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Electrons released from both flavins of NADPH-P450 reductase
contribute to the reductive mobilization of iron from ferritin
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Abstract : Ferritin, an iron storage protein, plays an important role in iron homeostasis. The mechanism of 
reductive mobilization of iron from ferritin has not been clarified yet despite many studies. The aim of this study 
was to assess the mechanisms of the mobilization of iron from ferritin by NADPH P-450 reductase. Nucleotide-
dependent flavoenzymes generated significant mobilization of iron from ferritin. The possibility of reductive 
mobilization of iron from ferritin by electrons released from flavin sites or heme site of two flavoenzymes was 
investigated to elucidate the mediator-independent mechanisms of such reductive mobilization. The mobilization 
by NADPH-P450 reductase in the presence of ferricyanide increased threefold, while in the presence of cyto-
chrome C increased thirteen-fold. These results indicate that electrons released from both flavins of NADPH-P450 
reductase contribute to the reductive mobilization of iron from ferritin. The mechanism of the mobilization of 
iron from ferritin is discussed. J. Med. Invest. 66 : 230-232, August, 2019
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INTRODUCTION
 

Ferritin is an iron storage protein in many mammalian cells 
(1). Cellular iron homeostasis is maintained by regulation of the 
expression of ferritin and the transferrin receptor.

The ferritin molecule consists of a mineral core of hydrated 
ferric oxide and 24 protein shells, and the iron content in the core 
consists of a maximum of 4500 atoms. Two types of channels, six 
four-fold hydrophobic channels and eight three-fold hydrophilic 
channels, are generated by assembly of the protein shells. The 
hydrophobic channel is 0.3-0.4 nm wide and 1.2 nm long, and 
the hydrophilic channel is 0.3-0.4 nm wide and 0.5 nm long, but 
is blocked by metal irons (2, 3). The route of iron deposition and 
mobilization via the hydrophobic channel has been the subject of 
investigations. The iron in the core can be mobilized from ferritin by 
reduction of ferric iron, and iron mobilization has been observed 
on the addition of biological reductants such as dihydroflavin 
(4-7), dihydrolipoate (7, 8), superoxide anion radical (9, 10), and 
nitric oxide (11). In recent studies, it was shown that the iron re-
lease from ferritin occurred through lysosomal proteolysis or Nu-
clear Receptor Coactivator-4 – mediated ferritinophagy (12, 13). 
However, this process is relatively slow from the perspective of 
rapid reactivity of iron ion and is related to degradation of ferritin 
cage (12, 14). It has been suggested that the reductant must pen-
etrate into the interior of the channel in order to reduce the iron.

Whether ferritin iron reduction involves direct access by the 
reductant into the central cavity of the molecule or electron 
tunneling via the hydrophobic channel has remained unclear. 
The purpose of our study was to investigate the molecular mech-
anisms of the mobilization of iron from ferritin by the nucleo-
tide-dependent flavoenzymes. 

MATERIALS AND METHODS
 

Ferritin (horse spleen) and NADPH-P 450 reductase (rabbit 
liver) were obtained from Sigma-Aldrich Co. (St. Louis, MO).

The standard reaction mixture for iron mobilization from 
ferritin contains 1.9 μM ferritin, 1U NADPH-P 450 reductase, 
20 μM bathophenanthroline disulfonic acid 2Na salt in 20 mM 
phosphate buffer, pH 7.4. Bathophenanthroline is used as a 
quantity regent of iron by binding to ferrous iron and forming 
orange-red chelate. We measured the quantity of released fer-
rous iron in real time using the spectrophotometer (U-3900, 
Hitachi High-Tsch Science Corporation, Japan) after adding 100 
μM NADPH to the standard reaction mixture. The quantity of 
released ferrous iron was calculated from absorbance at 530 nm 
by using a molar absorbance coefficient of 22.1 × 103 M-1 cm-1 for 
bathophenanthroline.

To investigate the effect of superoxide dismutase on the reduc-
tive mobilization of iron, 10 μM superoxide dismutase added to 
the standard reaction mixture. In another experiment to eluci-
date the mechanism of ferritin iron reduction, 2 mM ferricyanide 
or 6.7 μM cytochrome C was added each to the standard reaction 
mixture.

No less than 4 experiments were performed separately. The 
results are expressed as the representative data for all the 
experiments.

RESULTS
Mobilization of iron from ferritin by NADPH-P 450 reductase

NADPH-P 450 reductase mobilized iron from ferritin as 
shown in Fig.1.  This reductive mobilization was reduced by 6% 
in the presence of superoxide dismutase (Table 1). It was not 
significantly reduced in the presence of superoxide dismutase, 
indicating that the superoxide anion radical did not mediate the 
reduction of ferritin iron. 
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The effects of ferricyanide and cytochrome C on the mobilization of 
iron from ferritin by NADPH-P 450 reductase

We performed another study to elucidate the mechanism of 
ferritin iron reduction. It is recognized that the external electron 
acceptors of FAD and FMN of diflavin reductase family are 
ferricyanide and cytochrome C, respectively. Here, the reductive 
mobilization of iron from ferritin is investigated in the presence 
of external electron acceptors. The mobilization in the presence 
of ferricyanide increased threefold, while in the presence of cyto-
chrome C increased thirteen-fold as shown in Table 2.

DISCUSSION

In this study, NADPH-P450 reductase was found to be able to 
catalyze the mobilization of iron from ferritin. It was reported 
that the reductive mobilization of iron from ferritin is dependent 
on the relative rate of NADH oxidations, dissolved O2 consump-
tion and mineral core reduction in the study using recombinant 
frog M ferritin (15). It was also reported that the iron mobiliza-
tion from ferritin is dependent on the concentration of dissolved 
oxygen in solution (16). However, Johnson LE et al. reported that 

the reductive mobilization of iron by reduced flavin mononu-
cleotide (FMNH2) was limited by the concentration of FMNH2 

under their experimental conditions excluded the possibility of 
oxygen diffusion into the reaction mixture, and that iron reduc-
tive mobilization was independent on the presence of chaotropes 
(17). In our experiment, the influence of oxygen diffusion on iron 
release was extremely limited because the iron mobilization was 
reduced by only 6% in the presence of superoxide dismutase. 
Moreover, Johnson LE et al. showed that the diffusion of FMNH2 
through the ferritin pores was unlikely mechanism by the ex-
periments about encapsulation of FMN inside the ferritin cavity 
(17). 

A further investigation is needed to clarify the mechanism 
of ferritin iron reduction by the nucleotide-dependent flavoen-
zymes. One possibility is thought to be that the electron from 
either enzyme could gain direct access into the core through the 
ferritin channel and thus activate the reduction of ferritin iron. 

NADPH-P 450 reductase exerts their ferricyanide reductive 
activity by means of electrons from the FAD site and the cyto-
chrome C reductive activity by means of electrons from the FMN 
site (18, 19). In our experimental conditions, the reductive mobi-
lization of iron from ferritin is about three folds by the addition 
of ferricyanide. On the other hand, the reductive mobilization of 
iron from ferritin is about thirteen folds by the addition of cyto-
chrome C, indicating that electrons released from both flavins of 
NADPH-P450 reductase contribute to the reductive mobilization 
of iron from ferritin.

The hop distance of electron transfer from site to site of the 
metal complex model is 1-2 nm. The rate constant is 8 × 10 sec 
at a distance of 1.13 nm and drops during metal ion separation 
by 10 seconds for each 0.3 nm increment (20). While it can be 
assumed that a hop distance of 2 nm is close to the limit of use-
fulness, it can occur in proteins over a distance of more than 1 
nm (21). 

Access to the interior of the shell of the ferritin molecule is 
possible only via a channel. There are two types of channels 
through which small molecules can gain access to the central 
core of the molecule. The hydrophobic channel is 0.3-0.4 nm in 
diameter and 1.2 nm long, while the hydrophilic channel is 0.3-
0.4 nm in diameter and 0.5 nm long (2, 3). In theory, therefore, 
the electrons could gain direct access via one of these channels to 
the central core of the ferritin molecule.

Ferritin iron cores can be reduced by one electron per iron 
accompanied by an uptake of two protons per electron from the 
surrounding medium (22).  The midpoint potential of ferritin 
iron is E = − 190mV (23). The midpoint potential of NADPH-P 
450 reductase is E = − 274 mV (ox/sq), E = − 371 mV (sq/hq) for 
FAD and E = − 109 mV (ox/sq), E = − 279 mV (sq/hq) for FMN 
(24). Since the midpoint potential for FAD of NADPH-P 450 
reductase is much lower than the midpoint potential of ferritin 
iron, flavin semiquinone of the enzyme is provided thermody-
namically for the mechanism of electron transfer to ferritin iron. 
For these reasons, the reductive mobilization of iron from ferritin 
may be induced by direct electron transfer from the flavin site of 
NADPH-P 450 reductase to the ferritin core.

Iron homeostasis is related to a variety of important physiolog-
ical functions (25). A large quantity of free iron released from fer-
ritin generates highly reactive hydroxyl radical from superoxide 
and hydrogen peroxide. It can lead the control of the pathophys-
iology related to free radicals to explore the mechanism of iron 
release from ferritin. It is mandatory to investigate more about 
the mobilization of iron from ferritin.

Table 1　Effects of Superoxide dismutase on iron mobilization from 
ferritin by NADPH P-450 reductase

Rate of iron mobilization (Fe2+ μM / 10min)

Control 2.71

Superoxide dismutase (10 μM) 2.55

Fig 1.　Time course of iron mobilization from ferritin by means of 
NADPH P-450 reductase.
The reaction mixture contains 1.9μM ferritin, 1U NADPH-P 450 re-
ductase, 100μM NADPH, 20μM bathophenanthroline disulfonic acid 
2Na salt in 20mM phosphate buffer, pH 7.4. The quantity of released 
ferrous iron was calculated from absorbance at 530 nm by using a 
molar absorbance coefficient of 22.1 × 10-3 M-1 cm-1 for bathophenanth-
roline.

Table 2　Effects of ferricyanide and Cytochrome C on iron mobiliza-
tion from ferritin by NADPH-P450 reductase

Rate of iron mobilization (Fe2+ μM / 10min)

Control 2.71

Ferricyanide (2 mM) 8.58

Cytochrome C (6.7 μM) 34.29
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CONCLUSION
The iron mobilization by NADPH-P450 reductase from fer-

ritin in the presence of ferricyanide or cytochrome C increased 
markedly. It is suggested that electrons released from both 
flavins of NADPH-P450 reductase contribute to the reductive 
mobilization of iron from ferritin. 
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