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Abstract

We examine the application of existing and new kernelization techniques for a well-known
NP-hard problem, Max-Cut. Given an undirected graph, the task is to �nd a bipartition
of the vertex set that maximizes the total weight of edges that have their endpoints in
di�erent partitions. We primarily focus on the unweighted case, but we also consider the
signed and weighted versions to some extent.

Reduction rules are e�ective for solving many NP-hard problems in practice. They
compute a smaller problem instance – called a kernel – with the imposed requirement that
solving it also allows one to (quickly) compute a solution for the initially given instance.

Areas with interest in Max-Cut encompass both theory and practice. Practical �elds
where utilization exists include modeling of social networks [Har59], portfolio risk anal-
ysis [HLW02], network design [Bar96], VLSI (Very-Large Scale Integration) design and
statistical physics [Bar+88], and image segmentation [SHK13]. Due to this, and the suc-
cessful studies of kernelization in other hard problems [Abu+04] [Lam+17] [HSS18], we
investigate the practical utility of kernelization for Max-Cut – a missing study until now.

We consider reduction rules from previous works and further introduce new rules.
We show from a theoretical and practical viewpoint that kernelization performs best on
graphs containing loosely connected subgraphs and that no more than six rules are needed
to achieve a kernel size not larger than what is possible with the reduction rules from
previous works.

Our results reveal that kernelization has a signi�cant positive impact on a large collection
of graphs, including both synthetic instances, and real-world graphs from VLSI design and
image segmentation. In instances where kernelization succeeds in reducing the graphs,
existing current state of the art Max-Cut solvers converge faster towards a maximum
cut. In fact, in 9 of the 19 selected real-world instances, we compute a solution in seconds,
whereas without kernelization 10 hours were not enough.
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Zusammenfassung

Wir untersuchen die Anwendbarkeit von existierenden und neuen Techniken der Problemkern-
Reduktion für das bekannte NP-schwere Problem, Max-Cut. Für einen gegebenen unge-
richteten Graphen, besteht dabei die Aufgabe eine Bipartition der Knotenmenge zu �nden,
sodass das gesamte Gewicht der Kanten mit Endpunkten in verschiedenen Partitionen
maximiert wird. Wir fokussieren uns primär auf den ungewichteten Fall, untersuchen aber
auch bis zu einem gewissen Grad den vorzeichenbehafteten und gewichteten Fall.

In der Praxis sind Reduktionsregeln für das Lösen vieler NP-schwerer Probleme hilfreich.
Sie liefern eine kleinere Probleminstanz – genannt “Kern” – mit der Anforderung, dass eine
Lösung der reduzierten Instanz auch ein (schnelles) Lösen der initialen Instanz erlaubt.

Max-Cut ist sowohl für die Theorie als auch Praxis von Interesse. Praktische Anwen-
dungen umfassen die Modellierung von sozialen Netzwerken [Har59], Risiko-Analyse von
Portfolios [HLW02], Netzwerk-Design [Bar96], VLSI-Design (Very-Large Scale Integration)
und statistische Physik [Bar+88], und Bildsegmentierung [SHK13]. Aufgrund des Erfolges
der Problemkern-Reduktion auf andere schwierige Probleme [Abu+04] [Lam+17] [HSS18],
untersuchen wir deren praktischen Nutzen für Max-Cut . Dies ist eine fehlende Studie
bis zu diesem Zeitpunkt.

Dafür betrachten wir die Reduktionsregeln vorheriger Arbeiten und führen neue Re-
geln ein. Wir zeigen sowohl aus einer theoretischer als auch praktischer Sicht, dass die
Problemkern-Reduktion am besten für Graphen mit schwach verbundenen Subgraphen
anwendbar ist. Wir demonstrieren, dass bereits sechs Reduktionsregeln ausreichend sind
um die Größe des Kerns mindestens so zu reduzieren, wie es mit bisherigen Regeln möglich
ist.

Unsere Resultate zeigen, dass die Problemkern-Reduktion eine signi�kante Auswirkung
auf eine große Menge von Graphen hat. Hier eingeschlossen sind synthetische Instanzen
und Graphen aus Anwendungsbereichen des VLSI-Designs und der Bildsegmentierung.
Für Instanzen bei denen die Problemkern-Reduktion erfolgreich den Graphen reduziert,
konvergieren existierende Max-Cut Löser schneller zu einem maximalen Schnitt. Tat-
sächlich berechnen wir in 9 von den 19 Instanzen einen maximalen Schnitt in wenigen
Sekunden, während es ohne die Problemkern-Reduktion mehr als 10 Stunden dauert.
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1 Introduction

1.1 Motivation

The goal of the (unweighted) Max-Cut problem is to partition the vertex set of a given
graph G = (V , E) into two sets S and V \ S such that the total number of edges between
those two sets is maximized (see Figure 1.1). The problem of determining the maximum
cut of a graph is a famous problem in the area of computer science, particularly because
it is a well-known NP-complete problem. Furthermore, the weighted version is one of
Karp’s 21 NP-complete problems [Kar72].

S V \ S

Figure 1.1: A bipartition S,V \ S inducing a maximum cut of size 4 is shown.

While utilization for the signed and weighted version of the Max-Cut problem exists
in multiple areas [Har59] [Bar82] [HLW02] [Chi+07] [Bar96] [Bar+88] [SHK13], the
unweighted case acts as a proxy for these variants and presents a signi�cant challenge for
researchers.

Use cases for the Max-Cut problem with signed edges include modeling of social
networks [Har59], statistical physics [Bar82], portfolio risk analysis [HLW02], and VLSI
design [Chi+07]; while the version with weighted edges is used in network design [Bar96],
VLSI design and statistical physics [Bar+88], and image segmentation [SHK13].

In VLSI design, Max-Cut is able to solve the detailed routing in the Knock-Knee

Model [Len12]; also called constrained via minimization problem (CVMP). The task is
to minimize the amount of necessary holes (also called “vias”) in a circuit board. We
desire their amount to be small as they present a costly feature and negatively impact
the product’s quality. When limiting the maximum vertex degree to three, the resulting
model has a planar structure (it is possible to draw it cross-free on a plane). In those
cases, Max-Cut actually has a polynomial time solution [Had75]. However, interest in
applications remain where the structure is not planar [XK88] [Bar+88].
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1 Introduction

Two essential elements of circuit boards are pins and wires, where each wire is required
to connect two predetermined pins. Due to planarity not always being given, the problem
of wires having to cross each other arises. To mitigate this, layering of the circuit boards
is introduced and holes are created to allow traversal from one layer into another. The
task of minimizing the amount of necessary holes arises, which is a Max-Cut problem
instance. To achieve this, two numbers are computed for every pair of pins connected by
a wire: The amount of required holes when the endpoints are on the same layer; and the
amount when they are on di�erent ones. See a more elaborate explanation on this within
the work of Barahona et al. [Bar+88].

Kernelization is a powerful technique that has been utilized to improve the results of
many NP-hard problems [Abu+04] [Lam+17] [HSS18]; however not much has been done
in this direction for the Max-Cut problem.

To the best of our knowledge, nothing exists in the area of studying kernelization and
Max-Cut with the sole goal of achieving small kernels in practice. Although, plenty of
theoretical studies exist. Their focus was primarily set on providing bounds over the
parameters of slightly altered Max-Cut problems – including (Signed) Max-Cut Above
Edwards-Erdős [EM18] [Suc+17] [CJM15] [Cro+13] and Max-Cut Above Spanning
Tree [MSZ18]. In the �rst one of these, for a given connected graphG , a parameter k ∈ N0
is chosen and we check for the existence of a cut with size k + |E |2 +

|V |−1
4 . The later part

of the expression, |E |2 +
|V |−1
4 , denotes the Edwards-Erdős bound – one can always �nd

a bipartition inducing a cut of that size. Similar applies for Max-Cut Above Spanning
Tree where we consider a lower bound of |V | − 1 for the size of a cut.

Therefore, both of these outlined variations investigate the properties of cuts above
proven lower bounds. One of such works by Etscheid and Mnich [EM18] is the primary
source of inspiration for this work. They showed that e�cient kernelization is possible
with promising theoretical bounds on the size of the kernel. Meaning, that for a given k in
(Signed) Max-Cut Above Edwards-Erdős, one can construct a kernel of size O(k) in
time O(k · (|V | + |E |)).

1.2 Contribution

Our contributions are manifold on the utilization of kernelization for the Max-Cut problem.
We thoroughly summarize all 22 found reduction rules from previous works, analyze the
context in which they are used, and show how one can encompass 20 of those with a
reduced set of four reduction rules. Alongside this, the reduction rules by Etscheid and
Mnich [EM18] are examined in more detail. We do this due to their seemingly small kernel
of size O(k) for the problem (Signed) Max-Cut Above Edwards-Erdős and to show that
the theory is relatively disconnected from achieving a small kernel in practice.

Across our whole work, several theoretical insights are also given. We outline the
limitations of current kernelization techniques and the areas where further research may
yield more reductions. To that goal, we give a comprehensive overview on how e�ective
our kernelization is on very small subgraphs. We emphasize this by also providing the
amount of kernelization that theoretically remains possible.
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1.3 Thesis Structure

Key details of our implementation are given when a relevant concept is introduced. At
the conclusion of our work, we provide an evaluation from di�erent angles. We show
that kernelization achieves a signi�cant reduction on sparse graphs. We also present the
bene�ts of permitting weighted edges in the �nal kernel. These bene�ts are particularly
interesting in our evaluation of the current state of the art Max-Cut solvers, including:
Localsolver [Ben+11] [Gar+14], MqLib [DGS15] (utilizing the heuristic by Burer, Mon-
teiro, and Zhang [BMZ02]), and Biq Mac [RRW10]. Moreover, we show that kernelization
oftentimes helps deliver a faster convergence towards a maximum cut. This also includes
real-world instances where Max-Cut is used.

1.3 Thesis Structure

After having gone over the preliminaries in Chapter 2, we proceed with an introduction
of previous research in Chapter 3. Here, an overview of relevant work that utilized kernel-
ization is given – stemming mostly from the theoretical domain. Within this overview, we
provide an exhaustive list of found reduction rules.

Subsequently, we address our contributions until the end. First, we introduce newly de-
veloped reduction rules in Chapter 4. Provided here is also an overview of the interactions
among our newly developed rules and those from previous works.

In Chapter 5 and 6, we give important aspects of our implementation. Chapter 5 outlines
the algorithms we used to transform between di�erent Max-Cut variations (e.g., how to
transform a Signed Max-Cut problem into a Weighted Max-Cut). In Chapter 6, we
describe the structure of our implementation and the utilized timestamping system to
avoid rechecking the same structures for the same reduction.

Finally, we supply a practical evaluation of our contributions in Chapter 7. It begins with
an assessment of our implementation of the reduction rules by Etscheid and Mnich [EM18].
Following that, we then utilize our full suite – including all our reduction rules – and
compute the kernels for a large set of randomly generated graphs. These tests equip us
with good tools to determine when kernelization performs well and when not. Moreover,
this provides guidance in understanding our achieved results on a set of selected real-world
instances. This is also where we evaluate the impact of kernelization on current state of
the art Max-Cut solvers. Lastly, a total kernelizability analysis of very small subgraphs is
provided. We do this to show where current kernelization performs best, where worst,
and to give a direction where more research is able to yield further improvements.
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2 Preliminaries

2.1 Graphs

In this work, we are primarily concerned with unweighted and undirected graphs, without
multi-edges or self-loops. If not explicitly stated otherwise, we always refer to such graphs.

Let V be a set of elements {v1, ...,vn}, for n ∈ N – the vertex set – and let E ⊆ V ×V
be the edge set, with the condition (a,b) ∈ E implies (b,a) ∈ E (making it an undirected
graph). Then, the ordered pair G = (V , E) is considered an undirected graph. Moreover,
an undirected graph in which every pair of vertices is connected by an edge is called a
complete graph. Weighted graph instances are also being considered throughout our work.
Meaning, the edge set of the graph is complemented with a function w : E → R. We
represent such weighted graph instances with the notation (G,w).

To easier denote the vertices and edges of a graphG ,V (G) and E(G) are used, respectively.
Occasionally, we will also be interested in the edges between the vertices of di�erent
vertex sets S1, S2 ⊆ V (G). We denote that set by EG(S1, S2).

For any undirected graph G = (V , E), {a,b} ∈ E denotes an undirected edge in G.
Therefore, {a,b} ∈ E implies (a,b) ∈ E∧(b,a) ∈ E. The neighborhood of a vertexv is given
by NG(v) = {w ∈ V | {v,w} ∈ E}. We also de�ne the neighborhood of a vertex set X ⊆ V
as NG(X ) =

⋃
v∈X NG(v) \X . The degree of a vertexv is then de�ned as deдG(v) := |NG(v)|.

When comparing two graphsG1 andG2, it is possible for them to have the same topology.
This property is characterized through an isomorphism – a bijection ξ between V (G1)
and V (G2) such that {u,v} ∈ E(G1) if and only if {ξ (u), ξ (v)} ∈ E(G2). When an iso-
morphism for G1 and G2 exists, the graphs are called isomorphic; otherwise, they are
non-isomorphic. Observe that isomorphisms form an equivalence relation on graphs.

A path is any sequence of vertices 〈v1, . . . ,vk〉 such that it holds {vi,vi+1} ∈ E(G),
for i = 1, . . . ,k−1, and no vertex repeats in the sequence. We also use the notationv1 . . .vk
to describe a path. In both cases, the length of the path is given by the value k − 1. An
induced `-path is a path of length ` and for each non-successive pair of vertices, there is
no direct edge connection between them. A path v1 . . .vk for which only the vertices v1
and vk are the same (v1 = vk ) is furthermore called a cycle. The size of a cycle is given by
the value of k .

We call a graph G = (V , E) connected if at least one path from v to w exists for any two
vertices v,w ∈ V ; and disconnected otherwise. Similarly, two vertices are called connected,
if at least one path between them exists. If, in a connected graph G = (V , E), there is a
vertex v ∈ V whose removal leads to the graph becoming disconnected, then that vertex
is called an articulation point or cut vertex.

5



2 Preliminaries

2.2 Graph Components

Let the following be given: A graph G = (V , E), a vertex subset V ′ ⊆ V , and an edge
subset E′ ⊆ E, with E′ ⊆ V ′ ×V ′. We then de�ne G′ = (V ′, E′) as a subgraph of G.

When performing kernelization on a graph G = (V , E), it is often crucial to search for
speci�c subgraphs of a graph. We are primarily focused on induced subgraphs. For a vertex
subset S ⊆ V , an induced subgraph is de�ned as G[S] := (S, E[S]), where we de�ne the
edge set as E[S] := {{a,b} | a,b ∈ S ∧ {a,b} ∈ E}. That is, an induced subgraph of G for a
vertex subset S ⊆ V is a graph that contains all edges between the vertices of S in G. An
induced subgraph that is a complete graph is also referred to as a clique. Another term
useful when working with cliques is Kp , which denotes a clique containing p vertices. A
clique with 3 vertices is also called a triangle.

This now naturally inspires the de�nition of a (connected) component of G: A maximal
vertex set S such that all vertices in G[S] are connected with each other. Employed also
is the adjective “isolated” to describe such components in a shorter manner (example:
“isolated cycle”).

Let k ∈ N be the smallest number of vertices whose removal disconnects a graph G
with at least k + 2 vertices. The graph G is then called k-connected. The same terminology
also applies to subgraphs/components. A 2-connected graph is also often referred to as
biconnected and a maximal 2-connected subgraph as a block.

2.3 External/Internal Vertices

For a graph G = (V , E), let S ⊆ V be any vertex subset. The set of external vertices
of G[S] is de�ned as Cext(G)(S) = {v ∈ S | ∃w ∈ V \ S, {v,w} ∈ E}. In other words, this
is the set of vertices in S which contain at least one neighbor in G that is not in S . In
similar fashion, Cint(G)(S) = S \Cext(G)(S) de�nes the set of internal vertices. Also in use
for a subgraph H of G is Cint(G)(H ) := Cint(G)(V (H )) and Cext(G)(H ) := Cext(G)(V (H )). See
Figure 2.1. Beware that this de�nition of exterior/interior vertices slightly di�erentiates
from the one within related works on this topic.

Form ≤ n, we de�ne (n,m)C as the set of subgraphs with n vertices of which the �rstm
within the ordered vertex set v1, ...,vn are external. Note that |(n,m)C | = 2(

n
2). This size is

calculated by counting the number of graphs one can form with n vertices; which is done
by counting all possible edge sets for n vertices. Since the de�nition of (n,m)C uniquely
de�nes the external vertex set for each graph, the amount of external vertices does not
partake on the size of the set.

2.4 Maximum Cut

The goal in the (Unweighted) Max-Cut problem for an undirected and unweighted
graph G = (V , E) is to determine a vertex set S such that |EG(S,V \ S)| is maximized.
Occasionally, the notion V0 ∪ V1 = V is also used to denote a bipartition. While the
bipartition (S,V \ S) is a maximum cut, a cut is simply any bipartition (H ,V \ H ) of the
graph. The size of a maximum cut is then given by β(G) := |EG(S,V \ S)|. Another way to

6



2.4 Maximum Cut

v1

v2

v3

v4

v6

v7

H

Cext

Cint

v5

Figure 2.1: A subgraph H of some graph with vertices {v1,v2,v3,v4} and edges
{{v1,v2}, {v1,v4}, {v2,v3}, {v2,v5}, {v3,v4}, {v4,v5}} is depicted. Vertices in
red are external; those in blue, internal. Therefore, Cext(G)(H ) = {v1,v2}
and Cint(G)(H ) = {v3,v4,v5}. The membership H ∈ (5, 2)C holds.

de�ne the Max-Cut problem is through a 2-coloring: Color each vertex of G with one of
two colors (denoted as “0” and “1”) such that the number of edges connecting two di�erent
colors is of maximum size. In this case, the coloring is given by a function: δ : V → {0, 1}.

Let δ be a �xed 2-coloring of a vertex subset X ⊆ V (G). We call the problem of �nding
the largest cut with respect to the given δ a Local Max-Cut problem and denote the size
of a local maximum cut by βδ (G).

We show through Lemma 1 that βδ (G) is indeed a local optimum by providing a lower
bound for the size of a maximum cut.

Lemma 1. Let G = (V , E) be a graph, X ⊆ V , and δ : X → {0, 1}. Then β(G) ≥ βδ (G)
holds.

Proof. If β(G) < βδ (G), then β(G) is not the size of a maximum cut.

Such a local optimum may also be a (global) maximum cut, but only if at least one
maximum cut of G exists that does have the same coloring for the selected vertex subset.
This is summarized by Lemma 2.

Lemma 2. Let G = (V , E) be a graph, X ⊆ V , and δ : X → {0, 1}. If a maximum cut of G
exists whose vertices in X are colored according to δ , then βδ (G) = β(G).

Proof. True by de�nition. The value βδ (G) is the size of a maximum cut with X partitioned
according to the 2-coloring δ .

Knowledge about the Local Max-Cut problem motivates the importance of graph
connectivity. We de�ne D(G,X ) := {G[V (C) ∪ X ] : C connected component in G[V \ X ]}.
See Figure 2.2 for an example. As will be evident through Lemma 3, this set helps us divide
a Max-Cut problem into smaller subproblems.
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v1

v2

v3

v4

v6

v7

G

v5

X

D(G,X)

v1

v2

v6

v7

v1

v2

v3

v4
v5

G1

G2

Figure 2.2: Exemplary presentation of the set D(G,X ) for a graph G. The set D(G,X )
consisting of two graphs, G1 and G2.

Lemma 3. Let G = (V , E) be a graph, X ⊆ V , and δ : X → {0, 1}. The followings holds:

βδ (G) =
∑

G ′∈D(G,X )
(βδ (G

′) − βδ (G[X ])) + βδ (G[X ]).

Proof. For any two di�erent G1, G2 ∈ D(G,X ) the relationship E(G1) ∩ E(G2) = E(X )
and V (G1) ∩ V (G2) = X holds. Therefore, only the coloring of vertices in X is able to
impact the values of βδ (G1) and βδ (G2) at the same time. As the vertices in X already
have a �xed coloring, all connected graphs in D(G,X ) may be independently optimized
when determining the value of βδ (G). Furthermore, when adding βδ (G1) + βδ (G2), the
value of βδ (G[X ]) is counted twice. That is why we substract βδ (G[X ]) for each element
of D(G,X ) and add it once at the end.

Throughout this work, a few decision problems are shown. We proceed to de�ne our
�rst and most basic decision problem related to our work – the de�nition of the Max-Cut
decision problem.

De�nition 2.4.1. Let G be a graph and k ∈ N0, we denote an instance of the Max-Cut
decision problem as (G,k)MC. If the size of a maximum cut in G is k , then (G,k)MC is a
“yes”-instance; otherwise, it is a “no”-instance.

2.4.1 Weighted Maximum Cut

A closely related subject to the Unweighted Max-Cut problem is the Weighted Max-
Cut problem. As mentioned earlier, in the case of weighted graphs G = (V , E), a weight
functionw : V → Z is additionally provided – forming the weighted graph instance (G,w).
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The Weighted Max-Cut problem then asks for a bipartition S ⊆ V ,V \ S , such that the
added total weight of all edges in EG(S,V \ S) is maximized. Meaning, we want to �nd
an S ⊆ V such that β(G,w) :=

∑
e∈EG (S,V \S)w(e) is maximized.

2.4.2 Signed Maximum Cut

In a Signed Max-Cut problem instance, each edge in the graph G = (V , E) is given a
label l : E → {“+”, “−”} – forming a signed graph (G, l). The task is then to �nd a vertex set
bipartition S ⊆ V ,V \S , such that the number of edges satisfying the following constraints
is maximized:

• Edges with sign “+” and endpoints in the same set of the bipartition,

• Edges with sign “−” and endpoints in di�erent sets of the bipartition.

Or more formally, we want to �nd an S ⊆ V such that the size of the cut as given
by β(G, l) := |E−

G,l
(S,V \ S)| + |E+(G[S], l) ∪ E+(G[V \ S], l)| is maximized, where we de-

�ne Ec
G,l
(S,V \ S) := {e ∈ EG(S,V \ S) | l(e) = c} and Ec(G, l) := {e ∈ E(G) | l(e) = c}

for c ∈ {“−”, “+”}. Similarly, for the neighborhood of a vertex (set), we use the nota-
tions N c

G,l
(v) := {w ∈ V | {v,w} ∈ Ec(G, l)} and N c

G,l
(X ) :=

⋃
v∈X N c

G,l
(v) \ X . We call a

triangle positive if its amount of “−” edges is even.
An Unweighted Max-Cut instance can be transformed into as a Signed Max-Cut

problem by labeling all edges with “−”.

2.5 Fixed-Parameter Tractable (FPT)

FPT is the class of problems which are �xed-parameter tractable [DF12]. For a problem
from this class, it is possible to limit the combinatorial explosion with a parameter k , which
is used to parametrize an important property of the given input. It may be an upper bound
for a cycle; for counting problems, it could be used as “how much above a lower bound
does the solution lie in“; one could use it to characterize graph connectivity; etc.

In the next de�nition, we use Σ∗ to denote the set of input instances for a decision
problem.

De�nition 2.5.1 (Fixed Parameter Tractability by Cygan et al. [Cyg+]). A parameterized
problem L ⊆ Σ∗ ×N is called �xed-parameter tractable (FPT) if there exists an algorithm A
(called a �xed-parameter algorithm) and a computable function f : N → N such that,
given (x,k) ∈ Σ∗×N, the algorithm A correctly decides whether (x,k) ∈ L in time bounded
by f (k)· |(x,k)|O(1). The complexity class containing all �xed-parameter tractable problems
is called FPT.

The running time of �xed-parameter algorithms is characterized by the term |(x,k)|O(1)
from the above de�nition. So, even though a problem might not admit a polynomial time
solution in general, a polynomial �xed-parameter algorithm may exist. Same applies to
linear time �xed-parameter algorithm.
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2.6 Reduction Rules and Kernelization

Oftentimes, it is possible to quickly solve a Max-Cut decision problem (G,k)MC through
a known solution for another instance (G′,k′)MC. The act of determining such a related
instance (G′,k′)MC (also named kernel) is called kernelization. The process of kernelization
almost always involves multiple transformations of the initially given instance. Such
transformations are also called reductions. We proceed to provide a formal description of
what a reduction rule entails.
De�nition 2.6.1 (Reduction Rule by Cygan et al. [Cyg+]). A reduction rule for a parametrized
problem Q is a function ϕ : Σ∗ × N → Σ∗ × N that maps an instance (I ,k) of Q to an
equivalent instance (I ′,k′) of Q such that ϕ is computable in time polynomial in |I | and k .
We say that two instances of Q are equivalent if (I ,k) ∈ Q if and only if (I ′,k′) ∈ Q .

It is straightforward to see how De�nition 2.6.1 applies to the Max-Cut decision
problem. Observe that for two equivalent “yes” instances (G, β(G)) and (G′, β(G′)), the
relationship β(G) = β(G′)+k must necessarily hold for some k ∈ Z. Whenever a reduction
rule is outlined from previous and our work, this parameter k is provided.

2.7 VERTEX-WEIGHTED MAX-CUT

This is a more general version of the Max-Cut problem as it introduces an additional
property that may contribute to the value we want to maximize. For each vertex v ∈ V in
a graph G = (V , E), two weights are assigned, w0 : V → R,w1 : V → R.

Then, instead of only maximizing the number of edges between the sets of a biparti-
tion V0 ∪V1 = V , we are also required to consider the sum

∑
v∈V0 w0(v) +

∑
v∈V1 w1(v).

De�nition 2.7.1. Given a graph G = (V , E) and vertex weights w0 : V → R,w1 : V → R,
the Vertex-Weighted Max-Cut problem is to compute a bipartition V0 ∪V1 = V such
that |EG(V0,V1)| +

∑
v∈V0 w0(v) +

∑
v∈V1 w1(v) is maximized.

2.8 Special (Sub-)graph Classes

In a later section, we will show that the Vertex-Weighted Max-Cut is solvable in
polynomial time for certain graph classes. Two such graph classes are described in
De�nition 2.8.1 and De�nition 2.8.2. Both are utilized in related research. See also Figure 2.3
and 2.4 for an example of both de�nitions, respectively.
De�nition 2.8.1 (Clique Tree/Forest by Crowston, Jones, and Mnich [CJM15]). A clique

tree is a connected graph whose blocks are cliques, where a clique is a complete subgraph
of a graph. A clique forest is a graph whose connected components are clique trees.
De�nition 2.8.2 (Clique-Cycle Forest by Madathil, Saurabh, and Zehavi [MSZ18]). The
class of clique-cycle forests is de�ned as follows. A clique is a clique-cycle forest, and so is
a cycle. The disjoint union of two clique-cycle forests is a clique-cycle forest. In addition, a
graph formed from a clique-cycle forest by identifying two vertices, each from a di�erent
(connected) component, is also a clique-cycle forest.
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K4

K3

K5

K1

K3

Figure 2.3: A clique forest consisting of two trees.

K4

K3

K5

K1

K3

Figure 2.4: A clique-cycle forest consisting of a single tree.
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3 RelatedWork

Several studies have been made in the direction of providing �xed-parameter algorithms
for the Max-Cut problem [EM18] [Cro+13] [MSZ18] [CJM15]. Among these, a fair amount
of kernelization rules have been introduced with the goal of e�ectively reducing Max-
Cut instances [EM18] [Cro+13] [MSZ18] [Pri05] [Suc+17] [CJM15]. However, to the
best of our knowledge, we are the �rst in this domain that conducted an analysis from a
practical viewpoint. Meaning, all research related to �xed-parameter algorithms has been
focused on theoretical properties, with the same observation also applying to all found
kernelization rules. Relevant examples of these theoretical results follow.

3.1 Theoretical Results

For bipartite graphs, many NP-hard problems actually have polynomial time solutions.
This includes Independent Set, Coloring, and Vertex Cover [Kőn31] [BM+76]. The
same is true for the Max-Cut problem where all edges are in the maximum cut.

This observation motivated a �xed-parameter algorithm for Max-Cut. A graph is
bipartite if and only if the graph has no odd cycles. Panolan and Rai [PR12] have shown
that if one bounds the length of the longest odd cycle by parameter k , it is possible to
develop a �xed-parameter algorithm that determines if the size of a maximum cut is above
a given lower bound t ∈ N0 in time 4knO(1).

Another way to go about creating a �xed-parameter algorithm is by utilizing known
lower bounds for the size of a maximum cut. Two such bounds are the Edwards-Erdős
bound by Edwards [Edw73] [Edw75] and the spanning tree bound (see Section 3.4 and 3.5,
respectively). In those problem instances, a value k ∈ N0 is given. Suppose the instance
has lower bound l . The algorithm then must decide if a cut of size k + l exists.

Neither is superior for all graphs. As outlined by Madathil, Saurabh, and Zehavi [MSZ18],
the spanning tree bound performs better than the Edwards-Erdős bound when inequal-
ity |V | − 1 > |E |2 +

|V |−1
4 holds. Or, equivalently; when the average degree of the graph

is smaller than 3. Meaning, the spanning tree bound is better suited for sparse graphs,
whereas the Edwards-Erdős bound is more suited for dense graphs.

The �rst work which shows that the unweighted Max-Cut is �xed-parameter tractable
above the Edwards-Erdős bound stems from Crowston, Jones, and Mnich [CJM15]. They
have developed an algorithm that determines in time 2O(k) · n4 if a cut of size l + k exists,
where l is the lower bound by Edwards-Erdős. Moreover, achieved by them was a kernel of
sizeO(k5). This was then enhanced by Crowston et al. [Cro+13] to include the Signed Max-
Cut and the resulting kernel’s size was decreased to O(k3). Lastly, further improvements
were introduced by Etscheid and Mnich [EM18]. Runtime performance of 8k ·O(m) was
achieved alongside a kernel of size O(k) – also for signed graphs.
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3.2 Practical Results

Within the domain of Max-Cut, a multitude of practical approaches exist to determine a
maximum cut or the largest possible cut for a collection of allocated resources. Recently, a
group of heuristic solutions from previous works was evaluated by Dunning, Gupta, and
Silberholz [DGS15]. They provide a thorough evaluation framework named MqLib [18b]
and they show that one of the best heuristics to determine a large cut was developed
by Burer, Monteiro, and Zhang [BMZ02]. However, it has no mechanisms to determine
when an achieved cut is also a maximum one. Their evaluation is performed over a set of
over 3000 weighted graph instances, speci�cally selected for the Max-Cut problem.

Another approach to solve the Max-Cut problem is available from the commercial
domain by a software called Localsolver [Ben+11] [Gar+14]. While they also utilize
a heuristic approach, they additionally implement a mechanism to determine when an
achieved cut is a maximum cut as well. Notable also is that the Max-Cut problem is just
one of many problems it is able to handle.

A solver specially developed to determine an exact maximum cut also exists. It is referred
to as the Biq Mac Solver and was developed by Rendl, Rinaldi, and Wiegele [RRW10].

3.3 VERTEX-WEIGHTED MAX-CUT by Etscheid and Mnich [EM18]

Before continuing to discuss the existing kernelization techniques, a solution by Etscheid
and Mnich [EM18] for the Vertex-Weighted Max-Cut problem on Clique Forests is
introduced. We later utilize this to brie�y evaluate the potential for a new Max-Cut solver.

Consider an isolated clique tree within any given clique forest with vertex weights. To
solve the Vertex-Weighted Max-Cut, we incrementally process all leaves and remove
them. Let C be any such clique leaf with |V (C)| ≥ 2 and let r ∈ V (C) be the vertex (an
articulation point) that connects C with the remainder of the tree. Further assume that
all vertices v ∈ V (C) of that clique have arbitrary values assigned to w0(v),w1(v) for the
Vertex-Weighted Max-Cut problem. IfC is a single clique, and does not have a vertex r
as outlined above, pick any vertex for that role.

The goal now lies in updating the value ofw0(r ) andw1(r ) such that the vertex-weighted
maximum cut of C is fully described by them. That is, the value w0(r ) stores the size of a
maximum cut of C when r is assigned the “0” color, and w1(r ) does the same for color “1”.

Next task is to compute the values of w0(r ) and w1(r ). Without loss of generality, let r
be colored with “0” (δ (r ) = 0) and for x ∈ V (C) \ {r } let the values of w0(x) and w1(x)
be updated accordingly – if r has an edge incident to v ∈ V , then increase w1(v) by one.
Case δ (r ) = 1 is then symmetric to the case δ (r ) = 0.

We now focus on the remaining vertices of C , X = V (C) \ {r }. The challenge is to
determine a 2-coloring of all vertices in X .

De�ne ∆(v) := w0(v)−w1(v). We know that each vertex has to be colored with either “0”
or “1”. Ignoring the edges, the best vertices to color with “0” are those with large ∆(v).
If we color vertex v with “0”, the size of the cut increases by w0(v); and if not, by w1(v).
Meaning, in total, the cut increases (or possibly decreases!) by ∆(v) if vertex v is colored
by “0” instead of “1”. A natural next step is to sort the vertices v ∈ X in decreasing order
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of ∆(v) by utilizing counting sort. Let that order be denoted by P = (v1, . . . ,v |X |). All that
has to be done now is to �nd an optimal p ∈ {0, . . . , |X |} such that vertices (v1, . . . ,vp) are
colored with “0”, and vertices (vp+1, . . . ,v |X |) are colored with “1”. That is, the following
has to be solved:

max
p∈{0,...,|X |}

©«
∑

i=1,...,p
∆ (vi) −

∑
i=p+1,...,|X |

∆ (vi) +
��E (
{v1, . . . ,vp}, {vp+1, . . . ,v |X |}

) ��ª®¬
The term |E({v1, . . . ,vp}, {vp+1, . . . ,v |X |})| is added to account for the edges. Due to

the regarded component being a clique, its value equals to p · (|X | − p). This also means
that it does not matter which vertices are colored by what label, but only the amount. If
we had used any other permutation than P , the amount of edges being added to a cut’s
size is the same for a �xed p ∈ {0, . . . , |X |}. Meaning, by solving the above optimization
problem in time O(|X |), the Vertex-Weighted Max-Cut is also solved for the clique X .

Note that counting sort would imply aO(|V |) time complexity. Although, one can bound
the values of ∆(v) in range [−|X |, |X |] to achieve a total time of O(|X |) for each X . If,
for any vertex v ∈ X , the value of ∆(v) is not in range [−|X |, |X |], then the color of that
vertex can be determined right away as its edges cannot compensate for the assignment
of another color.

In the end, once a vertex-weighted maximum cut of X is computed for δ (r ) = 0, update
the value ofw0(r ) with it, and erase all of X (after also computingw1(r )). The vertex r now
represents the whole component for the subsequent processing of the tree’s remaining
parts.

3.4 Edwards-Erdős Bound

For a connected graph, the Edwards-Erdős bound is de�ned as follows:

EE(G) =
|E(G)|

2 +
|V (G)| − 1

4 .

This bound stems from within the works of Edwards [Edw73] [Edw75]. Note that
Erdős previously came up with a worse lower bound of size |E(G)|2 [Erd65] which was
then improved by Edwards. As shown by Madathil, Saurabh, and Zehavi [MSZ18], the
Edwards-Erdős bound works signi�cantly better for dense graphs compared to the bound
given by the spanning tree.

A linear time algorithm that computes a cut satisfying the Edwards-Erdős bound for
any given graph also exists and was provided by Van Ngoc and Tuza [VT93]. Moreover,
these results have been extensively used in researching �xed-parameter tractability of
Max-Cut [MR99] [MRS09] [GY10] [Cro+14] [EM18]. Of particular interest among these
works is the Max-Cut Above Edwards-Erdős (Max-Cut AEE) problem. It asks the
following: For a given k ∈ N0, does a Max-Cut of size EE(G) + k

4 exist? We denote an
instance of this problem by (G,k)AEE.

The Edwards-Erdős bound also represented the starting point of our work. New research
by Etscheid and Mnich [EM18] has shown that the problem Max-Cut AEE has a linear
time �xed-parameter algorithm, 8k ·O(|E |), with a linear sized kernel O(k).
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From this point on, for a graph G = (V , E), let S ⊆ V be any vertex set such that G − S
is a clique forest. We also call S the marked vertex set. All found kernelization rules
for Max-Cut AEE require this set and each of them utilize the relationship between S
and G − S in their requirements and e�ects. In a later section, a way to generalize these
rules to function independently of G and G − S is shown, making them directly applicable
on the whole graph. This furthermore means that the changes these rules in�ict on a
parameter k of a (G,k)AEE instance are transformed into a direct change on the size of a
maximum cut.

Following is a short introduction of an algorithm that computes the vertex set S , as
de�ned by Etscheid and Mnich [EM18]. It works in O(k · (|V | + |E |)) time and provides
the bound |S | ≤ 3k . After that, the reduction rules for Max-Cut Above Edwards-Erdős
are stated.

3.4.1 Algorithm for Clique Forest Computation

To achieve the computation of an marked vertex set S ⊆ V (G) such that G − S is a
clique forest, a “special” set of one-way reduction rules were introduced by Crowston et
al. [Cro+13] – unrelated to the reduction rules as described by De�nition 2.4.1. These rules
are used by Etscheid and Mnich [EM18] to transform a Max-Cut AEE instance (G,k)AEE
to (G′,k′)AEE such that if we know that (G′,k′)AEE is satis�able, then so is (G,k)AEE. Beware,
if (G′,k′)AEE is not satis�able, then no implications on (G,k)AEE exist.

Following are the one-way reduction rules that one can apply on a connected graph G.
Note that whenever C is used, a clique without positive triangles is being referred to.

One-Way Rule 1. ([Cro+13], Rule 3) Let C be a connected component of G − v for
some vertex v ∈ V (G). If there exist a,b ∈ V (C) such that G − {a,b} is connected and
there is an edge {a,v} but no edge {b,v}, then add a,b to S and delete them from G, and
set k′ = k − 2.

One-Way Rule 2. ([Cro+13], Rule 5) If there is a vertex v ∈ V (G) such that G −v has
a connected component C such that G[V (C) ∪ {v}] is a clique, then delete C . If |V (C)| is
odd, set k′ = k − 1; otherwise set k′ = k .

One-Way Rule 3. ([Cro+13], Rule 6) If a,b, c ∈ V (G) induce a 2-path (a,b, c) such
that G − {a,b, c} is a connected graph, then add a,b, c to S and delete them from G, and
set k′ = k − 1.

One-WayRule 4. ([Cro+13], Rule 7) Letv,b ∈ V (G) be such that {v,b} < E(G) andC,Y
are the only connected components of G − {v,b}. If G[V (C) ∪ {v}] and G[V (C) ∪ {b}] are
cliques, then add v,b to S and delete them from G, delete C , and set k′ = k − 1.

Only these 4 rules are utilized in case of the unweighted version of the Max-Cut
problem. The other one-way reduction rules within the same paper are used for the more
general problem – Signed Max-Cut. While we do utilize signed reduction rules to some
extend, we only evaluate the marked vertex set on unweighted cases. This was su�cient
for us to develop the results we want to present with this work.
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After the exhaustive application of the given rules, the resulting instance (G′,k′)AEE
is either a satis�able instance or the graph G′ contains no edges. In this later case, the
algorithm provides the marked vertex set S = V (G′), which can be further utilized within
the reduction rules. From all kernelization rules that are listed by us in the next section,
only two are used by Etscheid and Mnich [EM18]: Reduction Rule 5 and Reduction Rule 9.

Note that a naive implementation of the above one-way reduction rules does not lead
to a O(k · (|V | + |E |)) time complexity. To achieve linear time, an algorithm was developed
by Etscheid and Mnich [EM18] that handles all these rules in a speci�c manner. It works
by iteratively removing leaf blocks from the given graph G.

Therefore, let X be a leaf block of G and r the vertex through which X is connected
withG −X , if it exists. If such r does not exist, pick any vertex (this case only applies when
the whole graph is a single block). With this, Lemma 3 by Etscheid and Mnich [EM18]
states that there is always a rule applicable on X and that it can be determined and applied
in O(|E(X )|) time:

• If X is a clique, then One-Way Rule 2 is applicable on X and r . Process next leaf
block.

• If X − {r } is a clique. Apply One-Way Rule 1. For v select r , for a chose any vertex
in X − {r } that is adjacent to r , and for b pick any vertex that is not adjacent to r .
Such vertices must exist as X is a 2-connected component, but not a whole clique.
Further, X − {r } cannot be a single-vertex clique as X is 2-connected. Process next
leaf block.

• At this point it is known that neither X nor X − {r } is a clique. If NX (r ) = {x,y}
(the vertex r has exactly two neighbors in X ) and X − {r , x},X − {r ,y} are cliques,
then Rule 4 is applicable with v as x and b as y.

• Under the condition that none of the previous steps worked, we �nd an induced
2-path. We refer the reader to the work by Etscheid and Mnich [EM18] for this
step. It essentially utilizes the information gained about X and r to �nd any induced
2-path in linear time. The challenge in this part lies in achieving that runtime.

In case the one-way rules do not yield a “yes”-instance, another interesting theoretical
bound on the computation of S is given: |S | ≤ 3k . In total, the runtime performance of
this algorithm can be summarized by O(k · (|V | + |E |)).

In the upcoming list of reduction rules, we use the de�nition of a 4≤2-block C in G − S .
We de�ne this as a triangle that ful�lls |Cext(G−S)(C)| ≤ 2 and NG(Cint(G−S)(C)) ∩ S = ∅.

3.4.2 Reduction Rules

A list of found reduction rules for Max-Cut AEE follows under the stated circumstances
from the previous sections. For each rule, a parameter k′ is provided. The decision
problem (G,k)AEE is then a “yes” instance if and only if (G′,k′)AEE is a “yes” instance,
where G′ is derived from applying a set of changes on G.

Some of the upcoming reduction rules are also applicable on signed graphs. Whenever
that is the case, we explicitly state it. Note that in case of signed graphs, we assume that all

17



3 Related Work

components inG −S only contain negatives edges. If that is not the case, apply Corollary 3
by Crowston et al. [Cro+13] to achieve such an equivalent instance.
Reduction Rule 1. ([Suc+17], Rule A) LetG be a connected graph, and letv be a vertex
of degree 1 in G. Then delete vertex v and set k′ = k − 1.

Reduction Rule 2. ([CJM15], Rule 5) Apply if there exists a vertex x ∈ V (G − S) and a
set of vertices X ⊆ V (G − S) such that |X | > 1,G[X ∪ {x}] is a clique, G[X ] is a connected
component of G − (S ∪ {x}), and no vertex in X is adjacent to any vertex in S . Remove all
vertices in X , and set k′ = k − 1 if |X | is odd, otherwise k′ = k .

Reduction Rule 3. ([CJM15], Rule 6) Apply if s ∈ S, x ∈ V (G − S), and X ⊆ V (G − S)
exist such thatG[X ∪{x}] is a clique,G[X ∪{s}] is a clique,G[X ] is a connected component
of G − (S ∪ {x}), and s is the only vertex in S adjacent to X . Remove all but one vertex
of X , and set k′ = k − 1 if |X | is even, otherwise k′ = k .

Reduction Rule 4. ([CJM15], Rule 7) Let X ,Y be the vertex sets of two blocks inG − S
such that the sizes |X | and |Y | are odd, {z} = X ∩ Y , x ∈ X ,y ∈ Y , vertices in {x, z} are
the only vertices in X adjacent to a vertex in G − X , and the vertices in {y, z} are the only
vertices in Y adjacent to a vertex in G − Y . Remove all vertices in (X ∪ Y ) \ {x,y, z} and
add new vertices u,v alongside all the necessary edges for {x,y, z,u,v} to form a clique.

Reduction Rule 5. ([Cro+13], Rule 8) Let (G, l) be a signed graph andC a block inG−S .
If there is a X ⊆ Cint(G−S)(C) such that |X | > |V (C)|+|NG (X )∩S |

2 ≥ 1, N +
G,l
(x) ∩ S = N +

G,l
(X ) ∩ S

and N −
G,l
(x) ∩ S = N −

G,l
(X ) ∩ S for all x ∈ X , then delete two arbitrary vertices x1, x2 ∈ X

and set k′ = k .

Reduction Rule 6. ([Cro+13], Rule 9) Let C be a block in G − S . If |V (C)| is even and
there exists a X ⊆ Cint(G−S)(C) such that |X | = |V (C)|2 and NG(X ) ∩ S = ∅, then delete a
vertex x ∈ X and set k′ = k − 1.

Reduction Rule 7. ([Cro+13], Rule 10) Let (G, l) be a signed graph and C be a block
in G − S with V (C) = {x,y,u} such that NG(u) = {x,y}. If the edge {x,y} is a bridge in
graphG−{u}, then deleteC , add a new vertex z, positive edges {{z,v} : v ∈ N +

G−u,l
({x,y})},

negative edges {{z,v} : v ∈ N −
G−u,l
({x,y})}, and set k′ = k . Otherwise, delete u and the

edge {x,y} and set k′ = k − 1.

Reduction Rule 8. ([Cro+13], Rule 11) Let G be a signed graph and T a connected
component of G − S only adjacent to a vertex s ∈ S . Form a Vertex-Weighted Max-Cut
instance on T by de�ning w0(x) = 1 if x ∈ N +

G,l
(s) ∩ T is true (w0(x) = 0 otherwise)

and w1(y) = 1 if y ∈ N −
G,l
(s) ∩ T is true (w1(y) = 0 otherwise). Then solve the expres-

sion β(G[V (T ) ∪ {s}]) = EE(G[V (T ) ∪ {s}]) + k
4 =

p
4 , delete T , and set k′ = k − p.

Reduction Rule 9. ([EM18], Rule 9) Let C1,C2 be 4≤2-blocks in G − S which share
a common vertex v . Make a block out of V (C1) ∪ V (C2) by adding all edges from the
set {{u,w} | u ∈ V (C1) \ {v},w ∈ V (C2) \ {v}} to G. Set k′ = k .
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3.5 Spanning Tree Bound

3.5 Spanning Tree Bound

Another approach is based on utilizing the spanning forest of a graph, as done by Madathil,
Saurabh, and Zehavi [MSZ18]. For a given k ∈ N0, a Max-Cut of size |V | − 1 + k is
being searched for. This decision problem is denoted as Max-Cut AST (Max-Cut Above
Spanning Tree), or shorter: (G,k)AST. For sparse graphs, this bound is better than the one
we have introduced in the previous section – the Edwards-Erdős bound. As mentioned,
this is true when the average degree of the given graph is smaller than 3.

From here on, until the end of this section, let S ⊆ V be any vertex set such that G − S
is a clique-cycle forest.

In the upcoming list of reduction rules, we use the de�nition of a 4=2-block C in G − S .
We de�ne this as a triangle with |Cext(G−S)(C)| = 2 and NG(Cint(G−S)(C)) ∩ S = ∅. Similarly,
a D-block C in G − S is a cycle of length 5 that satis�es Cext(G−S)(C) = {x,y}, {x,y} < E,
and NG(Cint(G−S)(C)) ∩ S = ∅.

3.5.1 Reduction Rules

A list of found reduction rules for Max-Cut AST follows under the stated circumstances
from the previous section. In similar fashion like for the reduction rules for Max-Cut
Above Edwards-Erdős, a parameter k′ is provided by each rule. It holds that (G,k)AST
is a “yes” instance if and only if (G′,k′)AST is a “yes” instance, where G′ is derived from
applying a set of changes on G.
Reduction Rule 10. ([MSZ18], Rule 6) LetC be an isolated odd cycle, K2, or K1 inG−S .
Let there exist s ∈ S such that s has either exactly one neighbor or exactly two neighbors
inV (C); and no other vertex of S has a neighbor inV (C). Then deleteV (C) and set k′ = k−1
if C is an odd cycle such that |N (s) ∩V (C)| = 2. Otherwise, k′ = k .

Reduction Rule 11. ([MSZ18], Rule 7) Let C be a leaf-block of G − S such that C is a
clique and NG(Cint(G−S)(C)) ∩ S = ∅ holds. Then delete the verticesCint(G−S)(C) and set the
parameter k′ = k −

|Cint(G−S )(C)|
2

4 −
|Cint(G−S )(C)|

2 + t . Use t = 1
4 if |Cint(G−S)(S)| is odd; t = 0

otherwise.

Reduction Rule 12. ([MSZ18], Rule 8) Let C be a leaf-block of G − S such that C is a
cycle and NG(Cint(G−S)(C)) ∩ S = ∅. Then delete Cint(G−S)(C) and set k′ = k − 1 if C is an
even cycle, and leave k′ = k if C is an odd cycle.
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Reduction Rule 13. ([MSZ18], Rule 9) Let T be a connected component of G − S such
that G[V (T )] is a path in G − S . Let u,v ∈ V (T ) be such that deдG−S (u) = deдG−S (v) = 1
holds. Also, there exists s ∈ S such that NG(u) ∩ S = NG(v) ∩ S = {s} and NG(x) ∩ S = ∅
for every x ∈ V (T ) \ {u,v}. That is, G[V (T ) ∪ {s}] is a cycle and no vertex in S except s
has a neighbor in V (T ). Delete V (T ) and set k′ = k − 1 if |V (T )| is odd, and leave k′ = k
otherwise.

Reduction Rule 14. ([MSZ18], Rule 10) Let a′abcc′ be an induced 4-path in G − S
such that deдG(a) = deдG(b) = deдG(c) = 2 (Note that the degree restrictions imply that
none of a, b, or c has a neighbor in S). Delete vertices a, b, c . Add new vertex v and new
edges {a′,v} and {v, c′}. Set k′ = k .

Reduction Rule 15. ([MSZ18], Rule 11) Apply when Rule 14 is no longer applicable.
LetC be a D-block ofG−S ,V (C) = {u,a,b,v, c}, E(C) = {{u,a}, {a,b}, {b,v}, {v, c}, {c,u}},
and Cext(G−S)(C) = {u,v}. Then delete vertices a and b, add edge {u,v}, and set k′ = k .

Reduction Rule 16. ([MSZ18], Rule 12) Apply when Rule 14 is no longer applicable.
Let A,B be two 4=2-blocks of G − S . Let the vertices a ∈ Cext(G−S)(A) and b ∈ Cext(G−S)(B)
be such that deдG(a) = deдG(b) = 3 holds. Let P be the unique path in G − S of length at
most three from a to b such that deдG(z) = 2 for every internal vertex z of P . Then remove
all edges in P , add edges {{a,w} | w ∈ NG(b)}, and remove vertex b.

Reduction Rule 17. ([MSZ18], Rule 13) Apply to two 4=2-blocks A,B that share a
common vertex v with NG(v) ⊆ V (A) ∪V (B). Let V (A) = {a,a′,v} and V (B) = {b,b′,v}
be such that Cint(G−S)(A) = {a} and Cint(G−S)(B) = {b}. Then remove vertices a,b,v and
introduce a new vertex v′. Add new edges {a′,v′}, {b′,v′}, {a′,b′}. Set k′ = k .

3.6 Other Rules

Some previous research has also studied reduction rules independent from any subgraphs
(e.g., clique forests). Most of them are fairly simplistic and focus on very narrow cases.
We have found such rules within the work by Prieto [Pri05] and mainly provide them for
completeness. Also notice that Reduction Rule 21 is a generalization of Reduction Rule 20.
Reduction Rule 18. ([Pri05], Rule 1) For a graph G = (V , E), let u ∈ V be a vertex of
degree 0. The problem (G,k)MC is a “yes”-instance if and only if (G′,k)MC is a “yes”-instance,
with G′ being the graph resulting from the removal of vertex u from G.

Reduction Rule 19. ([Pri05], Rule 2) For a graph G = (V , E), let u ∈ V be a vertex
of degree 1. The problem (G,k)MC is a “yes”-instance if and only if (G′,k − 1)MC is a
“yes”-instance, with G′ being the graph resulting from the removal of vertex u from G.

Reduction Rule 20. ([Pri05], Rule 3) For a graph G = (V , E), let u,v,w ∈ V be such
that NG(u) = {v,w} and NG(v) = {u,w} holds. The problem (G,k)MC is a “yes”-instance
if and only if (G′,k − 2)MC is a “yes”-instance, with G′ being the graph resulting from the
removal of vertices u and v from G.
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ReductionRule 21. ([Pri05], Rule 4) For a graphG = (V , E), letu be a vertex of degree 2
in V and let NG(u) = {x,y} with {x,y} ∈ E. The problem (G,k)MC is a “yes”-instance if
and only if (G′,k − 2)MC is a “yes”-instance, with G′ being the graph resulting from the
removal of edges {u, x}, {u,y}, and {x,y} from G.

Reduction Rule 22. ([Pri05], Rule 5) For a graph G = (V , E), let x,y, and z be three
consecutive vertices of degree 2 in V . Let NG(x) = {u,y}, NG(y) = {x, z},NG(z) = {y,v}.
The problem (G,k)MC is a “yes”-instance if and only if (G′,k − 2)MC is a “yes”-instance,
with G′ being the graph resulting from G after the removal of vertices {y, z} and addition
of edge {x,v}.
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4 Reduction Rules

In essence, kernelization is a preprocessing technique characterized by replacing a larger
input instance with a smaller one. The single condition for the replacing instance is that
its solution is able yield a solution for the initial problem in polynomial time. In case
of the Max-Cut problem, most kernelization rules from related works [CJM15] [EM18]
[MSZ18] are actually not de�ned on the general graphs. For example, rules by Etscheid
and Mnich [EM18] are de�ned on clique forest subgraphs. Moreover, some rules are
straightforward and easy to understand, while others are more complicated and generalize
others.

In the next section, we �rst provide a theoretical insight on how to e�ciently determine
the internal vertices of a clique. We use this in a later section to reduce the amount of
candidates for the application of a reduction rule. This theoretical insight is then succeeded
by an introduction of all newly developed reduction rules. For all such rules, we prove
their correctness and outline implementation details where more elaboration is necessary.
After that, we also generalize Reduction Rule 5 from previous works. This speci�cally
includes the removal of the restriction that requires the identi�cation of a clique forest
subgraph. Direct application on the initially given graph is instead made possible. Finally,
we also explain the existing inclusions among all mentioned reduction rules in our work.
We show that only a few reduction rules are crucial to achieve all reducibility.

4.1 Determining Internal Vertices of a Clique

An observation follows that is used across our work to easily determine which vertices
are internal and which ones are external in a clique.

Theorem 4. Let X be a clique in a graph G. It holds that v ∈ Cint(G)(X ) if and only

if ∀w ∈ V (X ) : deдG(v) ≤ deдG(w).

Proof. “ =⇒ ”: Since X is a clique, for each v ∈ Cint(G)(X ) and w ∈ V (X ), the rela-
tionships deдG(v) = |V (X )| − 1 and deдG(w) ≥ |V (X )| − 1 hold. This then naturally
implies deдG(v) ≤ deдG(w) for the same vertices.

“⇐= ”: Let any two vertices v,w ∈ V (X ) exist such that deдG(w) < deдG(v) holds. Due
to deдG(w) ≥ |V (X )| −1, is deдG(v) > |V (X )| −1 and, therefore, isv an external vertex.

The purpose of this theorem is found within the context of developing e�cient algo-
rithms later on. To this end, we introduce Algorithm 2 with running timeO(deд(v)). Notice
that Algorithm 2 does not require the considered subgraphG[S] to be a clique. It holds that a
vertexv ∈ S is internal inG[S] if and only if both of the conditions IsCliqeInternal(G, S,v)
and IsCliqe(G, S) are true. See Algorithm 1 for our implementation of procedure IsCliqe.
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This observation is useful because one can check if a vertex is internal �rst and then ver-
ify the clique property – calculation of this later attribute requires signi�cantly more
time. Furthermore, observe that an internal vertex of a clique is able to induce it wholly
with NG(v) ∪ {v}.

Algorithm 1 Determines if subgraph G[S] is a clique for a given subset S ⊆ V (G).
1: function IsCliqe(G : Graph, S ⊆ V (G)) . Time O(|S |2)
2: for all v ∈ S do
3: for allw ∈ S do
4: if ¬ AreAdjacent(G,v,w) then
5: return falsereturn true

Algorithm 2 Determines if v ∈ S is an internal vertex of clique G[S].
1: function IsCliqeInternal(G : Graph, S ⊆ V (G), v ∈ S ) . Time O(deд(v))
2: for allw ∈ NG(v) do
3: if deдG(w) < deдG(v) then
4: return false
5: return true

4.2 New Reduction Rules

4.2.1 New Rule: Removal of Cliques of Sizen with |Cext(G) | ≤ d
n
2e

As will be evident in the evaluation chapter, the reducibility of induced subgraphs is
signi�cantly in�uenced by the number of external vertices it contains. This observation
led to a new reduction rule for cliques. The idea is to classify all cliques in a graph instance
according to their amount of external vertices. The rule can then wholly remove all cliques
that have at most half of its vertices as external. In the next steps, we state a lemma
followed by the reduction rule. The sole purpose of the lemma is to help us construct a
proof for the reduction rule.

Lemma 5. Let q,a,b ∈ N0 and a + b = q hold. The product a · b is maximized if and only

if |a − b | is minimized (for even q that is |a − b | = 0, and for odd |a − b | = 1).

Proof. Let q ≥ 0. De�ne p(a1,b1) = a1 · b1 for any integers a1,b1 ≥ 0 with a1 + b1 = q.
Consider increasing the value of one parameter by 1 and decreasing the other by the same
amount. Without loss of generality, let a2 = a1 − 1 and b2 = b1 + 1. The solution induced
by these new parameters then equals to p(a2,b2) = p(a1 − 1,b1 + 1) = a1b1 + a1 − b1 − 1.
Trivially, a2 + b2 = q holds.

Fromp(a2,b2) > p(a1,b1) ⇐⇒ a1b1+a1−b1−1 > a1 ·b1 ⇐⇒ a1 > b1+1 we then infer
that, while |a1 − b1 | > 1, one can always �nd integers a2,b2 such that p(a2,b2) > p(a1,b1)
is satis�ed.
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4.2 New Reduction Rules

≡

G G′

Figure 4.1: Application of Reduction Rule 23 on a clique. Vertices marked in red are external.
The equality β(G) = β(G′) + β(K5) = β(G

′) + 6 holds.

Reduction Rule 23. Let G be a graph and G[S], S ⊆ V (G), a clique. If |Cext(G)(S)| ≤
⌈
|S |
2

⌉
,

then β(G) = β(G′) + β(K |S |) holds for graph G′ = (V \Cint(G)(S), E \ E(G[S])).

Proof. Let G = (V , E) be a graph and for the vertex subset S ⊆ V let G[S] be an induced
subgraph that satis�es the conditions of Reduction Rule 23. Meaning, subgraph G[S] is a
clique, n := |S |, and m := |Cext(G)(S)| ≤ d

n
2 e. As stated in the de�nition of the Max-Cut

problem, we search for a bipartition V0,V1 such that we maximize the number of edges
between V0 and V1.

Consider any given 2-coloring of the vertices inCext(G)(S). Put the vertices marked with
color “0” in V0 and those marked with “1” in V1, then the assignment of n −m vertices to a
partition remains.

When solving the Max-Cut problem for G[S] with a given coloring of Cext(G)(S), all
vertices in S \Cext(G)(S) = Cint(G)(S) can be treated “equivalently”. Meaning, all of their
properties are the same: NG(v)∪ {v} = NG(w)∪ {w},∀v,w ∈ Cint(G)(S). No matter in what
order we chose to insert them into V0 or V1, only the actual amount that we add to each is
of importance.

Since G[S] is a clique and every vertex is connected to every other one by an edge, the
size of a maximum cut forG[S] is given by maximizing |V0 | · |V1 |. Using Lemma 5, we know
that this is accomplished by minimizing | |V0 | − |V1 | |. It is therefore su�cient to place the
vertices from Cint(G)(S) in such a way that balances the size of V0 and V1. This balancing is
satis�able through the conditionm ≤ dn2 e: No matter how many vertices from Cext(G)(S)
are placed in either V0 or V1, |Cint(G)(S)| = |S | − |Cext(G)(S)| = n −m ≥ n − n

2 are enough to
balance V0 and V1.

This implies that, regardless on how we partition the vertices in Cext(G)(S), the size of
the maximum cut of G[S] remains the same.

See Figure 4.1 for an example where Reduction Rule 23 is applied. We now proceed to
show that it is possible to �nd all candidates for Reduction Rule 23 in polynomial time.
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Theorem 6. For a graph G = (V , E), all applications of Reduction Rule 23 can be found

in O(|V | · deд2max ) time, where deдmax := max
v∈V (G)

deдG(v).

Proof. Consider a cliqueG[S], S ⊆ V , ofG that satis�es the conditions in Reduction Rule 23.
Meaning, for n := |S | and m := |Cext(G)(S)|, m ≤ dn2 e holds. Also observe that any internal
vertex u of a clique is able to induce all vertices of the clique through {u} ∪ NG(u).

Observe that Iclique(G) := {G[S] | S = {u} ∪ NG(u) and IsCliqe(G, S), u ∈ V (G)}
contains exactly those cliques in G with at least one internal vertex. This is also a superset
of the candidates for Reduction Rule 23, which expects at least one internal vertex for
every candidate. To determine if a member of Iclique(G) allows the application of Reduction
Rule 23 is then reduced to counting how many internal/external vertices it possesses.
As we can calculate Iclique(G) in polynomial time, we can also determine the members
of Iclique(G) on which Reduction Rule 23 is applicable in polynomial time.

Let us analyze Algorithm 3 to prove that it is possible to determine all candidates
inO(|V |·deд2max ) time. The correctness of the given algorithm follows from the observations
in the previous paragraph. Consider the body of the main for-loop. Only a few statements
are possibly in Ω(deдG(v)). One of them is the IsCliqe call on line 13. Although, its time
performance actually lies in O(|NG(v)|

2) = O(deд2max ) because |S | = |NG(v)| + 1 holds and
it is possible to determine if S forms a clique in time O(|S |2). Line 17 can be done in O(|S |)
by checking the size of NG(v) for every vertex v ∈ S . As S is a clique, a vertex v ∈ S is
internal if and only if deдG(v) = |S | − 1 holds.

Algorithm 3 Find all candidates for Reduction Rule 23.
1: function IsCliqe(G : Graph, S ⊆ V (G))
2: for all v ∈ S do
3: for allw ∈ S do
4: if ¬ AreAdjacent(G,v,w) then
5: return falsereturn true
6:
7: function FindAllRule23Candidates(G = (V , E) : Graph)
8: candidates ← ∅
9: for all v ∈ V do

10: if visited[v] then
11: continue
12: S ← {v}

⋃
NG(v) . Time O(|S |)

13: if ¬IsCliqeInternal(G, S,v) ∨ ¬IsCliqe(G, S) then
14: continue
15: for all s ∈ S do
16: visited[s] ← true
17: if |Cext(G)(S)| ≤

⌈
|S |
2

⌉
then . Time O(|S |)

18: candidates .Append(v)

19: return candidates
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Note: In Algorithm 3, we use IsCliqeInternal on line 13 solely for practical perfor-
mance purposes. It may preemptively determine that a vertex cannot be internal in a
clique. This allows us to avoid the expensive IsCliqe call.

4.2.2 New Rule: Reduction of Induced 3-Paths

This is a small but extensive rule to reduce paths while still maintaining that the edges
remain unweighted. As is going to be evident with Reduction Rule 28, the only way to
further shorten the remaining paths is to permit weighted edges in the kernel.
Reduction Rule 24. Let a′abb′ be an induced 3-path in a graph G with NG(a) = {a

′,b}
and NG(b) = {a,b

′}. Construct G′ from G by adding a new edge {a′,b′} and deleting the
vertices a and b. Then β(G) = β(G′) + 2 holds.

Proof. Let S = {a′,a,b,b′}. Two cases exist: Vertices a′,b′ are in the same partition of a
maximum cut (δ1(a′) = 0 and δ1(b′) = 0), and a′,b′ are in di�erent partitions (δ2(a′) = 0
and δ2(b′) = 1).

Consider the �rst case. If only one or both of a and b are in the opposing partition of a′
and b′, then the cut increases by 2. If both a and b are in the same partition as a′ and b′

then the size of the cut stays the same. Therefore, βδ1(G[S]) = 2 holds in total.
In the second case, by coloring a with “1” and b with “0” we get that βδ2(G[S]) = 3 holds.

A larger increase is not possible as all edges of G[S] are being accounted for.
Due to βδ1(G[S]) = βδ1(G′[S])+ 2 and βδ2(G[S]) = βδ2(G′[S])+ 2 being true, regardless of

in which partitions a′ and b′ are placed in, the change by this reduction rule always implies
the same constant di�erence between β(G) and β(G′). We deduce that β(G) = β(G′) + 2
holds.

See Figure 4.2 for a visual representation of the reduction rule.

G G′

≡a′ a b b′ a′ b′

Figure 4.2: Application of Reduction Rule 24. The equality β(G) = β(G′) + 2 holds.

4.2.3 New Rule: Clique Amount Increase

As seen with Reduction Rule 23, it is possible to remove a large variety of cliques in the
graph. Within a later section, another rule reliant on cliques is introduced (see Reduction
Rule 5+w=1). sDue to this presence of reduction rules that need cliques, we have further
expanded onto this by developing a rule that is able to form additional cliques in the graph.
Reduction Rule 25. Let G be a graph and let G[S], S ⊆ V (G), be a subgraph in G such
that it can be transformed into a clique with the addition of a single edge e′ between
two internal vertices. De�ne G′ = G + e′. If the value of |S | is odd or |Cint(G)(S)| > 2,
then β(G) = β(G′) holds.

27



4 Reduction Rules

Proof. Our goal is to show that for all 2-colorings δ of Cext(G)(S), a maximum cut of G
exists such that the endpoints of e′ are in the same partition. To do so, consider any
2-coloring δ of Cext(G)(S). We show that βδ (G[S]) remains the same – whether e′ exists or
not. As this is being shown for any 2-coloring δ and no edges in G[Cext(G)(S)] are changed,
Lemma 2 and 3 imply that β(G) then also remains the same.

Let δ be any 2-coloring of Cext(G)(S). We proceed to create a bipartition V0,V1 that
describes a maximum cut. Meaning, we maximize E(V0,V1).

Initially, set Vc = {x ∈ Cext(G)(S) | δ (x) = c} and de�ne zc := |Vc |, both for c ∈ {0, 1}.
Without loss of generality, assume z0 ≤ z1. Next, insert both endpoints of e′ into V0.
Notice that the value of E(V1,V2) is now equal to |V1 | · |V2 |. This product always describes
a maximum cut when maximized – one cannot insert any more edges between V0 and V1.
We distinguish between two cases. First case is z0 < z1 and second is z0 = z1.

Consider the �rst case. The addition of both endpoints of e′ into V0 contributes towards
minimizing | |V0 | − |V1 | | – which is the goal when desiring to maximize |V0 | · |V1 | (see
Lemma 5). As all other vertices of Cint(G)(S) can be freely distributed, a way to achieve the
maximum cut without the edge e′ exists. We accomplish that by distributing the vertices
of Cint(G)(S) in a way that minimizes | |V0 | − |V1 | |. This can be done by greedily taking the
vertices from Cint(G)(S) and inserting them into the less populated partition.

Next, the case z0 = z1 is considered. As both endpoints of e′ are inserted into V0, the
state |V0 | = |V1 | + 2 arises. To balance this, at least one more internal vertex is required.
Such a vertex necessarily exists when |S | is odd or |Cint(G)(S)| > 2. Therefore, one can
analogously proceed as in the �rst case by greedily distributing each vertex of Cint(G)(S)
into the less populated partition.

See Figure 4.3 for a visual representation of the reduction rule.

≡

G G′

Figure 4.3: Application of Reduction Rule 25 on a subgraph. Vertices marked in red are
external. The equality β(G) = β(G′) holds.

4.2.4 New Rule: Removal of an Edge in Cliques

As it is possible that some cliques are irreducible by any rules known to us, we also want to
apply a reversed application of Reduction Rule 25. This does not reduce the vertex set nor,
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as our experiments indicate, cause further possible applications of other rules. However, it
is able to counteract unnecessary additions of edges by Reduction Rule 25 and possibly
remove certain edges from the graph.

Reduction Rule 26. LetG be a graph and letG[S], S ⊆ V (G), be a clique inG . If the value
of |V | is odd or Cint(G)(S) > 2, an edge between two vertices of Cint(G)(S) is removable.
That is, β(G) = β(G′) for G′ = (V , E \ {e}), e ∈ E(G[Cint(G)(S)]) holds.

Proof. Follows from proof of Reduction Rule 25.

4.2.5 New Rule: Common Clique in Adjacency

The following reduction rule is closely related to the upcoming generalization of Reduction
Rule 5 (see Section 4.3). It is able to further reduce the case where |X | = |NG(X )| is true for
a clique G[X ] of G . In comparison, the generalization of Reduction Rule 5 is able to handle
the case |X | > |NG(X )|. Due to the degree by which these rules are similar, they are also
merged together in our implementation, as the techniques to handle both are the same.

Reduction Rule 27. Let X be the vertex set of any clique in a graph G and let the
conditions |X | = |NG(X )| ≥ 1 and NG(X ) = NG(x) \ X for all x ∈ X be true. Create G′

fromG by removing an arbitrary vertex of X . The equality β(G) = β(G′)+ |X | then holds.

Proof. Let S := X ∪ NG(X ) and observe that Cext(G)(S) ⊆ NG(X ) – the removal of the
vertices in NG(X ) disconnects X from the remainder of the graph. We proceed to show a
way to determine a maximum cut of G[S] for all possible colorings of NG(X ). This is then
used as an intermediate step to prove the validity of the reduction rule.

Let δ be any 2-coloring of the vertices in NG(X ). SetVc = {x ∈ Cext(G)(S) | δ (x) = c} and
de�ne zc := |Vc |, both for c ∈ {0, 1}. We then distribute the vertices of X among V0 and V1
in order to create a bipartition of all vertices in S . Furthermore, we want to do this in a way
that maximizes E(V0,V1). Notice that every vertex inX is connected to all other vertices in S .
We can therefore express the size of a cut with p(c0, c1) = c0z1 + c1z0 + c0c1 + |E(V0,V1)|,
where c0 and c1 denote the amount of vertices within X that we want to insert into
partition V0 and V1, respectively. This can be equivalently expressed as the following
function p(c0, c1) = (z0 + c0) · (z1 + c1) − z0z1 + |E(V0,V1)|. Observe that the crux of the
problem is then to maximize the expression (z0+c0) · (z1+c1) as all other terms are constant.
Finally, use Lemma 5 to see that (z0 + c0) · (z1 + c1) is maximized when | |z0 + c0 | − |z1 + c1 | |
is minimized.

Due to |X | = |NG(X )|, it is always possible to distribute the vertices of X in a way that
achieves |z0 + c0 | = |z1 + c1 | = |X |, which then maximizes p(c0, c1). Let us accordingly
distribute the vertices ofX amongV0 andV1. Subsequently, no matter from which partition
we remove a single vertex of X , the size of a maximum cut of G will change by −|X |. To
show this, without loss of generality, let that one removed vertex be from the partition V0.
Then |X | + |NG(X )| is odd and | |z0 + (c0 − 1)| − |z1 + c1 | | = 1. Meaning, the value
of p(c0 − 1, c1) = p(c0, c1) − |X | describes the size of a maximum cut after that one vertex
is removed. See Lemma 5 again in support of this last step.

29



4 Reduction Rules

G G′

≡

X

Figure 4.4: Application of Reduction Rule 27. The equality β(G) = β(G′) + |X | = β(G′) + 2
holds.

See Figure 4.4 for a visual representation of the reduction rule. Next, we discuss an
algorithm to calculate all applications in linear time.

4.2.5.1 Linear Time Algorithm to Identify Candidates

The following algorithm is inspired by a similar approach as utilized by Etscheid and
Mnich [EM18] for Reduction Rule 5. Let G = (V , E) be a graph. In this section, we show
an algorithm that identi�es all candidates of Reduction Rule 27 in linear time.

First presented is a linear time algorithm that orders the adjacencies of all vertices. That
is, for every vertex v ∈ V (G), the vertices in NG(v) are sorted according to a numeric
identi�er assigned to every vertex. To accomplish that, create an auxiliary array of empty
lists of size |V |. Traverse then the vertices w ∈ NG(v) for every vertex v ∈ V (G) and insert
each pair (v,w) in a list identi�ed by indexing the auxiliary array with w . After that is
done, iterate once over the array from the lowest identi�er to the highest and recreate the
graph with sorted adjacencies. In total, this process takes O(|V | + |E |) time.

For any clique X of G that satis�es Reduction Rule 27, the ful�llment of the condi-
tion ∀x1, x2 ∈ V (X ) : NG(x1) ∪ {x1} = NG(x2) ∪ {x2} is required. This can be utilized to
identify the applicability of tries [Fre60][De 59] in order to partition all vertices accordingly.

A trie supports two operations, Insert(key,val) and Retrieve(key). The key parameter
is an array of integers and val is a single integer. Function Retrieve returns all inserted
values by Insert that have the same key.

For vertex v ∈ V (G), we use the ordered set NG(v) ∪ {v} as key and v as the val
parameter. Notice that NG(v) is already sorted. The key NG(v)∪ {v} can be then computed
through an insertion of v in the sequence NG(v) in time O(|NG(v)|).

After Insert(NG(v) ∪ {v},v) is done for every vertex v ∈ V (G), each trie leaf contains
all vertices that satisfy the desired condition of Reduction Rule 27. Meaning, for every
pair of vertices x1, x2 of a trie leaf, the condition NG(x1) ∪ {x1} = NG(x2) ∪ {x2} holds.
All that remains for us to verify is if the vertex set X of each leaf is a clique. This can
be accomplished in O(|E(X )|). As each such vertex set X has to be considered exactly
once and the graph is fully partitioned, the summarized time complexity until this point is
in O(|V | + |E |).
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Lastly, we outline that |NG(X )| equals to deд(x) − |X | for x ∈ X . This is the last
information that is required to check if |X | > max{NG(X )|, 1} holds, which concludes all
requirements we need to check for the satis�ability of Reduciton Rule 27.

In Chapter 6, we then also describe a timestamping system that assists the above
procedure in not having to repeatedly check the same structures after any amount of
vertices and edges are added or removed from G. However, in those later applicability
checks, we disregard sorting the adjacencies of all vertices in linear time again. Rather we
simply use a comparison based sort on the adjacencies.

4.2.6 New Rule: Weighted Path Compression

This is the only reduction rule addressed by us whose application leads to a Weighted
Max-Cut problem. We introduce it to later support its importance through experiments.
It will be shown that it is crucial to permit weighted edges in the results in order to achieve
small kernels.
Reduction Rule 28. Let G be a graph, w : E → Z a weight function, and aba′ any
2-path with NG(b) = {a,a

′}. Let e1 be the edge between vertex a and b; let e2 be the
one between b and a′. Construct G′ from G by deleting vertex b and adding a new
edge {a,a′} with w′({a,a′}) = max{w(e1),w(e2)} − max{0,w(e1) + w(e2)}. Then the
equality β(G,w) = β(G′,w) +max{0,w(e1) +w(e2)} holds.

Proof. Consider the bipartition V0 ∪ V1 = V (G) of a maximum cut of G, and let the 2-
path aba′ satisfy the conditions of the rule. Meaning, NG(b) = {a,a

′}. Consider two cases:
The endpoints of the path are in the same partition of a maximum cut (a,a′ ∈ V0), and
the endpoints are in di�erent partitions (a ∈ V0,a′ ∈ V1). Then, depending on where b is
placed, the change on the size of a maximum cut can be identi�ed. We always place b in
such a way that maximizes the increase by that change.

1. Case a,a′ ∈ V0. Depending on if b ∈ V0 or b ∈ V1, the 2-path contributes 0 or
w(e1) +w(e2) to the size of a maximum cut, respectively.

2. Case a ∈ V0,a′ ∈ V1. Depending on if b ∈ V0 or b ∈ V1, the 2-path contributes w(e2)
or w(e1) to the size of a maximum cut.

To handle the �rst outlined case, we initially assume that the endpoints a and a′ are
placed in the same partition within a maximum cut. Therefore, by considering both
placements of b, an increase of max{0,w(e1) +w(e2)} is present on the size of a maximum
cut. Our approach then consists of adding that value outright to the size of the maximum
cut and subtract the same value from the edge weight between a and a′. Then, when a
and a′ are instead placed in di�erent partitions of a maximum cut, we nullify the initially
made assumption through the added subtraction on the weight of the edge.

In the second case, we add max{w(e1),w(e2)} to the edge weight between a and a′. This
accounts for best placement of b when a and a′ are in di�erent partitions of a cut. With
this, we can now summarize everything as β(G,w) = β(G′,w′) + max{0,w(e1) +w(e2)}
with w′({a,a′}) = max{w(e1),w(e2)} − max{0,w(e1) + w(e2)} and w′(e) = w(e) for all
other edges e ∈ E(G) \ {{a,b}, {b,a′}}.
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See Figure 4.5 for a visual representation of the reduction rule.

G

w(e1) w(e2)

G′

w′({a, a′})≡a a′b a a′

Figure 4.5: Application of Reduction Rule 28 on a 2-path aba′ with NG(b) = {a,a
′}.

The equations w′({a,a′}) = max{w(e1),w(e2)} − max{0,w(e1) + w(e2)}
and β(G,w) = β(G′,w′) +max{0,w(e1) +w(e2)} hold.

4.3 Generalization of Reduction Rule 5

This rule is related to Reduction Rule 5 (Rule 8 by Crowston et al. [Cro+13]). A version
only supporting the unweighted case was also previously introduced by Crowston, Jones,
and Mnich [CJM15]. We restate Reduction Rule 5 for reference.

Reduction Rule 5. ([Cro+13], Rule 8) Let (G, l) be a signed graph andC a block inG−S .
If there is a X ⊆ Cint(G−S)(C) such that |X | > |V (C)|+|NG (X )∩S |

2 ≥ 1, N +
G,l
(x) ∩ S = N +

G,l
(X ) ∩ S

and N −
G,l
(x) ∩ S = N −

G,l
(X ) ∩ S for all x ∈ X , then delete two arbitrary vertices x1, x2 ∈ X

and set k′ = k .

In this section, we show that this rule has an equivalence to another rule that has to
consider a signi�cantly smaller set of parameters. Furthermore, this new rede�nition of
the rule will allow us to determine all occurrences of the rule, regardless of S and the
clique forest G − S . Meaning, after the exhaustive application of this equivalent rule, one
can compute any S and Reduction Rule 5 will not be further applicable on G − S .

We proceed to prove this rede�nition only for when all edges are unweighted. All our
�ndings from this point on can also be extended to the signed variant of the Max-Cut
problem. Moreover, our actual implementation for this rule does also include the capability
of handling signed graphs. We have left these steps out as we believe that they solely rely
on getting the technicalities right. The unweighted and signed version of the reduction
rule follow, respectively.

ReductionRule 5+w=1. LetX be the vertex set of a clique inG with |X | > max{|NG(X )|, 1}
and NG(X ) = NG(x) \ X for all x ∈ X . Construct the graph G′ by deleting two arbitrary
vertices x1, x2 ∈ X from G. The equality β(G) = β(G′) + |NG(x1)| holds.

Reduction Rule 5+. Let X be the vertex set of a clique in a signed graph (G, l) such
that ∀e ∈ E(X ) : l(x) = “−”. Let also |X | > max{|NG(X )|, 1}, N +G,l (X ) = N +

G,l
(x) \ X ,

and N −
G,l
(X ) = N −

G,l
(x) \ X hold for all x ∈ X . Construct the graph G′ by deleting two

arbitrary vertices x1, x2 ∈ X from G. The equality β(G) = β(G′) + |NG(x1)| holds.
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4.3 Generalization of Reduction Rule 5

4.3.1 Proof of Equivalence

We proceed to show the validity of Reduction Rule 5+w=1. First, a theorem is introduced
to outline our goal in this section: We want to show that every application of Reduction
Rule 5 can be be also covered by Reduction Rule 5+w=1.

Theorem 7. Let S be any vertex set such thatG−S is a clique forest. LetC be a block inG−S

with X ⊆ Cint(G−S)(C) such that |X | > |V (C)|+|NG (X )∩S |
2 ≥ 1, and NG(x) ∩ S = NG(X ) ∩ S for

all x ∈ X . Therefore, conditions of Reduction Rule 5 are satis�ed. Then clique X also satis�es

the requirements of Reduction Rule 5
+
w=1.

A proof for this theorem follows through multiple lemmas and observations. First, a
lemma is given to more precisely specify the clique forests on which it is su�cient to
apply Reduction Rule 5. To do so, we show that for every possible application of Reduction
Rule 5, we are able to reduce the requirement of a clique forest to a single clique. The rule
is then applicable on this clique in the same way it is on the clique forest, without having
any e�ects on the outcome of the application, nor its capabilities in reducing the graph.

Lemma 8. Let S1 ⊆ V (G) be such that G − S1 is a clique forest. Furthermore, let a block C
in G − S1 and a vertex set X ⊆ Cint(G−S1)(C) exist that satisfy Reduction Rule 5. Meaning,

the conditions |X | > |V (C)|+|NG (X )∩S1 |
2 ≥ 1, and NG(x) ∩ S1 = NG(X ) ∩ S1 for all x ∈ X are

satis�ed. Then the same C and X can be selected inG − S2 for S2 = V (G −C) with Reduction

Rule 5 remaining applicable.

Proof. First, we are required to show that G − S2 is a clique forest for Reduction Rule 5 to
be applicable. This is trivial as G − S2 = G − (G −C) = C is a clique, and therefore a clique
forest too. Observe that X ⊆ Cint(G−S1)(G[C]) ⊆ C = Cint(G−S2)(G[C]) holds. This implies
that the same C and X remain selectable in this new clique forest G − S2.

The last thing we need to consider is a change in NG(X ) ∩ S2 compared to NG(X ) ∩ S1.
From C ⊆ G − S1 the following holds: S1 = G − (G − S1) ⊆ G − C = S2. This implies
that S1 ⊆ S2 and NG(X ) ∩ S1 ⊆ NG(X ) ∩ S2 is true. It therefore su�ces to look at
vertices w ∈ (NG(X ) ∩ S2) \ (NG(X ) ∩ S1) when investigating the di�erences.

• Membershipw ∈ G −S1 has to hold. If not, thenw ∈ S1 would imply a contradiction.
Fromw ∈ NG(X )∩S2, it follows thatw ∈ NG(X ) andw ∈ S2 hold. Due tow ∈ S1, the
membership w ∈ NG(X ) ∩ S1 also applies. This cannot be true because w is chosen
from (NG(X ) ∩ S2) \ (NG(X ) ∩ S1).

• But, also w < C as S2 = V (G −C) holds.

• In total, this implies w < C = G − S2 ⊆ G − S1 3 w .

These vertices then include those in the clique forestG − S1, but not part of the cliqueC .
Such a vertex w can have at most one edge incident to C , as otherwise C ∪ {w} would
form a block (and not C). Alas, due to |X | > 1 and the requirement on w to be connected
with all vertices of X ⊆ C , it cannot be that w has only a single edge connected to.

This means that no such vertices w ∈ (NG(X ) ∩ S2) \ (NG(X ) ∩ S1) can exist and
that NG(X ) ∩ S2 = NG(X ) ∩ S1 holds. As the size ofC and X do not change, and due to the
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latest observation on the neighboring set of X , Reduction Rule 5 remains applicable in the
same way.

With Lemma 8 we now acquire the possibility of fully disregarding the need to initially
select an S for G − S to be a clique forest. Instead, we select any clique C and de�ne the
marked vertex set S = V (G −C). We proceed to further simplify the rule.

Lemma 9. Let C be a clique in a graph G. Furthermore, let X ⊆ V (C) and S = V (G −C)

such that |X | > |V (C)|+|NG (X )∩S |
2 ≥ 1 and NG(x) ∩ S = NG(X ) ∩ S for all x ∈ X . Therefore,

conditions of Reduction Rule 5 are satis�ed. Then |X | > |X |+|NG (X )∩SX |
2 ≥ 1 for SX = V (G −X )

holds.

Proof. Consider the two cases: X ⊂ V (C) and V (C) = X . The case V (C) = X is trivial.
Therefore, assume X ⊂ V (C). Since both C and X are cliques, w ∈ V (C − X ) implies
both w ∈ NG(X ) and w ∈ NG(x) for all x ∈ X . Due to this and SX = V (C − X ) ∪ S being
true, for any suchw ∈ V (C −X ) the equation NG(X )∩ (S ∪{w}) = NG(x)∩ (S ∪{w}) holds
for all x ∈ X . These observation can be then summarized into NG(X ) ∩ SX = NG(x) ∩ SX
for all x ∈ X being satis�ed.

With this, it is now possible to infer the following:

|X | >
|C | + |NG(X ) ∩ S |

2 =
(|X | + |V (C − X )|) + (|NG(X ) ∩ SX | − |V (C − X )|)

2

=
|X | + |NG(X ) ∩ SX |

2 > 1.

Lemma 8 and 9 now let us select any clique X in G, and by de�ning S = V (G − X ), we
are able to cover all cases on which Reduction Rule 5 is applicable. Furthermore, we can
reform the inequality:

|X | >
|X | + |NG(X ) ∩ S |

2 > 1 ⇐⇒ 2|X | > |X | + |NG(X ) ∩ S | > 2

⇐⇒ |X | > |NG(X ) ∩ S | > 2 − |X | ⇐⇒ |X | > |NG(X )| > 2 − |X |.

Last transformation holds due to S = V (G − X ). Moreover, the inequality can be also
written as |X | > |NG(X )| ∧ |X | > 1 or |X | > max{NG(X ), 1}. This all together now
concludes the proof of Theorem 7. One last thing that remains to be shown in Reduction
Rule 5+w=1 is the correctness of the change in the cut: β(G) = β(G′) + |NG(X )|.

Already proven in previous work is that Reduction Rule 5 in�icts no change on the param-
eter k in the problem (G,k)AEE. That is, (G,k)AEE is satis�able if and only if (G′,k)AEE is sat-
is�able. This knowledge helps us to deduce the change in cut for problem instance (G,k)MC
when applying the rule.

We know that for some value k , the equalities β(G) = EE(G)+k and β(G′) = EE(G′)+k
hold. By solving β(G) − β(G′), we can deduce the change in the size of a maximum cut
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between G and G′. The order of vertex removal is crucial in the following calculation.
Without loss of generality, let x1 be the vertex that is removed �rst by the reduction rule
and let x2 be the second one. We now proceed with the expansion of β(G) − β(G′):

β(G) − β(G′) = EE(G) − EE(G′) =
|E(G)|

2 +
|V (G)| − 1

4 −

(
|E(G′)|

2 +
|V (G′)| − 1

4

)
.

Observe that we created G′ by removing x1, x2 ∈ X from G. Therefore, the equa-
tions |E(G′)| = |E(G)| − |NG(x1)| −(|NG(x2)| −1) and |V (G′)| = |V (G)| −2 hold. We subtract
one from |NG(x2)| because the removal of x1 already accounts for the edge {x1, x2}. The
above equation further equals to the following:

|E(G)|

2 +
|V (G)| − 1

4 −

(
|E(G)| − |NG(x1)| + (|NG(x2)| − 1)

2 −
(|V (G)| − 2) − 1

4

)
=
(|V (G)| − 1) − |V (G)| + 2 + 1

4 −
−|NG(x1)| − (|NG(x2)| − 1)

2 .

Lastly, we utilize that NG(x1) = NG(x2) holds to further equate the expression to:

2
4 −
−|NG(x1)| − |NG(x1)| + 1

2 =
2
4 −
−2|NG(x1)| + 1

2 =
2
4 −

1
2 + |NG(x1)| = |NG(x1)|.

With this, we have now wholly proven the correctness of Reduction Rule 5+w=1. An
almost equivalent approach as in Section 4.2.5.1 can be used to �nd all candidates of this
reduction rule in linear time.

4.4 Inclusions Among Reduction Rules

In this section, we explain existing inclusions among the mentioned reduction rules in
our work. Note that, even if the e�ects of a reduction rule can be fully encompassed by
another rule, it still possesses potential utility for other rules. See Figure 4.6. Although,
such cases are not present among the following inclusions.

|G| > |Gx| > |Gy| > |Gxz|
X Z

Y

Figure 4.6: Depiction of an exemplary inclusion hierarchy among reduction rules. Even
though rule X’s e�ects are included in Y, a rule Z might potentially exist that
could build upon the e�ects of X to lead to even better results.
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4.4.1 Reduction Rule 1 and 19 ⊆ Reduction Rule 23

Both of these rules describe the removal of a single vertex that is connected to the remainder
of the graph by one edge. For a given graph G, let u ∈ V (G) be such a removable
vertex, and let {u, x} ∈ E(G), x ∈ V (G), be the corresponding edge. Consider now the
subgraph G[{u, x}]. It is a clique and Reduction Rule 23 is applicable on it. Its application
yields the same e�ects as Reduction Rule 1 and 19.

4.4.2 Reduction Rule 2 and 11 ⊆ Reduction Rule 23

These rules are addressing the reduction of a clique with at most one external vertex.
Therefore, Reduction Rule 23 can optimally handle this case.

4.4.3 Reduction Rule 3 ⊆ Reduction Rule 27 and 5+w=1
Consider a clique X of G on which the Reduction Rule 3 is applicable. Therefore, |X | > 1
holds and only two vertices x1 , x2 ∈ V (G − X ) are connected with X . They form the
following cliques: X ∪ {x1} and X ∪ {x2}. Meaning, X is also a clique. With this, and
from NG(X ) = {x1, x2}, it is possible to deduce that this reduction rule is a special case of
Reduction Rule 27 and 5+w=1.

4.4.4 Reduction Rule 4 and 9 ⊆ Reduction Rule 23

Notice that Reduction Rule 4 is a generalization of Reduction Rule 9: The 4≤2-blocks are
of odd size and contain at most two external vertices. Therefore, they fully ful�ll the
requirements of blocks X and Y in Reduction Rule 4. Furthermore, the application of both
rules on two 4≤2-blocks also leads to the same result: A K5 clique with at most 3 external
vertices.

Consider now only Reduction Rule 4. Let X and Y be two odd sized blocks of G − S
with at most two external vertices, of which one is shared by both. Meaning, the two
expressions 1 ≤ |Cext(G)(X ) |, |Cext(G)(Y ) | ≤ 2 and X ∩ Y = {z} are true. The two blocks X
and Y are now such that Reduction Rule 4 is applicable on them.

In any case, the application of the rule leads to a Kn clique with dn2 e external vertices.
Notice that the result must not always be aK5 clique as the vertices x,y, and z may collapse
into each-other. Also, even though the clique decreases in size with the collapse, so does
the amount of external vertices. This means that Reduction Rule 23 remains applicable to
this result, leaving only the external vertices x,y, and z still intact.

Observe that Reduction Rule 23 could have been also simply applied to X and Y directly,
leading to the same result. Therefore, the same outcome is begin achieved without the
need for Reduction Rule 4 (and 9).

4.4.5 Reduction Rule 6 ⊆ Reduction Rule 23

Similarly as in the previous case, this one can also be handled by Reduction Rule 23. Let G
be a given graph and S ⊆ V (G) be such that G − S is a clique forest. Also, let the following
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be given for the applicability of Reduction Rule 6: C a block in G − S with |V (C)| being
even, and X ⊆ Cint(G−S)(C) with |X | = |V (C)|2 .

From NG(X ) ∩ S = ∅ it follows that Cint(G)(C) = Cint(G−S)(C) holds. This is because the
inclusion of vertices from S cannot turn members of Cint(G−S)(C) to become external. This
observation implies that clique C has at least half of its vertices as internal. Which, in
turn, implies the applicability of Reduction Rule 23 on C . The only distinction remaining
between those two rules is on the amount they remove. Reduction Rule 23 removes all
edges of the clique, and all internal vertices. Reduction Rule 6 removes only a single
internal vertex. This also turns |V (C)| to an odd value, making further application of the
same rule not viable. In any case, Reduction Rule 23 will also remove that single vertex,
and more.

4.4.6 Reduction Rule 10, 12, and 13 ⊆ Reduction Rule 23 and 24

Let us consider a component-block (connected component and block) C of G − S that
satis�es Reduction Rule 10. Therefore, C is either an odd cycle, K2, or K1.

Let there be a vertex s ∈ S such that |NG(s) ∩V (C)| ∈ {1, 2}. Trivially, we may ignore
the case of C being K2 or K1 as these reductions are equivalently covered by Reduction
Rule 23. Therefore, it remains to consider C as a cycle.

According to Rule 10, such a C is removable. Notice that the component C is solely
connected through s with the remaining components of the graph. In total, we have a
cycle C in G with |Cext(G)(C)| ≤ 2.

To handle the case |Cext(G)(C)| ≤ 1, compress the cycle’s edges with Reduction Rule 24
until 3 edges are left. As the cycle is of odd size and in each application the cycle is reduced
by exactly 2 edges, this is possible. After this, simply apply Reduction Rule 23 to remove
the resulting triangle.

The case |Cext(G)(C)| = 2 can be similarly handled. Let Cext(G)(C) = {x,y}. Instead of
compressing the cycle’s edges, compress the two path’s edges on the cycle, going from x
to y. A triangle with two external vertices is the results. Apply Reduction Rule 23 in this
instance too.

For Reduction Rule 12 and 13 the same techniques can be used to show that Reduction
Rule 24 and 23 cover them.

4.4.7 Reduction Rule 14 and 22 ⊆ Reduction Rule 24

Both of these rules perform the same set of reductions: They transform an induced 4-path
to a path of length 2. Although, Reduction Rule 24 is able to reduce any induced 3-path a
single edge. This then trivially implies that it is also able to reduce induced 4-paths in the
same way Reduction Rule 14 and 22 are able to: By compressing a 3-path within the 4-path
to a single edge.
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4.4.8 Reduction Rule 15 ⊆ Reduction Rule 24

Consider a D-block C = {a,b, c,u,v} of G − S as de�ned within the reduction rule. Then,
the application of Reduction Rule 15 on C and the application of Reduction Rule 24 on the
3-path uabv lead to the same result.

4.4.9 Reduction Rule 16 and 17 ⊆ Reduction Rule 23

Both of these rules can be optimally handled by �rst fully removing the two 4=2-blocks,
followed by the removal of the isolated path left behind, if it exists. All of these e�ects are
possible to handle Reduction Rule 23.

4.4.10 Reduction Rule 18, 20, and 21 ⊆ Reduction Rule 23

Trivially covered by Reduction Rule 23.

4.5 Scaled Reduction Rules

Additionally done by us is weighted scaling of two reduction rules. That is, we extend
their applicability from an unweighted subgraph to a subgraph where all edges have the
same weight c ∈ R. We do this for Reduction Rule 23 and Reduction Rule 25.

For example, Reduction Rule 23 is explicitly de�ned on unweighted graphs. It removes
cliques that have at most half of its vertices as external and establishes the relation-
ship β(G) = β(G′) + β(K |S |), where G is the initially given graph and G′ is the result of
removing the clique G[S] from G. If every edge in such a clique had the weight c , the
relationship would actually equal to β(G) = β(G′) + c · β(K |S |). This then implies the
possibility of also de�ning reduction rules that are equivalently applicable on subgraphs
with uniform weights.

While this outlined generalization might seem too speci�c to yield any bene�t, it does
have a signi�cant impact on the instances of image segmentation – as seen later in the
evaluation chapter. The de�nition of the two scaled reduction rules follows.

Reduction Rule 23w=c . Let (G,w) be a weighted graph and letG[S], S ⊆ V (G), be a clique
with w(e) = c for every edge e ∈ E(G[S]) and some constant c ∈ R. If |Cext(G)(S)| ≤

⌈
|S |
2

⌉
,

then β(G,w) = β(G′,w′)+ c · β(K |S |) holds for graphG′ = (V \Cint(G)(S), E \ E(G[S])) with
weight function w′(e) = w(e) for every e ∈ E(G′)

Reduction Rule 25w=c . Let (G,w) be a weighted graph and let G[S], S ⊆ V (G), be
a subgraph in G such that it can be transformed into a clique with the addition of a
single weighted edge e′ between two internal vertices. Furthermore, let w(e) = c hold
for every edge e ∈ E(G[S]) and some constant c ∈ R. De�ne G′ = G + e′, w′(e) = c ,
and w′(e) = w(e) for every other e ∈ E(G′). If the value of |S | is odd or |Cint(G)(S)| > 2,
then β(G,w) = β(G′,w′) holds.
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4.6 Non-Utilized Reduction Rules

4.6 Non-Utilized Reduction Rules

We have decided to exclude the evaluation of two reduction rules from previous works.
Those are Reduction Rule 7 and 8. Reduction Rule 7 is not utilized because both of its cases
can be covered by Reduction Rule 23 and our tests have shown that the bridge case (which
no other rules can handle) yields no utility. Even more, the tested real-world instances
only performed worse under its in�uence.

Reduction Rule 8 is not utilized because we regard that technique to be more relevant
for algorithms solving the Max-Cut problem, not performing kernelization. This rule
describes a way to solve a type of subgraphs containing a single external vertex. However,
being able to determine a maximum cut of any subgraph with a single external vertex
makes it possible to remove it. Meaning, each of them actually represent a Max-Cut
instance by themselves. In the same spirit, one could have utilized previous works on how
to solve a wide range of Max-Cut problems to speci�cally address such cases. Another
reason for our decision is that Reduction Rule 8 seems to require a very speci�c structure of
its applicability. A single vertex has to be connected to every vertex of a larger component,
which is required to be of a structure that is a polynomial time solvable Vertex-Weighted
Max-Cut instance. Moreover, it would have to consist of more than a single clique, as
otherwise Reduction Rule 23 would be able to handle it.
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5 Transformation BetweenMAX-CUT
Problem Variations

The introduced transformations in the upcoming subsections each represent a single
approach on how to convert a Max-Cut instance into another. We settled on a way that
seemed intuitively well for our needs and that is able to exhaustively process paths and
edges.

5.1 Signed to Weighted

An Unweighted Max-Cut instance can be solved as a Signed Max-Cut problem by
labeling all edges with “−”. While this does not work the other way around, it is possible to
represent a Signed Max-Cut problem as an instance of the Weighted Max-Cut problem.
To do so, assign to every “+” edge the weight −1 and to every “−” edge the weight +1.
Let (G,w) be the weighted graph resulting from this transformation. The size of a maximum
cut for the Signed Max-Cut problem on (G, l) is then given by β(G, l) = β(G,w)+ |E+(G, l)|.

Proof. The Signed Max-Cut problem consists of �nding an S ⊆ V (G) such that the size of
the cut as given by β(G, l) = |E−

G,l
(S,V \ S)| + |E+(G[S], l) ∪ E+(G[V \ S], l)| is maximized.

The section where “−” edges are turned into edges with weight +1 does not a�ect the
relation between β(G, l) and β(G,w) – both variations increase the cut under the same
circumstances. Consider now the “+” edges. Each of them increases the size of the cut
by one if its endpoints are placed into the same partition. Let us actually assign to each
such edge the weight −1 for the Weighted Max-Cut problem. In total, this is being done
for |E+(G, l)| edges. The Weighted Max-Cut problem now penalizes each edge whose
endpoints are in di�erent partitions by decreasing the size of the cut by one, and does
nothing otherwise. In the same case, the Signed Max-Cut withheld an increase on the size
of the cut by one, and increased it by one otherwise. Therefore, the maximization of the
former case equivalently maximizes the later one. Both values are only o�set by |E+(G, l)|.
This explains the relation β(G, l) = β(G,w) + |E+(G, l)| among the two variations of the
Max-Cut problem.

5.2 Weighted to Unweighted

In some limited scope, it is of use to transform weighted edges into unweighted “gad-
get” components. Meaning, for an edge with weight w , we expand the graph by O(w)
edges/vertices. This particularly applies to signed graphs, where the resulting conversion
into a weighted instance is small in absolute value.
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5 Transformation Between Max-Cut Problem Variations

For a given graph G with edge weights w : E → Z, we want to compute an unweighted
graph G′ such that β(G) = β(G′) + z holds for some z ∈ Z. We compute the required value
of z incrementally. Initially, set z = 0. Our approach then iterates over all edges e ∈ E(G)
and di�erentiates between three cases in its conversion. Let e = {u,v}.

5.2.1 Case w(e) = 1

This is already an unweighted edge. Just add the same edge e to G′.

5.2.2 Case w(e) > 1

In this case, a single unweighted edge e is added to G′ and the following steps are re-
peated i = 1 . . .w(e) − 1 times:

1. Create two verticesmi,1,mi,2;

2. Add edges {u,mi,1}, {mi,1,mi,2}, {mi,2,v} to the graph G′;

3. z ← z − 2.
These are valid as applying the path compression by Reduction Rule 24 completely

removes the e�ects by this change., which also proves the equivalence of this conversion.
See Figure 5.1 for an example and further elaboration.

3 ≡u v u v

G G′

Figure 5.1: Transformation of an edge e with weight w(e) = 3 into an unweighted
(sub)graph is presented. The equality β(G) = β(G′) − (w(e) − 1) · 2 = β(G′) − 4
holds. To deduce this relationship, apply Reduction Rule 24 on the two un-
weighted 3-paths from u to v in G′. Summarize multiple edges into a single
weighted edge.

5.2.3 Case w(e) < 0

Consider a 2-path with both edges having the weight −w,w > 0. The application of
Reduction Rule 28 on this path yields a single edge with weight w . Therefore, in the case
where w(e) < 0 holds, it su�ces to create a new vertex m in G′ and to form a 2-path umv
with each edge having weight −w(e). After this step, we then apply the previous two
cases (5.2.1 and 5.2.2) on the two newly formed edges.

The creation of the 2-path in�icts the change z ← z − 2|w(e)|. See Figure 5.2 for an
example.
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5.2 Weighted to Unweighted

−4 ≡u v u v

G G′

m
4 4

Figure 5.2: Transformation of an edge e with weight w(e) = −4 into a 2-path with positive
weights is presented. The equality β(G) = β(G′) − 2|w(e)| = β(G′) − 8 holds.
See Reduction Rule 28.
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6 Implementation

With the introduction of techniques to convert between Max-Cut problem variations
in the previous chapter, we can now complete the description of our implementation on
everything outlined until this point. Note that for the reduction rules throughout the
previous sections, where necessary, the implementation has already been addressed.

Two main features of our implementation still need elaboration: The framework and
the timestamping system.

6.1 Framework

The framework of our implementation is given with Algorithm 4.

Algorithm 4 Kernelization Framework.
1: function PerformKernelization(G = (V , E) : Graph, weiдhtedResult : boolean)
2: chanдe ← true
3: while chanдe do
4: chanдe ← false
5:
6: G .MakeUnweighted()
7: if G .PerformUnweightedKernelization() then . Returns true on change
8: chanдe ← true
9:

10: G .MakeSigned()
11: if G .PerformSignedKernelization() then . Returns true on change
12: chanдe ← true
13:
14: G .MakeWeighted()
15: if G .PerformWeightedKernelization() then . Returns true on change
16: chanдe ← true
17:
18: G .MakeUnweighted()
19: G .PerformReductionRule26()
20:
21: if weiдhtedResult then
22: G .MakeWeighted()
23: return G

We perform the function MakeUnweighted as outlined in Section 5.2 – we replace
every weighted edge with an unweighted subgraph of speci�c structure. After that, the
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6 Implementation

call PerformUnweightedKernelization executes checks and applications of Reduction
Rule 23, 5+w=1 (together with 27), 24, 25, in that order. As already mentioned earlier,
Reduction Rule 5+w=1 is the unweighted version of 5+.

The signed variant of the input graph is created by MakeSigned. To do so, we exhaus-
tively execute the weighted path compression by Reduction Rule 28 with the restriction
that the resulting weights are −1 or +1. The call PerformSignedKernelization then
performs the reductions by Reduction Rule 5+. Even though this rule makes Reduction
Rule 5+w=1 obsolete, we keep both in our suite. When time e�ciency is of essence in
our evaluation, only the unweighted rules are tested. In all other cases, this overhead is
negligible. The same is applicable to the upcoming weighted reduction rules, which also
generalize two rules from the unweighted case.

Therefore, after no more signed reductions are possible, we exhaustively apply Reduction
Rule 28 to fully compress all paths into weighted edges – done by the MakeWeighted
function. This is then succeeded by an application of Reduction Rule 23w=c and 25w=c by
the call PerformWeightedKernelization.

Reduction Rule 26 is applied as the last step in order to avoid cyclic interactions between
it and Reduction Rule 25. If a kernel with weighted edges is permitted (as given by the
boolean weightedResult), we also exhaustively perform Reduction Rule 28.

Although we do verify that no more reductions are possible in the end (besides possibly
Reduction Rule 25 and 25w=c ), no proof is given to support this. The only requirement to
do so is to prove that Reduction Rule 26 cannot yield further applications of other rules.
We also note that di�erent permutations of the order in which all reduction rules are
applied can lead to di�erent results. We decided on the above order as it gave us the best
results in terms of kernel size and time e�ciency.

6.2 Timestamping

The timestamping system is the last feature of paramount importance to achieve time
e�ciency. It excludes unnecessary searches when repetitive checks for the applicability of
certain reduction rules are performed. To achieve this goal, we assign an integer to every
vertex v ∈ V of the graph G = (V , E). This integer indicates the time at which the most
recent change in NG(v) occurred. We note that the following mechanism is not applied
for every reduction rule, nor is it fully applicable in every case. We particularly apply
it on Reduction Rule 23 and 5+ (and all their variations). What di�erentiates them from
other rules is that one can identify their applicability by investigating the neighbors of
any vertex v for which NG(v) has changed.

6.2.1 Mechanism Description

Let the time of the most recent change in the neighbors sets be described by T : V → N0
and let the variable t ∈ N describe the current time. Initially, T (v) = 0,∀v ∈ V and t = 1.
For every in�icted change by a kernelization rule on NG(v),v ∈ V , set T (v) = t, t ← t + 1.

Now, for each individual kernelization rule r , maintain also a timestamp tr ∈ N0
(initialized with 0), indicating the upper bound until which all vertices have already been
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6.2 Timestamping

parsed. Meaning, all v ∈ V with T (v) ≤ tr are not directly interesting for r . The adjective
“directly” is used, as some of their neighbors might indirectly still imply their required
reconsideration.

For example, consider Reduction Rule 23. A vertexv ∈ V might be important to consider
even though T (v) ≤ tr and NG(v) has not changed. If, at some point, a clique containing
the vertex v forms, then some vertex’s set NG(w),w ∈ NG(v), has to have changed. Alas,
even though vertex w has formed the clique by a change in NG(w), it is not necessarily an
internal vertex. Such a vertex has to be then searched for in the neighboring vertices of w
– where v might be an internal vertex. Therefore, for Reduction Rule 23, the neighbors of
all updated vertices have to be parsed.

6.2.2 Implementation

We want to outline that it is possible to e�ciently implement the above timestamping
system. Besides an array of �xed size for T , an “event” list Q is utilized. In that list,
all updates are stored sequentially: It holds that ∀x,y ∈ 1, . . . , |Q | : x < y if and only
if Q(x).T < Q(y).T . Then, instead of having to iterate over all vertices to determine viable
values in T , an iteration in Q (alongside partially utilizing the information in T ) can be
done. See Algorithm 5 for the pseudocode. Observe also the usage of lastdx there. It is
being used by each rule individually to only check for the newest updates in Q .

To us, the memory usage of this solution has not been an issue. But that could be easily
mitigated too by �ltering out the candidates inQ whose timestamps have been invalidated.
This could be done whenever |Q | ≥ α |V | occurs, for some α > 1.

Algorithm 5 Functions Required for Timestamping System.
1: function Initialize(G = (V , E) : Graph)
2: t ← 1
3: for all v ∈ V (G) do
4: T [v] ← 0
5:
6: function UpdateTimestamp(v : V (G))
7: Q .Append({v : v,T : t})
8: T [v] ← t
9: t ← t + 1

10:
11: function GetAfterTimestamp(tr : Integer, lastdx : Integer )
12: for i ← lastdx + 1 to |Q | do
13: if Q[i].T = T [Q[i].v] ∧Q[i].T ≥ tr then
14: R ← R ∪Q[i].v

15: return {result : R, lastdx : |Q |}

Note again that the only place this speed-up technique is utilized in our implementation
is for Reduction Rule 23 and 5+. Due to the order in which all rules are performed, the
remaining rules are utilized far less and do not require a lot of time for their execution.
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6 Implementation

Experiments show that they all together use less than 50% of the time that Reduction
Rule 23 and 5+ use with the timestamping system. Oftentimes even much less than that.
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7 Evaluation

Initially done by us was an implementation of the reduction rules used by Etscheid and
Mnich [EM18]. After having introduced the framework of our evaluation, we �rst present
those initial practical results implied by their theoretical work.

Following that, we provide a thorough evaluation of our kernelization. Throughout
our analysis, it became clear that the density of a graph strongly dictates the impact all
kernelization techniques have. That is, our results perform well on sparse and bad on
dense graphs. Succeeding density on the kernelization impact is the distribution of the
edges within an instance. For example, graphs with a uniform edge distribution perform
signi�cantly worse compared to instances connected according to geometric distances.

These �ndings, on certain properties signi�cantly in�uencing the kernelization, have
motivated us to execute our performance evaluation on instances created by a random
graph generator (KaGen by Funke et al. [Fun+18]). This choice allowed us to adjust the
density and, to certain extent, the topology. Furthermore, it led to interesting observations,
which otherwise would have remained hidden.

After having scrutinized the e�ciency of our kernelization on random graphs, we
also show the bene�ts and drawbacks it induces onto existing Max-Cut solvers: Local-
solver [Ben+11] [Gar+14], MqLib [DGS15], and Biq Mac [RRW10]. According to our
discoveries, these represent the most signi�cant choices when wanting to determine a
maximum cut of a graph. Some capabilities also set them apart. Given enough time, the
solvers Biq Mac and Localsolver can provably �nd a maximum cut. If either of them
is unable to �nd one, they are also able to provide the largest found cut for the allocated
time. To the best of our knowledge, MqLib does not have such abilities. It is only able to
provide us the largest cut it �nds after a given time.

While the convergence towards a maximum cut is signi�cantly fastened with the usage
of kernelization, the time required to perform it can be of signi�cance. As we will show,
this also applies to our implementation of the kernelization when we test very large
instances. This speci�c situation is able to give an early advantage to the computation
of a maximum cut of non-kernelized graphs. This applies to Localsolver and MqLib.
Due to its inability to process large instances in a reasonable time, this drawback does not
concern the Biq Mac solver.

Finally, we also analyze our performance speci�cally on small subgraphs (ones with
less than or equal to 7 vertices). We show how much reduction is achieved by our imple-
mentation, compared to how much is possible at most.
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7 Evaluation

7.1 Datasets

Our research has shown that the utilization of di�erent graph structures is bene�cial for
showing the usefulness of kernelization from di�erent aspects. Due to this, we consider
the following types of test sets.

Dataset A. Randomly generated instances by the KaGen graph generator [Fun+18] [SS16].
The focus of our evaluation is set on graphs with |E | < 8|V |, where V is
the vertex set and E the edge set. Each of the generated graphs has 2048
vertices with a varying amount of edges.
We analyze 4 graph models: The Barabási–Albert model (BA) [BA99] [SS16],
The Erdős–Rényi model (GNM) [ER59], Random Geometric Graphs (RGG) [Jia04],
Random Hyperbolic Graphs (RHG) [Kri+10].

Dataset B. Set of random real-world instances.
Consists of a selection of sparse graphs from the repository provided by
Rossi and Ahmed [RA15].

Dataset C. Set of practical Max-Cut instances.
We investigate graphs from VLSI design by Koch and Martin [KM98] and
image segmentation by Sousa, Haxhimusa, and Kropatsch [SHK13]. In both
cases, we gathered the instances through the repository that implements
the work by Dunning, Gupta, and Silberholz [DGS15] [18b]. The VLSI
instances actually stem from works unrelated to Max-Cut. This is also
why the provided edge weights are not suited for our problem and why we
regard them as unweighted instead. We note that these instances remain
meaningful for us due to their topology.

Dataset D. Graph instances from the Biq Mac Library [18a].
The library is divided into two graph types, named rudy [Rin18] and ising.
Only the �rst one is relevant to us. The ising instances are poorly suited
for our purpose as the absolute value of the edge weights is large and
their structure is dense and uniform. These instances are better suited for
benchmarking Weighted Max-Cut techniques.
Also, each graph in this set contains multiple generated instances with
di�erent seeds, denoted as graph.x, with x ∈ {0, . . . , 9}. When providing
our results, we give the average for each applicable value.

In Dataset C, we also create a subdivision into smaller and larger graphs. We use the
smaller set to benchmark the computation of actual maximum cuts. This particularly
applies to Biq Mac and Localsolver. Both are able to determine if a found cut is also
a maximum one. The larger graphs provide insights into the required time to compute
the kernel and the impact our work has on the convergence towards a maximum cut. We
evaluate this for Localsolver and MqLib.
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7.2 Evaluated Solvers

7.2 Evaluated Solvers

We give our attention to three Max-Cut solvers within our benchmark suite. Observe
that all of them are also able to handle the Weighted Max-Cut problem, not only the
unweighted case.

A. Localsolver [Ben+11] [Gar+14]. 1

A commercial software with free licenses for academic purposes. Able to handle a
large spectrum of mathematical optimization problems. It heuristically searches for
the largest cut it is able to �nd. Viable to use for the evaluation of graphs of all sizes.
It can also determine when the largest found cut is a maximum one.

B. MqLib by Dunning, Gupta, and Silberholz [DGS15] (utilizing the heuristic by Burer,
Monteiro, and Zhang [BMZ02]). 2

Implements a wide range of heuristic approaches for benchmark purposes. Of them,
the best solution is the heuristic by Burer, Monteiro, and Zhang [BMZ02]. This
is also the only solver we evaluate through the MqLib framework. It is unable to
determine on its own when it reaches a maximum cut and always exhaust the given
time limit.

C. Biq Mac solver by Rendl, Rinaldi, and Wiegele [RRW10].

A semide�nite programming approach to determine a maximum cut. Determin-
ing a maximum cut is slow. Even for graphs with up to 200 vertices it may take
hours [RRW10]. Therefore, we use this solver to primarily evaluate smaller instances.
Within Biq Mac, a separate capability does also exist to compute a lower and upper
bound. However, this feature was not further analyzed by us.

7.3 Environment

To fully describe under which circumstances we achieve our results, we need to outline
the used environment for our experiments. Intel(R) Xeon(R) CPU E5-4640 @ 2.40GHz
is used for the central processing unit. The amount of random-access memory available
for our evaluation consisted of 504 GB. Every section of our implementation, including
all utilized solvers, are implemented with C++. To compile our implementation, we used
gcc version 7.3.0 on the Ubuntu 18.04 operating system. Compilation was done with
the optimization �ag -O3. The compilation of each solver was handled by the unique
con�guration that comes with each.

1We used Localsolver 8.0 binaries in our tests. See https://www.localsolver.com/olderversions.html.
2MqLib is hosted on GitHub under https://github.com/MQLib/MQLib. The evaluated version by us is

described by commit id 0853789.
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7 Evaluation

7.4 Used Metrics

For the upcoming subsections, letG be the initially given graph andGker be the �nal graph
after all reductions have been exhaustively performed.
Kernelization E�ciency. To evaluate the kernelization e�ciency of our implementa-
tion, we use the following metric: e(G) = 1 − |V (Gker)|

|V (G)| . The value represents the amount
of removed vertices by all reduction rules. In rare occasions, eE(G) = 1 − |E(Gker)|

|E(G)| is also
used to study the kernelization e�ciency on the edge set. When used, it is going to be
explicitly mentioned.

Kernelization Time. We also desire for the kernelization to be time e�cient. For that
purpose, we also analyze the time spent on kernelization. We denote this as Tker(G) and,
unless otherwise speci�ed, use seconds as the unit.

Time to Compute a Maximum Cut. In instances where we are able to, we use Tmc(G)
to denote the required time to determine an exact maximum cut.

7.5 Evaluation of Work by Etscheid and Mnich [EM18]

We initially perform an analysis of the linear kernel construction for Max-Cut AEE by
Etscheid and Mnich [EM18]. Evaluated is an implementation of the algorithm to create the
marked vertex set S such that G − S is a clique forest. After this, we showcase the stated
reduction rules from their paper.

For a decision problem (G,k)AEE, we give an evaluation of their marked vertex set S
computation that works in time O(k · (|V (G)| + |E(E)|)). A greedy construction was also
implemented to measure the e�ectiveness of their construction. The greedy approach
works as follows. Determine an S for whichG −S is a clique forest – this S could consist of
all vertices, or the ones determined from the construction by Etscheid and Mnich [EM18].
Then, try to remove any single vertex in S and check if G − S remains a clique forest. If
yes, remove it and repeat the same approach.

This greedy algorithm works with a customizable initial state for S because it allows us
to additionally see the impact it has on reducing the size of the marked vertex set S by
Etscheid and Mnich [EM18]. We denote that reduced result of S as SX .

Following is an evaluation for the computation of S and SX . This is then followed by
our evaluation of their reduction rules.

7.5.1 Computation of the Marked Vertex Set

In the following section, we analyze the computation of a vertex set S such thatG−S forms
a clique forest. An algorithm to do so was already brie�y sketched in Section 3.4.1. For a
problem instance (G,k)AEE, it achieves the computation of S in timeO(k · (|V (G)|+ |E(G)|))
and provides a bound on the size of S : |S | ≤ 3k .

See Table 7.1 for a performance evaluation on real-world instances. As noted, SX
represents the greedy reduction of the marked vertex set S by Etscheid and Mnich [EM18].
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7.5 Evaluation of Work by Etscheid and Mnich [EM18]

Name |V (G)| |E(G)| deдavg |S | [ |S |
|V (G)| ] T (S) |SX | [ |SX ||V (G)| ] T (SX )

ca-CSphd 1882 1740 0.92 32 [0.02] 0.40 12 [0.01] 0.52
ego-facebook 2888 2981 1.03 9 [0.00] 0.92 5 [0.00] 0.96

ENZYMES_g295 123 139 1.13 24 [0.20] 0.01 9 [0.07] 0.02
road-euroroad 1174 1417 1.21 239 [0.20] 0.29 94 [0.08] 0.83

bio-yeast 1458 1948 1.34 196 [0.13] 0.43 93 [0.06] 1.00
rt-twitter-copen 761 1029 1.35 99 [0.13] 0.15 42 [0.06] 0.29

bio-diseasome 516 1188 2.30 79 [0.15] 0.09 27 [0.05] 0.20
ca-netscience 379 914 2.41 116 [0.31] 0.05 56 [0.15] 0.15

soc-�rm-hi-tech 33 91 2.76 17 [0.52] 0.00 9 [0.27] 0.00
g000302 317 476 1.50 135 [0.43] 0.07 76 [0.24] 0.15
g001918 777 1239 1.59 380 [0.49] 0.44 202 [0.26] 0.98
g000981 110 188 1.71 57 [0.52] 0.01 30 [0.27] 0.02
g001207 84 149 1.77 38 [0.45] 0.01 22 [0.26] 0.01
g000292 212 381 1.80 98 [0.46] 0.04 82 [0.39] 0.09

Table 7.1: Evaluation of marked vertex set S computation by Etscheid and Mnich [EM18]
such that G − S is clique forest. Tested are small graphs from Dataset C and
VLSI instances from Dataset D. The evaluation includes 5 iterations and average
values are provided. The columns T (S) and T (SX ) represent the required time
in seconds to compute S and SX , respectively. Note that T (SX ) includes the
time T (S).

For both, S and SX , it is desired for their size to be as small as possible. After having
been selected, they remain the same throughout all the upcoming sections. Their size also
represents an exponential factor for the maximum cut computation using the algorithm
outlined in Section 3.3.

We can notice two things from the table. First is that the size of the marked vertex
set correlates to the density: The larger it is, the larger the marked vertex set. The other
observation is that the computation time correlates to the size of the graph – as one would
expect.

Evident also is that the greedy reduction of the marked vertex set has consistently a
large impact on the resulting size. In every single case is the set S signi�cantly larger than
set SX . Therefore, for practical purposes, it is of importance to consider ways of reducing
this set. Other approaches have been also brie�y veri�ed by us, but none led to any more
signi�cant reduction. Moreover, if the greedy approach uses an empty set instead of the
set S for its initial state, worse results are generally achieved. Due to this, we also use SX
for evaluating the kernelization in the next section.
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Name |V (G)| |E(G)| deдavg |SX | [ |SX ||V | ] e(G) Tker(G) Tmc(G)

ca-CSphd 1882 1740 0.92 12 [0.01] 0.09 1.10 8967.41
ego-facebook 2888 2981 1.03 5 [0.00] 0.00 0.97 61.74

ENZYMES_g295 123 139 1.13 9 [0.07] 0.00 0.02 1.35
road-euroroad 1174 1417 1.21 94 [0.08] 0.02 0.93 -

bio-yeast 1458 1948 1.34 93 [0.06] 0.01 1.07 -
rt-twitter-copen 761 1029 1.35 42 [0.06] 0.02 0.32 -

bio-diseasome 516 1188 2.30 27 [0.05] 0.26 0.32 -
ca-netscience 379 914 2.41 56 [0.15] 0.21 0.21 -

soc-�rm-hi-tech 33 91 2.76 9 [0.27] 0.00 0.00 0.29
g000302 317 476 1.50 76 [0.24] 0.00 0.15 -
g001918 777 1239 1.59 202 [0.26] 0.00 0.98 -
g000981 110 188 1.71 30 [0.27] 0.00 0.02 -
g001207 84 149 1.77 22 [0.26] 0.02 0.02 13509.73
g000292 212 381 1.80 82 [0.39] 0.00 0.09 -

Table 7.2: Evaluation of the kernelization and maximum cut computation by Etscheid and
Mnich [EM18] (shown in columnTmc(G)). Tested are small graphs from Dataset C
and VLSI instances from Dataset D. The evaluation includes 5 iterations and
average values are provided. Times in Tmc(G) are labeled with “−” if |SX | > 30
or the execution exceeded 10 hours. All times are given in seconds.
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Figure 7.1: Kernelization e�ciency for reduction rules by Etscheid and Mnich [EM18] on
graphs generated by KaGen. Tested were 150 instances for each graph type.
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7.6 Impact of Kernelization on Random Instances by KaGen

7.5.2 Kernelization Performance

The kernelization by Etscheid and Mnich [EM18] consists of two reduction rules: Reduction
Rule 5 and 9. Of those two, we observed in our tests that Reduction Rule 5 is predominantly
applied. Moreover, it is worth noting that Reduction Rule 5 solely removes vertices. The
other rule exists only to assist it in that goal.

As recognizable from Table 7.2, the achieved results generally perform poor on real-
world instances. In all cases, the kernelization e�ciency is below 30% and oftentimes not
above 5%. In the table present is also the �eldTmc(G). This is the time to �nd a maximum cut
of G using the algorithm by Etscheid and Mnich [EM18] with runtime O(2|SX | · (|V | + |E |)).
For all colorings of the vertices in SX , it solves the Vertex-Weighted Max-Cut problem
on the remaining graph. This computation has been performed on graphs where |SX | < 30
holds. We have done this evaluation to provide some insight into the possibilities of
creating a new Max-Cut solver. When compared to the results by current state of the
art Max-Cut solvers, it generally performs worse. However, it is important to note that
our implementation has not exhausted the existing possibilities. For example, the marked
vertex set does not include cycles, but which are possible to include [MSZ18].

Created by us to further evaluate the kernelization e�ciency is Figure 7.1. It depicts our
evaluation on Dataset A from Section 7.1. The benchmark consists of randomly generated
graphs by KaGen, each with 2048 vertices. For every graph type, we created 150 instances.
Where possible, the amount of edges was uniformly selected from 0 to 8|V |. In fact, only BA
graphs did not have this ability of freely adjusting the amount of edges. They limit the
number of edges to speci�cally be a multiple of the amount of vertices.

We are able to observe that kernelization does work in a lot of cases, but this mostly
includes very sparse graphs. Furthermore, with increasing density, the kernelization
e�ciency decreases very fast. For |E | > 2|V |, three graph types already reach the domain
where almost no further reduction is possible.

7.6 Impact of Kernelization on Random Instances by KaGen

In this section, we provide an analysis of our selected kernelization techniques. We do
this on the exact same graphs that we have used at the end of the previous section – the
instances form within Dataset A. We consider the same amount of instances and all graphs
also have 2048 vertices. As previously mentioned, these instances represent our main
selection to evaluate our kernelization suite. They allow us to clearly show how density
and topology in�uence the kernelization e�ciency.

Figure 7.2 depicts the resulting kernelization e�ciency across all graphs. As visible, the
density and type of the graph signi�cantly dictate the amount of reduction that is possible.
On all graph types, we can see that the kernelization e�ciency drops with the increase
of density within the instances. Also, a clear di�erentiation on the e�ciency is visible
depending on the considered graph type.

We explain the worse performance on GNM graphs in comparison to the other types
through the governing topology within them. In GNM graphs, we created every edge
by uniformly choosing two random endpoints from the available vertices. For a given
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Figure 7.2: Kernelization e�ciency for graphs generated by KaGen. Tested were 150
instances for each graph type.

GNM graph G and a randomly selected vertex subset S ⊆ V (G), the probability of it being
external is large even for small |S |. A single edge connected to such a vertex in S would
already lead the probability of it being external inG[S] lie beyond 1− |S |

|V (G)| (the likelihood
for the other endpoint to be outside of G[S]).

Reduction rules within our work rely on the existence of opposite structures, compared
to those in GNM graphs. The existence of small subgraphs with a few external vertices is
being desired for. Graphs possessing sporadic structures with denser internal connectivity
should intuitively perform better, which is also strongly supported by our showcased
experiments.

The required time to perform the kernelization was negligible for all instances. The
maximum amount of used time for a single case is below 100 milliseconds; the total time to
kernelize all 750 instances is below 30 seconds. The denser the graphs were, the larger was
the required kernelization time. In other words, the size of the graph mainly in�uenced
the required time.

In Figure 7.3, we also show how much the kernelization e�ciency improves compared
to that by Etscheid and Mnich [EM18].

Note: The Barabási-Albert model (BA) does not permit freely adjustable graph density.
That is the reason why discrete points exist in Figure 7.2.

7.6.1 Changes when Including Weighted Path Compression

We also analyze the impact of weighted path compression by Reduction Rule 28. This was
initially not our interest due its reductions possibly changing the nature of the problem – it
likely turns an Unweighted Max-Cut problem into an instance of Weighted Max-Cut.
The e�ects are signi�cant, though.
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Figure 7.3: Absolute increase in kernelization e�ciency for graphs generated by KaGen
when our approach is utilized, compared to the reduction rules by Etscheid and
Mnich [EM18]. Tested were 150 instances for each graph type.

In Figure 7.4, we plot the absolute increase in kernelization e�ciency. This represents
the percentage of vertices that have been additionally removed. An explanation for the
signi�cant improvement exists. For a graph G, weighted path compression is able to
optimally reduce 2-paths aba′ with NG(b) = {a,a

′}. This implies a viable reduction for
any vertex that has exactly two neighbors.

The achieved result motivates us to believe that, even if we look at kernelization for
unweighted graphs, it is meaningful to allow weighted edges in the kernel. Furthermore,
all solvers we have seen do permit weighted edges. Even more, we have not encountered
a solver only supporting unweighted instances.

7.6.2 Performance of Individual Rules

To analyze the impact each individual reduction rule has on the kernelization e�ciency,
we measure the e�ects their removals have on the size of the kernel. For that purpose, we
created Figure 7.5 and 7.6 to depict our evaluation of RGG2D and GNM graphs, respectively.
We have settled on those two types as they encompass the most important �ndings.

Consider Figure 7.5. We can see that Reduction Rule 23 induces the most signi�cant
reduction. Its absence always worsens the result more than any other rule. Figure 7.6
was additionally provided because it gives more insight on the usefulness of other rules.
Furthermore, it also shows that the reduction rules are di�erently important, depending
on the graph type.

We excluded Reduction Rule 26 from the �gures as it only removes edges. Although,
even if we consider eE(G), its e�ects are negligible. The same would also apply if we had
tried to di�erentiate between 5+w=1 and 5+ – the signed and unweighted version of the
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Figure 7.4: Absolute increase in kernelization e�ciency for graphs generated by KaGen
when weighted path compression by Reduction Rule 28 is included. Tested
were 150 instances for each graph type.

reduction rule. Meaning, the signed version did not lead to any noticeable improvement
within the results.

7.7 Impact of Kernelization on Biq Mac Library Instances

The Biq Mac library from Dataset D contains a variety of graphs created for benchmarking
Max-Cut solvers. All graphs in their suite have an uniform edge distribution and are
more dense than for what we have found kernelization to perform well on. Added to that
is the case that only a small portion of their graphs is unweighted. These are exactly those
pre�xed with “g05” in Table 7.3.

As is inferable from the same table, we found no positive results by using our kerneliza-
tion in this case. Kernelization does in most cases nothing and, when it does, it removes 2
vertices at most. Even more, this analysis also includes the allowance for weighted edges
in the �nal kernel.

Our explanation for this is twofold. First, all instances contain a uniform edge distribu-
tion. As outlined through GNM instances, this is bad for achieving kernelization. Second,
the graphs are dense enough in structure to imply worse kernelizability. Across all cases,
the average vertex degree is larger than 3.5. Thus, the inability of �nding any applicability
in these cases is consistent to everything we have outlined until this point.
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Figure 7.5: Test consist of 150 RGG2D instances generated by KaGen. Change in kerneliza-
tion e�ciency is presented when a reduction rule is removed (Gnew ), compared
to when all are present (Gold ).
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Figure 7.6: Test consist of 150 GNM instances generated by KaGen. Change in kernelization
e�ciency is presented when a reduction rule is removed (Gnew ), compared to
when all are present (Gold ).
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Name |V (G)| |E(G)| deдavg e(G)
g05_100 100 2475 24.75 0.00
g05_60 60 885 14.75 0.00
g05_80 80 1580 19.75 0.00

pm1d_100 100 4901 49.01 0.00
pm1d_80 80 3128 39.10 0.00

pm1s_100 100 495 4.95 0.00
pm1s_80 79 316 3.95 0.01

pw01_100 100 495 4.95 0.00
pw05_100 100 2475 24.75 0.00
pw09_100 100 4455 44.55 0.00

w01_100 100 470 4.70 0.00
w05_100 100 2356 23.56 0.00
w09_100 100 4245 42.45 0.00

Table 7.3: Result of performing every reduction rule from our work on the instances from
Dataset D: Graphs from within the Biq Mac Library.

7.8 MAX-CUT Solvers Benchmark

Since state of the art Max-Cut solvers are the main gateway to compute a maximum cut
in practice, it is sensible for us to also investigate their performance on our kernelized
graphs. For that purpose, we �rst present the amount of times by which Localsolver and
Biq Mac are able to compute a maximum cut faster with kernelization. In all tested cases,
a positive outcome is available. The maximum cut is always reached more quickly and, in
some cases, we compute a maximum cut where it was not possible before. This analysis is
followed by a performance evaluation of Localsolver and MqLib on very large graphs.
Particularly of interest in this part is the time required to execute the kernelization and
how the convergence towards a maximum cut changes.

Note that MqLib is not used when evaluating the time performance of reaching a
maximum cut. It is not able to determine when it achieves a maximum cut. Furthermore,
Biq Mac is not used when evaluating very large instances as it was not designed for that
purpose. While capabilities exist to provide upper and lower bounds, the solver will crash
when given graphs with more than 3000 vertices.

7.8.1 Exact Computation of a Maximum Cut

The approach by Localsolver has proven to perform very fast in our experiments. This
allowed us to execute it over a wide spectrum of graph instances. Besides being able to
provide the best found cut after a given time, it is also able to determine when a cut is a
maximum one, too. This last capability also applies to the Biq Mac solver. This permitted
us to evaluate the improvements kernelization induces on the time it takes for both of these
solvers to determine a maximum cut. See Table 7.4a for an evaluation where weighted
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7.9 Reducibility of Small Subgraphs

path compression is not utilized at the end, and Table 7.4b where it has been used. We
made this distinction because the weighted path compression yields a weighted kernel.

One can easily notice that kernelization is able to have enormous bene�ts on these
instances. Where 10 hours have not been enough on some cases, it is now possible to �nd
a maximum cut in seconds.

Noteworthy also is our improvement for the instances from VLSI design and image
segmentation. Even though we had our focus set on unweighted kernelization, a big
impact is available for weighted graphs, too. This particularly includes the cases within
image segmentation where large edge weights exist. Suprisingly, Reduction Rule 23w=c is
alone responsible for the impact on image segmentation. These �ndings might particularly
improve the work by Sousa, Haxhimusa, and Kropatsch [SHK13], which also a�ects the
work by Dunning, Gupta, and Silberholz [DGS15].

In summary, our presented techniques are a simple tool for speeding up the computation
of a maximum cut by the applicable solvers. We reinforce this with the analysis that makes
one able to also determine on which instances kernelization performs well. Moreover, as
one can infer from the provided tables, even our simple weighted path compression by
itself is able to have a signi�cant impact.

7.8.2 Analysis on Large Instances

To provide insight into how fast our kernelization framework works, we made an analysis
on very large graph instances. In this analysis, we also measured the impact kernelization
has on the execution of Localsolver and MqLib. See Table 7.5 for our results.

Notice that kernelization performs well in terms of time even for the largest graph. It
achieves kernelization in minutes for 14 million vertices/edges. The achieved kernelization
e�ciency is also good across all the selected instances. Yet, the improvement on the size
of the largest found cut by Localsolver and MqLib is generally small for the given time
limit of 3 hours.

As shown in Figure 7.7, the convergence towards a maximum cut is faster on the
kernelized graph for Localsolver. So, the results on the kernelized graph will generally
be better after a speci�c time. Observe that the time performance of the kernelization
plays a pivotal role on how early that occurs.

7.9 Reducibility of Small Subgraphs

In this section, we provide an overview on how much kernelization can possibly reduce
small subgraphs. To do so, we categorize subgraphs into equivalence classes. We de�ne
two subgraphs H1,H2 as equivalent if they have the same external vertex set X and
for every 2-coloring of X the relationship βδ (H1) = βδ (H2) + c holds for some integer
constant c ∈ Z. This categorization is meaningful because any such two equivalent
subgraphs are interchangeable within the context of computing a maximum cut of a
graph. That is, if a graph G contains subgraph H1, one can exchange H1 by the equivalent
subgraphH2 to getG′, and the relationship β(G) = β(G′)+c will hold. One can also rea�rm
this observation through the usage of Lemma 3. Further notice that all outlined reduction
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Name |V (G)| deдavg e(G) TLS(G) TLS(Gker) TBM(G) TBM(Gker)
ca-CSphd 1882 0.92 0.98 24.79 1.12 [22.23] - 0.32 [∞]

ego-facebook 2888 1.03 0.93 20.39 1.72 [11.83] 967.99 1.42 [682.04]
ENZYMES_g295 123 1.13 0.82 1.83 0.36 [5.09] 0.96 0.37 [2.60]

road-euroroad 1174 1.21 0.69 - - - - - -
bio-yeast 1458 1.34 0.72 - - - - - -

rt-twitter-copen 761 1.35 0.80 - 409.47 [∞] - 101.14 [∞]
bio-diseasome 516 2.30 0.93 - 6.66 [∞] - 0.35 [∞]
ca-netscience 379 2.41 0.67 - 4116.61 [∞] - 2.10 [∞]

soc-�rm-hi-tech 33 2.76 0.30 4.92 2.34 [2.10] 0.29 0.31 [0.94]
g000302 317 1.50 0.10 0.71 0.50 [1.41] 1.28 0.89 [1.44]
g001918 777 1.59 0.06 1.67 1.51 [1.10] 14.90 11.69 [1.27]
g000981 110 1.71 0.22 11.32 1.97 [5.74] 0.98 0.44 [2.23]
g001207 84 1.77 0.17 1.56 0.15 [10.11] 0.47 0.37 [1.28]
g000292 212 1.80 0.01 0.69 0.51 [1.35] 0.56 0.62 [0.91]

(a) Weighted path compression by Reduction Rule 28 is not used at the end – kernel is unweighted.

Name |V (G)| deдavg e(G) TLS(G) TLS(Gker) TBM(G) TBM(Gker)
ca-CSphd 1882 0.92 0.99 24.07 0.32 [75.40] - 0.06 [∞]

ego-facebook 2888 1.03 1.00 20.09 0.09 [228.91] - 0.01 [∞]
ENZYMES_g295 123 1.13 0.86 1.22 0.33 [3.70] 0.82 0.13 [6.57]

road-euroroad 1174 1.21 0.79 - - - - - -
bio-yeast 1458 1.34 0.81 - - - - 32726.75 [∞]

rt-twitter-copen 761 1.35 0.85 - 834.71 [∞] - 1.77 [∞]
bio-diseasome 516 2.30 0.93 - 4.91 [∞] - 0.07 [∞]
ca-netscience 379 2.41 0.77 - 956.03 [∞] - 0.67 [∞]

soc-�rm-hi-tech 33 2.76 0.36 4.67 1.61 [2.90] 0.09 0.06 [1.41]
g000302 317 1.50 0.21 0.58 0.49 [1.17] 1.88 0.74 [2.53]
g001918 777 1.59 0.12 1.47 1.41 [1.04] 31.11 17.45 [1.78]
g000981 110 1.71 0.28 10.73 4.73 [2.27] 531.47 21.53 [24.68]
g001207 84 1.77 0.19 1.10 0.16 [6.88] 53.20 0.06 [962.38]
g000292 212 1.80 0.03 0.45 0.45 [1.01] 0.43 0.37 [1.14]

imgseg_271031 900 1.14 0.99 10.66 0.19 [55.94] - 0.17 [∞]
imgseg_105019 3548 1.22 0.93 234.01 22.68 [10.32] f 13748.62 [∞]
imgseg_35058 1274 1.42 0.37 34.93 24.71 [1.41] - - -

imgseg_374020 5735 1.52 0.82 1739.11 72.23 [24.08] f - -
imgseg_106025 1565 1.68 0.68 159.31 34.05 [4.68] - - -

(b) Weighted path compression by Reduction Rule 28 is used at the end – kernel is weighted.

Table 7.4: Impact of kernelization on the computation of a maximum cut by Local-
solver (LS) and Biq Mac (BM). Times are given in seconds. Kernelization
is accounted for within the timings for Gker. Values in brackets provide the
speedup and are derived from T (G)

T (Gker )
. Times labeled with “−” exceeded the 10

hours time limit and those with “f” denote crashes within the solvers.
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Name |V (G)| deдavg e(G) Tker(G) ∆LS ∆MQ
inf-road_central 14081816 1.20 0.59 362.32 inf% 2.70%
inf-power 4941 1.33 0.62 0.04 1.64% 0.45%
web-google 1299 2.13 0.79 0.01 0.69% 0.19%
ca-MathSciNet 332689 2.47 0.63 8.02 1.33% 0.55%
ca-IMDB 896305 4.22 0.42 27.55 0.97% 0.32%
web-Stanford 281903 7.07 0.18 105.17 0.34% 0.30%
web-it-2004 509338 14.09 0.91 22.10 0.08% 0.02%
ca-coauthors-dblp 540486 28.20 0.25 72.39 0.05% 0.04%

Table 7.5: Evaluation of large graph instances. A 3 hours time limit was used and 5
iterations were performed. The columns ∆LS and ∆MQ indicate the percentage
by which the size of the largest computed cut is larger on the kernelized graph
compared to the non-kernelized one, for Localsolver and MqLib, respectively.
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Figure 7.7: Impact of kernelization on solution convergence of Localsolver on large graph
instances. The dashed line represents the size of the cut for the non-kernelized
graph, while the full line does so for the kernelized graph.
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7 Evaluation

rules until now essentially describe when two subgraphs are equivalent according to the
above properties.

Our goal in this chapter is to classify all subgraphs that have at most 7 vertices according
to the outlined equivalence relation. This particularly includes all elements of (n,m)C
for n = 1 . . . 7. To determine then if two subgraphs are equivalent, we try all possible
2-colorings δ of the external vertices and check if all computed βδ values are o�set by
a constant. These steps also explain why we restrict ourself to small subgraphs. The
computation of all subgraphs is an exponential factor, as is the checking of all 2-colorings.

The outlined classi�cation algorithm is shown in Algorithm 6 and Table 7.6 is the result
of running its implementation.

Algorithm 6 Equivalence classi�cation of graphs in (n,m)C .
1: function GetDiffs(cuts : Ordered list of integers)
2: return {cutsi − cutsi+1 | i ∈ {1, . . . , |cuts |}}
3:
4: function CreateEqivalenceClasses
5: Classes ← ∅ . Hash table
6: for all H ∈ (n,m)C do
7: cuts ← ∅ . Ordered list
8: for all δ : {1, . . . ,m} → {0, 1} do
9: Hc ← H with �rstm vertices colored according to δ

10: cuts .Append(βδ (Hc))
11: ClassKey ←GetDiffs(cuts) . Guarantees equivalence for constant o�sets
12: Classes[ClassKey] ← Classes[ClassKey]

⋃
H

return Classes

Observable from Table 7.6 is that the number of external vertices plays a signi�cant role
on how well it is possible to reduce an induced subgraph. The more external vertices a
subgraph has, the more equivalence classes exist in which it could belong to. As each such
class is reducible to at most a single graph, a large amount of classes indicates a lesser
possibility for reduction in total. For that purpose, we also created Figure 7.8 to show how
much all our reduction rules are able to reduce all classes into a single representative. As
we remove the isomorphisms, this provides rather a theoretical viewpoint than a practical
one.
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7.9 Reducibility of Small Subgraphs

|S | |Cext(G)(S)| # of classes # of non-isomorph classes # of graphs with |S | vertices
3 2 3 3 8
3 3 8 4 8
4 2 5 5 64
4 3 28 11 64
4 4 64 11 64
5 2 6 6 1024
5 3 89 28 1024
5 4 576 56 1024
5 5 1024 34 1024
6 2 8 8 32768
6 3 169 48 32768
6 4 4970 376 32768
6 5 22528 380 32768
6 6 32768 156 32768
7 2 9 9 2097152
7 3 305 80 2097152
7 4 30978 1929 2097152
7 5 516272 6383 2097152
7 6 1654784 3980 2097152
7 7 2097152 1044 2097152
8 3 ≥ 396 - 268435456
8 4 ≥ 58637 - 268435456
8 5 ≥ 707714 - 268435456
9 2 ≥ 11 - 68719476736
9 3 ≥ 512 - 68719476736
9 4 ≥ 87509 - 68719476736
9 5 ≥ 878067 - 68719476736
10 2 ≥ 11 - 35184372088832

Table 7.6: Overview of equivalence classes. The sections where values are pre�xed by "≥"
are proven lower bounds. In those cases, there are too many graphs for an
e�cient evaluation, so a sampling of 106 random graphs was done. Entries
marked with “−” have not been computed due to time/memory restriction.
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Figure 7.8: Reducibility of small subgraphs. For each equivalence class, the amount of
subgraphs reduced to a single instance is given. Across all classes, the average
is taken. Isomorphic graphs are treated the same. See Figure 9.1 in Appendix
for the plot where isomorphisms are treated separately.
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8 Conclusion

We have shown that there are a lot of areas where kernelization techniques are a viable
tool to get better results. They are e�ective for a variety of graphs and are a particularly
powerful tool within the domain of sparse instances.

Where successful, kernelization enables the Max-Cut solvers to perform better. We
achieve a faster convergence and enormous speed-ups within the computation of a maxi-
mum cut by Biq Mac and Localsolver.

Also outlined were the necessary steps to achieve an e�cient implementation of all
kernelization rules. For medium-sized instances (less than 104 vertices), kernelization
induces a negligible overhead; and with enough time allocated, it has also made a positive
impact on the results of larger instances (even for graphs with more than 106 vertices).

Multiple theoretical contributions were also given. We introduced new kernelization
rules and studied the relationship among all found rules. Furthermore, our experiments
revealed under which circumstances kernelization performs best and under which worst.
We have seen that the reduction of a subgraph is tightly tied to the amount of external
vertices it contains: The greater their count, the less kernelization is possible. We strength-
ened this observation through di�erent experiments. Notable here is the total reduction
analysis on very small instances, and the comparison of the e�ciency between graphs
with uniform edge distribution and those with a non-uniform one.

Challenges remain. We believe that the investigation of new reduction rules is an
important course for future studies. The consideration of weighted kernelization could
be a signi�cant key in that direction. This speci�cally includes reduction rules that also
yield a weighted kernel as a result of their application. Also of importance may be further
contribution towards an even more e�cient implementation of the kernelization – possibly
with a multi-threaded approach. This could then lead to a state where kernelization is also
always advisable for large instances.
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Figure 9.1: Reducibility of small subgraphs. For each equivalence class, the amount of
subgraphs reduced to a single instance is given. Across all classes, the average
is taken. Isomorphic graphs are treated separately.
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