Palladio component

model [21]. We will call this the PCM media store model, because it speci�es a repository

of component de�nitions in the PCM domain. To represent the PCM media store model

in both other domains, a UML and a Java media store model, which are consistent to the

PCM media store model, are manually created. Each of these three models functions as

a solution model to compare the model synchronization’s output models against after a

speci�c evaluation scenario.

In the Java solution model, we did not model information that could not be propagated

along the network’s transformations because of known concept bottlenecks. This pertains

to method implementations in Java that would match the abstract component behavior

description provided by PCM Service E�ect Speci�cations, ,and the java::Field initialization

of a java::Class in its constructor, which can be derived from the pcm::RequiredRoles and

pcm::Connectors (Assembly- and Delegate-Connectors) of a corresponding pcm::Repository-
Component.
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6.1.2 Evaluation Scenarios

The main evaluation scenarios that provide most observations for this evaluation, are

three simulated model-creation scenarios, each one started from another domain. As an

example, for the evaluation scenario started from the PCM domain:

• The creation of the solution PCM media store model is simulated and the model

synchronization process is started.

• This then produces synchronization failures that hinder the model synchronization

from terminating or the model synchronization terminates and we regard the end

states of the involved and generated models as output.

– If the model synchronization does not terminate properly, then we investigate

the failure cause, document it and �x it.

– The scenario is started again with the �xed system, until the model synchro-

nization properly terminates, so that we can evaluate the output.

• When the model synchronization terminates, the output models are compared to

the respective solution media store models (PCM, UML, Java). The di�erences are

traced back to their cause and documented.

• If a failure inhibits the synchronization of other concepts, for example if an interface

is not created and therefore the synchronization of its signatures is omitted, then

that failure cause is �xed and the scenario is started again.

In addition to the media store case study scenarios, we also used hand-crafted minimal

evaluation scenarios to provoke failures in the model synchronization of concepts that were

not represented in the case study model. This includes for example the synchronization of

references to pcm::CollectionDataTypes, with di�erent inner types, and the corresponding

elements in UML and Java. The evaluation process for these scenarios follows the pattern

described above for the case study scenarios.

6.1.3 Failure Expressions and Failure Counting

The model synchronization process through transformation combination and transitive

change propagation has the goal of achieving multi-model consistency preservation be-

tween all involved models. The following list shows the possible failure expressions:

• Change propagation loops, which preventing the termination of the model synchro-

nization

– Creation loops, alternating value loops, and diverging loops

• Inconsistency between the output models after the synchronization terminates

– local inconsistency, between two domains connected by a transformation

– global inconsistency between all models of the network

• Information loss with regards to the user input, which is represented by the solution

models.
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We included false warnings about unsynchronizable element references that were au-

tomatically repaired by subsequent changes as counted failure expressions, because we

recognize that the inconsistency might persist or information might be lost, given another

change sequence or transformation implementation.

Global inconsistency can stem from concept bottlenecks or from incompatible structural

mappings (incompatible consistency constraints). In both cases, the failure is not related

to the synchronization behavior, but rather to the system speci�cation. We list the known

potentials for global consistency failures to occur in the respective subsection (Sections

6.2.5, 6.2.6), but we do not include them in the statistical analysis of this evaluation.

Because we want to evaluate the relative impact of the identi�ed failure potentials, we

need to assign a severity factor to the possible failure expressions, with regards to how

problematic they are to the goal of multi-model consistency preservation. Propagation

loops prevent the whole model synchronization from terminating, which leaves all newly

introduced information unsynchronized across the network. By comparison, both incon-

sistency and information loss allow the model synchronization to terminate and at least

some parts of the involved models can be correctly synchronized. Therefore propagation

loops more severely impact the overall consistency and we assign it the highest severity

factor. Inconsistency and information loss equally impact only a subset of elements in the

models. It is possible to claim that inconsistency is more problematic, because it can be

harder to detect if a user only works on one model in the network, however that claim is

speculative. We decide to assign both failure expression types the same severity.

• severity(propagation loop) = 2

• severity(inconsistency) = severity(information loss) = 1

We acknowledge that this severity assignment is arbitrary, as there is no explanation why

a propagation loop would be exactly twice as problematic as an instance of inconsistency

or information loss. The exact scaling is not as important, because we only want to rank

the failure potentials relative to each other based on their average failure severity. We

take this as a relative measure of impact on the model synchronization.

As already stated in the introduction to this chapter, a model can contain multiple

instances of the same concept, for example multiple pcm::BasicComponents or multiple

java:Classes, and for each instance the same transformation rules apply with the same

unsolved problems. This e�ectively in�ates the number of observed failures per unad-

dressed failure potential by the number of a�ected concept instances present in the case

study model. Therefore, we trace the failure expression back to the correspondence type

that was incorrectly synchronized and the circumstances that produced the failure. Re-

peated failures that stem from the same circumstances are counted as one. For example if

the transformation TPCM↔UML created an unintended element duplication, and therefore

inconsistency, for every pcm::BasicComponents in the case study model, and there are 14

pcm::BasicComponents instances, we still only count one failure.

Furthermore, if multiple models contain additional, missing or false information com-

pared to the solution models, and all those di�erences can be traced back to one root

cause, then we only count it as one failure. Take for example three corresponding named

elements, whose names are supposed to be the same, and the user renames one of the
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elements. Now if at any point in the propagation process the new name is discarded and

the models synchronize back to the old name (or no name), then we would observe three

di�erences when comparing the models to the solution models, one per named element.

But all three di�erences are a consequence of one failure and therefore we count it as such.

This e�ectively normalizes the failure count for the number of models in the network.

The classi�cation “failure f is caused by failure potential fp” is performed manually, and

we will justify the classi�cations in the discussion subsections speci�c to the respective

failure potential.

6.2 Results and Discussion

The results of the evaluation scenarios revealed 27 failures that resulted from the transfor-

mation combination and transitive change propagation, in addition to 6 concept bottlenecks

and 1 structurally di�erent mapping, which were known before the evaluation, and did not

count to the failure list. The revealed failures, along with their failure potential classi�ca-

tions, are listed in Tables 6.1 and 6.2. For the rest of this chapter “F-<Number>” references

one of the failures listed in the overview tables.

In the following subsections, we explain the failures and their classi�cation decisions,

and we answer the questions established in the introduction, with respect to the individual

failure potential types. The questions regarding the existence check and validity check

pattern are discussed alongside the change con�icts and deprecated change events respec-

tively. Lastly, we compare the failure potentials to each other and give an overview of the

�ndings.

6.2.1 Change Conflicts and Existence Checks

We found 17 failures (F1-F17) that were the result of change con�icts. All 17 of these

failures were a consequence of element-creation change con�icts, associated with the

correspondence types de�ned between UML and Java, because essentially the instantiation

of any correspondence type between UML and Java led to one such failure. This can

be explained by the fact that the transformation TUML↔Java was initially developed for

directed, non-transitive change propagation, where it was not necessary to check if an

element already exists. As a result any element creation by TUML↔Java led to further

element creations when the new element creation event is propagated backwards. By

contrast TPCM↔UML was only involved in F17, because it was implemented for transitive

change propagation and employed existence checks from the start.

6.2.1.1 Failure Explanations

In the cases of F1-F13, the creation-change con�icts resulted in creation loops in the

same manner. For example F1, the creation of an uml::Package triggers the creation of

a java::Package, and the creation of java::Package triggers the creation of a uml::Package.
In both directions, TUML↔Java does not check if the corresponding package of the other

domain already exists.
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Creation

Loop

1 UJ-Package X
2 UJ-Enum X
3 UJ-EnumLiteral X
4 UJ-Interface X
5 UJ-SuperInterfaceRef X
6 UJ-InterfaceMethod X
7 UJ-Class X
8 UJ-SuperClassRef X
9 UJ-ClassMethod X

10 UJ-Constructor X
11 UJ-ImplementsRef X
12 UJ-Attribute X
13 UJ-OrdinaryParam X

Element

Duplication

14 UJ-EnumCU X
15 UJ-InterfaceCU X
16 UJ-ClassCU X
17 PU-ReturnParam

+ UJ-ReturnParam

X

Table 6.1: Synchronization failure classi�cation overview (part 1)
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Diverging

Loop

18 UJ-ClassCU

+ UJ-Class

(same names)

X

Alternating

Value Loop

19 UJ-ClassMethod

(matching visibility)

(X) X X

20 UJ-Constructor

(matching visibility)

(X) X X

User Input

Overwritten

21 PU-CollTypeProp

+ UJ-Attribute

(types correspond)

X

22 PU-CollTypeParam

+ UJ-ReturnParam

(types correspond)

X

23 PU-CollTypeParam

+ UJ-OrdinaryParam

(types correspond)

X

(temporarily)

Unsynchro-

nized

Reference

24 UJ-ImplementsRef

(impl. interfaces corr.)

X

25 UJ-Attribute

(types correspond)

X

26 UJ-ReturnParam

(types correspond)

X

27 UJ-OrdinaryParam

(types correspond)

X

Table 6.2: Synchronization failure classi�cation overview (part 2)
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In the cases of F14-F16, the creation-change con�icts only resulted in element duplication

of the involved java::CompilationUnit. For example in the case of F14, the creation of an

uml::Enum triggers the creation of a java::CompilationUnit and a java::Enum, but only the

creation of a java::Enum inside a java::CompilationUnit triggers the creation of a uml::Enum.

Then the combination of both transformations leads to the following behavior: the creation

of a java::Enum jE inside a java::CompilationUnit jECU triggers the creation of a uml::Enum
uE, which then triggers the creation of a duplicate java::CompilationUnit jECU’ on the

change backpropagation.

For F17 the creation-change con�icts also resulted in an element duplication of the return

parameter of a uml::Operation uO. A pcm::OperationSignature is mapped to a java::Method
via a uml::Operation, and if either is established, both sides attempt to create the return

parameter of uO. However, both sides neglected to check if the parameter already exists,

which leads to the duplication.

Necessary feature change con�icts occurred for model default values that were immedi-

ately overwritten by the values intended by the solution model, but non of these feature

change con�icts directly led to synchronization failures. For failures F19-F20 a feature

change con�icts occurred as a result of an implementation error in the propagation of

visibility modi�ers. These feature change con�icts were unnecessary and could have been

avoided by a better transformation implementation, but they occurred and consequently

one of the change events was deprecated (more details in Section 6.2.2). However, we did

not classify F18-F19 as feature change con�icts, because the failure did not stem from the

overwritten information (because the overwrite was intentional with regards to the imple-

mentation), but rather from the propagation of the overwritten and therefore deprecated

information.

6.2.1.2 Change Conflict Evaluation

We found 17 failures (F1-F17) that were the result of change con�icts, of a total of 27

observed synchronization failures. This makes change con�icts the most prevalent failure

potential with 63% detected failures. It is important to note, that all these failures were

caused by element-creation change con�icts. This con�rms the argumentation in Sec-

tion 4.2, which states that element-creation change con�icts are more problematic then

feature change con�icts. We observed 2 possible failure expression types of the element-

creation con�icts. F1-F13 are propagation loops (severity=2) whereas F14-17 are element

duplications, which are inconsistencies, but allow the termination of the synchroniza-

tion (severity=1). This results in a weighted severity score of severity(change con�ict) =

(13 ∗ 2 + 4 ∗ 1)/17 = 1.76.

6.2.1.3 Existence Check Pattern Evaluation

All 17 element-creation change con�icts could be prevented by the existence check pattern.

In a scenario, where the transformationTUML↔Java is used in isolation but with transitive

change propagation, the simplest version of the existence check, only using direct corre-

spondences for the element retrieval, is enough to prevent F1-F16. But when combined

with TPCM↔UML some classes and packages now participate in more complex correspon-
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F-ID Failed Synchronization

for Correspondence

Required Existence Check Variant

direct context indirect

1 UJ-Package X
2 UJ-Enum X
3 UJ-EnumLiteral X
4 UJ-Interface X
5 UJ-SuperInterfaceRef X

6 UJ-InterfaceMethod X
7 UJ-Class X
8 UJ-SuperClassRef X
9 UJ-ClassMethod X

10 UJ-Constructor X

11 UJ-ImplementsRef X
12 UJ-Attribute X
13 UJ-OrdinaryParam X
14 UJ-EnumCU X
15 UJ-InterfaceCU X

16 UJ-ClassCU X
17 PU-ReturnParam

+ UJ-ReturnParam

X

Table 6.3: Required existence check variants for the observed failures

dence graphs and the correspondences can be instantiated along multiple paths. Take the

example correspondence graph in Figure 4.1 for a pcm::Repository and its corresponding

uml::packages and java::Packages, which we used to explain the existence check pattern in

Section 4.2.1, and assume the java::Packages for the repository-package and the contracts-

package are inserted by the user. Now the propagation of repository-package creation

can result in the creation of a contracts-package, which should be the same as the user

inserted one. To detect that the user already inserted the package,TUML↔Java has to extend

its existence check pattern for the UJ-Package to include the context retrieval attempt.

The necessity for the context retrieval can be shown in a similar manner for some

of the other correspondence types. Table 6.3 gives an overview of the existence check

pattern variants that was necessary to prevent the observed failures. The existence check

variant using indirect element retrieval, via transitive correspondence resolution, was

never necessary.

The existence check patterns could successfully prevent all observed element-creation

change con�icts, using direct (correspondence) and context-based element retrieval, with-

out having to use user disambiguation or indirect correspondence retrieval.
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6.2.2 Deprecated Change Events and Event Validity Checks

We only found the two failures, F19 and F20, related to deprecated change events. In

both cases, the deprecated change events are created by a suboptimal implementation of

the transformation rules that synchronize the visibility modi�ers between UML and Java

elements. Both failures are quite similar, therefore we explain only F19, which impacts the

correspondence type UJ-ClassMethod de�ned in Table 5.33.

Every time the visibility of a uml::Operation is changed, the visibility modi�er of the

corresponding java::ClassMethod is �rst removed and then the new modi�er is set. These

two steps are performed despite the fact that the correct modi�er might already be set. This

temporarily introduces an incorrect state and then immediately overwrites said incorrect

state with the intended consistent state, producing two new change events, of which the

�rst is deprecated, even if the model was consistent. We therefore classify F19 and F20 as

partially caused by an implementation error of the application direction UML→ Java of

the transformation TUML↔Java .

Now in the other direction, we have two change events for the java::ClassMethod’s

visibility, where the �rst event is deprecated. But the speci�c transformation rules that

propagate visibility changes from Java to UML do not use event validity checks or state-

based transformation. As a result, �rst the deprecated value is propagated, overwriting

the intended uml::Operation visibility, and immediately afterwards the intended value is

restored and the loop begins anew. We therefore also classify F19 and F20 as failures

resulting from deprecated change events.

Fixing either the implementation error or introducing event validity checks, both options

solve the alternating value loops of the failures F19 and F20.

6.2.2.1 Deprecated Change Event Evaluation

We found 2 failures (F19-F20) that were partially the result of deprecated change events,

of a total of 27 observed synchronization failures, which equals only 7.4% of the de-

tected failures. Both F19 and F20 are propagation loops (severity=2), which translates to

severity(deprecated change events) = 2.

It is slightly surprising that we observed so few synchronization failures resulting from

deprecated change events, event though, every element that is created by a transformation

is subsequently initialized with new feature values, which may con�ict with the metamodel

default values, thereby causing the default value change events to be deprecated. In addition

to that, multiple user inputs also produce deprecated change events. We suggest three

possible reasons for this sparsity:

• TPCM↔UML was designed for transitive change propagation and was implemented

with event validity checks from the beginning, and the validity checks may have

prevent some failures.

• TUML↔Java did not include event validity checks, but it mostly relied on state based

transformation rules, which we suggest might be another option to prevent such

failures (see Section 4.1.1).

• Or deprecated change event might not be very problematic in general.
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6.2.2.2 Event Validity Check Evaluation

We could solve 2 of 2 (100%) observed failures related to deprecated change events by using

event validity checks. However, it is di�cult to claim the e�ectiveness of event validity

checks, based on the fact that two synchronization failures, with the same cause, could

be prevented through such checks, especially if the failures also could have been avoided

through a better transformation implementation. The stronger claim for the e�ectiveness

of event validity checks might be that so few failures emerge, because TPCM↔UML already

implemented event validity checks for most processed change events.

Also, we had to use a slightly altered check formulation than the one we provided in

Table 4.1, to account for semantic equivalence between visibility modi�ers instances of

the same metamodel class in the Java metamodel. In Java, the possible visibility modi�ers

are metaclasses in the Java metamodel, for example java::Public, and instances are added

as annotations to the element, for which the visibility modi�er is active. As a consequence,

checking if the exact removed modi�er instance is still contained in the set of modi�ers,

does not reveal if another instance of the same class is present/active. Therefore the default

validity check is not su�cient and we had to use a formulation based on metamodel speci�c

semantic:

isDeprecated(remove(e.modifiers, m)) :=

(e.modifiers.findFirst(m2 | m2 instanceOf typeOf(m)) != null)

6.2.3 Visibility of Unresolved Changes

We found 4 temporary failures (F24-F27) that occurred because the e�ects of unresolved

changes were visible to transformation rules before the context could be properly syn-

chronized. Of the total of 27 observed synchronization failures, these failures make up

14.8%. As we will explain in a moment, F24-F27 did still terminate with consistent models

and no loss of information, but could have resulted in information loss under di�erent

circumstances. Therefore it is questionable, if we should assign them a severity of “0” or

“1”. We decide on severity(visibility of unresolved changes) = 0, because no actual failure

persisted after the transformation terminated.

Visibility of unresolved changes, as described in Section 3.3.2, refers to the fact that

if we immediately apply all changes before resolving the individual change events, then

their e�ects may be visible in the a�ected model. It is bene�cial, because it allows the

transformation rules to take into account what changes are already queued and avoid

contradicting these changes. It is problematic, because transformation rules can see

elements that do not yet have a corresponding counterpart in other models, and when the

transformation rules try to �nd that counterpart, they may fail.

Similarly to the example in the Section 3.3.2, we observed element references that

could not be synchronized because the element was not yet created for the following

correspondences:

• F24: A uml::Class uC can implement a uml::Interface uI , this is expressed through a

uml::Generalization that references said interface. If the corresponding java::Interface
has not yet been created, because the creation change of uI has not yet been resolved,

then the transformation cannot synchronize the information present in the model.
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• F25-F27: Attributes, parameters and, in Java, methods can all reference a type. If the

referenced type’s correspondence has not been initialized before the synchronization

of the referencing element, then the failure emerges.

In each case, the transformations gave a warning that a reference could not be properly

synchronized, but continued the change propagation process. By the time the change

event that described the set-feature change for the unsynchronized reference, the change

that created the corresponding element had already been resolved, so that the reference

could then be correctly synchronized. The set-feature change event e�ectively "healed"

the previous synchronization failure.

In Table 6.2, we listed the failure expression of F24-F27 as “(temporarily) Unsynchronized

Reference”, to emphasize that the output models were consistent after the synchronization

terminated, which makes the classi�cation as failures questionable. We chose to report

these temporary failures, because they might turn into real failures. If the correct value

that could initially not be synchronized were to be overwritten by the backpropagation

of the incorrect value, the temporary failures might turn into concrete information loss

failures.

Failures F24-27 could be avoided, but not solved, through incremental insertion of the

solution model, which ensured that the creation-changes of the referenced elements were

propagated �rst.

6.2.4 Unsynchronizable States

We found 3 failures (F21-F23) that occurred because of unsynchronizable states, which

makes up 11.1% of all observed failures. In these failures, information inserted into the test

model was lost (severity=1), which translates to severity(unsynchronizable states) = 1.

These three failures are related to the mapping of pcm::CollectionDataTypes across the

di�erent domains. The de�ned consistency constraints require the UML representation

to have a multiplicity of exactly one element (1..1) or arbitrary many elements (0..*). The

implementation of the transformations do not discard multiplicity changes that result

in an unsynchronizable state, but rather keep the current type interpretation for the

corresponding typed elements. However, if a new type is set in any of the involved models,

then the corresponding typed elements are brought to a consistent state. For UML this

means to propagate the new type to the other models, defaulting to a normal/non-collection

interpretation if the multiplicity was previously unsynchronizable. For the other domains

it is then not visible that the unsynchronizable multiplicity is intended and in an e�ort to

create consistency, the multiplicity is changed to (1..1).

So if a collection type interpretation is to be set on the UML model, then the user input

can be overwritten in an attempt to restore consistency, ultimately loosing information,

even if later changes might have brought the model to a consistent state without discarding

that information.

6.2.5 Incompatible Consistency Constraints

We observed F18 as a consequence of contradicting consistency constraints, which is a

part of incompatible consistency constraints.
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Concretely, for F18, the constraints of the correspondence type UJ-Class originally

prescribe for a uml::Class uC and the corresponding java::CompilationUnit jCU that their

names had to be the same, however, the jCU ’s name has to be fully quali�ed including

the �le extension, e.g. “package.ClassName.java”. Yet Java also requires the contained

java::Classi�er to have the same name as the unquali�ed name of the jCU , which the

original constraints also said was equal to the name of uC. This intra-transformation

constraint contradiction on its own only produced an incorrect Java model state. The

propagation loop was a result of the interaction with the transformation TPCM↔UML. A

pcm::RepositoryComponent pRC requires that its corresponding implementation uml::Class
uC has the same name, but for an appended implementation su�x “Impl”, e.g. “Compo-

nentNameImpl”. The PCM-UML constraint required a di�erent su�x then the UML-Java

constraint, which we classify as a contradiction.

When the pRC’s name is propagated to uC the “Impl” is appended and then further

propagated to jCU . For jCU the name is changed to be quali�ed and the quali�ed name

is propagated back, through uC, to pRC. And from pRC the name is again propagated to

uC and again “Impl” is appended. At that point the name is no longer fully quali�ed, the

�le extension is missing by Java metamodel de�nition, which is why the name is again

changed and the propagation cycle continues. The string that represents the name is

continually grown, which is why we describe the failure expression as a diverging loop.

We observed one failure (F18) as a result of incompatible consistency constraints, which

makes up 3.7% of all observed failures. That failure was a propagation loop (severity=2),

which translates to severity(deprecated change events) = 2.

In addition to the observed failure, there was an additional case of incompatible consis-

tency constraints, in that the structural mapping of primitive data types between PCM and

UML was not compatible to the primitive type mapping between UML and Java. The trans-

formation TPCM↔UML prescribed the use of externally de�ned pcm::PrimitiveDataType
and uml::PrimitiveType. The transformation TUML↔Java used to map manually de�ned

uml::PrimitiveTypes to the metamodel-prede�ned Java types. This was a speci�cation

problem of the case study system, and we changed the implementation and constraints

to use prede�ned primitive types for both transformations. We did not count this in

the evaluation statistic, because it was known prior to the evaluation and no consistent

solution could be derived from this mapping disparity, against which to compare the

transformation outputs.

6.2.6 Concept Bottlenecks

Concept bottlenecks are a consequence of the transformation network topology and the

metamodels of the involved domains. They can be circumvented by additional transforma-

tions and are therefore a speci�cation problem of the designed system. By our de�nition

of the case study, concept bottlenecks are the consequence of shared concepts between

the PCM and the Java domain, which can not be expressed in the UML domain (at least

not in class diagrams). The following is a list of non-shared concepts that were known

prior to the evaluation.
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• PCM Service E�ect Speci�cations represent an abstraction of the implementation

of java::ClassMethods, which realize a method of a contractual interface, which is

provided by a component’s implementation.

• A pcm::RequiredRoles maps to a uml::Property and a uml::Parameter in the compo-

nent’s constructor, which both share a relation that cannot be expressed in UML, but

that relation can be expressed in Java through to the initialization of the attribute in

the component’s constructor.

– This similarly applies to pcm::AssemblyConnector

– and pcm::RequiredDelegateConnector .

• A pcm::ProvidedDelegateConnector can be represented through the implementation

of java::ClassMethods that realize a provided constractual interface by delegating

the interface call to an assembled inner component (attribute of a component’s

implementation).

• A pcm::CollectionDatatypes should always map to the same Java concrete implemen-

tation type of java.lang.util.Collection, which cannot be expressed with the chosen

consistency speci�cation, because the multiplicity and (inner-) type con�guration

of the typed-multiplicity-elements (uml::Property or uml::Parameter) is equal for all

possible collection implementations. Changes to the selected collection type in PCM

or Java do not result in changes for the UML elements, and therefore cannot be

synchronized with the respective other domain.

We did not include concept bottlenecks in the statistical part of the evaluation, because

they cannot be solved without an additional transformation, which was not in the scope

of this thesis.

6.2.7 Completeness of the Failure Potential Catalogue

In Chapter 3, we identi�ed six failure potentials. One of the questions for this evaluation

is, whether or not this catalog of failure potentials is complete, meaning that the identi�ed

failure potentials are su�cient to capture all model synchronization failures. In Tables 6.1

and 6.2, we list the observed failures and which failure potential we identi�ed as the cause

(or more speci�cally, which failure potential was not accounted for by the transformation

implementation, resulting in the observed failure). We found, that each of the observed

failures could be traced back to an overlooked failure potential, which implies that the

proposed catalog is reasonably complete.

6.2.8 Distinctness of the Failure Potentials

The failure potentials can be distinct with regards to the failure classi�cation, or with

regards to the failure expressions that have been classi�ed with a speci�c failure potential.

The more varied the failure expressions of one failure potential, the more likely it is that

the failure potential stretches too broad of a category. In contrast to that, if we have many

failures that are classi�ed with the same set of failure potentials, then that set of failure
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potentials might be overly speci�c or they might have an common, unidenti�ed underlying

cause.

We observed exactly one failure expression for each failure potential, except for change

con�icts where we saw element duplication and creation loops. But both element duplica-

tion and creation loops are closely related, because element duplication easily leads to a

creation loops if the existence checks are missing in both transformation directions. There-

fore, the failure potentials are distinct with regards to the failure expressions. However, we

only observe failures for element-creation change con�icts. Feature change con�icts would

likely result in di�erent failure expressions, and it might be advantageous to explicitly

di�erentiate these change con�icts into two distinct subcategories.

We were able to classify each observed failure with exactly one failure potential, except

for F19-F20, which suggests that all failure potentials except change con�icts and depre-

cated change events are su�ciently distinct. F19-F20 occurred as a result of problematic

transformation implementation that produced an unnecessary feature change con�ict and

subsequent deprecated change event, and the propagation of deprecated change events

led to the propagation loop. Because deprecated change event cannot occur without

feature change con�icts, there is an obvious overlap between the two. But by the same

argumentation for why we classi�ed F19-F20 as a result of deprecated change events, there

is utility in the separation of both failure potentials. For one, both potentials represent

di�erent opportunities for the transformation developer to intervene, one is preventive

and one is reactive. And secondly, feature change con�icts are necessary if information

has to be overwritten, yet we still have to deal with the deprecated change events of such

overwrites. We therefore regard (feature) change con�icts as separate failure potentials

from deprecated change events.

6.3 Summary

The results of the evaluation scenarios revealed 27 failures that resulted from the transfor-

mation combination and transitive change propagation. In addition to the above mentioned

runtime failure, the combination of both used transformations had 6 concept bottlenecks

and 1 structurally di�erent mapping (incompatible consistency constraint), which are spec-

i�cation problems we knew before the evaluation and did not count to the runtime failure

list. Concept bottlenecks can only be solved through additional transformations, which

was not part of this thesis. The structural mapping was adapted to be compatible between

both transformations before the evaluation. Table 6.4 shows an overview, comparing the

failure statistics of the individual failure potentials.

The most prevalent failure potentials were (element-creation) change con�icts with 17

of all runtime failures (63%), all of which could be solved by the element existence check
pattern. Similarly all (only 2 of the 27) deprecated change event failures could be �xed

by the proposed event validity check. With these two simple patterns alone 70% of the

runtime failures could be prevented, which were also the most severe failures, because 15

of the combined 19 failures were propagation loops that hinder the model synchronization

process from terminating.
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FailurePotential

Failures Expression Types Severity

# % #Loops #Inconsist. # Info.Loss avg.

Runtime

Change Con�ict 17 63.0% 13 4 0 1.76

Deprecated

Change Event

2 7.4% 2 0 0 2

Visibility of Unresolved

Changes

4 14.8% 0 0 (4) 0 or 1

Unsynchronizable

States

3 11.1% 0 0 3 1

Incompatible Consistency

Constraints

1 3.7% 1 0 0 2

27 16 4 3(7) 1.44 (1.59)

System Speci�cation

Concept Bottlenecks 6

Incompatible Consistency

Constraints

1

Table 6.4: Overview of failure statistics with regards to failure potentials. The number

of failure expressions from “visibility of unresolved changes” is in brackets,

because the failure was only temporary, which is also why the severity is 0 or 1

depending on interpretation.
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We also found one consistency constraint contradiction (incompatible consistency con-
straint) in the original consistency speci�cation of the transformation TUML↔Java . And we

found 4 temporary failures where a transformation rule could not be correctly applied as a

consequence of the visibility of unresolved changes, but all four failures were automatically

restored through subsequent change events. Whether or not these failures are always un-

problematic is unclear. Lastly, we found 3 failures from unsynchronizable states, equaling

only 11% of all runtime failures, where a user input to a UML model could be overwritten

if the synchronization was started before a synchronizable state was reached.

Multi-model consistency preservation could be achieved for this limited case study, with

the exception of the information a�ected by the concept bottlenecks. And all observed

failures could be classi�ed as “caused by” exactly one failure potential, which ensures

some level of validity and completeness for the developed failure potential catalog.

6.4 Threats to Validity

• Pre-existing knowledge about Java and the transformation TUML↔Java may have

in�uenced the development of the transformation TPCM↔UML. Consequently, it may

have reduced the number of incompatible consistency constraints.

• The transformation network used for this evaluation only had a linear topology,

without transformation network cycles. As a result, the number of possible corre-

spondence graph cycles is drastically reduced (only one cycle in the case study),

which probably in�uenced the failure potential frequency, especially reducing the

number of change con�icts. But we observed a few branching correspondence

graphs, which implies that the �ndings are at least likely to be generalizable to case

studies with branching transformation networks.

• The evaluation scenarios focused primarily on model creation and initialization, not

on the modi�cation of existent elements. This limits the number of explored change

sequences and reduces the likelihood of �nding all failures.

• The number of failures we found for each failure potential, except for change con�icts,

is quite low.
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The goal of this thesis was to explore multi-model consistency and how we can achieve it

through the combination of transformations. One aspect of that is model consistency in

general, and most approaches regarding model synchronization use some form of model

transformation to automate the process. Therefore, model transformation is the most

closely related branch of research, in particular binary transformations and transformation

combination.

Consistency in a general sense has been formulated by its complement, inconsistency.

Nuseibeh et al. [17] describe inconsistency is a situation where two descriptions do not

adhere to a prescribed relation, and they describe a framework for managing inconsis-

tencies in [16]. In this framework, inconsistencies are detected by consistency rules.

These take a comparable role to the predicate based consistency constraints that we used.

The Object Constraint Language (OCL) allows the formal de�nition of invariants and

pre-/post-conditions. Lano et al. [13] use such OCL constructs to generate bidirectional

transformations and enforce these constraints.

Many di�erent works have developed the �eld of binary transformations. Triple Graph

Grammars (TGGs) are a formalism based on graph-pattern replacement rules, but it has a

limited expressiveness. Diskin et al. [5, 4] develop a separate formalism for delta-based

bidirectional transformations, called delta-lenses. The transformations we used in this

thesis are implemented using the Reactions Language [9, 23], which is an imperative

transformation language and less formal then the afore mentioned formalisms. However,

it is turing-complete, because it allows transformation rules to be implemented using Java,

which makes it maximally expressive.

The QVT-R standard [19] and the approach by Lano et al. [13] can be used to declaratively

de�ne bidirectional transformations. These declarative mapping rules are similar to the

correspondence type de�nitions, which we used to specify the consistency constraints

our transformation should implement. It might be possible to improve our approach by

generating transformation rules from consistency type de�nitions. Kramer [11] developed

a catalog of automatic attribute mapping inversions, which may be useful in that regard.

Xiong et al. develop a system that can synchronize concurrent model updates [32]. This

is di�erent from the scenarios studied in this thesis, because we do not explicitly examine

concurrent model updates. However, because of the transitive change propagation of

individual changes, unresolved changes can be queued for multiple models, which is a

similar situation, as if the changes had occurred in di�erent models to begin with. A

second di�erence is the fact that [32] uses state-based transformations that produce whole

new updated copies of the modi�ed models, whereas the transformations we use are

incremental and merely updated the existing models.

On the topic of multiary transformations, QVT-R is probably most known, because the

standard claimed multiary transformation capabilities from the start. However, Macedo
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et al. [14] show that QVT-R is underspeci�ed with regards to the operationalization for

multiary transformation, and they propose an extensions to solve this problem. Another

approach is the Graph Diagram Grammar formalism by Trollmann [31], which is an

extension of the TGG formalism to multiple models.

Transformation combination in the general case is still an open problem. While, Diskin’s

delta-lens formalism works for the asymmetric case [4] and allows multi-view modeling

through concatenation of the lenses, the symmetric case, where neither model can be

completely derived from the other, cannot be extended in the same way. Stevens [27]

discusses the properties of combined bidirectional transformations on a theoretical basis,

with regards to resolvability and con�uence, while limiting the transformation direction

through authority models. Her conclusion regarding consistency restoration through

transformation networks was "mostly negative", because, in general, a network might

converge to di�erent consistent states depending on the resolution path (if a change is

resolvable at all). In Section 3.2.3, we argue that the inclusion of strict authority instances,

which are models that may not be changed through the consistency restoration, might be

too strict of a limitation, because it limits the consistency constraints that can be resolved.

The e�ect of an authority model might instead be achieved through a view that restricts

the user’s edit-ability of the network models, so that the e�ects would not have to be

propagated to the authority models. However, the con�uence examples we explored still

suggest that the convergent state can be non-deterministic.
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In this chapter, we conclude the thesis by �rst summarizing the contributions and then

giving a short overview of ideas for future work.

8.1 Conclusion

This thesis explored how binary, bidirectional, delta-based transformations can be com-

bined through transitive change propagation in order to achieve multi-model consistency

preservation. We developed a catalog of six failure potentials that re�ect how the inter-

action between the consistency constraints of di�erent transformations and transitive

change propagation can produce con�icting model changes, lose change information or

fail to restore global consistency. Furthermore, we propose two transformation implemen-

tation patterns to mitigate the e�ects of change con�icts. Lastly, the evaluation revealed

the relevance of the identi�ed failure potentials and the e�ectiveness of the proposed

implementation patters.

We introduced transitive change propagation and how it can be used to combine trans-

formations to form a transformation network, through transitive application of the trans-

formations to the output model-changes of prior transformations. Additionally, we de�ned

model synchronization as the application of consistency-restoring transformations, where

consistency between a set of models is de�ned through consistency constraints. The

combination of multiple binary consistency-restoring transformations through transitive

change propagation then extends the model synchronization to multi-model consistency

preservation. We decomposed the de�nition of consistency on a model level into sets of

consistency constraints that de�ne consistency for the semantic dependencies between

two model elements, which we called correspondence types. Furthermore, we de�ned a

correspondence graph as a network of elements that are linked by their semantic dependen-

cies, which are described through correspondence types. We then used correspondence

graphs to investigate how changes may propagate through a transformation network,

because they provide a more detailed introspection into the propagation process based

on element-level propagation paths, rather than low-resolution, model-level propagation

paths.

We revealed a number of emergent failures of the model synchronization process by

studying how sets of properties of the transformation engine and the transitive change

propagation behave, when they are applied to a minimal correspondence graph example

and a speci�c change sequence. Based on the observed failures, we developed a catalog of

six failure potentials with regards to multi-model consistency preservation. One failure

potential is a consequence of the transformation network topology and the involved

domains. If two domains share a concept and the domains are indirectly connected by
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two transformations, but the pass-through domain cannot express this concept, then the

consistency of this concept’s representations cannot be ensured. This failure potential

can only be avoided through additional transformations. Another failure potential is a

consequence of con�icting consistency de�nitions of the employed transformations. It

can only be avoided by correctly de�ning the consistency constraints between models, so

that the combination of the constraints matches the intended global consistency. These

are both case speci�c problems of the combination of binary transformations that cannot

be solved without knowing which transformations will be combined. Furthermore, we

developed two transformation implementation patterns to mitigate two other failure

potentials. One pattern prevents element-creation con�icts where elements might be

duplicated as a consequence of cyclic change propagation paths and the other mitigates

the e�ects of feature change con�icts, after they occurred, by preventing the propagation of

deprecated information. These patterns can be applied by the transformation developer to

an individual transformation de�nition, independent of the combination scenario. For the

remaining two failure potentials, no general solution was found yet and further research

is necessary.

We provided detailed and semi-formal de�nitions of the consistency constraints that

are implemented by the two transformations, which we used in the following evaluation,

between the Palladio Component Model, UML class diagrams and Java. We grouped

the consistency constraints into correspondence type de�nitions to describe how the

metamodel concepts are mapped between the involved domains.

In the evaluation, we investigated the relevance of the identi�ed failure potentials using

a realistic use case and a transformation network of two independently developed transfor-

mations. This revealed that all observed failures could be classi�ed with exactly one failure

potential. Most observed failures were a consequence of transitive change propagation

(70%), all of which could be �xed through implementation of the proposed patterns. To

determine the impact of a speci�c failure potential type, we classi�ed all observed failures

also by e�ect. A slight majority of the observed failures were propagation loops (59%),

which stopped the change propagation from terminating. Through the implementation of

the proposed patterns and one �xed consistency constraint contradiction, all propagation

loops were prevented, leaving only information loss failures in speci�c test cases. However,

further studies are necessary, especially using more than two transformations and a cyclic

transformation network, to see how transformation cycles impact the failure distribution

and to verify the generalizability of the developed patterns.

In summary, we identi�ed a catalog of six failure potentials that can inform a transfor-

mation developer about possible problems when a transformation is used with transitive

change propagation or combined with other transformations. Furthermore, we developed

two transformation implementation patterns to prevent and mitigate the manifestation

of two of the failure potentials. Because all failures of the case study could be classi�ed

with the identi�ed failure potentials and the implementation patterns prevented all of the

failures they were designed to prevent, we are reasonably con�dent that the �ndings can

be applied to further scenarios.

98



8.2 Future Work

8.2 Future Work

Based on our �ndings, we suggest the following three topics for future research. Most

importantly, additional case studies are necessary to verify the generalizability of the

�ndings of this thesis. The compatibility of transformations can be analyzed based on

consistency constraint de�nitions. And additional strategies to mitigate the e�ects of

failure potentials can be developed.

In future work, additional case studies with di�erent domains and especially di�erent

transformation network topologies should be evaluated to verify the completeness and

relevance of the failure potential catalog. In the initial case study, we only evaluated

the �ndings with a cycle free transformation network. We showed that such a network

can still exhibit similar properties as cyclic networks, because of cyclic correspondence

graphs, but the case study only contained one type of cyclic correspondence graph. A

cycle-containing transformation network would drastically increase the possibility of

con�uence problems and would likely change the distribution of failure potentials. The

investigation of additional domains would help to verify the general applicability of the

developed patterns.

Another topic of interest is the evaluation of transformation compatibility based on

consistency constraints. Currently, the compatibility of transformations has to be man-

ually evaluated through in-depth study of the implemented consistency constraints or

through testing-based evaluation. Both approaches are error-prone and work-intensive.

It would be preferable to �nd an automatic process for evaluating the compatibility of

transformations. We introduced correspondence types to de�ne the types of semantic

overlaps that can exist between a pair of metamodel classes and we de�ned consistency

for instances of the participating classes through consistency constraints. Transformations

then have to implement the speci�ed consistency constraints. When a set of transfor-

mations is combined to a transformation network, we may be able to derive potential

correspondence graphs from the correspondence type de�nitions of the transformations.

We can then collect the consistency constraints that apply to the correspondence types in

the correspondence graph and analyze if the set of consistency constraints is satis�able

or if it contains contradicting constraints. If this proves successful, we could provide the

transformation developer with valuable information about where a transformation may

have to be adapted in order to achieve a correctly operating transformation network.

Unintentional change con�icts can occur if con�uent paths propagate divergent in-

formation or through problematic transformation implementation. In this thesis, we

proposed a transformation implementation pattern to detect and prevent element creation

con�icts, but we currently have no pattern for the detection of feature change con�icts.

One possible topic for future work could therefore be the development of a data structure

that allows the transformation engine or the transformations to detect when a feature

change con�ict might lead to an unintended loss of information. If we record all changes

that occur in the process of transitive change propagation, we can detect when a change

con�ict has occurred by comparing which features of which elements have been a�ected

twice. However, some change con�icts are necessary, for example when a user performs

multiple modi�cations on the same element or when a metamodel provided default value

has to be overwritten in the initialization process. For a single transformation that has
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no information about the change history both the intentional and unintentional feature

change con�icts are indistinguishable and therefore not avoidable.

The following description is an initial design idea for a structure that enables the

di�erentiation between intentional and unintentional feature changes. We can track all

changes by their causal relation: parent change cx caused (a transformation to produce)

the child change cy . If we interpret the tuples in that relation as edges of a graph, we

obtain a cycle-free tree structure. We can then assign each change in the tree a priority

based on its position in the tree structure. At any point in the tree, we assign the priorities

by the following two rules: a parent change always has higher priority than all its child

changes, and a newer child change and all its children have priority over all its siblings.

The further a change was propagated, the lower its priority is and it cannot invalidate

a parent change that has caused it. And newer changes have priority over older ones,

which allows default values to be overwritten by later initialization changes. We can then

extend the priority of a change to the element features a�ected by it. Now, if a change

tries to modify a feature that has higher priority than the change itself, a problematic

change con�ict is detected, because overwriting the higher priority value would break the

constraint that required the present value or it would overwrite a user input. And we can

further di�erentiate, what the cause of the change con�ict might be. If the priority of the

target feature belongs to a parent change, then we can assume that a transformation loop

has occurred. Otherwise we can assume that a more relevant change is already applied

and should not be overwritten.

We suggest these three topics for future research, because we think they promise

valuable insight while also being reasonably well realizable. Of course additional topics

are also conceivable.
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