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Abstract  

Optical excitation-induced heating of a single gold nanoparticle potentially offers a 

high-temperature field confined to the immediate neighborhood of the particle. In this study, we 

applied darkfield microscopy imaging and Rayleigh scattering spectroscopy to pursue phase 

separation of aqueous thermoresponsive poly(N-isopropylacrylamide) and poly(vinyl methyl ether) 

adjacent to a gold nanoparticle that was heated by continuous wave laser illumination. Gold 

nanoparticles were supported on transparent substrates of glass or sapphire. From the imaging study, 

we observed that a 1–10-μm microdroplet covering the nanoparticle formed and grew in time scales 

of seconds to a few tens of seconds. The growth was triggered by the illumination and the droplet 

collapsed when the laser was blocked. At the same time, we observed scattering spectral changes 

characterized by a progressive redshift in the localized surface plasmon resonance (LSPR) band and 

an increasing scattering intensity in wavelengths region shorter than the LSPR band with increasing 

laser intensity. The scattering spectral changes were interpreted by the encapsulation of the 

nanoparticle by a polymer-rich droplet with increasing sizes. The present study revealed that 

thermoresponsive polymers were attracted to a hot gold nanoparticle and formed a microdroplet 

under illumination with a wavelength near the LSPR. Our findings demonstrate the potential of 

plasmonic heating to manipulate polymer migration and accumulation, which may find applications 

in protein crystallization. 
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Introduction 

Thermoresponsive polymers represented by poly (N-isopropylacrylamide) (PNIPAM) exhibit phase 

separation (demixing) in aqueous solutions when heated above a critical temperature known as the 

lower critical solution temperature (LCST: Tc = 32C or 305 K).
1
 This phenomenon has attracted 

much attention because of potential applications in drug delivery, separation and bio-switching.
2
 

The molecular mechanism of the phase separation is assumed to be a manifestation of a coil-globule 

transition followed by further aggregation, forming polymer-rich domains such as mesoglobules.
3
 

Intriguingly, such phase separation was induced locally using a focused near-infrared laser beam 

(focal spot diameter: ~1 μm, peak power density: ~10
9
 W cm

−2
, period: several minutes) with a 

wavelength of 1064 nm. The laser-illuminated aqueous PNIPAM and poly(vinyl methyl ether) 

(PVME) solutions resulted in a single microdroplet around the focal laser spot.
4-6

 Here a 

high-temperature field created in water presumably confined the microdroplet by collecting the 

polymers, assisted by the optical force. This method has potential to create a droplet anywhere in a 

solution, if it can be prepared more quickly at much lower laser powers. Revealing liquid–liquid 

phase separation is also important in applications such as protein crystallization, which is assumed 

to proceed via a two-step process involving (1) the formation of liquid droplets of high protein 

concentration and (2) the generation of ordered protein clusters within the dense liquid intermediate 

prior to nucleation leading to protein crystals.
7-9

 For thermoresponsive polymers, the dynamic 

growth process starts from the phase transition, then phase separation, leading to a microdroplet 

(Scheme 1) through local heating. This process has been poorly understood because of a lack of a 

proper means to observe submicrometer scale events, hampered by the resolution limit of optical 

microscopes. By confining heating to the nanoscale, assisted by a sensitive spectroscopic technique, 

we will be able to look into the detailed progress of temperature-induced phase separation. 
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Scheme 1. Sketch of temperature-induced phase separation forming a polymer-rich domain via 

coil-to-globule phase transition. 

------------------------------------------------------------------------------------------------------------------- 

 

Plasmonic nanoparticles (NPs) such as gold (Au) NPs have emerged as a nanoscale antenna 

that confines incident light in a subwavelength volume around the particle, thus tremendously 

concentrating the electric field.
10

 This plasmonic field enhancement is the foundation for 

surface-enhanced Raman scattering and metal-enhanced fluorescence, both of which are promising 

for ultratrace analyses.
11,12

 Simultaneously with the electric field enhancement, the light energy 

absorbed by the plasmonic NPs is efficiently converted into heat, raising the temperature of both the 

NP and the surrounding medium. This is referred to as the photothermal or plasmonic-heating 

effect.
13,14

 Plasmonic heating is unique because only the medium immediately surrounding the NPs 

is heated by radial heat conduction, with the medium acting as an infinitely large heat sink. Thus the 

high-temperature field confined around the NP can be applied to drive the phase transition/phase 

separation of thermoresponsive polymers.  

Such a possibility has been tested for PNIPAM very recently. Under a brightfield optical 

microscope, Orlishausen and Köhler observed the dynamic growth of PNIPAM aggregates that 

formed around laser-heated Au NPs.
15

 The heating one of 250-nm-diameter Au NPs settled on a 

window in a 8–9 wt% PNIPAM solution with focused laser illumination at a constant power 51.9 

mW (50–100 mW µm
−2

 or 5 × 10
6
–10

7
 W cm

−2
) and wavelength 532 nm enabled the growth of 
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phase-separated aggregates with diameters of ~10 µm at 0.3 s to ~100 µm at 500 s. Note here that 

the ranges of these laser powers well exceed the threshold of vapor bubble generation around a Au 

NP.
16-18

 After laser heating was stopped, the aggregates dissolved from the outside. Because of a 

poor contrast of the brightfield method, early stages of aggregate formation were obscured. By 

using a 100-nm-diameter single Au NP under optical heating with low-intensity laser illumination 

(10
4
–10

5
 W cm

−2
) combined with the Rayleigh light-scattering spectroscopy, Aibara and coworkers 

observed remarkable redshift in the localized surface plasmon resonance (LSPR) band of a Au NP 

exposed to aqueous PNIPAM solution.
19

 This observation was ascribed to the plasmonic 

heating-induced nanoscale phase transition/separation to form PNIPAM aggregates within the 

high-temperature field surrounding the Au NP. This is distinct from the coil-to-globule volume 

phase transition of PNIPAM shell crosslinked around a Au NP core,
20-22

 because PNIPAM 

molecules were not immobilized on the Au NP but were freely mobile in the solution. Although 

scattering spectroscopy is promising for revealing nanoscale events, laser intensity dependence has 

not been fully investigated for the LSPR spectral changes, and the particle temperature-dependent 

aggregation of PNIPAM to form a phase-separated droplet remains to be elucidated. There is still 

room to fill the gap between spectroscopic observations of plasmonic heating-induced PNIPAM 

phase transitions around Au NPs and microscope observations of PNIPAM-rich microdroplet 

formation.  

The temperature field around the NP is not homogeneous but the temperature increases nearer 

to the NP surface.
18

 Thus, the phase transition may start from the particle surface when the 

temperature exceeds the LCST at a certain threshold laser intensity, spreading from the surface to 

distant regions with increasing laser intensities. For experiments with medium water heating, a 

microdroplet with a diameter much greater than the heating laser spot size was formed after several 

minutes of exposure.
4-6

 This may mean that PNIPAM molecules were transferred from outside the 

heating area to grow the droplet, although no detailed descriptions have been given. The transport 

and accumulation of colloids, cells and DNA exploiting optothermal manipulation through thermal 



6 

 

and Marangoni convections and thermophoresis are currently under intense investigation.
23-29

 These 

studies used substrates with a thin Au layer or a Au nano-island film for heating effectively with a 

focused laser. Nevertheless, the heat transfer is complex, making temperature analysis difficult. In 

contrast, single Au NP heating is expected to yield a much simpler temperature field around the Au 

NP. Thus, the transport mechanism can be simplified. Moreover, in terms of their varying thermal 

conductivities, substrates play a decisive role in controlling particle temperature and temperature 

gradient at particle–medium and particle–substrate interfaces, promoting accumulation.
30

  

In the present study we used darkfield microscopy-based imaging and light-scattering 

spectroscopy of a single Au NP to reveal a dynamic picture of phase separation for 

thermoresponsive polymers induced by single-particle plasmonic heating. Because of light 

scattering, the darkfield microscopy imaging can offer high-contrast images against a dark 

background for small objects that are otherwise difficult to view. We looked into the effect of 

different substrates on transport properties of such polymers. We show that plasmonic heating has a 

clear advantage over optical trapping to drive these polymers for manipulation with a significantly 

lower power. 
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Experimental Methods  

Experimental Setup: The outline of the present experiment is shown in Scheme 2a, with an 

experimental setup given in Scheme 2b. The darkfield imaging was performed on an inverted 

optical microscope, IX-71 (Olympus, Tokyo, Japan; with a darkfield condenser NA = 0.8–0.92) 

equipped with a DS-5M digital camera (Nikon, Tokyo, Japan). The single-particle scattering spectra 

were recorded with a wavelength resolution of 0.5 nm on a spectrophotometer consisting of a 

SP-300i polychromator (Acton Research Co. MA) with a grating of 150 or 300 grooves/mm blazed 

at 500 nm and a DU401-BR-DD CCD camera (Andor Technology, Belfast, UK; operated at −60°C) 

through a 500-µm-diameter pinhole (view area: 10-µm diameter). A halogen lamp with a broad 

(white) spectrum was used for illumination when recording the scattering images and spectra. The 

spectra were obtained by subtracting the background signals including Raman scattering of the 

surrounding media and photoluminescence of the NP, then dividing it by the spectral profile of the 

white-light excitation source. A HA50 IR-cut filter (Hoya Candeo Optronics, Tokyo, Japan) was 

used for minimizing the lamp heating. Single Au NPs adsorbed on the top wall (ceiling) of the 

chamber (see Scheme 2b) were heated by illuminating a focused 488-nm CW laser, 

OBIS-488-LX-150 (Coherent, Santa Clara, CA) beam through a microscope objective (60, NA = 

0.70). We used a 488-nm wavelength laser for a few reasons. (1) The scattering spectra of nominal 

100-nm-diameter Au NPs extend from 500 to 800 nm; hence, we did not use a 532 nm laser for 

excitation to avoid the superposition of a strong excitation light on relatively weak scattering 

spectra. (2) The excitation wavelength of 488 nm is slightly off-set from the LSPR peak position 

and the absorption cross-section, Cabs, is then unaffected by temperature changes. In contrast, the 

LSPR peak intensity is strongly dependent on particle temperature and changes in medium 

refractive index.
16

 The excitation of the LSPR band causes the value of Cabs for NPs to decrease 

with increasing temperature because of the temperature-induced damping, making estimates of the 

particle temperature difficult. (3) At the excitation wavelength of 488 nm, no light absorption and 

subsequent temperature increase are expected for glass, sapphire, PNIPAM, and PVME. The 488 
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nm laser light excites both interband and intraband transitions. Note, however, that the consequence 

of both excitations is the same: hot electron generation and subsequent particle heating.
32

 The 

temperature increase of an Au NP occurs simultaneously with opening the shutter and the 

temperature decrease follows immediately after closing the shutter.
33

 The spatial laser profile was 

determined by measuring scattering signal intensity of the 100-nm-diameter Au NP while scanning 

the stage at 100-nm interval. The FWHM of the laser beam thus determined was 0.6 m. The laser 

peak power density Ip (mW µm
2

) was represented by 2 2[ (2.3546) ] / [2 ( ) ]pI P FWHM ,
(31

 where 

P is the laser power density (measured laser power divided by beam area). The irradiation periods 

were regulated using an F77 mechanical shutter (Suruga Seiki, Tokyo, Japan). All measurements 

were performed at 241C.     

Sample preparation: Poly (N-isopropylacrylamide) (PNIPAM, Mw = 30,000) was obtained from 

Sigma-Aldrich Co.(St. Louis, MO) while poly(vinyl methyl ether) (PVME, 30% in water, Mw = 

47,000) was from Tokyo Kasei Co (Tokyo, Japan). The structural formulas of PNIPAM and PVME 

were given in Scheme 2c. Aqueous solutions of Au NPs with nominal diameters of 100 nm 

(EMGC100) were obtained from BBI Solutions, Cardiff, UK. Au NPs were transformed from 

faceted to spherical shape by irradiating with weak-intensity nanosecond laser pulses (~11 mJ cm
−2

) 

of 532-nm wavelength. The particle image acquired using a transmission electron microscope and 

the corresponding size distribution (102±5 nm) are given in the Supporting Information, S1. 

Spherical Au NPs were spin-coated onto the 0001 face of an optically polished sapphire substrate 

(Shinkosha, Yokohama, Japan) of size 15 mm  15 mm  0.3 mm or a borosilicate cover glass 

(Matsunami, Osaka, Japan) of 24 mm  32 mm  0.17 mm. The Au NPs were washed twice with 

double-distilled water by placing 0.5 mL of water on a spin coater and spun. Au NPs were 

immersed in solutions of PNIPAM and PVME in an 11-µL chamber consisting of a sapphire/glass 

substrate, a 0.2-mm-thick silicon rubber spacer, and a 24 mm  32 mm  0.17 mm microscope 

cover slip. The substrates were cleansed in a boiling mixture of 1:1 30% H2O2 - 28% ammonia 
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mixture for 90 min, and plasma-cleaned in a YHS-R reactor (70 W, 20 kHz; Sakigake 

Semiconductor, Kyoto, Japan) for 60 s just before use. 
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Scheme 2. Experimental overview. (a) upper: pictorial representation of the event, i.e. phase 

separation of the thermoresponsive polymers on plasmonic-heating, middle: darkfield microscopy 

images showing a transition of a single Au NP on exposure to laser illumination in aqueous solution 

of a thermoresponsive polymer, and lower: Rayleigh light scattering spectral changes of a single Au 

NP at various laser intensities. (b) experimental setup consisting of a chamber-structured specimen, 

a darkfield illumination system, a microscope objective, an excitation laser, a digital camera, and a  

CCD spectrophotometer. BP: laser line filter, LP: long-pass filter. (c) Structural formulas of 

poly(N-isopropylacrylamide) (PNIPAM) and poly(vinyl methyl ether) PVME.   

(c) 

(b) 

laser off before 120 s after 

laser on 

2 µm 
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Results and Discussion 

1. Temperature distributions around a single Au NP 

When a Au NP supported on a substrate is subjected to laser illumination, particle heating occurs 

instantaneously, followed by heat transfer to the surroundings.
33

 Using COMSOL Multiphysics, we 

simulated the two-dimensional (2D) temperature distribution around a Au NP under steady-state 

laser illumination. We considered both thermal and Marangoni convections initiated by medium 

heating in addition to radial heat conduction into both the substrate and the medium.
26-28

 This is 

because Marangoni convection is driven by the temperature-dependent interfacial (liquid–solid) 

tension gradient as well as surface (liquid–air) tension gradient.
34

 The numerical analysis of such 

flows have been performed previously for bubble-induced thermal and Marangoni convections.
35

 

Figure 1 a and b shows the simulated temperature map at a prototypical laser peak power density 

for two substrates, glass and sapphire, with notably differing thermal conductivities. Because of 

higher thermal conductivity, the sapphire substrate has a remarkable cooling effect. As a result, the 

particle temperature is lower for the system with sapphire (sapphire/water). For instance, the input 

laser intensity in Figure 1a is 20% of that in Figure 1b. Nevertheless, the calculated particle 

temperatures are nearly the same. Most notably, the convections create horizontally-expanded 

isothermal distributions that were not seen without such convections.
30

 This is because the 

calculated convective flow rates represented by the arrow lengths suggest that flow rates in 

glass/water are much higher than those in sapphire/water at a given particle temperature. By 

increasing laser power, the high-temperature area expanded much greater than the area adjacent to 

the particle with a diameter of 100 nm. 

Figure 1c depicts the laser peak power density vs. particle temperature curves for 

sapphire/water and glass/water systems. As seen from the figure, the particle temperature in 

glass/water is always much higher than that in sapphire/water at the same laser intensity.  
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Figure 1. Simulated 2D temperature distributions for a single water-immersed 100-nm Au NP on 

glass (a, 1.0 mW µm
−2

) and on sapphire (b, 5.3 mW µm
−2

), under optical illumination from a CW 

laser. The length of white arrows corresponds to the magnitude of the convective flow rates. (c) 

Calculated particle temperature as a function of applied laser peak power density for a 

water-immersed 100-nm-Au NP on sapphire (red line) and glass (black line) substrates. Note that 

the water temperature is the same as the particle temperature at the NP surface. To calculate 

temperature, we used the thermal conductivity of water because the PNIPAM contribution is minor. 

Thermal conductivities used for calculation: water, 0.60 W m
−1

 K
−1

; borosilicate glass (D263T), 1.0 

W m
−1

 K
−1

; sapphire, 41 W m
−1

 K
−1

. The temperature simulation was performed for laser intensities 

that may not exceed the bubble formation threshold.  

------------------------------------------------------------------------------------------------------------------ 

 

The nonlinear temperature increase was remarkable in glass/water because of the higher 

temperatures that induced higher convection rates. With both different substrates, the 

high-temperature region increased in area with increasing laser intensity. From the particle 

temperature as a function of laser peak power density given in Figure 1c, the threshold of bubble 

formation can occur at ~3 mW µm
−2

 for glass/water system. On the other hand, it is estimated at > 

10 mW µm
−2

 for sapphire/water system. Next, we will show the experimental evidence of phase 

separation, in which the particle temperature and the medium temperature distribution play a major 

role. 
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2. Microscopy imaging on plasmonic heating. 

Darkfield microscopy imaging of a single Au NP was performed coupled with plasmonic heating in 

aqueous solutions of thermoresponsive polymers, depending on polymer concentration and laser 

intensity. Upon laser illumination of a 100-nm Au NP supported on a glass substrate and submerged 

in aqueous PNIPAM solution, we observed the formation and growth of a light-scattering sphere 

(2D images) centered at the position of the Au NP subjected to illumination. Figure 2 a and b shows 

images captured by a digital camera (the corresponding movie files, Movies 1-4 can be found in the 

Supporting Information); a and b compare the cooling effect of different substrates on plasmonic 

heating. In Figure 2a, a scattering sphere immediately grows to diameter > 2 μm within 5 s of 

illumination and exhibits a very slow growth to diameter ~2 μm (see t2 = 10 to t5 = 120 s). The 

brightfield image of a scattering sphere (Figure 2c, I and Supporting Information S2) shows a 

transparent planoconvex lens-like shape suggesting a droplet formed. It has been found that gel-like 

PNIPAM-rich agglomerates grow within the phase-separating solutions upon heating homogenous 

PNIPAM solutions across Tc.
 36-38

 However, the single-domain phase separation occurred for local 

heating;
4-6

 plasmonic-heating-induced droplet formation encapsulating the Au NP, as demonstrated 

here, is unprecedented. The observed diameter of a light-scattering sphere as a function of 

illumination period at laser peak power densities of 0.7–2.6 mW µm
−2

 is given in Supporting 

Information S3 (below 0.7 mW µm
−2

, we had experimental difficulty in imaging hampered by an 

illuminating laser spot as will be explained below). We clearly observed the formation of a 

scattering entity at ~0.7 mW µm
−2

 on a glass substrate. When the laser light is blocked after 120 s of 

illumination, the scattering sphere collapsed immediately (see t1 (off) = 0.25 to t3 (off) = 55 s) and 

the original Au NP image recovered. The single-particle light-scattering spectra of Au NP at t1 and t 

(off) are nearly the same, suggesting that original bare Au NP was reproduced after illumination was 

terminated. 
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(d)  

              I                          II                         III     

 

Figure 2.  

(a, b) Darkfield light-scattering images representing time evolution starting from the excitation of a 

single 100-nm-diameter Au NP supported on a glass substrate (a, 1.8 mW µm
−2

) or a sapphire 

substrate (b, 5.3 mW µm
−2

), submerged in aqueous 0.96% PNIPAM solution.  

(c) Magnified images: I, brightfield image of 200-nm-diameter Au NP. The particle was exposed to 

laser irradiation at 5.3 mW µm
−2

 for 190 s; II, darkfield image showing a bright spot at the Au NP 

surrounded by dark and bright concentric rings; III, darkfield image of a rapidly growing bright 

scatterer consisting of very small scatterers; and IV, darkfield image showing a moving scatterer. In 

II–IV, 100-nm-diameter Au NP s were exposed to laser irradiation (laser peak power density: II. 1.8 

mW µm
−2

; III. 5.3 mW µm
−2

; IV. 3.5 mW µm
−2

) for periods given in the images. The particles are 

supported on a glass substrate and submerged in 0.96% PNIPAM solution.  

(d) Light-scattering sphere diameter as a function of time from the start of laser illumination on the 

100-nm-diameter Au NP at various laser intensities and concentrations of PVME; I: 0.5% PVME, 

II: 8.0% PVME, III: laser intensity 4.0 mW µm
−2

 for 0.5% PVME and 8.0% PVME.  

The observed diameters of 100-nm Au NPs on a digital camera are 0.70.8 μm because of the 

diffraction limited optics. 

----------------------------------------------------------------------------------------------------------------- 
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This result suggests that the phase separation of PNIPAM reversibly forms a microdroplet around 

Au NP in response to the particle temperature increase/decrease. That is, the particle temperature 

and resultant temperature distribution around the Au NP, given in Figure 1 a and b, are decisive for 

the size and shape of phase-separated droplets because the droplets formed are in dynamic 

equilibrium with incoming and outgoing molecules. As a result, steady-state droplet diameter that 

depends on the illumination intensity was reached as time proceeded (Figure 2a and Supporting 

Information, Figure S3a).  

Light-scattering imaging relies on the distinct difference in refractive indices, so the clear 

boundary that occurred between the domain and the medium suggests that the domain has a much 

greater refractive index than water, indicative of phase separation. Indeed, the refractive index of 

n=1.495
(39

 reported for pure amorphous PNIPAM is considerably higher than that of water, n=1.333 

at ambient temperature. The phase separation results in polymer-rich domain containing water, the 

amount of which is inaccessible. Therefore the refractive index of PNIPAM-rich droplet can be 

smaller than that of neat polymer.  

Figure 2b shows the time evolution of light-scattering images for a sapphire substrate. 

Formation of a scattering sphere similar to those observed on a glass substrate occurred, but at 

much higher laser intensities > ~ 3 mW µm
−2

. Below this intensity, the illuminating laser spot 

hampered the imaging of PNIPAM-rich droplet, although the laser was attenuated by blocking with 

a filter before the camera. Minimum intensity was necessary to locate the beam position to irradiate 

the Au NP, however. The higher threshold of droplet formation can be ascribed to greater cooling 

effect of a sapphire substrate caused by much larger thermal conductivity as discussed in the 

previous section. With the lapse of time, a gradual increase in the diameter of a scattering sphere 

occurred until 120 s reaching a diameter of 4.5 μm. The slower droplet growths observed in 

sapphire/water system can be ascribed to lower flow rates and greater deviation from 

centrosymmetric temperature distribution around the particle, estimated for the system than the 

glass/water system (compare Figure 1, a and b). On blocking the laser light, however, a 



18 

 

phenomenon distinct from that observed on a glass substrate occurred. The scattering images 

without laser illumination were appreciably greater in size than those of the original Au NP. In this 

case, a fixation of polymer around the Au NP resulted. The detailed account of this observation is 

given in section 4. 

In addition to PNIPAM, we applied the darkfield imaging technique to monitor the 

plasmonic-heating-induced phase separation of aqueous PVME, which is also known for its 

thermoresponsive nature.
40-42

 Figure 2d was constructed based on the scattering sphere diameter 

dependent on illumination time (see Supporting Information S4 for images). In this case, clear 

laser-power-dependent diameter growth was observed on a glass substrate in the range of laser 

powers we used (I and II). Notably the time-dependent diameter growth was concentration 

dependent; at 0.5% PVME, a fast growth occurred within 2 s, which is similar to the observation for 

PNIPAM. At 8.0%, however, a slow growth from 5 to 50 s occurred. This concentration dependence 

is safely ascribed to the effect of higher viscosity that gives reduced diffusion coefficients for 

polymers at higher concentrations (Supporting Information S5). At higher laser powers, a 

remarkably steeper diameter increase with time occurred, which is also dependent on the PVME 

concentration. Such an example at 4.0 mW µm
−2

 is given in Figure 2d III. At 8.0% PVME, the 

diameter growth occurred immediately. Furthermore, after terminating the laser illumination, an 

increased particle diameter of 1.5 μm at 8.0% PVME was observed. This diameter increase after 

illumination was only observed at laser intensities > 4.0 mW µm
−2

. The observations of remarkably 

steep diameter rise and permanent fixation at high intensities strongly suggest that bubble formation 

occurred because of strong heating.
26-29,35

 Presumably, the higher PVME concentration acted to 

induce bubble generation. Permanent fixation on glass substrates was also observed for PNIPAM at 

high laser intensities (Supporting Information, Figure S3b). 

Finally, we comment on the shape of light scatterers: phase-separated droplets. As shown in 

Figure 2 a and b, the light scatterers exhibited basically plain spherical shapes of various diameters. 

In contrast, when the laser power was increased to 1.8 mW µm
−2

, we could see ring structures as 
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shown in Figure 2c, II. The central bright spot is ascribed to the location of a hot Au NP where the 

light-scattering intensity can be very high because such a high temperature attracts and concentrates 

PNIPAM molecules to a greater extent. The peripheral ring also exhibited high scattering intensity. 

On this occasion, we ascribe the ring observation to purely optical effect: the outside of a droplet is 

bright because of the difference in the refractive index of PNIPAM-rich domain from that of water 

at a focus while the inside is dark because of a droplet size exceeding the Rayleigh length of the 

optics. In fact, brightfield images gave no such rings. At a much higher intensity of 5.3 mW µm
−2

, 

we observed a very bright droplet growing rapidly. In this case, a droplet is regarded as the 

assembly of small grains that scatters light efficiently, Figure 2c, III. We occasionally observed 

rotating scatterers as shown in Figure 2c, IV. In such cases, one side of the scatterer was observed to 

rotate around a sphere (see Movie 5). These dynamic features of scatterers are indicative of the 

formation of droplet through plasmonic heating-induced phase separation. 
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3. Plasmonic-heating-induced LSPR scattering spectral shifts    

Figure 3a shows the Rayleigh scattering spectral changes of a 100-nm-diameter Au NP submerged 

in aqueous 1.0% PVME solution, before, during, and after illumination. In this experiment, Au NPs 

were supported on a glass substrate. For the scattering spectra, redshift occurred only during 

illumination; when the illumination stopped, the original spectra returned. The spectral shift was 

dependent on the laser intensity: the spectral shift was within experimental error at a laser peak 

power density of 0.10 mW µm
−2

 (1.0 × 10
4
 W cm

−2
), whereas appreciable redshifts of 13 nm at 0.30 

mW µm
−2

 and 54 nm at 0.50 mW µm
−2

 were recorded. The LSPR scattering spectral peak shift was 

plotted as a function of laser peak power density in Figure 3b, showing progressive redshift with 

increase in laser intensity. 

----------------------------------------------------------------------------------------------------------------- 
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The observation of LSPR redshift of a single Au NP in aqueous PVME is similar to a 

previous observation in aqueous PNIPAM solution.
19

 The origin of the spectral shift was ascribed to 

a LCST-induced aggregation of PNIPAM around the NP through heating of the surrounding 

medium with heat transfer from the optically heated NP. PNIPAM molecules are hydrophilic at 

temperatures below LCST (305 K), but hydrophobic above LCST.
1,3

 The aggregated PNIPAM 

around a Au NP was assumed to increase the refractive index of the medium sensed by the Au NP, 

resulting in LSPR scattering redshift.
19

 Aqueous PVME solution exhibits thermoresponsive nature 

with a LCST at around 308 K.
6, 39-41

 The present results showed that the scattering spectral peak 

shift continued to increase as the laser intensity increased (Figure 3b). At the same time, the 

imaging study (Figure 2) revealed microdroplets formed surrounding the Au NP at intensities higher 

than those used in the scattering spectroscopic studies. These results suggest that the droplet size of 

phase-separated polymer aggregates increases as the particle temperature increases. Our findings 

revealed that PVME, as well as PNIPAM, underwent plasmonic-heating-induced phase separation, 

forming a droplet. Next, we attempt to estimate the size of phase-separated droplets below the 

diffraction-limited size from the scattering spectral changes. This may compliment the imaging 

study, which is only applicable to size estimation of droplets > 1 µm.  

Figure 4 a and b shows the laser intensity-dependent scattering spectral changes of a Au NP 

under laser illumination in aqueous PNIPAM solutions at two concentrations, 0.48% (Figure 4a) 

and 0.96% (Figure 4b). In this experiment, 100-nm-diameter Au NPs were supported on a sapphire 

substrate. We used a wide range of excitation intensities, peak power density < 2.6 mW µm
−2

, for 

which reversible redshift of the LSPR scattering spectra occurred. For imaging studies in section 2, 

we used much higher intensities: 5.3–8.8 mW µm
−2

. In Figure 4a, besides the redshift, increased 

spectral bases are exhibited at lower wavelengths near 500 nm for illumination at high intensities. 

The increased bases are more pronounced in Figure 4b, in which twice the higher concentration of 

PNIPAM than that in Figure 4a is used. Here, a remarkable increase in the spectral bases occurred, 

in particular at shorter wavelengths, as the laser intensity increased. This is typical for Rayleigh 
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scattering, the intensity of which has 
−4

-dependence, from a non-absorbing particle, the refractive 

index of which is greater than that of the medium.
43

 We checked that this increased scattering base 

was not an artifact caused by stray laser light: a combination of laser band-pass and long-pass filters 

effectively blocked the excitation light, whereby the observation of the scattering spectra below 500 

nm was hampered. The observed scattering spectral changes, both LSPR redshift and increased base 

in particular at lower wavelength, were interpreted by encapsulation of Au NP in a polymer droplet, 

the thickness of which increases depending on the laser intensity and polymer concentration. As 

shown in Figure 4c, the LSPR scattering peak redshift started at an intensity of 0.25 mW µm
−2

 and 

continued without saturation nearly independent of PNIPAM concentration. This may suggest that 

the size of the droplet encapsulating the Au NP depends largely on the NP temperature.    

To assess the effect of encapsulation on the scattering spectral changes, we performed the 

spectral simulation applying two methods, the Mie formalism for spherical particles
43

 and a 

numerical simulation based on the finite element method (FEM) which included the contribution of 

substrates using COMSOL MultiPhysics. In the Mie calculation, a concentric spherical Au NP 

core–polymer shell structure (Figure 4d, inset) dispersed in water was assumed with various shell 

thicknesses. We assumed the refractive index of the PNIPAM shell as 1.45, that is, slightly smaller 

than 1.495 of neat polymer
39

 because the phase-separated droplet may contain some water, the 

amount of which is not accessible. We did not consider a smaller value of 1.40 because this value 

gave shell thickness-dependent LSPR scattering peak shifts much smaller than those observed in the 

experiments. As shown in Figure 4d, both LSPR scattering spectral redshift and the gradual increase 

in scattering intensities from the shell were reproduced. According to the Mie simulation, the 

PNIPAM droplet with diameter 0.7 m containing a 100-nm-diamter Au NP would give a scattering 

spectrum similar to the one measured at the laser peak power density of 2.6 mW μm
−2

 (compare 

Figure 4b and 4d).  
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Figure 4.  

(a,b) Light-scattering spectral changes of a 100-nm-diameter Au NP supported on sapphire substrate 

during illumination as a function of laser peak power density in aqueous 0.48% (a) and 0.96% (b) 

PNIPAM.  

(c) Light-scattering peak shift for a 100-nm-diamter Au NP supported on a sapphire substrate as a 

function of laser peak power density at three PNIPAM concentrations, 0.24%, 0.48% and 0.96%.  

(d) Scatting spectral simulation based on Mie calculation for a concentric core–shell particle 

consisting of a 100-nm-diameter Au NP with various thicknesses of a shell of n=1.45 nm suspended 

in water (n=1.33).  

(e) Scattering spectral peak as a function of shell thickness simulated based on FEM, considering 

the effect of a sapphire substrate (n=1.77) in comparison with the Mie calculation for a concentric 

core–shell particle.  

(f) Effect of repeated irradiation with high and low power cycles: 5.3 mW µm
−2

 for 2 s (01, 23, 

45) and 0.088 or 0.018 mW µm
−2

 for 60 s (12, 34, 56), on scattering peak shifts for a 

100-nm-diamter Au NP supported on a sapphire substrate. 

----------------------------------------------------------------------------------------------------------------- 

 

When supported on a sapphire substrate, the droplet diameter was estimated from imaging as 2 μm 

for irradiation at 5.3 mW μm
−2

. Although we could not determine exactly the PNIPAM droplet size 

at intensities < 5.3 mW μm
−2

 from imaging because of difficulty in determining the droplet size 

distinct from the laser spot, we assumed that the droplet size was smaller than the laser spot of ~1 

μm. In contrast, the scattering spectral estimation should be limited to droplet diameters < 1 μm 

because, for much bigger droplets with greater shell thicknesses, severely distorted scattering 

spectra can occur owing to the greater scattering contribution from a shell. Thus the darkfield 

imaging can be more reliably used for estimation of diameters >1 μm. 

The FEM calculations were performed to include the substrate effect on the scattering spectra. 

Figure 4e shows the LSPR spectral peak shift as a function of shell thickness (see Supporting 

Information S6 for spectra). Inset is the pictorial representation of a configuration for simulation of 

a Au NP/PNIPAM shell/sapphire exposed to water. For comparison, the results of the Mie 

calculation are also given. Both the Mie calculation and FEM gave a greater LSPR scattering peak 
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redshift as a function of shell thickness, up to 100 nm. The numerical simulation including a 

sapphire substrate, however, gave a slightly greater shift than the simple core–shell model. The 

numerical simulation gave the spectral shift closer to the experimental ones and may describe the 

spectra more accurately. However, we found that the FEM computation needs considerable 

computational time, in particular, for shell thicknesses > 100 nm, far from practical use. A weak 

point of the simple core–shell model is to neglect the restricted accessible volume for the shell 

formation in the presence of a substrate. The ratio of inaccessible volume to accessible volume 

dependent on the shell thickness is calculated on the basis of simple geometric consideration, as 

given in Supporting Information S6. We concluded that the inaccessible volume, 25% for t=100 nm 

and 40% for t=500 nm, affects the scattering spectral calculation by the simple core–shell model to 

a lesser extent, and the spectral simulation in Figure 4d is acceptable.  

When we apply laser intensities > 3.7 mW µm
−2

 on sapphire, we observed permanent redshift 

in the LSPR scattering spectra. This was consistent with the darkfield imaging in Figure 2b, in 

which a particle larger than the original Au NP remained after terminating the illumination. The 

SEM imaging revealed that Au NPs were encapsulated (Supporting Information S7). However, we 

found that further illumination at a weak intensity can result in blueshift of the scattering spectrum. 

Figure 4f shows three repeated cycles of intense (5.3 mW µm
−2

, 2s) and weak (0.088 mW µm
−2

 or 

0.018 mW µm
−2

, 60 s) illuminations. We observed the photoswitching behavior for LSPR peak 

position corresponding to encapsulation and decapsulation. We refer to the mechanism of this 

behavior in Section 4. 
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4. Mechanistic aspect of plasmonic-heating-induced phase separation  

We found that thermoresponsive polymers were attracted to a Au NP under illumination with a 

wavelength near the LSPR, forming a microdroplet. Here the contribution of optical trapping to the 

droplet formation should be minor because of moderate focusing at low intensities; instead, the 

particle heating is primarily responsible. We observed that more and more polymers were pouring 

into the high-temperature area adjacent to the particle, forming a droplet with increasingly larger 

diameters as the particle temperature increases. A simple calculation suggested that PNIPAM 

molecules dissolved in aqueous solution were concentrated into a droplet at least 50 times assuming 

50% PNIPAM. The phenomenon observed is unusual because PNIPAM that exhibits a positive 

thermophoretic mobility, DT, is normally repelled from the high-temperature area through 

thermophresis.
15

 Here the thermoresponsive nature of polymers is responsible for the present 

observation of a microdomain formed and grown surrounding the hot NP. First, the temperature 

field around the Au NP acts to hold a droplet because of the temperature gradient that is steeper as 

being closer to the NP. For the attachment of droplet to Au NP, hydrophobic interaction must be 

responsible. Second, the LCST-induced phase separation around the hot NP causes the 

concentration deficiency within the volume near the droplet containing the Au NP, which can 

promote the diffusion of polymers from the outside area to the droplet. Presumably, the droplet size 

is determined by a balance between incoming and outgoing rates of diffusing polymers at a given 

particle temperature.   

The phase separation of PNIPAM and PVME around a Au NP was basically reversible for 

heating/cooling: the droplet was observed only during illumination. This is understandable because 

LCST behavior of the polymers is reversible.
1,3

 Two points, however, should be addressed on the 

accumulation of polymers after illumination. On glass substrates, permanent accumulation occurred 

at high laser intensities. Vapor bubble formation around a Au NP is responsible for this permanent 

accumulation. In pure water, the generation of nano- and microbubbles on CW laser illumination of 

plasmonic NPs occurred in a superheated water when the particle temperature was raised to 
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between 220 and 240C (493–513 K), much higher than the boiling point of water (100C or 373 

K).
16-18

 Estimated particle temperatures were 500–600 K. Bubbles have the ability to collect 

colloids and NPs through Marangoni convection, resulting in fixation of them on substrates.
26-29,35

 

The present observation of PNIPAM and PVME fixation is consistent with bubble-induced 

accumulation.   

We also observed the fixation of PNIPAM on the sapphire substrate after illumination was 

stopped, as given in Figure 2b, Figure 4f and Supporting Information, Figure S7. For sapphire, 

because of its remarkable cooling effect, the particle temperatures during illumination may not be 

so high to induce vapor bubble generation. We assume that another mechanism can operate. The 

phase separation of PNIPAM has been thoroughly investigated in bulk aqueous solution and its 

phase diagram has been established,
3
 as given in Supporting Information S8. According to this 

diagram, as well as the demixing line between one solution phase and two liquid phases, there is a 

glass transition line in the high concentration region.
45

 This line steeply decreases with decreasing 

PNIPAM concentration, in particular, at temperatures below TBT, the vitrification temperature (35C 

at 80% PNIPAM). This suggests that if a PNIPAM-rich phase experiences a quick temperature 

decrease it may undergo a glass transition to a solid-like or gel-like state. We assume that such a 

glass transition on sapphire substrate can result in the accumulation of the polymers when the 

illumination is stopped. Interestingly, slight heating again dissolved the polymer deposit (Figure 4f).  

The kinetics of phase separation for the thermoresponsive polymers, in particular, at the 

nanoscale is of extreme interest. For bulk solutions, temperature-jump transient spectroscopy and 

temperature-jump transient grating methods have been applied to reveal kinetics of phase 

transition/phase separation for aqueous polymers including PNIPAM and PVME.
46-48

 It was found 

that demixing occurs at the time scale of 10–100 ms with the remixing time of a few seconds. The 

time resolution of our present measurement is approximately 1 s. However, we observed the time 

dependent increase/decrease in droplet diameters for the 8.0% PVME solution that has relatively 

high viscosity. We intend to improve the time resolution in future studies.  
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Our present finding is that the plasmonic heating of a single Au NP can trap thermoresponsive 

polymers around the NP, forming a phase-separated droplet. The ability of plasmonic heating to 

induce migration and accumulation is not limited to thermoresponsive polymers. Molecules like 

poly(ethylene glycol) and sodium dodecyl sulfate as well as silica colloids were found to 

accumulate surrounding a hot Au NP after laser illumination.
49

 While photothermal bubbles can 

collect and fix colloids and NPs by promoting thermal and Marangoni convection
29

, plasmonic 

heating manipulates colloids and macromolecules through a similar mechanism at low laser 

intensities. Plasmonic heating-induced manipulation is a technically benign procedure without the 

aid of bubbles, but has potential to fabricate small structures if technical sophistication is attained. 

In this context, the concept of convection-enhanced and temperature-assisted optical trapping has 

been postulated.
50,51

 The practical merits and demerits of plasmonic-heating-induced manipulation 

over local medium heating and optical trapping are summarized in Table l.   

 

Table 1. Plasmonic-heating-induced vs. local medium-heating-induced phase separation. 

paradigm plasmonic heating local medium heating optical trapping 

    
trapping mode 2D 3D 3D 

    
laser wavelength 488 nm 1064 nm 1064 nm 

 

mechanism 

 

local temperature 

field 
medium heating optical gradient force 

peak power density 104
105 W cm-2 108

109 W cm-2 108
109 W cm-2 

    
microscopy darkfield brightfield brightfield 

    
time evolution 1100 s 101000 s 10100 s 

    
medium H2O/substrate H2O D2O 
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Conclusion  

We used plasmonic-heating to induce the phase separation of thermoresponsive polymers and 

demonstrated a 2D trapping of the polymers around a single Au NP supported on a substrate under 

illumination from a moderately-focused laser beam. 3D extension is possible but the present 

configuration is convenient for the confinement of the polymers on substrates. We used a 488-nm 

laser light to excite both LSPR and intraband transitions, resulting in particle heating. The generated 

temperature field is mainly responsible for trapping thermoresponsive polymers. In optical trapping 

assisted by a gradient force, however, the particle heating that facilitates Brownian motion needs to 

be bypassed. Most importantly, our laser power is very low, much less than that used in the direct 

medium heating or optical trapping experiment. We succeeded in applying darkfield microscopy 

imaging that has previously not been used for observing phase separation. As a result, we obtained 

high contrast images. The significant findings of the present study are: (1) the plasmonic heating of 

a single Au NP with a laser power of ~10
4
 W cm

−2
 enables a single-domain phase separation around 

the NP, which is considerably energy saving compared with medium heating-induced microdroplet 

fabrication using an infrared laser with a power of ~10
9
 W cm

−2
; (2) by illuminating various 

intensity of a laser beam on Au nanostructured substrates, the location and size of the droplet is 

adjustable so that one can separate polymer droplets from the solution at any location; and (3) using 

a high thermal conductivity sapphire substrate, permanent fixation of the polymers can be attained 

without the aid of vapor bubbles for further use.   
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