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Abstract

The Perron-Frobenius theorem for nonnegative matrices has been
generalized to order-preserving homogeneous mappings on a cone and more
recently to nonnegative tensors. We unify both approaches by introducing the
concept of order-preserving multi-homogeneous mappings defined on a product
of cones and their associated eigenvectors. By considering a vector valued
version of the Hilbert metric, we prove several Perron-Frobenius type results for
these mappings. We discuss the existence, the uniqueness and the maximality
of nonnegative and positive eigenvectors of multi-homogeneous mappings. We
prove a Collatz-Wielandt formula and a multi-linear Birkhoff-Hopf theorem.
We study the convergence of the normalized iterates of multi-homogeneous
mappings and prove convergence rates. Applications of our main results
include the study of the ¢P:¢-singular vectors of nonnegative matrices, the ¢P-
eigenvectors, rectangular ¢P'¢-singular vectors and ¢P*-Pi-singular vectors of
nonnegative tensors, the generalized DAD problem and the discrete generalized
Schrodinger equation arising in multi-marginal optimal transport. We recast
these problems in the multi-homogeneous framework and explain how our
theorems can be used to refine, improve and offer a new point of view on
previous results of the literature.

Zusammenfassung

Das Perron-Frobenius Theorem fiir nichtnegative Matrizen wurde auf
homogene, ordnungserhaltende Abbildungen auf einem Kegel erweitert und,
in letzter Zeit, auf nichtnegative Tensoren. Wir vereinheitlichen beide
Ansitze, indem wir das Konzept der ordnungserhaltenden, multi-homogenen
Abbildungen, die auf einem Produkt von Kegeln definiert sind, sowie
deren zugehorige Eigenvektoren einfiihren. Indem wir eine vektorisierte
Version der Hilbert-Metrik in Betracht ziehen, beweisen wir fiir diese
Abbildungen mehrere Perron-Frobenius-Typ Ergebnisse. Wir diskutieren
die Existenz, die Einzigartigkeit und die Maximalitdt nichtnegativer und
positiver FEigenvektoren multihomogener Abbildungen. Wir beweisen
eine Collatz-Wielandt-Formel und einen multi-linearen Birkhoff-Hopf Satz.
Wir untersuchen die Konvergenz der normierten Iterationen von multi-
homogenen Abbildungen und beweisen Konvergenzraten. Anwendungen
unserer Hauptergebnisse umfassen die Untersuchung der ¢P:9-singuléren
Vektoren nichtnegativer Matrizen, der ¢P-Eigenvektoren, rechteckiger ¢P:9-
singuldrer Vektoren und ¢P1--Pi-ginguldrer Vektoren nichtnegativer Tensoren,
das generalisierte DAD-Problem und die diskrete generalisierte Schrédinger
Gleichung, die im Zusammenhang mit multi-marginalem optimalen Transport
auftritt. Wir iibertragen diese Probleme in den multi-homogenen Rahmen
und erkldren, wie unsere Theoreme verwendet werden konnen, um friithere
Ergebnisse der Literatur zu verfeinern, zu verbessern und eine neue Sichtweise
auf diese zu bieten.
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1 Introduction

The Perron-Frobenius theorem [79, 33] implies that an irreducible matrix A € R™"*"
with nonnegative entries has a unique eigenvector u up to scale in the nonnegative
orthant R”. Moreover, u has positive entries, i.e. u € R’} ,, u corresponds to the
spectral radius p(A) of A and p(A) is a geometrically simple eigenvalue. Furthermore,
the spectral radius of A has a min-max and a max-min characterization given by the
Collatz-Wielandt formula [27, 96]. If additionally, A is primitive then p(A) is an
algebraically simple eigenvalue of A and the power method [70] always converges
towards an eigenvector of A corresponding to p(A) when started in R} \ {0}. The
many implications of the Perron-Frobenius theorem has strongly motivated the study
of nonnegative matrices and their applications in the past century [11, 8].

It is noted in [14] that, when considered as a mapping from R’} to R’}, matrices
with nonnegative entries are non-expansive with respect to the Hilbert (projective)
metric and matrices with positive entries are strict contractions. The smallest
Lipschitz constant of a linear mapping leaving a cone invariant is characterized in
the Birkhoff-Hopf theorem [14, 47]. This observation allows to prove the Perron-
Frobenius theorem using tools of fixed point theory. Remarkably, the Hilbert metric
can be used to study the eigenvectors of nonlinear mappings as well. This has been
noted in [22] where it is proved that a mapping leaving invariant a cone which is
positively p-homogeneous and order-preserving, i.e. it preserves the partial ordering
induced by the cone, has p as Lipschitz constant. In particular, if p < 1, then
the mapping is non-expansive with respect to the Hilbert metric. Non-expansive
mappings leaving invariant a cone in a Banach space were extensively studied in
[75]. A recent exposition of the nonlinear Perron-Frobenius theory on cones in finite
dimensional vector spaces can be found in the excellent monograph [60].

In the past two decades, the Perron-Frobenius theorem has been extended for
tensors with nonnegative entries [64, 24, 26|, where tensors are understood as matrices
with two or more indexes. Likewise square matrices have eigenvectors and rectangular
matrices have singular vectors, various eigenvector equations can be associated to
a given tensor depending on its shape. For instance, if T € R™ ™ " ig a third
order tensor with nonnegative entries, three different eigenvector equations involving
T have been introduced in the literature and a Perron-Frobenius type theorem
has been proved for each of these problems. The solutions to these equations are
referred to as the (P-eigenvectors (64, 24|, the rectangular (2-singular vectors [26]
and the ¢P?"-gsingular vectors of T' [31]. These problems, recalled with details in
Section 4.2 below, are all particular cases of the following more general formulation:
For i« = 1,...,d, let C; be a cone in a finite dimensional real vector space, let
F:Cyx...xCqy— C x...xCq be amapping and consider the following system:

.F(l?l,...,ﬂfd)l = )\1.’E1
f(xl,...,xd)g : )\2.@2 (1.1)

‘F(xlu"'vxd)d = )\dxd

with (z1,...,24) € (C1\{0})x...x(C4\{0}), A1,...,Aq > 0 and where F(z1,...,2q);



denotes the canonical projection of F(z1,...,z4) onto C; fori = 1,...,d. Typically,
the components of F are positively homogeneous in each variable but the homogeneity
degree may differ from one variable to another and F preserves the ordering induced
by the cone C = C} x ... x Cq. When d = 1, Equation (1.1) reduces to the equation
characterizing the eigenvectors of a homogeneous mapping on a cone [60].

This thesis is about proving a generalization of the Perron-Frobenius theorem
for eigenvector equations of the type described in (1.1). This work includes a
generalization of the Perron-Frobenius theorem, the Collatz-Wielandt formula, the
Birkhoff-Hopf theorem and the power method for such problems. The advantage
of these generalizations is that they unify results of the Perron-Frobenius theory of
nonnegative tensors. Furthermore, as discussed in Section 11.2, the main results of
this thesis (summarized in Section 11.1) allow to improve previous results in that
they either hold for a larger class of problems or require weaker assumptions. Key
ingredients for the study of the solutions to (1.1) are the introduction of multi-
homogeneous mappings, defined in Section 3, together with the consideration of a
vector valued version of the Hilbert projective metric, discussed in Section 6. The
generality of (1.1) allows to derive results for other problems such as the study of the
solution to the discrete generalized Schrodinger equation arising in multi-marginal
optimal transport |10, 85|, the study of quantum copulas [67] and the study of the
solutions to the generalized DAD problem [16, 60].

This thesis is cumulative in that it builds on, and reproduce, results of a subset
of the ten papers written during the graduation period, namely [36, 37, 38, 39, 40,
69, 72, 73, 74, 92|. In order to emphasize the scientific contribution of this thesis
without disrupting the reading, we add the superscript © when referring to one of
these manuscripts.

2 Preliminaries

We recall here concepts of geometry, functional analysis, multi-linear algebra, and
set basic notation that will be used throughout this thesis.

Let (V.|| - |[yv) be a finite dimensional real normed vector spaces. Let S C V be
a set. We denote by int(S), cl(S) and 95, the interior, the closure and respectively
the boundary of S with respect to the norm topology. The linear span of S, the
affine hull and the conical hull of S are respectively denoted by span(S), aff(S) and
cone(S). If S is convex, we denote its relative interior by relint(S). For every a € R,
we let aS = {as|s € S} and if ' C V, then welet S+ 5" ={s+s'|se S,s € 5}
The dual space of V is the real vector space of linear functions from V' to R and is
denoted V'*.

Let U C V be an open set and let (W, || - ) be a finite dimensional real vector
space. A mapping f: U — W is Fréchet differentiable at x € U if there exists a
linear mapping D f(z): V — W such that

[f(x+h) = f(z) = Df(@)hllw _

|hllv—0 IRl

0.

In this case we say that f is differentiable at x and refer to D f(z) as the derivative



of f at x. Given a set S C U, if f is differentiable at every x € S, then we say
that f is differentiable on S and if f is differentiable on U, then we simply say that
f is differentiable. In the particular case where W = R, we denote the differential
operator D by V, in other words, for ®: U — R we denote the gradient of & by
Vo(x).

Let f: U - W with U C V and p € R. If for every z € U and o > 0 such that
azx € U it holds f(ax) = of f(x), then we say that f is homogeneous of degree p on
U, or simply that f is p-homogeneous on U. We say that a mapping f: U — W
is homogeneous, if there exists p € R such that f is p-homogeneous on U. We
note that, in the literature, such a mapping is sometimes referred to as a positively
homogeneous mapping of degree p, however as we mostly work with homogeneous
mappings on cones, this precision is unnecessary in our case. Note that every linear
mapping is homogeneous of degree 1. Differentiable homogeneous mappings can be
characterized in terms of their derivatives. This result is known as Euler’s theorem
for homogeneous functions.

Theorem 2.0.1 (Euler). Let U C V be an open convex subset of V, p € R and
f: U — W adifferentiable mapping. Then, f is homogeneous of degree p if and only
if Df(z)x = pf(x) for every z € U.

Proof. Suppose that f is p-homogeneous and let « € U, then

Doy =ty I i ) EE

pf(x).

Suppose that Df(z)xr = pf(z) for all x € U. Let z € U and a > 0 such that
ar € U. We prove that f(ax) = of f(x). If o = 1, there is nothing to prove.
Suppose that a # 1, the segment between = and ax is entirely contained in U as U
is convex. Furthermore, as U is open, there exists € > 0 such that (1 +¢)z € U and
(a+t)xr e Uforallt e Rwith [t| <e Ifa<1lset J=(a—e¢ 1+¢€) andif a > 1 set
J = (1—¢,a+e). Define ¢p: J — W as ¢(t) = f(tx) —tP f(x), then ¢ is differentiable
and it holds t¢/(t) = D f(tx)(tx) — ptP f(x) = pp(t). The only differentiable solution
¢: J — W to the differential equation ¢'(t) — £¢(t) = 0 satisfying ¢(1) = 0 is
¢(t) =0 for all t € J. Hence, ¢(a) = 0 and thus f(azx) = o f(x). O

2.1 Vectors, matrices and tensors

We introduce here notation for the particular case where V = R? R™*" Rixmxn

etc.

9

2.1.1 Vectors and matrices

For x € R™, we denote by z; the component of z in the canonical basis, so that
x = (1,...,xy,). If a vector already has a subscript, then we simply append another
subscript to denote its components, so that, for instance, if (z3)?2, C R" is a
sequence, then the i-th component of z;, € R" is denoted ;. The constant vector



of all ones is denoted by 1,i.e. 1 = (1,...,1)T. The set of vectors with nonnegative
components is denote by R’ and its interior by R}, , i.e. we let

RY ={z €R"|z; >0,i=1,...,n},
RY, ={zeR"|z;>0,i=1,...,n}.
We refer to the elements of R’} and R’ ,, as nonnegative and positive vectors,
respectively. For a >0 and x € R}, or « € R and z € R} ,, we let

= (xf,...,zy),

be the component-wise power of x. Furthermore, for z,y € R"™, we denote the
component-wise product of the entries of x and y by z oy, i.e.
oy = (T1Y1,- -+, TnYn)-

Similarly, if M € R™*", then we denote by M; ; the (i,j)-th component of M
in the canonical basis of R”*". The set of nonnegative matrices is denote by R'*"
and the set of positive matrices denoted by R’'S", where
RTXTLZ{MGRmxn‘MZ‘J >0,t= 1,...,m,j:1,...,n},
RTI”Z{MERmxn‘MiJ >0,1= 1,...,m,j:1,...,n}.

2.1.2 Third order tensors

For a third order tensor T' € R>*™*" we denote by T; ;1 the components of 1" in the
canonical basis of R™™*"  Furthermore, we let

RIxmxn — (7 e RX™*n 00 >0,i=1,...,0L,j=1,...,mk=1,...,n},
RIXmm = (T e R™n T, 00 > 0,i=1,...,0,j=1,...,mk=1,...,n},

RleXn, we

be respectively the set of nonnegative and positive tensors. Given T' €
denote by fr: Rl x R™ x R” — R the multi-linear form induced by T, i.e.

n

I m
fr(ey,2) = 3 N T jriyin. (2.1)

i=1 j=1 k=1

For z € R,y € R™, 2z € R", we let T(-,y,2) € RL, T(z, -, 2) € R™ and T(z,y, ) € R®
be defined as

m n
T(-y,2)i = ZZTi,j,kijk Vi=1,...,1,

J=1 k=1
I n

T(z,-,2); :ZZTi,j,kwizk Vi=1,...,m,
=1 k=1
I m

T(z,y, k=YY Tjkwiy;  Yhk=1,...n
i=1 j=1



In particular, note that with this notation it holds

Vir(z,y,z) = (T(-, y,2), T(z,+, 2), T(x,y, ))

The tensor T' € R™*™*"™ is said to be a symmetric tensor if for every 1,5,k =
1,...,n it holds

Tijr =Tikg = Tiik = Thij = Tiki = Thji-
If T e R™*™*™ ig symmetric, then for every x € R™, it holds
Vir(x,z,z) =30(,z,x) = 3T (z,+,z) = 3T (x,x, ).

Furthermore, note that if 7' € R™*™*™ is any tensor (not necessarily symmetric) and
T € R™*™*" ig defined as

Tk = s(Tiji + Tigej + Tiik + Thig + Tigei + Thji)  Visjk=1,....,n, (2.2)
then 7' is symmetric and it holds
fr(z,z,z) = fi(z,z,x) Vo € R"™.

If T e R™™" then T is said to be a partially symmetric tensor if for every
i=1,...,mand j,k =1,...,n,it holds T} ;;, = Tj ;. If T € R™*™"*" is partially
symmetric, then for every x € R™, y € R™, it holds

va(x7y)y) = (T(-,y7y),2T(.I,-,y)) = (T(,y,y),QT(:L‘,y,))

Furthermore, note that if 7 € R™*™*" is any tensor (not necessarily partially
symmetric) and 7' € R™*"*" ig defined as

,j—;;,j,k: %(E,],k—i_ﬂ,k,j) vi:la"'vmu ]7k: 17"'7n7 (23)
then it holds
fT(xvyay) :ff‘(xayay) Vl‘GRm,yGRn.

2.1.3 Tensors of any order

The above notation can be extended to tensors of any order. Namely, for T €
R71X X4 we say that T is a d-th order tensor and denote by 7}, . ;, the components
of T in the canonical basis. When dealing with tensors of general order, it is
convenient to consider the index sets

[ni}:{l,...,ni}, szl,,d
We let
R:L_1><...><nd _ {T € R1M1XXng ‘ Tjh---,jd > O,le c [n1]7 o 7jd c [nd]}7

RN = {T e RMX7Ma | Ty 50> 0,V51 € [m), ..., ja € [na)}.



Given a tensor T' € R™*-*"d  the multi-linear form induced by T is the function

fr: R™ x ... x R"™ — R defined for every (z1,...,24) € R™ x ... x R as
fr(zi,... zq) = Z Tjy,.ja 1y " Td jg-
j1€[mal,....ja€nd]

With this notation, if e,...,e,, is the canonical basis of R™, then T} _ ;, =
fr(ej,...,ej,). For (x1,...,24) € R™ x ... x R™ we let T'(-,22,...,24) € R™
be defined as

(-, m2,...,2a)5 = > Tj,...ja%2jo ** Tdjg Vi1 € [na].

j2€[n2}""7jd€[nd}

The vectors T'(x1, ..., Ti—1,* Tig1,.-.,2q) € R™ fori = 2, ..., d are defined analogously.

In particular, we then have

Vir(zi,...,xq) = (T(',CL'Q...,CL’d),...,T(IEl,...,,Id_l,')).

A d-th order tensor T' € R™ X" ig said be to be symmetric if for every j; €
1], ..., Ja € [ng] it holds

Ty =T vo e 8({1,....,d}),
where &({1,...,d}) is the set of all permutations of {1,...,d}, i.e.
S({1,...,d}) ={o: {1,...,d} = {1,...,d}| o is bijective}.

Similar to the third order case, it can be noted that if T' € R™**™ is a d-th order

1se-sJd o(1)sJo(d)

tensor and T € R™%X" ig defined for all J1ye- .y Jd as
N 1
Tjida = > L)o@ (2.4)

T oe6({l,...,d})
then
Jr(z,...,x) = fp(z,..., ) Vo € R"™.
If T e RMX-XxmxnX..XT where m appears aj times and n appears ag times with

a1 + as = d, we say that T is partially symmetric if

j—jjl,...,jd = 1—17"7(1)""’]'0('11)’jo"(a1+1)7"'7ja’(d)’ VO' € 6({1, ey al}), O'/ S 6({@1 + 1, ey d})

Furthermore, if T' € R"X--xXmXnx...Xx% and T € Rmx--xmxnx..xn ig defined for all

jl,...,jdas

. 1
J“’jlr"vjd = | Z ZZ—.vjo'(l)7"'7j0(a1)7jg/(al+1)7“'7jg/(d)7 (2‘5)

|

al:ao!

PP ses({1,man))
o’'eé({a1+1,....d})

then

fr(z,...,x,y,...,y) = fplz, ... 2y,...,Y) Ve € R" y € R".

There is a more general notion of partial symmetry of a tensor where the symmetry
is considered among groups of indexes and we refer to [29] for a detailed discussion
on symmetric and partially symmetric tensors.



2.2 Cones and partial orderings

Let V' be a finite dimensional real normed vector spaces. A set C C V is called a
cone, if C'is convex, a C C C for all &« > 0 and CN(—C) = {0}. The set C'is a closed
cone, if C' is a closed subset of V. The cone C is a solid cone if it has non-empty
interior. The cone C' C V induces a partial ordering on V defined as ¢ <¢ y if
y—x e C. Ifx Z¢cyand x #y, we write z <¢ y. If C is solid and y — = € int(C),
we write £ <¢ y. Let x,y € V, then y dominates x if there exists a, 8 € R such
that ay <¢ ¢ Z¢ By. If z dominates y and y dominates z then we say that z and
y are comparable and write x ~¢ y. Note that if x ~¢ y, then there exists o, 8 > 0
such that ay <¢ x =<¢ By. The relation ~¢ is an equivalence relation on C and the
equivalence classes of ~¢ are called the parts of C. By Lemma 1.2.2 of [60], we know
that if C is a closed cone, then the parts of C are precisely the relative interior of
the faces of C, where F' C C'is a face if for all z,y € C, the existence of t € (0,1)
such that tx 4+ (1 — t)y € F implies that =,y € F. Equivalently, by Exercise 2.16 of
[11, Chapter 1], F' is a face of C' if for any x € F and y € C, y <¢ = implies y € F.
The sets {0} and C are always faces of C' and they are called improper faces. The
other faces are said to be proper.

Given a norm || - || on V, we say that C' is normal if there exists a constant 6 > 0
such that for all z,y € C, x <¢ y implies ||z|| < d|ly||. The smallest such § is called
the normality constant of C. As V is finite dimensional, it follows from Lemma 1.2.5
of [60] that every closed cone is normal. In Lemma 2.1 of [83], it is proved that the
normality constant of a cone is always greater or equal to 1. If ' = R’} and for all
z,y € R™ such that |z;| < |y;| for all i = 1,...,n, it holds ||z| < |ly||, then we say
that || - || is monotonic with respect to R}.

The dual cone of C C V is defined as

C*={weV* |w(z) >0,Vx € C}.

Using the Hahn-Banach separation theorem 11.4 of [84], it can be shown that if C' is
a closed cone and x € C'\ {0}, then there exists w € V* such that w(xz) > 0. Indeed,
the latter theorem implies the existence of a hyperplane w € V* which (strongly)
separates —z ¢ C and the convex set C'. By changing the sign of w if necessary, we
have w(C) C [0,00) and thus w € C*. By using a similar argument, it is proved
in [60, Lemma 1.2.1] that if C' is a closed cone and z,y € V, then z <¢ y if and
only if w(x) < w(y) for all w € C*. In particular, it follows that if z,y € V satisfy
x <¢ y then there exists w € C* such that w(z) < w(y). While C* may not be a
cone in general, it follows from [60, Lemma 1.2.4] that if C' is a solid closed cone,
then C* is a solid closed cone and if w € int(C*), then w(z) > 0 for all x € C'\ {0}.
Furthermore, the set ¥, = {x € C|w(z) = 1} is a compact convex subset of V.
A cone C is self-dual if there exists an inner product (-, -): V' x V — R such that
C*={v— (v, z) |z € C}. When C is self-dual, we usually identify C* with C.

Example 2.2.1. Let V= R" and C = R’}. Then, C is a solid closed cone and its
interior is R’ , . Furthermore, it holds x =gn yorz <gn ¥, if x; <wy; orx; < y; forall
i =1,...,n, respectively. The cone R’} has 2" parts and each part is characterized by
a zero pattern. For instance {z € R’ |21 =0, x2,...,2, > 0} is a part of R"} as well
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as {r € R} |z =22 =0, x3,...,2, > 0} or {x € R} |22 =0, x1,23,...,2, > 0}.
If we consider the usual Euclidean inner product on R", then the cone R} is self-dual.
The fP-norm defined as

- 1/p n
lolly = (P lal?) ™ vwerr,
=1

is monotonic with respect to Rf. Properties of norms on R" which are monotonic
with respect to R"} are discussed in [51] and we recall characterizations of such norms
in the following.

Theorem 2.2.2. Let ||-|| be anorm on R”, and for all z € R" let |z| = (|z1], ..., |zn]).
Then, the following are equivalent:

a) || - || is monotonic with respect to R, i.e. ||z|| < ||y|| for all z,y € R™ such
that |z 2 [yl

b) For every x € R", it holds |||z||| = ||zl
c) The dual norm induced by || - || is monotonic with respect to R’}.
Proof. See Theorem 1 of [51]. O

Example 2.2.3. Let V = {M € R™"|M" = M} be the vector space of real
symmetric matrices and let C = {M € V |z Mz > 0,Vx € R"} be the cone of
positive semi-definite matrices. Then, int(C) is the cone of positive definite matrices,
ie. int(C) ={M € C'| det(M) > 0}. Furthermore, for M,Q € V it holds M <¢ @
if and only if " Mz < 2" Qz for all € R™. If we consider the Hilbert-Schmidt
inner-product (-, -) on V defined as

(M, Q)= Z M; ;Q; 5,
ij=1
then C' is self-dual (see Example 2.24 in [19]). For any p € (1,00) the Schatten
p-norm defined as

81, = (3 eany)
=1

where o1(M),...,04(M) denote the singular values of M. The normality constant
of || - ||, with respect to C' is 1. As the singular values of a symmetric positive
semi-definite matrix coincide with its eigenvalues, we note that for M € C, it holds
| M||, = Tr(MP)Y/P where, Tr(MP) is the trace of MP € C and M® is the a-th power
of M defined as M® = UD*U" with UDU" being a unitary diagonalization of M.
We refer to [44] for the numerical aspect of M.

A cone C C V is a polyhedral cone if there exists wq, ..., w,; € V* such that

C={zeV|wl(z)>0,i=1,...,m}.



A face F of a polyhedral cone C'is called a facet if dim(span(F')) = dim(span(C'))—1.
Lemma 1.1.3 of [60] implies that if C' is a polyhedral cone with N facets, then
there exists N linear functionals wy,...,wy € V* such that C = {z € V' |w;(z) >
0,7 =1,...,N} and each w; corresponds to a unique facet of K. The functionals
w1, ..., wy are called the facet defining functionals of C. Theorem 2.5 of [11, Chapter
1] implies that C' is polyhedral if and only if C* is polyhedral. Nevertheless, there
are polyhedral cones such that C' and C* don’t have the same number of facets. Such
an example is discussed in the lecture notes of K.C. Border [15] and we recall it here
for completeness:

Example 2.2.4. Let wy,...,ws € R* be defined as wy, = (1,k, k%, k37 for k =
1,...,5. Let vy,...,vg be respectively defined as

—60 —-30 —10 6 12 20
47 31 17 —11 -19 —-29
—12)'-10"t -8 6 || 8 || 10

1 1 1 -1 -1 -1

Then, the polyhedral cone C' = {z € R*|(x, w;) > 0,i = 1,...,5} is such that
C* = {we RY* |w(v;) >0,i=1,...,6}. Furthermore, C has 5 facets and C* have
6 facets. A “p-norm” on R* with normality constant 1 is given by

5
ey = (3 e, a)P) v e,
k=1

where (-, -) is the Euclidean inner product on R*.

The parts of a polyhedral cone can be expressed in terms of its facet defining
functionals. Let wy,...,wy € V* be the facet defining functionals of the polyhedral
cone C' C V and for x € C and every part P of C, let

T, ={i|wi(x) >0} and Z(P)={i|w;(x) > 0 for some = € P}. (2.6)
Then, Lemma 1.2.3 of [60] implies that Z, = Z, if and only if z ~¢ y and
P ={x e C|wi(x)>0if and only if i € Z(P)}.

Hence, a polyhedral cone has at most 2V parts. Furthermore, there is a partial
ordering on the set of parts defined for every parts P,Q of C as P <@ if there exists
x € P and y € @ such that y dominates x or, equivalently, P < Q if Z(P) C Z(Q).
The partial ordering induced by a cone can be used to meaningfully extend the
definitions of infimum and supremum. Indeed, let S C C where C' C V is a closed
cone. Then z € C' is an upper bound of S if v ¢ z forallz € §. If z € C'is an
upper bound of S and for every upper bound y of S, it holds z <¢ y, then z is the
least upper bound, i.e. the supremum, of S and we denote it by z = sup S = sup(5).
Similarly 2’ € C'is alower bound of S, if 2/ <¢ x for all x € S and 2’ is the infimum of
S, denoted by 2’ = inf S = inf(S), if y <¢ 2’ for every lower bound y of S. A cone for



which sup{z,y} and inf{z,y} exist for all z,y € C is called minihedral. Minihedral
cones will play an important role in our computations because we will consider vector
valued metrics. The ordering induced by a minihedral cone C' C V turns (V, <¢)
into a vector lattice [87, Chapter 2|. The modulus induced by a minihedral cone
C, is defined as |z| = sup{z, —z} € C. In particular, it holds |z| = 2™ + 2~ and
r =2z —x~ with 2T = sup{z,0} € C and x~ = sup{—=,0} € C. It has been shown
by Krein and Rutman that a solid cone is simplicial if and only if it is minihedral
[57]. A solid polyhedral cone C' C V' is simplicial if there exists n = dim(V") linearly
independent vectors vy, ..., v, € V such that C' = cone({vy,...,v,}), i.e.

C:{xEV‘Q::Zaivi, withaiZOforallizl,...,n}.
i=1

Simplicial cones C' are essentially equal to Rl in the sense that if C' C V is a solid
simplicial cone in the n dimensional real vector space V, then there exists a linear
bijection L: R"™ — V such that C' = L(R}). In particular, as linear mappings
between finite dimensional vector spaces are always continuous, this implies that
results such as the sandwich theorem and the convergence of bounded monotonic
sequences hold with respect to the partial ordering induced by C. Formally, if
()21, (Yk) 72 (20)52, C C are sequences such that x, <c¢ yr =c 2 for all k
and there exists x € C such that limy_, o yr = limg_, oo 21 = z, then limg_. zp = x.
Furthermore, if (x4)72, C C is a bounded sequence such that either z, <¢ x4 for
all k or xp41 2¢ @y, for all k, then (z1);2, converges in C. The limit superior and
inferior with respect to <¢ are defined as follows: For every (z)22, C C, let

limsupxr = lim sup x, and liminfzy = lim inf x,,.
k—00 k=00 >k k—ro0 k—oo m>k

In particular, note that if ()22, is bounded, then the above limits exist.

Example 2.2.5. Let V =R"™*" and C = R"*". Then, C is simplicial and for every
set S C V, it hold sup(S);; = sup{M,; ;| M € S} and inf(S); ; = sup{M,; | M € S}.
Similarly, the modulus of M € V satisfies |M|; ; = |M; ;|, and the limit superior and
inferior can be computed component-wise.

2.3 Order-preserving and monotonic mapping

Let C Cc V, K C W be cones in the finite dimensional normed real vector spaces
Vol - lv), W, - |lw) and let U € V. A mapping f: U — W is said to be order-
preserving (with respect to C and K) if z <¢ y implies f(z) <x f(y) forall z,y € U.
Analogously, f is order-reversing if x <¢ y implies f(y) < f(z)forallz,y e U. If C
is a solid cone, the mapping f is strongly order-preserving if x <¢ y implies f(z) <x
f(y) for all z,y € U and strongly order-reversing if x <¢ y implies f(y) <x f(x) for
all z,y € U. It is easily verified that the sum and composition of order-preserving
mappings is again order-preserving. The sum of order-reversing mappings is order-
reversing but the composition of two order-reversing mappings is order-preserving.
Finally, we note that the composition of an order-preserving with an order-reversing
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mapping is order-reversing. A linear mapping L: V — V such that L(C) C K is
always order-preserving since x —y € C implies L(z) — L(y) € K. A characterization
of order-preserving mappings leaving C' invariant is given by Theorem 1.3.1 in [60]
where it is proved that a locally Lipschitz map f: int(C') — C is order-preserving if,
and only if, Df(x)(C) C C for all z € C' at which f is differentiable. Small changes
in the proof of the latter theorem leads to the following result which characterizes
order-preserving and order-reversing mappings between cones. We restrict ourselves
to differentiable mappings for simplicity but note that a similar result holds if f is
locally Lipschitz on int(C). Indeed, in this case, by Rademacher’s theorem, f is
differentiable almost everywhere on int(C').

Theorem 2.3.1. Let C' C V be a solid closed cone and K C W a cone. Let U C
int(C) be convex and open. If f: U — K is differentiable, then f is order-preserving,

resp. order-reversing, with respect to C' and K if and only if D f(z)(C) C K, resp.
—Df(x)(C)C K, forall z € U.

Proof. Let x € U and y € C. There exists 6 > 0 such that x + ty € U for all
€ (0,0). Furthermore, z <¢ x + ty for ¢t > 0 and
t—0 t
If f is order-preserving, then f(z + ty) — f(x) € K for all ¢ € (0,9) and thus
Df(z)y € K. If f is order-reversing, then f(z) — f(z + ty) € K for all t € (0,9)
and thus —Df(x)y € K. If follows that Df(z)(C) C K if f is order-preserving and
—Df(z)(C) C K if f is order-reversing. Now, we prove the reverse direction. Let
z,y € U be such that x <¢ y. Define ¢: [0,1] — K as ¢(t) = f((1 —t)z +ty). Then
¢ is differentiable and

1) - 5@ =60 - 60) = [ i = /Df (1= ) + ty)(y - )it
If Df(u)(C) C K for all w € U, then f(y) — f(z) € K and if —Df(u)(C) C K for
all w € U, then f(z) — f(y) € K. O

ftU c C, K =R; and f: U — K is order-preserving, i.e. = =<¢ vy implies
f(x) < f(y) for all z,y € U, then we say that f is a monotonic function. Note that
if | - || is @ norm on R™ which is monotonic with respect to R, then f(z) = |lz|| is
a monotonic function with U = R”t. We note however that there exist norms on R"
which induce monotonic functions but are not monotonic with respect to R}. An
example is the operator norm discussed in Example 2.3.7. Monotonic functions can
be used to build examples of order-preserving mappings as shown in the following
example:

Example 2.3.2. Let C C V, K C W be cones and let U C C. Let f1,..., fin: U —
[0, 00) be monotonic functions, v1,...,v, € K and A € R"*" a nonnegative matrix.
Then, the mapping f: U — K defined as

- iiAi,jfj(iﬁ)Ui Va € U,

i=1 j=1
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is order-preserving. If f; is homogeneous of degree p for all j, then f is homogeneous
of degree p. If V.= R* W = R™, vy,...,v, is the canonical basis of R™ and
fi(x) = (x, e;) for all j = 1,...,n, where eq,...,e, is the canonical basis of R",
then f(x) = Az. An order-reversing function can be obtained by assuming f;(z) > 0
for € U and replacing f;(x) by fj(z)~! in the definition of f. If we let C' = R7,
K =R7 and fj(x) = x?j for some a; > 0, then f is a posynomial mapping [18].

Next we show that if a mapping is homogeneous of degree 0 and either order-
preserving or order-reversing, then it is constant on each part of the cone.

Lemma 2.3.3. Let C € V and K C W be cones. Suppose that f: C — K is
homogeneous of degree 0 and either order-preserving or order-reversing. Then f is
constant on each part of C' and if f is continuous, then f is constant on C.

Proof. Let x,y € C be such that x ~¢c y. Then, there exists o, 8 > 0 such that
ar 3¢y 3¢ Pz. As f is homogeneous of degree 0, we have f(az) = f(Bz) = f(z).
It follows that if f is either order-preserving or order-reversing, we have f(z) <¢
f(y) =¢ f(x) which implies that f(y) = f(z). Now, suppose that f is continuous.
Then, for every ¢ > 0 we have ex ~¢ x and by continuity of f, it follows that
f(z) =limco f(ex) = f(0), which concludes the proof. O

We give examples of order-preserving homogeneous and monotonic functions
which will be useful for later discussion.

Example 2.3.4. Let V =R", C = R and o > 0. The mapping x — z® introduced
in Section 2.1 is homogeneous of degree a and order-preserving. Note that the
definition of z — 2 can be extended for a < 0 if we restrict the domain to R}
and in this case, x — x® is order-reversing.

A similar example exist for the cone of positive semi-definite matrices:

Example 2.3.5. Let V be the symmetric matrices in R™*™ and C the cone of
positive semi-definite matrices of Example 2.2.3. Let « > 0 and define f,: C — C
as

foM) =M™ VM € C,

Note that f, is homogeneous of degree . Furthermore, if o < 1, then Theorem
1.4.1 of [60] implies that f, is order-preserving. However, if a > 1 then f,, is neither
order-preserving nor order-reversing. Again, we can extend the definition of f, for
a < 0 by restricting its domain to int(C'), the positive definite matrices. Then, f, is
order-reversing for o € [—1,0) and neither order-preserving nor order-reversing for
a < —1.

In the next example, we recall that the spectral radius is a monotonic function
with respect to the cone of nonnegative matrices.
Example 2.3.6. Let V = R"*" and C' = R}*", define f: C — [0,00) as f(M) =
p(M) where p(M) is the spectral radius of M. Then f is a monotonic function, i.e.
M jRixd Q implies p(M) < p(Q). Furthermore, if M jlerxd Q, M+#Qand M+ Q

is irreducible, then p(M) < p(Q). We refer to Corollary 1.5 of [11, Chapter 2| for a
proof of these facts.
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In the next example, we prove that the operator norm of nonnegative matrices
induced by monotonic norms is a monotonic function.

Example 2.3.7. Let V = R™*" C = R7™" and let | - ||a, || - ||[3 be norms on R™

and R" respectively. Suppose that || - ||, is monotonic with respect to R* and | - ||
is monotonic with respect to R’}. Let | - |3, be the operator norm on V' defined as
Mz
||MH5—>04 — || ||a VM € Rmxn.

max
zeRr\{0} [|z]|g

We prove that f: R7"™" — [0,00) defined as f(M) = ||[M|g—q is a monotonic
function: First, note that for every M € R"*" and z € R", by the triangle inequality,
it holds [Mz| <grn M|z|. As | -[la and |- |s are monotonic, by Theorem 2.2.2, for
every x € R" and y € R™ it holds [|z||g = |||z|||g and [|y||a = |||y||la- It follows that

e Mzl o [[Mz]a IMlzllla _ 1Mz
veR\{0} [lz|lg werm\{o} |[|z]llg T zer\{0} |||zl wern\{0} |lzlg
and thus M
IM|lpa = max [ Mz VM € R, (2.7)

zeRT\{0} ||z

Now, suppose that M,Q € R}'™" satisfy M jRTXn Q. Then for every z € R‘i it

holds Mz Zpm Qu and thus [[Mz[la < [[Qz||a. Hence, (2.7) implies that [[M||g—q <
|Q|| g—sa Which proves the claim. We point out that while f is a monotonic function,
it is not true in general that | - ||o—g is monotonic with respect to R7'*™. This can
already be seen by considering m =n > 2 and || - |« = || - || = || - [|2 where || - ||2
is the ?-norm on R™. In this case, for any symmetric matrix M € R™*"  we have
| M|l2—2 = p(M). In particular, if || - |22 is monotonic with respect to R.*", then
we would have p(|M|) = p(M) for all symmetric M € R™™™ which is absurd.

We conclude by giving examples of monotonic functions on the cone of positive
definite matrices.

Example 2.3.8. Let V be the symmetric matrices in R**™ and C the cone of positive
semi-definite matrices of Example 2.2.3. Let x € R”, v: [0,1] — R" a continuous
curve and define f,g,h: C — [0,00) as

1
f(M) =Te(M), g(M) = (x, Mz), h(M)Z/OW(t),MV(t»dt,

where Tr(M) denotes the trace of M and (-, -) is the Euclidean inner product on
R™. Then, f,g and h are all monotonic functions.

3 Mappings on the product of cones

First we discuss products of cones. Then, we define multi-homogeneous mappings,
give examples of such mappings and discuss their properties.
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3.1 Products of cones and multi-normalizations

We start by introducing notation for the product of vector spaces. Let d be a positive
integer and let V1, ..., V; be finite dimensional vector spaces. Define V = V; x...x V.
For x € V, we denote by z; its canonical projection onto V; so that x = (z1,...,z4)
with z; € V; for all 4. If V; = R™ for ¢ = 1,...,d, then the components of x; € R™
are denoted by z;;, for j; = 1,...,n;. As the dual V* of V is isomorphic to the
product Vi* x ... x V', we can use the same notation for elements in V*, i.e. for all
w € V*, we write w = (wy,...,wq) where w; € V;* for i = 1,...,d. In particular,
note that w(z) = wi(z1) + ... + wg(xq) for all x € V and w € V*. We also use this
notation for sets, that is, if S C V then we let S; = {z; € Vi |2 = (z1,...,2q4) € S}
so that S =57 x ... x Sy.

Let C C V be a cone, then x <¢ y if and only if z; <¢, y; forall ¢ =1,...,d.
Furthermore, it holds = <¢ y if and only if there exists i € {1,...,d} such that
x; <c; v¥;- Note that C is closed, solid, polyhedral respectively simplicial if, and
only if, C; is closed, solid, polyhedral, simplicial for ¢ = 1,...,d. Furthermore, if
P C Cis a part of C, then P; is a part of C; forallt =1,...,d and if @ C C is a
face of C, then Q); is a face of C; for all ¢ = 1,...,d. If C is polyhedral and C; has
N; facets for ¢ = 1,...,d, then C has H?:l N; facets. Furthermore, we note that
Cr=Cy x...x(Cy.

Finally, we introduce the following definition which allows to easily construct
products of unit spheres and unit balls on C.

Definition 3.1.1. Let C C V be a cone. We say that v: C — Ri is a multi-
normalization if it satisfies the following properties:

i) v is continuous,

ii) v is 1-homogeneous in each variable, i.e. for every z € C and ay,...,aq >0
it holds v(ajz1,...,aqxq) = (v (x)1,. .., qv(x)g).

iii) For every x € C and i € {1,...,d} such that ; # 0 it holds v(z); > 0.

We say that v: C — Ri is a monotonic multi-normalization if v is order-preserving,
i.e. z ¢ y implies v(z) ] v(y).

Perhaps, the most relevant example of multi-normalization on C is
v(z) = (2l ... [lzalla) Vo e,

where || - ||; is @ norm on Cj for ¢ = 1,...,d. In particular, if || - ||; is a monotonic
function on C; for all 4, then v is a monotonic multi-normalization. Another example
of monotonic multi-normalization on a solid closed cone is

v(z) = (wi(x1),...,wa(xq)) Vo e C,

where w; € int(C;) for all i =1,...,d.
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3.2 Multi-homogeneous mappings

Next, we formulate the definition of multi-homogeneous mappings and discuss their
properties. Let d,d’ be positive integers and let Vi,...,Vy, Wi,..., Wy be finite
dimensional real vector spaces. Define V =V x ... x Vgand W = W7 x ... x Wy.
Furthermore, let &/ C V be a nonempty set.

Definition 3.2.1. We say that F: U — W is multi-homogeneous if there exists a
matrix A € RY*? guch that for every i = 1,...,d and j = 1,...,d the following
condition is satisfied: For every x € U and o > 0 such that ax; € Uj;, it holds

i Flx)i=F(z1,...,0j—1,QT),Tjq1,...,2q)s

We refer to A as the homogeneity matriz of F and say that F is multi-homogeneous
of degree A.

The notion of multi-homogeneous polynomial was already considered in [95]
where the homogeneity matrix is restricted to have integer coefficients. If d = d’ = 1,
then the definition of multi-homogeneous mapping reduces to that of homogeneous
mapping. We illustrate the definition with four examples that will be reused all along
the thesis.

3.2.1 (P9-norm of a nonnegative matrix

For p,q € (1,00), let || - ||, be the P-norm on R™ and let || - ||, be the {9-norm on R™.
Furthermore, let (-, -) be the Euclidean inner product on R™. On R™*" consider
the norm || - ||, defined as

||Q||p,q — max <$7 Qy> VQ c Rmxn‘

weRm\{0}.yeR™\{0} [[z[|p]lyllq

We refer to ||Q||p,q as the P 4-norm of the matriz Q). The ¢P%-norm is closely related

to the matrix operator norm || - ||g—o discussed in Example 2.3.7. Indeed, if p’ =
p/(p — 1), then it holds ||Q||p,q = [|Qllg—p’, i-e.
1Qully

1RQllp.q = . vQ € R™™ (3.1)

ma
yeRm\{0} |lyllq

The latter follows from the Holder inequality: Let y € R™ \ {0} then with z =
[Qy|P' =2 0 Qy, we have

1Qylly _ (=, Qy) {z, Qy) _ [Qylly

= < max < .
lulle — Nzlpllylly = =20 llzllpllylly = llyllg

By taking the maximum over y in the above inequality, we get (3.1). The ¢P9-norm
of a matrix is studied in [13, 31, 43, 90] and its computation is generally NP-hard
[42, 89, 9]. Now, suppose that M € R"™", then by the triangle inequality, for all
x,y we have |(z, My)| < (Jz|, M|y|) and thus

(xvy) with W(CL‘,y) — <$’ My>

M = T
o l1yllg

lpa = max w
zeRT\{0},yeR}\{0}
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i.e. the maximum is attained at a pair (x,y) in the product of cones C = R* x R}
Now, note that for x € R™ \ {0} and y € R™\ {0} it holds

VUJ(.Z‘, y) =

(My,MTz)  (z, My) (W’Qom \y!”20y>
I=llpliylle — Nelolylla Mzlplylle ™ lzlplyla/
If z € R\ {0} and y € R \ {0}, then the equation Vw(z,y) = 0, is equivalent to

{(My)l/(pl) g )\x

(M Tz)1/ (a1 = gy (3:2)

with A = ||:c||1j1w(a:,y)1/(p_l) and 0 = ||y|]q_1w(x,y)1/(q_l). The left hand side of
equation (3.2) defines the multi-homogeneous mapping F: C — C given by

Fla,y) = ((My)V*=D (M Ta)V D) v(ay) ec, (3.3)

Ao <1/(q0_ ) 1/(p0— 1)) '

Furthermore, note that F is order-preserving.

with homogeneity matrix

3.2.2 (P?"-norm of a third order nonnegative tensor

For p,q,7 € (1,00), let || - ||, be the P-norm on R, || - ||, the ¢%norm on R™ and
| - |l the £"-norm on R™. On R*™*™ consider the norm

fT(xa Y, Z)

max AT IRy ¢ Rixmxn (3.4)
zeR\{0},yeR™\{0},zeR™\ {0} [|Z][p]lyllqll 2|l

1T lp.q,r =
where we recall that fr is the multi-linear form induced by T defined in (2.1). We
refer to ||T||pqr as the P97 -norm of the tensor T. The ¢P%"-norm of a tensor
has been studied in [64, 31], |36, 40]|° and its computation is generally NP-hard
[45]. Note that if T' € Rﬁ:mxn, then for every € Rl y € R™, 2z € R" it holds
Fr(,9,2)] < Fr(Jz], Iy, |2)) and thus

1T]lp.gr = max w(z,y,z) with w(z,y,z) = M7
PR MOLYERTAO} »ERI 0] ERTHEE

i.e. the maximum is attained in the product of cones C = Rﬂr x R x R . Now, note
that for z € R'\ {0},y € R™\ {0}, 2 € R*\ {0}, it holds

T(.3.2) 22 0a
vw($7 y7 Z) e TR TR TR TR TN _w('r7 y7 Z)—7
( SRR EHERER

T(:c,-,z) |y|q_2 oy
vw(x7 y7 Z) e TR TR TR TR TN _w(x7 y? Z)—7
( o = el ol ENELER

T($’y7') |Z|r_2 oz
(Vw(z,y,2)), = w(x,y72)|

2 llpl1Yllqll 2l |zllp 1y llqll 17
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Hence, if € RY \ {0},y € R7\ {0}, 2 € R? \ {0}, then Vw(x,y, 2) = 0 holds if and
only if
T(.’y,z)l/(p—l) = \x
T(z,-,2)Y @D = gy (3.5)
T(x,y, )Y =9z

with A, 0,9 satisfying A = Hx”;lw(x,y,z)l/(p*l), 0 = HyH;lw(x,y,z)l/(qfl) and
¥ = ||z||; ' w(z,y, 2)//~D. The left hand side of equation (3.5) defines the order-
preserving multi-homogeneous mapping F: C — C given by

F(z,y,2) = (T(-y,2)Y PV, T(x,+, )Y 0D T (z,y, )/ D), (3.6)

with homogeneity matrix

1/(r—1) 1/(r—1) 0

3.2.3 Rectangular ¢”%-norm of a third order nonnegative tensor

For p,q € (1,00), let || - ||, be the P-norm on R™ and let || - ||; be the ¢?-norm on
R™. Consider the norm || - ||, on R"™*™*™ defined as

fT(xvyay)

max 5 VT € RM*nxn,
zeRm™\{0}yeR\{0} |z, ly||2

1T llp.q =

We refer to ||T'||p,q as the rectangular ¢P9-norm of the tensor T. The ¢P9-norm of
a tensor has been studied in [40]°. If T € R™>™*" is the partial symmetrization
of T' defined in (2.3), then fr(z,y,y) = f#(x,y,y) for every x € R™,y € R" and
thus ”TUp,q = ||Tlp,q- Theorem 1Ain [7], implies that ||T|lp.q = [|T]lp.g = 1T |lp.g.q
where ||T|p,q,q is the £P%9-norm of T" defined in (3.4). Nevertheless, the critical point
equation induced by ||T'||,,q is of general interest as discussed in Section 4.2.3 and the
above variational characterization is an intuitive way to motivate it. If 7 € RI?*"*™,
then for every x € R™ and y € R™ it holds | fr(x,y,y)| < fr(|zl, |y|, ly|) so that

_ fT(xayvy)

T lpq = w(z,y) with w(x,y) = ,
P zlpllyl2

max
z€RT\{0},yeR}\{0}

i.e. the maximum is attained in the product of cones C = R’ x R’}. As T can be
assumed to be partially symmetric without loss of generality, we have

TCry1) P2 oa
Vola,y), = LoBv) 2l 2o
( SR FINIE EHDE

2T($7-,y) |y’p—20y
Vola,), = 2@ gy oy
( R PN ERCE
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Therefore, if 2 € R\ {0},y € R"} \ {0}, then it holds Vw(z,y) = 0 if and only if

{T(-,y7y>1/@—1> =\

3.7
T(x,-y)"/ @D = 0y &7

with A = ||x||;1w(m,y)1/(p_1) and 0 = ||qu_1w(x,y)1/(q_1). The left hand side of
equation (3.7) defines the order-preserving multi-homogeneous mapping F: C — C
given by

]:(:Ea y) = (T(a Y, y)l/(p_l) ) T(:E? ) y)l/(q_l) ) (38)

with homogeneity matrix
< 0 2/(p- 1)>
1/(g=1) 1/(¢—=1))"

3.2.4 /(P-norm of a third order nonnegative tensor

For p € (1,00), let || - ||, be the fP-norm on R™. On R™"*™*"  consider the norm
T, = max 7]%(96’963’ z) VT € R™X™,
zeR\{0} |23

We refer to ||T'||, as the P-norm of the tensor T. The ¢P-norm of a tensor has
been studied in [64, 31| and [40]°. The case p = 2 is known as the spectral norm
of T" and is of particular interest as the maximum is attained at a best rank one
approximation of 7' [63]. The computation of ||T'||, is generally NP-hard [45]. If
T € R " is the symmetrization of T defined in (2.2), then it holds fr(x,z,z) =
fp(z,2,z) for all z € R™ and thus ||T]|, = |T|l,- Theorem 1 in [7], implies that
1T, = TN, = I Tllppp Where || T]lppp is the £2PP-norm of T defined in (3.4).
Nevertheless, as for the rectangular 79-singular vectors, the critical point equation
induced by ||T||, is of general interest as discussed in Section 4.2.4 and the above
variational characterization is an intuitive way to motivate it. If 7€ R*™*" then
for every x € R™ it holds |fr(z,z,z)| < fr(|x|, |z|, |z|) and thus

IT|l, = max w(x) with w(x) = M
T E

)

i.e. the maximum is attained in the cone C = R’. As T can be assumed to be
symmetric without loss of generality, we have

Vw(z) = 3w, x) 3w(x)

(e

Therefore, if 2 € R’} \ {0}, then it holds Vw(zx) = 0 if and only if

|z|P~2 o x
[

T(-,z,2)/P D =Xz with X =|z], w(@)/EY. (3.9)

The left hand side of equation (3.9) defines the order-preserving homogeneous mapping
F: C — C given by
F(z) = T(-,z, )"/~ (3.10)

with homogeneity degree 2/(p — 1).
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3.2.5 General example

Examples of multi-homogeneous mappings can be constructed as in Example 2.3.2.
We show how to proceed in the case d = 2 and d’ = 1, the general case can be done
analogously. Let V = V; x V5 be the product of finite dimensional real vector spaces
and W a finite dimensional real vector space. Let C C V and K C W be cones.
Let v1,...,v, € K, f1,..., fn,: C1 = [0,00) and g1,...,Ggn,: C2 — [0,00). Suppose
that f; is homogeneous of degree p for all ¢ and suppose that g; is homogeneous of
degree ¢ for all j. Let T € R and define F: C — K as

m ni

Fla,y) = > 3> Tijigfin (@95 w)vi-

i=1 j1=1jz=1

Then, F is multi-homogeneous of degree A = (p,q) € R1*2,

3.3 First properties and multi-homogeneous notation

Let V=Vi x...xVygand W = W; x ... x Wy be products of finite dimensional
real vector spaces. Furthermore, let &/ C V be a nonempty set. Multi-homogeneous
mappings from U to W are homogeneous when the homogeneity have a particular
structure. This is discussed in the next lemma:

Lemma 3.3.1. Let F: U — W be multi-homogeneous of degree A € R?*?_ If there
exists r € R such that A1 = r1, then F is homogeneous of degree r.

Proof. Let x € U and oy, ...,aq > 0. If (aqxy,...,aqzq) € U, then it holds
d A
.7-"(0413;1, - ,ada:d)i = (H Q; ”)]:(LL’)Z Vi = 1, . ,d/.
i=1

In particular, as A1 = r1, for x € U and o« > 0 such that ax € U, by setting
a1 =...= ag = a above, we have

d
Flax);, = (H ozA"vj)]:(m)i = MWiF(z), =" Flz);, Vi=1,...,d,
j=1

which concludes the proof. O

Next we show that in most cases the homogeneity matrix is unique.

Lemma 3.3.2. Let F: U — W be multi-homogeneous of degree A € R *?. Suppose
that there exists Z € U and « # 1 such that oz € U and z; # 0, F(Z); # 0 for all
i=1,...,d,j=1,...,d. Then, the homogeneity matrix of F is unique.

Proof. Let B € RY*d be such that F is multi-homogeneous of degree B. Let i €
{1,...,d'} and j € {1,...,d}. It holds

OéAi’jf(f)i = f(f)l, ey X1, T Ty ,[Ed)i = OéBi’jF(f)i,
so that (a7 —aPii) F(Z); = 0 which implies that adis = aPii as F(z); # 0. Since
a # 1, it follows that A; ; = B; ;. O
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We prove that if a multi-homogeneous mapping is order-preserving then its
homogeneity matrix is nonnegative.

Lemma 3.3.3. Let C C V be a cone and let F: C — C be order-preserving and
multi-homogeneous of degree A € R¥¢. If there exists & € C such that Z; # 0 and
F(z); #0foralli=1,...,d, then A € R‘fd. Furthermore, for every i,j € {1,...,d}
such that A;; = 0, the mapping y; — F(z1,...,Zj—1,Yj, Tj+1,--.,2q)i is constant
on each part of C; and if F is continuous, then y; — F(z1,...,Tj—1,Yj, Tjt1,---,Td)i
is constant on C.

Proof. Suppose by contradiction that there exists i,j € {1,...,d} such that 4;; <
0. For a > 0, let y(o) = (Z1,...,%Tj—1,0Tj,Tjt1,...,%4) € C. Then, we have
F(y(a))i = adii F(z);. If a > 1, then T =¢ g(a) and o’ < 1. Thus, F(z); =,
F(@(e))i and F(g(a))i =¢; F(&); which is absurd. It follows that A € RT*?. Finally,
if there exists ¢,j € {1,...,d} such that A; ; = 0, then for every z € C, the mapping
yj — F(x1,...,2j-1,Yj, Tj+1, - - -, Tq); is order-preserving and homogeneous of degree
0. Hence, Lemma 2.3.3 implies that y; — F(x1,...,2Zj—1,Yj, Tj41, ..., Tq); is constant
on each part of C;. If F is continuous, then y; — F(x1,...,2j-1,Yj, Tj+1,---,Td)i
is continuous, and thus, by Lemma 2.3.3, is a constant mapping on Cj. O

Remark 3.3.4. Note that a similar argument as in the proof of Lemma 3.3.3 shows
that if F is order-reversing and multi-homogeneous of degree A € R%*? then the
existence of Z such that z; # 0 and F(z); # 0 for all ¢, implies that —A € ]RiXd.
Furthermore, A; ; = 0 implies that y; — F(z1,...,2j-1,Yj, Tj41, ..., 2q)s is constant
on each part of C; and if F is continuous, then y; — F(x1,...,2j—1,Yj, Tj+1,-- -, Td)i
is constant.

We introduce further notation for the study of multi-homogeneous mappings.
First, we write vectors in R? with bold font and their components in the canonical
basis with normal font. So, for instance we have o € R? and a = (o, .., aq).
We denote by e, ..., e4 the canonical basis of R? and by 1 the vector of all ones,
ie. 1=(1,....,1)7. Welet RE = {a € R¥|ay,...,aq > 0} and RY, = {a €
R4 |ag,...,aq > 0}. We denote the partial ordering induced by the solid cone Ri
as <, ie. a < Bifa; < B foralli=1,...,d. Again, we also define < and < as
a< Bifa; < B forall ¢ and o < §; for some j, and a < 3 if a; < 3; for all i.
Fora €R?, and B € RY% or o € R? and B € R‘iXd, we define af € Rﬁlr/ as

d d B
B Bk a k
o = (TP TTaf").
k=1 k=1

where we use the convention that 0° = 1. An equivalent way to define o for
o € Ri L and B € RY *d g by using the component-wise logarithm and exponential.
Indeed, if we let

In(B) = (In(B1),...,In(Ba)) and exp(B) = (eﬂl, o eﬁd) V@ e Ri+v
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then for o € R? | and B € R¥*? it holds aP = exp(BIn(ax)). A direct computation
shows that for every «, 8 € R‘_iH_ and B,C € R™4 or o, B € Ri and B,C € RiXd,
the following identities hold

o oal = alte, (aC)B = aPC, (ao,@)B =aP o8B, (3.11)
where o denotes the component wise (Hadamard) product, i.e.

aof=(a1B1,...,aqbq) Ve, B3 € RY.
Moreover, if & € R%,, B € R4 a € R? and A > 0, then

d d
(CXB);“ = HQEBTa)i and ()\a17 . ")\ad)B _ ()\(Ba)17 3 ")\(Ba)d)‘
= 1=1

=1

We use the symbol ® to denote the following operation
a®@x = (1X1,...,04Xq) Va e R x e V.

We note that the operation ® is closely related to the inflation product defined in
[32]. With this notation, the definition of multi-homogeneous mappings on cones

can be made more compact. Indeed, a mapping F: C — K is multi-homogeneous of
degree A € RY>d if

Fla®z) =at® F(z) Vo eC,a €RL,.

With the above observation and the identities in (3.11), the proof of the following
lemma is straightforward:

Lemma 3.3.5. Let C C V be a cone and let F: C — C be multi-homogeneous of
degree A € R¥™? and G: C — C be multi-homogeneous of degree B € R¥*?. Define
H:C — C as H(z) = F(G(z)) for all z € C, then H is multi-homogeneous of degree
AB € R4,

A consequence of Lemma 3.3.5 is that the k-th composition of a multi-homogeneous
mapping F: C — C with itself is again multi-homogeneous. Indeed, if C C V is a
cone, F is multi-homogeneous of degree A € R¥*? and for k > 1, F*: C — C
is defined as F*(x) = F(FF~1(x)) with FY being the identity mapping, then F*
is multi-homogeneous of degree A*. Another property which can be easily observed
with the above notation is that the inverse of a multi-homogeneous mapping is multi-
homogeneous as well.

Lemma 3.3.6. Let C C V be a cone and suppose that there exists £ € C with
Z; # 0 forall ¢ = 1,...,d. Let F: C — C be multi-homogeneous of degree A €
R4 Suppose that F has an inverse F~': C — C. Then A is nonsingular and the
homogeneity matrix of F~1is A71.
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Proof. Suppose by contradiction that A is singular, then there exists ¢ € R%\ {0}
such that Ac = 0. Let ¢ > 1 and define @ = (t°,...,t). Since ¢ # 0, it holds
a # 1 and thus @ ® T # Z. Furthermore, it holds

Fla®z) =a?® Fz) = (A1 . 14 @ F(z) = F(z),

and thus F is not injective, a contradiction to the existence of F~!. Now, let
o€ ]R‘_iH_ and x € C. Let y € C be such that z = F(y), then

Flawz)=F HaoF@y)=F (Fle* y)=a’ @y=a’ 2F '(z),
which concludes the proof. O

We note that multi-homogeneous mappings which are either order-preserving or
order-reversing, map parts of cones to parts of cones.

Lemma 3.3.7. Let C C V and K C W be cones and let F: C — K be multi-
homogeneous of degree A € RY>d_If F is either order-preserving or order-reversing,
then for every x,y € C with x ~¢ y it holds F(x) ~x F(y).

Proof. Let z,y € C be such that  ~¢ y. Then, there exists o, 3 € ]R‘Lr such that
a®z <¢ y <¢ Bx. If Fis order-preserving, then a®@F(z) <x F(y) <x BrQF(z)
and thus F(z) ~x F(y). If F is order-reversing, then 8 ® F(z) <x F(y) =k
o @ F(z) and thus F(z) ~x F(y). O

Finally, we conclude with a simple observation which will be useful in various
places of the upcoming discussion.

Lemma 3.3.8. Let C be a cone in V and let F: C — C be order-preserving and
multi-homogeneous of degree A € RiXd. Let a,8 € RY, and z,y € C \ {0} be such
that

a®@z 3¢ Flz) and  Fly) 2cB®y,

then for every integer k > 1 it holds
aZio ¥ gu e Fia)  and  F(y) 2 pE Y w0y,

Proof. The proof is by induction over k > 1. The case k = 1 is true by assumption.
Suppose the statement holds for some k& > 1. Then, we have

. _ . _ N A _ .
aXi-4 @y =aAlin g (a®x) =c (azﬁ:S AJ) ® F(x) = ]-"(azf:g 4@ x)
=S¢ F(FH(z)) = F**(@).

This concludes the induction for the first inequality. Similarly,

1 4 A o
FH(y) =c -7:(52?:3 Y y) =c (ﬁz§:5 AJ) ®(Boy) =BT gy

which concludes the proof. O
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4 Eigenvectors and eigenvalues

We define eigenvectors of multi-homogeneous mappings leaving a product of cones
invariant. We discuss their properties and relate them to problems of the literature.
Then, we explain how certain eigenvector problems of multi-homogeneous mappings
can be reduced to a classical eigenvector problem of homogeneous mapping. Finally,
we explain why, for the study of eigenvectors of multi-homogeneous mappings, it is
meaningful to assume that the homogeneity matrix is irreducible.

4.1 Eigenvectors and eigenvalues of multi-homogeneous mappings

Let V = V1 x...x Vg be a product of finite dimensional real vector spaces and C C V
a cone. The eigenvectors of a multi-homogeneous mapping are defined as follows:

Definition 4.1.1. Let F: C — C be a multi-homogeneous mapping. If z € C satisfies
z; # 0 for all i = 1,...,d and there exists A € R% such that F(z) = A ® z, then we
say that x is an eigenvector of F.

If d = 1, the above definition reduces to that of eigenvectors of homogeneous
mapping. In Definition 4.1.1, the restriction x; # 0 for all 7, rather than = # 0, is
mainly motivated by the applications. In particular, when the critical point equation
of an objective function defined on the product of spheres is recasted as a mutli-
homogeneous eigenvector problem, then x; # 0 ensures that the eigenvector can be
rescaled to be in the feasible set. The fact that A should have nonnegative entries is
not restrictive since F: C — C and thus F(z) = A®z implies that X € ]Ri otherwise
we would have —\;x; € C; for some i which forces x; = 0 as C; is a cone. We discuss
scaling properties of eigenvectors of multi-homogeneous mappings in the following
lemma:

Lemma 4.1.2. Let F: C — C be multi-homogeneous of degree A € R¥*¢. Let x € C
be an eigenvector of F and let A € RY be such that F(z) = A ® z.

a) For every a € R? ., y = a®x is an eigenvector of F and F(y) = 0 ® y with
0=Xoa’ 1

b) If either A € Ri 4 or F is order-preserving, then for every positive integer k,
—1 Aj
0

x is an eigenvector of F* and ]—"k(az) =9 ®z with 9 = }\Z?:
Proof. a) It holds Fla®r) = a? @ F(z) = (a? o) @z = (et Tod)® (a®x).

b) Note that if A € R, then AP is well defined for every B € R4, If F is
order-preserving, then A € Rﬂerd by Lemma 3.3.3 and thus Z;:ol Al ¢ ]RiXd

for all k. In both cases, 9 is well defined. The proof that F*(z) = 9 ® = can
be done with a similar inductive argument as the proof of Lemma 3.3.8. [

As can be seen from Lemma 4.1.2, defining eigenvalues of multi-homogeneous
mappings is a delicate task. We note that this is already the case if d = 1 and the
mapping is not homogeneous of degree 1. Indeed, if f: C — C' is homogeneous of
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degree p > 0 and = € C'\ {0} satisfies f(x) = Az with A > 0, then for a > 0 it
holds f(ax) = o 'A(ax). Hence, the eigenvalues of f depend on the scaling of
their corresponding eigenvector when f is not homogeneous of degree 1. The result
of Lemma 4.1.2, a) suggest that in order to obtain scale invariant eigenvalues, we
should require that the homogeneity matrix of F: C — C is the identity. This is
however a very restrictive condition, in particular when F is continuous and order-
preserving, since in this case, by Lemma 3.3.3 we have F(x) = (fi(x1),..., fa(zq))
where f;: C; — C; is an order-preserving 1-homogeneous mapping for all ¢ =
1,...,d. It follows that the eigenvectors of such mappings can be studied directly
with the results of the nonlinear Perron-Frobenius theory of homogeneous mappings.
These observations suggest that defining X as an eigenvalue of F if there exists an
eigenvector x such that F(z) = A ® z is naive. Moreover, with such a definition,
eigenvalues cannot always be compared since the ordering induced by ]Ri is not
total. These issues can be addressed by considering the Perron vector of AT which,
we recall, is defined as follows: Let B € R‘iXd be an irreducible matrix, then b € Ri "

is the Perron vector of B if Bb = p(B)b and Zle b; = 1. The Perron-Frobenius
theorem implies that the Perron vector of an irreducible matrix always exists and
is unique. We define eigenvalues of multi-homogeneous mappings with irreducible
nonnegative homogeneity matrix as follows:

Definition 4.1.3. Let F: C — C be multi-homogeneous of degree A € ]RiXd.
Suppose that A is irreducible and let b € Ri 4 be the Perron vector of AT, We
say that § € R, is an eigenvalue of F, if there exists an eigenvector x € C of F and
A € R? such that F(z) = A®z and 0 = Hle )\i-’i. In this case, we say that 6 is the
eigenvalue of F corresponding to the eigenvector x.

If d = 1, the above definition reduces to that of eigenvalues of homogeneous
mapping [60]. Indeed, if d =1 and f: C' — C is homogeneous of degree p > 0, then
A=pe¢€ R}ﬁd is irreducible, p(A) = p, and b =1 € R}Hr so that if x € C is an
eigenvector of f in the classical sense, i.e. there exists A € R such that f(x) = Az,
then # = A! = X. Furthermore, we will see in Section 4.4 that the irreducibility
assumption on A is not restrictive when studying eigenvectors of order-preserving
multi-homogeneous mappings. We prove in the next lemma that eigenvalues of multi-
homogeneous mappings defined as in Definition 4.1.3 have properties similar to that
of homogeneous mappings.

Lemma 4.1.4. Let F: C — C be multi-homogeneous of degree A € RiXd. Suppose
that A is irreducible and let b € Ri + be the Perron vector of AT, Let z € C be an
eigenvector of F and 6 > 0 the corresponding eigenvalue.

a) For every av € R‘i -+, the eigenvalue of F corresponding to a ® x is given by
9 = (H?:l afi)p(A)_le.

b) If y is an eigenvector of F with corresponding eigenvalues ¢ > 0 and 6 < 9,
then for every a € Ri 1, the eigenvalues 0, 9 respectively corresponding to

a®z and a ® y satisfy 6 < 9.
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c) For every positive integer k, z is an eigenvector of F* with corresponding

eigenvalue 6> i=0 P(A)
Proof. Let XA € R% be such that F(z) = A ® z, then we have 6 = Hle Abi

a) By Lemma 4.1.2, we have F(a ® r) = Ao a? 1) ® (a ® ). Hence, the
eigenvalues corresponding to & ® x is given by

d d d
9= [Tnoat = o[t = o[-0
i=1 i=1 i=1
d d
-0 HaZ(P(A)*l)bi —9 (Ha?i)p(A)_l,
i=1 i=1

b) Let X € R% be such that F(y) = A ® y. Then, by a), we have § =
(ngl a?")p(A)_lﬂ and ¥ = (Hf Lo )p(A) '9 and thus 0 < ¥ implies 6 < 9.

k—1 j
c¢) By Lemma 4.1.2, we have F*(x) = AXi=o A x, hence the eigenvalue of F*
corresponding to x is given by

ﬁ( k 1AJ H)\ Z L ai)Th), f[ Zf o p(A)b 92§;SP(A)j,

i=1
which concludes the proof. O

Note that if, in Lemma 4.1.4, it holds p(A) = 1, then the eigenvalues of F are scale
invariant. This suggest that order-preserving multi-homogeneous mappings with
homogeneity matrices having spectral radius equal to 1 is the natural generalization
of order-preserving 1-homogeneous mappings. We will see in Section 6.2.2 that there
is another strong argument in favor of this observation: Likewise order-preserving
1-homogeneous mappings on cones are non-expansive with respect to the Hilbert
metric, if the homogeneity matrix of an order-preserving multi-homogeneous mappings
has spectral radius equals to 1, then there exists a Hilbert type metric on the product
of cones for which the mapping is non-expansive.

We conclude this section with a result which uses the Brouwer fixed point theorem
to prove the existence of eigenvectors.

Theorem 4.1.5. Let C be a solid closed cone and F: C — C a continuous mapping.
There exists u € C and A € R such that uy, ..., ug # 0 and F(u) = A ® u.

For the proof we need the following lemma:

Lemma 4.1.6. Let C be a solid closed cone. Let w € int(C*) and define £,,: C — R%
as €,(r) = (wi(x1),...,wa(zq)) for all z € C. Let F: C — C be continuous and such
that F(z)1,...,F(x)qg # 0 for all z € C with &,(z) = 1. Then, there exists u € C
and X € R such that &, (u) =1 and F(u) = A @ u.
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Proof. Let ¥, = {x € C|€,(z) = 1} and let G: ¥,, — X, be defined as G(z) =
£, (F(2)) '@ F(z) for every € 3,,. Then G is well defined, continuous and X, is a
convex compact subset of V. Hence, the Brouwer fixed point theorem [52] implies that
G has a fixed point u € 3,,. It follows that F(u) = A®u with A = £,,(F(u)). Finally,
note that A € R%, since F(u); #0 for i = 1,...,d and thus §,,(F(v)) eRL,. O

Proof of Theorem 4.1.5. Let w € int(C*), &,,(z) = (wi(z1),...,wq(zq)) forall x € C
and ¥, = {z € C|&,(x) = 1}. As F is continuous on the compact set 3,
there exists a > 0 large enough such that &, (F(x)) < al for all z € X,,. Let
v € int(C) N X, and for every € > 0, define F.: C — C as F(z) = F(x) + ev. Then
it holds F¢(x) € int(C) for all z € C, and thus, by Lemma 4.1.6, there exists u. € %,
and A\, € Ri+ such that Fe(u.) = Ac ® ue. Now, note that

Ae = &u(Ae @ ) = € (Felue)) = & (F(ue) + €v) = &, (F(ue)) + €l < (o + €)1,

It follows that {A | e € (0,1)} is bounded. Hence, there exists A € R and a sequence
(€x)72y C (0,1) such that limy_,o € = 0 and limg_,o0 Ae, = A. Furthermore, for
every k > 1, it holds z., € ¥, and thus there exists u € 3, and a subsequence
(er,)i21 C (€k)7Zy such that limy, @e,, = u. Finally, as F is continuous, we have

Flu) = lim Flag,) = lm (F(ra,) = Fo, (20,) + Fo, (0,

l—00

= lim €,V + A, @ T, = AQ u,
l—o0 L L
which concludes the proof. O

4.2 Examples

We discuss examples of eigenvectors of multi-homogeneous mappings.

4.2.1 /(Pr-Pi_gingular vectors of a nonnegative tensor

Let d > 2, T € R} "™ py, ... pg € (1,00) and let || - ||, be the i-norm on R™.
Furthermore, let

C=R} x...xR} and Sy ={zeC||zillp =... = ||zallp, = 1}

Note that S, = {z € C|v(z) = 1} where v: C — R is the monotonic multi-
normalization of C defined as v(z) = (||z1]|p,, - .-, ||zdllp,) for all z € C. Consider
the following system of equations:

T(',.’L‘Q,...,.’Ed) = )\13]131_1
T(x1,+,23,...,0q) = Aab?~

(e 3 ) 2 and (\,z) € Ry x Sp. (4.1)
T(x1,. . 24-1,7) = )\l"sd_l

Let (\,z) € Ry x S, be a solution to (4.1). Then, x is called an ¢P*Pd-gingular
vector of T and A the corresponding #P1>-Pd-singular value of T'. These objects are
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studied in [64, 31| and [36, 40]°. In the particular case d = 2, T' is a matrix and the
¢P1P2_gingular vectors/values of matrices are studied in [17, 13, 89].
Now, let F: C — C be defined as

Fx) = (T( 22, ...,z VP T, zgoq, )Y PY) voec., (4.2)

Note that F is order-preserving and multi-homogeneous of degree A € R4*? with

A= dlag( )(11—r I).

D T

In the next result, we relate the eigenvectors and eigenvalues of F with the ¢P1»-Pd
singular vectors and ¢P1-Pd-gingular values of T.

Proposition 4.2.1. Let 7: C — C be as in (4.2) and x € S,. Then there exists
A > 0 such that (A, ) is a solution of (4.1) if, and only if, there exists 9 € R? such
that F(z) = 9 ® . Moreover, in this case it holds A = fT( ) and ¢; = fr(x )1/ pi=1)
for i =1,...,d so that HZ 1 19b’ =\ with v =S4 | b i and b € R%, the Perron

vector of AT.

i=1 p;

Proof. If (A, x) is a solution of (4.1), then x is an eigenvector of F and F(z) = 9 ®@x
with 9 = (AV/@1=1)  \/®a=1)) Moreover, it holds

A= )\||$1H§1 = O\ﬂflfrla r1) = (T(-,w2,...,2q), 1) = fr(z).

Conversely, if x € S, satisfies F(z) = 9 ® x, then we have

T(l‘l, ey Lj—1yy Li41y - ,LL‘d) = 19?1711,‘?171 Vi = 1, ey d.
Hence, for every i = 1,...,d, it holds
i—1/ pi—1 i—1 ;
fT(:E) = <T(x17'"a‘rifb'ax’ﬂrl)"'?xd)v x’L) :195) <:L{) ) :L‘l> :195,) Hmlngz;

which proves that 9¥; = fr(x)/®=1 for all i = 1,...,d and thus = is an (P1»Pd
singular vector of 7" with corresponding ¢P'Pi-singular value A = fr(x). Note that
A is an irreducible matrix. Let b € Ri + be the Perron vector of AT. Then, the
eigenvalue of F corresponding to x is given by

Q_Hﬁbl_Hf b/pl fT(x)v:)ﬂ’

which concludes the proof. O

Remark 4.2.2. Note that if d = 2 in Proposition 4.2.1, it can be verified that

b:ﬁ(\/pg—l,\/pl—l)T and 7—6(\/])2_14-\/2:1—1),

p1—1

with 8 = \/p1 — 1++/p2 — 1. We are however not aware of such simple expressions for
b and v when d > 2 and p1,...,pg € (1,00). Nevertheless, if there exists p € (1, 00)

suchthatp1:...:pd:p,thenbzélandyzp%l.
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Remark 4.2.3. Proposition 4.2.1 implies that if x,y € S, are PV Pd-gingular
vectors of T with corresponding ¢P'»-~Pd-singular values A, Ay, and 6,0, are the
eigenvalues of F respectively corresponding to z,y, then it holds A, < A, if and
only if 6, < 6,. In particular, the eigenvector of 7 on S, with eigenvalue of largest
magnitude coincide with the ¢P1Pd-gingular vector of T" with /P1:Pd-gingular value
of largest magnitude.

We have seen in Section 3.2.2 that if d = 3, then the ¢P*P2:P3_gingular vector of
T can be characterized as the critical points of the function

D) = Jr(x)

IR EEN A EA

A similar observation holds for every d. Indeed, Proposition 1 of [64] implies that
the ¢P1-Pd_gingular vector of T' coincide with the critical points of

fr(z)

4.3)
a ; (
[Tzt il

P(z) =

and that

max ®(x) = sup{\| A is an ¢P*~Pi_singular value of T'}.
xlw"vzd?éo

4.2.2 Discrete generalized Schrédinger equation

Let T € R’ be a tensor of order d > 2. Let C =R’} x ... xR} and Cy = {x €

C|lz1,...,xq # 0}. Consider the following system of equations:
T(-,z2,...,2q) = a:fi
Ty x?’ o) =T and =z € Cp. (4.4)
T(x1,.. ..,xd,l, °) : :):;71

The above system of equations is a particular case of the discrete generalized Schrédinger
equation [85] which arise in the context of multi-marginal optimal transport in [10].
Now, let F: Cy — Cy be defined as

.7:(30) = (T(-,.I'Q,...,.’L'd)_l,...,T(wl,...,l'd,l,')_l) Vz € Co. (45)

Then, note that F(Cp) C int(C) since T' € R’;*". Furthermore, F is order-
reversing and multi-homogeneous of degree A € R¥*? with A = (I —11T). We relate
the solutions of (4.4) with the eigenvectors of F in the following:

Proposition 4.2.4. Let F: Cy — Cy be defined as in (4.5). Every solutions of

(4.4) is an eigenvector of F. Conversely, if z € Cy is an eigenvector of F, then

x € int(C) and it holds fr(x)F(x) = nx. In particular, ¢tz is a solution of (4.4) with
n

- 1/d
t= (W) )

28



Proof. Note that the solutions of (4.4) coincide with the fixed points of F. Now,
suppose that = € Cp is an eigenvector of F and let A € R% such that F(z) = A ® z.
As F(Cp) C int(C), we necessarily have A € R%, and z € int(C). Moreover, note
that for all i = 1,...,d it holds

-1
n i, T; _
EU M = <:L‘7, ’ ]:(l‘)l 1> = <:L"L 3 T(l‘lv sy Li—15 % Tit1s - - - ,.fl?d)) = fT(‘T)
Ai Ai
Hence, it holds \; = fTL(m) for i = 1,...,d. Furthermore, by the multi-homogeneity
of F, for all ¢ > 0, we have

Ftr) =t""F(z) =t A @z =t4(+2;) ta.

Hence, we can let ¢t = (nyzx))l/d to obtain F(tx) = tx which shows that tx is a

solution of (4.4). O

4.2.3 Rectangular (4-singular vectors of a nonnegative tensor

Let ni,...,nq be such that ny = ... =n, and ngy1 = ... =ng. Let T € R,
p.q € (1,00), || - || the fP-norm on R™ and || - ||, the ¢%-norm on R™. Define

C=RyxRY and S ={(z,y) eCllzl, = lylly =1}

Note that S, = {z € C|v(z,y) = 1}, where v: C — R? is the monotonic multi-
normalization of C defined as v(z,y) = (||z|lp, ||yllq) for all z € C. Consider the
following system of equations:

T(.,z,....,2,y,..., = APl
{TE;U S z; ~ A ad (@) Ry xS, (10

Let (A, (z,y)) € Ry x S, be a solution to (4.6). Then, z is called a rectangular
P4 -singular vector of T and X the corresponding rectangular P-singular value of
T. These objects were studied in [65, 26, 99| and [40]°. In the particular case where
d = 2, T is a matrix and the rectangular ¢?-singular vectors/values coincide with its
¢P4-gingular vectors/values discussed in Sections 3.2.1 and 4.2.1. Now, let 7: C — C
be given for every (z,y) € C by

‘F(l.? y) = (T(.7 x? et x? y? R/ y)l/(p_1)7T(x7 R/ x? .7 y7 A 7y)1/(q_1)) (4'7)

Note that F is order-preserving and multi-homogeneous of degree A € Riﬁ with

A:<(a—1)/(p—1) (d—a)/(p—1)>
a/(q—1) (d-=a-1)/(¢g—1))"

In the next result, we relate the eigenvectors and eigenvalues of F with the rectangular
fP9-gingular vectors and rectangular /P-?-singular values of T

29



Proposition 4.2.5. Let F: C — C be defined as in (4.7) and = € S,,. There exists
A > 0 such that (X, ) is a solution of (4.6) if, and only if, there exists 9 € R such
that F(z) = ¥ ® . Moreover, in this case it holds A = fp(x,...,z,y,...,y) and

91 = W19y = X171 so that 9095 = A7 with v = g + 20 and b € RZ, the

Perron vector of AT.

Proof. Let F: C — C be defined as in (4.7). Every rectangular ¢P¢-singular vector

x € C of T with corresponding rectangular ¢79-singular value A is an eigenvector of
T with eigenvalue A = (AY/(®=1) A1) Moreover, it holds

A= Mz|f = AP~ 2y = (T(z,. . myy, . y), ) = frle, .oz, .., y).
Conversely, if (z,y) € Sy satisfies F(z,y) = (Y12, 92y), then we have
T(, 2y, 2, Y,...,Y) = ﬁlf_lxpfl and T(x,...,z,~y,...,y) = ﬁg_lyqfl.
Hence, if fr: R™ x ... x R™ — R is the multi-linear form induced by 7', then
friz,...;z,y,...,y) ={(x, T(,z,...,2,y,...,y)) = 19’1’_1<:1;, P71y = 19’1’_1\\33”5

-1 — -1
fT(x"'-7x’y7'-'7y):<yaT(Jj7"'ax7'aya-~~ay)>:19% <y’yq 1>:19% ||y”g

It follows that 191/(1071) = ﬁé/(qfl) = fr(z,...,z,y,...,y) and thus (x,y) is a
rectangular ¢P9-singular vector of T' with corresponding rectangular #P4-singular
value A = fr(z,...,z,y,...,y). Furthermore, A is irreducible and if b € R2++ is the
Perron vector of AT, then 19?1 1932 = A7, which concludes the proof. O

Remark 4.2.6. Proposition 4.2.5 implies that if z,y € S, are rectangular ¢P9-
singular vectors of 1" with corresponding rectangular ¢#-9-singular values Az, Ay, and
0,0, are the eigenvalues of F respectively corresponding to x,y, then it holds A\, <
Ay if and only if 8, < 6,. In particular, the eigenvector of F on S, with eigenvalue
of largest magnitude coincide with the rectangular ¢P?-singular vector of 1" with
rectangular P4-singular value of largest magnitude.

We have seen in Section 3.2.3 that if T is partially symmetric, d = 3 and a = 1,
then the rectangular /P%-singular vector of T can be characterized as the critical
points of the function
fT($a Y, y)

2 lpllyllE -

The argument can be generalized to prove that for every d, the rectangular ¢P9-
singular vector of a partially symmetric tensor T' coincide with the critical points

of

P(z,y) = (4.8)

fT(xw"?x)yw'wy)

@(m,y) - d—
03 llyllg™

and it holds

ma;a ®(x) = sup{\| A is a rectangular ¢7Y-singular vector of T'}.
x?y
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Finally, if T is the adjacency tensor of a multiplex network, i.e. T is of order three
and is a collection of m graphs with n nodes, then the eigenvectors in the product
of simplexes ¥ = {(z,y) € C| >2i"; x; = 3_7_, y; = 1} of the mapping F defined in
(4.7) are known as the f-eigenvectors centrality of the multiplex T [92]°.

4.2.4 [(P-eigenvectors of a nonnegative tensor

Let T € R*" be a tensor of order d, p € (1,00) and let || - ||, be the P-norm on
R"™. Furthermore, let

C=R} and S, ={zelCl|z|, =1}

Note that S, = {x € C|v(z) = 1} where v: C — R4 is the monotonic multi-
normalization of C defined as v(z) = ||z||, for all z € C. Consider the following
system of equations:

T(-,x,...,x) =AaP and (\z)e Ry xS,. (4.9)

Let (A, z) € Ry x S, be a solution of (4.1). Then, x is called an ¢P-eigenvector of
T and A the corresponding ¢P-singular value of T'. These objects were introduced in
[64, 80] and have attracted a considerable attention in the past decade [81]. In the
particular case p = 2, the (P-eigenvectors of T are called Z-eigenvectors [25] and if
p = m, the (P-eigenvectors of T are called H-eigenvectors [98].

Now, let F: C — C be defined as

Fla)=T(,z,...,e)/")  vrec

Note that F is order-preserving and multi-homogeneous of degree A = (d —1)/(p —
1) € RY™*! The eigenvectors and eigenvalues of F are directly related with the ¢P-
eigenvectors and (P-eigenvalues of 7. Indeed, (A, z) is a solution of (4.9) if and only
if z is an eigenvector of F with eigenvalue A/(°~1). Moreover, note that if (), z) is
a solution of (4.9) then

A= Az|F = AP~ ) = (T (s z,...,2), x) = fr(z).

We have seen in Section 3.2.2 that if d = 3 and T is symmetric, then the ¢P-
eigenvectors of T' can be characterized as the critical points of the function

_ fr(z,z, )
@)=

A similar observation holds for every d. Indeed, it is discussed in [64, Section 4] that
the fP-singular vector of a symmetric tensor 1" coincide with the critical points of

:fT(a:,...,a:)

(el

O(x)

)

and it holds

m;%< ®(x) = sup{A| A is an ¢P-eigenvector of T'}.
€T
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4.2.5 Quantum copulas

Let V7 be the space of symmetric matrices in R™*™ and V5 the space of symmetric
matrices in R™*". Let C; C V4 and Cy C V5 be the cones of positive semi-definite
matrices, V =V} x Vo and C = (] x Cy. Let @: V; — V5 be a linear mapping and
denote by ®* its adjoint with respect to (-, -), the Hilbert-Schmidt inner products
on Vi and Va. Suppose that ®(C1\{0}) C int(Cs2), then by Lemma 2 of [67], it holds
O*(C2\ {0}) C int(Cy). Let C = C x Cy. The following equation is discussed in the
context of quantum copulas in [67]:

-1y _ 1 -1
{ii?x)):_lg;)( with  (X,Y) € int(C). (4.10)
Define F: int(C) — int(C) as
FX,Y)= (Y ) Lo (X)) VY(X,Y) € int(C). (4.11)

Then, F is order-preserving and multi-homogeneous of degree A € R?*? with

0 1
(1Y),
Moreover, the eigenvectors of F are related to the solutions of (4.10) by the following:

Proposition 4.2.7. Let F: int(C) — int(C) be as in (4.11). Then, every solution
of (4.10) is an eigenvector of F. Conversely, if (X,Y) € int(C) is an eigenvector
of F, there exists # > 0 such that F(X,Y) = (%H*IX, 0Y) and for all ¢ > 0,
t(X,n0Y) € int(C) is a solution of (4.10).

Proof. Note that (X,Y) is a solution of (4.10) if and only if F(X,Y) = (mX,1Y).
Now, suppose that (X,Y) € int(C) is an eigenvector of F. As F(int(C)) C int(C),

there exists A,0 > 0 such that 7(X,Y) = (AX,0Y). Moreover, if Tr(-) denotes the
trace of a matrix, then it holds

nf=0Tr(Y V) = Te(Y LF(X,Y)o) = (Y1, (X)) = (Y1), X)
= (FIX, V) X)) =2 UX X)) = 23T Te(X X)) = ma!,

which proves that A = %9*1. Now, by the multi-homogeneity of F, for all a;, 3 > 0
we have

F(aX,8Y) = (BF(X,Y)1,aF(X,Y)y)
= (B(aX), % (8Y)) = (2 55(aX), G (5Y)).

In particular for any a > 0, the equation %‘9 = % in 8, has the unique solution
8 = af with £ = 6n. Now, if t > 0, then with a = ¢ and § = «&, we have
F(aX,BY) = (maX,1BY). Hence, (aX,BY) = t(X,£Y) € int(C) is a solution of

(4.10) for all t > 0. O

32



4.2.6 Generalized DAD problem

Let d > 2. Fori=1,...,d,let V; = R, C; =R, z; € R}", and M, € Rff“xni
with ngy1 = ni. Suppose that M; has at least one positive entry per row. Let
C=C1 x...x (4 and consider the following system of equations

ZI9 © Ml-rl = z2
I3 o M2$2 = z3

: with (A, z) € Ry x int(C). (4.12)
xgo Mg 1291 = 24
xI1 © ded == )\Zl

The system of equations (4.12) is called a generalized DAD problem [60, page 163].
Note that if d = 2, ny = nes = n, y1 = yo and My = MQT = M, then with the
additional constraint that A = 1, (4.12) reduces to the classical Sinkhorn equation
which aims at finding diagonal matrices Dy, Dy € RY™ such that Di1MDs is a
doubly stochastic matrix. In this case, if (4.12) has a solution, then Dy = diag(x1)
and Dy = diag(x2).

Now, let F: int(C) — int(C) be given by

.F(:El, .. ,xd) = (2’1 o (Md.rd)il,Zg o (Mlxl)il, c..,240 (Md_ll’d_l)fl). (4.13)

Then, F is order-reversing and multi-homogeneous of degree A € R%*? with

0 0 - o0 =1

-0 0 1 ifi>landj=i—1
A=]10 " |, le Ajy=4q-1 ifi=1landj=d,

: ) ) ) : 0 otherwise.

0 -~ 0 -1 0

We relate the solutions of (4.12) with the eigenvectors of F in the following:

Proposition 4.2.8. Let F: int(C) — int(C) be defined as in (4.13). Then every
solution to (4.12) is an eigenvector of F. Conversely, if x € int(C) is an eigenvector
of F, then there exists A € R%, such that F(z) = A ® z. Moreover, if @ € R%
is defined as oy = 1 and ;41 = \j41/aq for i = 1,...,d — 1, then (i‘—‘f,a ®x)is a
solution to (4.12).

Proof. Note that (A, z) € Ry x int(C) is a solution to (4.12) if and only if

-1 -1 - —1 -1
zig oMz =z, Vi=1,...,d—1 and 27 o Mgxg = x| .

Hence, (A\,z) € Ry x int(C) is a solution to (4.12) if and only if F(z) = a® z
with a = (1,...,1,A71). It follows that every solution to (4.12) is an eigenvector of
F. Now, suppose that x € int(C) is eigenvector of F and let X € Ri be such that
F(z) = A® 2. Note that A € RL since F(int(C)) C int(C). Moreover, note that
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for all @ € R?, we have F(a® z) = a’t @ F(z) = (a? o A) ® z where A is the
multi-homogeneity matrix of F. It follows that for all a € Ri 4 it holds

_ 1 _ A1
21 0 (Maozg) ™ = ag e (Mgzg)~' = (alad)maﬁ

and similarly

Ait1

Zi+1© (Miaizni)_l == ( >Oéi+1$i+1 Vi = 1, e ,d —1.

Q041
So, let a1 =1 and a1 = A\j+1/q for i =1,...,d — 1. Then, it holds

Ai A A
Sl 1 Wi=1,...,d—1 and 1 A
Q041 a1Qqg Qq

It follows that F(a ® ) = A® (a ® z) with A = (1,...,1,2L) and thus, by the

) ) ad
above discussion, (54, ® z) is a solution to (4.12). O

4.3 Reduction by substitution

Classically, the generalized DAD problem and the problem of finding the /¢-singular
vectors of a matrix are solved by substituting the equations defining the eigenvectors
of the corresponding multi-homogeneous mapping into each other in order to produce
an equivalent problem which consists in finding the eigenvectors of a homogeneous
mapping. Such reductions rely on the fact that the homogeneity matrix has a zero
diagonal entry. This process is illustrated in the following example.

Example 4.3.1. Let C = R} x R?, M € R7" and p,q € (1,00). Consider the
mapping F: C — C defined as

Fla,y) = (My) 0D (M Ta)V=0) - (a,y) e C.

As discussed in Section 3.2.1, the ¢P9-singular vectors of M are the eigenvectors of
F. Let (u,v) € C be an eigenvector of F, then there exists A, 6 > 0 such that

(M) =1 = \y
YD _ g, (4.14)

By substituting one equation into the other, we see that if A,0 > 0, then
f(u) = 0Py and g(v) = A/ Dgy,
where f: R — R’ is the homogeneous mapping defined as
flx) = (M(M Tz)Ya=/e=D vy e RT
and g: R} — R" is the homogeneous mapping defined as

g(y) = (M T (My)Y/P=D)Va=b vy e R™.
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Conversely, note that if v € R \ {0} satisfies f(u) = Au for some A > 0, then we
have M Tu # 0 since A > 0 and with v = (M Tu)/(@=1 € R? \ {0}, we have

F(u,v) = (Mo)Y@=D (M Tu)Y @) = (f(u),v) = (Au,v),

ie. (u,v) is an eigenvector of F. Similarly, if v € R} \ {0} satisfies g(v) = v for
some 6 > 0, then we have Mv # 0 since # > 0 and with v = (Mv)"/®~D we have

F(u,v) = ((Mv)l/(p_l), (MTu)l/(q_l)) = (u,g(v)) = (u, 6v),

which, again, shows that (u,v) is an eigenvector of F. Now, consider the sets E; C
R, B, C R and Ex C R' x R"} given by

E¢ = {u e R\ {0} |3\ > 0 such that f(u) = Au}
E, ={v e R\ {0} |30 > 0 such that g(v) = fv}
Er = {(u,v) € R\ {0} x R} \ {0} |3\, 0 > 0 such that F(u,v) = (Au,0v)},

then the above discussion proves that there exists a bijection ¢: E — E’ for all
E,E" € {Ef, E4, Er}. Hence, finding an eigenvector of f with positive eigenvalue is
equivalent to finding an eigenvector of g with positive eigenvalue which is equivalent
to finding an eigenvector of F with positive eigenvalue. This equivalence has an
interpretation in terms of optimization. We have discussed in Section 3.2, that the
nonnegative maximizers of

(z, My)

M ]|p,q = max TESTRTERIE
P4 perm\{0},yerm\ {0} [|2|p]y]l4

are eigenvectors of F. Now, let p’ =p/(p—1), ¢ =q/(¢ — 1),

| Myl 1My
and M oy = Ll L4

||MH — max
-r yeR\{0}  [|Yllq zeRm\{0} [|z||p

The nonnegative maximizers of ||M||,_,,y are eigenvectors of g and the nonnegative
maximizers of ||[M"||,_,, are eigenvectors of f. Furthermore, as noted in (3.1), it
holds [|M lp,g = [Mllg—p = M [|p-q-

We discuss how such reductions can be done in the case of a general multi-
homogeneous mapping defined on the product of cones. Suppose that d > 2 and
let V =V; x...x V. In the next proposition we consider a mapping F: P — P
where P is the part of a cone C C V. We do that in order to use Lemma 3.3.3 which
states that if F is order-preserving or order-reversing and multi-homogeneous of
degree A € R¥?  then A;; = 0 implies that y; — F(z1,...,2j-1,Yj, Tjs1,-- -, Td)i
is constant on the part P; of C;. We note however that if F is assumed to be
continuous, then the exact same result (and its proof) holds with P replaced by
C. We do not want to assume that F is continuous on C because, for instance, the
mapping F of the generalized DAD problem is continuous on int(C) but can not be
extended by continuity on the boundary of C. Indeed, this mapping tends to infinity
as x approaches 0.
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Proposition 4.3.2. Let C C V be a cone and let P be a part of C. Let F: P — P
be either order-preserving or order—reversmg and multi-homogeneous of degree A €
Raxd, Suppose that Agq = 0 and let P=P x...xPy_;. For every x4 € Py, define

Foy: P — P as

A~

Foa(@)i = F(21,. .., 8a-1, F(@1, ..., 84-1,2a)a), VEeP,i=1,...,d—1.
Then, for every x4 € Py, the following assertions hold:
a) ]:—:vd is multi-homogeneous of degree A € R@-1x(d=1) with
Ajj=Aj+AgAa;  Vij=1,...,d—1.
Furthermore, if F is order-preserving then Fu , 1s order-preserving.
b) For every y4 € Py, it holds ]:"xd = ﬁyd‘

¢) Let & € P, ug € Py and set u = (4,ug) € P. Then, the following are
equivalent:

i) There exists A € R%, such that F(u) = A ® w.
ii) There exists § € RIZ! and 6; > 0 such that F,,(4) = 0 ® @ and
F(hi, ..., Udy,Tq)d = Oquq.

Proof. Let £ € P and & € Ri;l, then for every i =1,...,d — 1, we have

d—1
.EA&@@%z]W&@&f&w&ﬁ%hh:(Ildﬁﬁf@mﬂd®iw@@i

-1 =1 A - o
— ] ~ 43d, 5 v ot 1J+ 1,d43d,j ~N .
—<Haj )(Haj ) F(z,F(Z,2q)d) (H )]—"xd(az)“

which implies that ﬁzd is multi-homogeneous of degree A Let C=Cy x...x Cyg_yq.
Suppose that F is order-preserving and let Z,9 € P be such that # =¢ U Set
Tqg = F(Z,24)qg € Py and gq = F(§,x4)a € Py. Then, as F is order-preserving, we
have Z4 <¢, 94 and thus (Z,Z4) =¢ (9,74). It follows that .7:"“(:%)1 F(&,Za)i =c;
F(,54)i = Fuy(9)i for i =1,...,d — 1. This concludes the proof of a). Note that
b) follows directly from Lemma 3.3.3. We prove ¢). Let @ € P, ug € Py and set
u = (Gi,uq) € P. Suppose that there exists A € RY, such that F(u) = A ® w.
Then, in particular, we have F(u)q = Aguq. As x4 ~c, uq, Lemma 3.3.3 implies
that F(u)g = F(4,xq)q and thus it holds

Aaug = F(u)g = F(U,xq)4.
Furthermore, for ¢ = 1,...,d — 1, we have

Fual@); = Fi, F(@,24)a)i = F(@, Aqua); = Ny " Flu)i = Ay Ay,
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Hence, i) holds with 8 = (A\7™Ay,..., A} " \s_1) € R?, and 6; = Ag. Now,
suppose that ii) holds, i.e. there exists 6 € Rij_l such that .7:"“(71) =60 ®u. Set
ug = F(U,zq)q € Py and v = (G,uq) € P. By Lemma 3.3.3, we have F(i,z4)q =
F(t,uq)q since Agq = 0, and thus F(u)q = ug. Furthermore, it follows that for all
i1=1,...,d—1, it holds

F(u); = F(i,uq)i = F(t, F(, 2a)a)i = Fay(0); = 0;;.
Therefore, F(u) = A ® u with A = (0,1) € R%, which concludes the proof. O

We note that the transformation F, , discussed in Proposition 4.3.2 has been used
in [36]° for the study of ¢P1Pd-eigenvectors of nonnegative tensors. Furthermore,
it has been used in [67] in order to use classical arguments of the non-linear Perron-
Frobenius theory for the study of the eigenvectors of F defined in (4.11). Finally, we
note that the multi-homogeneous mapping F: RIY x ... x R4 — RYY x ..o x R4
defined in (4.13) is a particularly nice candidate for Proposition 4.3.2. Indeed, by
applying Proposition 4.3.2, d times, it can be shown that the study of the eigenvectors
of F can be reduced to the study of the eigenvectors of a homogeneous mapping
f: R} — R, . This particular reduction for the generalized DAD problem is used
in the proof of [60, Theorem 7.1.2].

4.4 Reducible homogeneity matrices

We explain why the study of eigenvectors of multi-homogeneous mappings can be
without loss of generality be restricted to the cases where the homogeneity matrix
is irreducible. To gain intuition we start with a simple example.

Example 4.4.1. Let C =R} xR}, M € R}Y*™ and T' € R, Define F: C — C
as
F(z,y) = (T(-,2,y), My)  V(z,y) €C.

Then, F is order-preserving and multi-homogeneous of degree A € R?*? with

11
()
The eigenvectors of F are the solutions to the equation

T('7 -’L',y) = )\.CC,
My = 0y.

Hence, in order to find an eigenvector of F, we can first find an eigenvector of M,
say § € R% \ {0} and then find an eigenvector of the linear mapping x +— T'(-, z, ).

In the example above, we see that it is sometimes possible to break down the
problem of finding the eigenvectors of an order-preserving, resp. order-reversing,
multi-homogeneous mappings into smaller subproblems. This can be done when the
homogeneity matrix is reducible. We generalize this observation. Let d > 2 and
YV =V1 x...x Vg be the product of finite dimensional real vector spaces.
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Proposition 4.4.2. Let C C V be a cone and let F: C — C be multi-homogeneous

of degree A € R¥?, Suppose that F is either order-preserving, or order-reversing
and there exists 1 < k < d—1, A € RF¥k A ¢ RUA-k)x(d=k) B ¢ RF*(d=k) gych that

A B
A_<O A).
Let C=C1 x ... XC’kandC C’k_Hx XCdsothatC:éxé. For z € C and
xeCdeﬁne]: C — C and : C — C as follows:

(2) = (F(Z,@)1,..., F(2,2)), vz
(2) = (]:( 2)k+1,...,f(i‘,2)d), A

)

C.

w M
m o

Then, for every Z € C and 2 € ¢ , the following assertions hold:
a) F; and Fj are multi-homogeneous of degree A and A, respectively.

b) If F is either order-preserving or order-reversing, then so are F; and Fs.

)
)
¢) For every 7 € C such that Z ~g 7 it holds Fz = .7:"—.

d) Let w e C, @ € C and set u = (,4) € C. Then, u is an eigenvector of F if,
and only if, % is an eigenvector of F3 and 4 is an eigenvector of Fa.

Proof. a) and b) follow from a direct verification. c) follows from Lemma 3.3.3 and
Remark 3.3.4. Finally, d) follows from t}}e fact that for every z € C and & € C, if
x = (Z,%), then it holds F(x) = (Fz(Z), Fz(2)). O

The key point of Proposition 4.4.2 is ¢). Indeed, suppose that F: C — C
satisfies the assumptions of Proposition 4.4.2, then one can proceed as follows to
find eigenvectors of F: First, find a part P of C such that F(P) C P and set
P=P x...xP,and P = Pyy1 x ... x Py. Take any 7 € P. Note that Fy (77) cP.
Find an elgenvector i€ P of Fi. Flnally, find an eigenvector @ € P of F;. Then,
u = (u,u) € P is an eigenvector of F since Fz = Fa by the property c) of Proposition
4.4.2.

The procedure described above implies that if | A| is reducible, then one can find
eigenvectors of F by finding the eigenvectors of multi-homogeneous mappings defined
on the product of fewer cones whose homogeneity matrices are all irreducible. This
can be done by recursively applying Proposition 4.4.2 to the Frobenius normal form
of |A| which exists by the following well-known result:

Theorem 4.4.3. Let A € Rﬂerd, then there exist nonnegative integers s, ¢ such that
1 < s+t < d, positive integers nq,...,ngsy¢ such that dy + ...+ ds4+ = d, and a

38



permutation matrix P € R%*? such that B = PAP has the Frobenius normal form:

Biy1 Big -+ Biy Bigt1 Bigy2 0 Biigs
0 Bso -+ Bay Bai1 Bair2 -+ Baggs
B=1| 0 0 -+ Byt Bity1 Biigo -+ Biggs |

0 0 -+ 0 B 0 0

0 0O .- 0 0 0  Biysits
where B;; € R‘iide fori,j = 1,...,t + s and B;; is either irreducible or zero for
1=1,...,t+s.
Proof. See Theorem 6.4.4 of [30]. O

5 Metrics induced by a cone

A key observation for the nonlinear generalizations of the Perron-Frobenius theorem
is the consideration of the Hilbert projective metric induced by a cone. Indeed, it was
noted by Birkhoff [14] and Samelson [86] that a linear operator leaving R’} invariant
is non-expansive under the Hilbert metric induced by the cone R’ . Furthermore,
Birkhoff noted that the linear operator associated to a positive matrix is a strict
contraction and gave a formula for the contraction ratio. This is the celebrated
Birkhoff-Hopf theorem recalled below. Furthermore, Bushell [22] observed that a
mapping between cones which is order-preserving and homogeneous of degree p > 0,
has Lipschitz constant p with respect to the Hilbert metric induced by the cones. In
particular, order-preserving 1-homogeneous mappings are non-expansive.

5.1 Hilbert’s metric

Let V be a finite dimensional real vector space. Let C' C V be a cone and for every
z,y € C'\ {0} let

M(z/y;C) =inf{8 > 0: 2 ¢ By}, m(z/y;C) =sup{a>0: ay 3¢z}, (5.1)

where we set M (z/y; C') = oo if there is no 8 > 0 such that  <¢ By. In particular,
note that if x ~¢ y, then 0 < M(z/y; C),m(z/y; C), M(y/z; C),m(y/z; C) < oo.

Example 5.1.1. Let C = R%}. For x € R}, let I(z) = {i|xz; >0} C {1,...,n}. Let
z,y € R, if I(y) C I(x), then

2

M(z/y;R?) = max — and m(x/y; R"Y) = min —.

() = 2, (/o) = 2 v

We recall from [22] elementary properties of M (z/y; C) and m(z/y; C).

Lemma 5.1.2. Let C' C V be a closed cone, «, 8 > 0 and let z,y,u,v € C'\ {0} be
such that x ~c y ~c u ~c v and x <¢ u, v <¢ ¥y, then
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1

3

x/y; C) < M(z/y; C),
i) m(x/y; C)y 2c x 2c M(z/y;C)y,

iii) M(ax + By/y; C) = aM(z/y;C) + B,

) m(
) m(
)
)
)
)

iv) m(ax + By/y; C) = am(z/y; C) + B,
v) M(z/y; C)m(y/z;C) =1,
vi) M(z/y;C) < M(u/v;C) and m(u/v;C) < m(x/y;C).
Proof. See [22]. O

We discuss one more useful property of M(-/-;C) and m(-/-;C) in the following
lemma:

Lemma 5.1.3. Let C C V be a closed cone, let z,y € C' with x ~¢ vy, and let
v: C'— Ry be homogeneous of degree 1 and monotonic. If v(z) = v(y) = 1, then

m(z/y) <1< M(z/y;C).
Proof. As v is monotonic and homogeneous, it holds
1 =wv(z) <v(M(z/y; C)y) = M(z/y; C)v(y) = M(z/y; C).
Similarly, we have

1 =wv(z) =2 v(m(z/y; C)y) = m(z/y; C)v(y) = m(z/y; C),
which concludes the proof. O

Hilbert’s metric is defined in terms of M(-/-;C) and m(-/-;C). Let z,y € C
be such that x ~¢ y. The Hilbert projective distance puc(z,y) between x and y is
defined as follows: Either z =y = 0 and we set uc(0,0) =0, or z,y # 0 and

pe(z,y) = In(M(x/y; C) M(y/z; C)).

If x ¢ y, then we set uc(z,y) = oo. We refer to uc: C x C — R, where R =
[—00, 00] is the extended real line, as the Hilbert metric induced by C. Note that if
x ~cy and z,y # 0, then by Lemma 5.1.2, we have

M (z/y; C))
m(z/y;C) /)

We discuss examples of this metric on particular cones.

pe(z,y) = ln(

Example 5.1.4. Let C =R" and z,y € R’} ,, then it holds

TiYj )

po(z,y) =In < max T max &) = max ln(
Yilj

=1,...,n Y; j=1,...,n Z; i,J=1,...,n

If 2,y € R \R"}, and x ~¢ y, then x,y have the same zero pattern, i.e. z; > 0 if
and only if y; > 0, and pc(z,y) can be computed as above by restricting the maxima
to the nonzero coordinates.
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Example 5.1.5. Suppose that C' C R" is a solid polyhedral cone and let &1, ..., &n €
V* be the facet defining functionals of C. Then the proof of Lemma 2.2.2 in [60]
shows that for all z,y € int(C), it holds

M(z/y;C) = max 28 ’

so that

' max &(a:)&j(y)) — max |In (&(a:)&j(y))l'
=1 N &i(y)€j(n) ) 1<i<gEn T \&Gi(y)g ()

Example 5.1.6. Let C C R™ ™ be the cone of symmetric positive semi-definite

matrices. Then, Proposition 2.4.2 of [60] implies that for every positive definite
matrices A, B € int(C), it holds

pe(z,y) = 1H<

po(A,B) =1n (p(A~'B)p(B~1 A)).

In facts, pe is a pseudometric. We recall that on a set X, n: X x X — [0,00)
is a pseudometric if i satisfies all the conditions of a metric except that n(xz,y) =0
can happen even if  # y. The pair (X,n) is called a pseudometric space. The
Hilbert distance uc is a pseudometric since if z,y € C are linearly dependent, then
pe(z,y) = 0. More generally, for every x,y € C with x ~¢ y, it holds

pelaw,fy) = pe(z,y)  Va,B>0. (5.2)

On the other hand, if C' is closed, then z ~¢ y and puc(z,y) = 0 imply the existence
of @ > 0 such that x = ay (see Lemma 2.7 of [28]). This property allows to formulate
eigenvector problems as fixed point problems. Indeed, let f: C' — C be a mapping
and z € C'\ {0}. Then the above observations imply that z is an eigenvector of f if
and only if it is a fixed point of f with respect to the Hilbert metric induced by C.
Formally, for every x € C'\ {0} we have

I\ > 0 such that f(z) =Xz <=  puc(f(z),z)=0. (5.3)

The equivalence in (5.3) allows then to use results of fixed point theory to study
the eigenvectors of mappings leaving a closed cone invariant. The completeness of
Hilbert’s metric is discussed in the following lemma:

Lemma 5.1.7. Let C C V be a closed cone and P C C a nonzero part of C.
Furthermore, let v: C' — [0,00) be continuous, 1-homogeneous and suppose that
v(z) > 0 for all x € P. Consider the sphere S, = {z € C: v(xz) = 1}. Then,
(S, N P, uc) is a complete metric space. Furthermore, the topology of (S, uc)
coincides with the norm topology on V.

Proof. See |77, Lemma 2.1] for the completeness and |60, Corollary 2.5.6] for the
topology of (S, puc)- O

As discussed in the next remark, other types of metric were considered on cones.
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Remark 5.1.8. The function Fe(z,y) = In(M (z/y; C)) is known as the Funk metric
[78, Chapter 1 and 2]. The Funk metric is not symmetric and is a hemimetric [35].

The Hilbert metric can be seen as a symmetrization of the Funk metric. Indeed, it
holds

po(x,y) = Fo(r,y) + Fo(y,z)  Va,y € C\ {0}, ~cy.

The Thompson metric [91] induced by C'is a different symmetrization of the Funk
metric and is defined as

5C($7y) = maX{FC(a:,y),FC(y,x)} (54)

for every xz,y € C \ {0} with x ~¢ y. For every nonzero part P C C, (P,d¢) is a
complete metric space. The Thompson metric is typically used for mappings which
are not homogeneous.

The following relationship between pc and a monotonic norm || - || on V' is useful
to deduce a convergence rate in terms of a norm on V from a convergence rate in
terms of the Hilbert metric.

Lemma 5.1.9. Let C C V be a closed cone. Let |- || be a norm on V' with normality
constant v and for r > 0, let S, = {z € C: ||z|| = r}. Then,

lz —yll < r(1+29) (oY) — 1), Va,yeS, with z~cy.
Proof. By Lemma 2.5.1 of [60], it holds
|z —y| <r(1+27)(@Y —1) Ve yeS, with z~cy, (5.5)

where d¢(z,y), defined in (5.4), is the Thompson metric induced by C. Let z,y € S,
with z ~c y. As x,y € S, and | - || is monotonic, Lemma 5.1.3 implies that
M(z/y;C), M(y/x;C) > 1 and thus

V) = max {M(z/y; C), M(y/w; C)} < M(x/y; C)M(y/z; C) = e'ol™v),
Combining this observation with (5.5) concludes the proof. O

We conclude with a short discussion on the geometry of the Hilbert metric.
Suppose that C C V is a solid closed cone. Let w € int(C*) and ¥, = {x €
C|w(x) = 1}. Then, Lemmas 2.6.1 of [60] imply that for ¢ > 0 and = € int(C),
the closed ball Be(x) = {y € Xy | po(z,y) < €} is a convex subset of V. Finally, let
us recall that a metric space (X, p) is a geodesic metric space if for every z,y € X
with u(x,y) > 0, there exists a geodesic between x and y, i.e. a curve v: [0,1] = X
such that v(0) = z,v(1) = y and p(y(s),v(t)) = |s — t|u(x,y) for every s,t € [0, 1].
Corollary 2.6.4 implies that (X, 1) is a geodesic space and straight line segments
are geodesics.
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5.2 Lipschitz constant of homogeneous mappings on cones

We discuss the Lipschitz constant of mappings between cones. We recall that for
two pseudometric spaces (X,n), (Y,¢) and a mapping f: X — Y, a scalar a > 0 is
said to be a Lipschitz constant of f with respect to n and ( if

n(f(w), f(2)) <al(y,z2) Vy,z € X.

When the context makes it clear which pseudometrics are used on the domain and
codomain of f, we simply say that a is a Lipschitz constant of f. If f has a
bounded Lipschitz constant, then we say that a is the smallest Lipschitz constant of

fo(X,n) = (Y, Q) if
a=inf{a > 0[n(f(z), f(y)) < a((z,y), Vz,y € X}.

If 1 is a Lipschitz constant of f, then we say that f is non-expansive. If there
exists a < 1 such that a is a Lipschitz constant of f, then we say that f is a strict
contraction. Finally, we say that f is contractive if

n(f(y), f(z) < {(y,2)  Vy,z€ X with y#z

In the following, we recall results about the Lipschitz constant of mappings between
cones. First we discuss the case where the mapping is order-preserving/reversing and
homogeneous of degree p. Then we recall the Birkhoff-Hopf theorem which gives a
formula for the smallest Lipschitz constant of a linear mapping with respect to the
Hilbert metric.

5.2.1 Homogeneous mappings

An order-preserving p-homogeneous mapping f: C' — K has p as Lipschitz constant
with respect to Hilbert’s metric. Indeed, such an f has the property that for all
xz,y € C with = ~¢ y, it holds

f@) 2 f(M(z/y; C)y) = M(z/y; C)° f(y),
which implies that M (f(z)/f(y); C) < M(x/y; C)P. It follows that

po(f(x), f(y) <ppc(z,y)  Ve,yeC with z~cuy.

Similar arguments hold for other classes of mappings.
The next proposition shows that order-preserving and order-reversing p-homogeneous
mappings have |p| as Lipschitz constant.

Proposition 5.2.1. Let C' € V,K C W be closed cones and f: C — K. If f
is either order-preserving and homogeneous of degree p > 0 or order-reversing and
homogeneous of degree p < 0, then

pr(f(2), f(y) < Iplpc(z,y)  Vo,ye C with z~cy.
Proof. Follows from Corollaries 2.1.4 and 2.1.5 in [60]. O
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The scale invariance of the Hilbert metric described in (5.2) implies that any
rescaling, constant or not, of a mapping does not change its Lipschitz constant
with respect to the Hilbert metric. This is useful as we will study iterates of
normalized mappings. Furthermore it can be shown that p-homogeneous strongly
order-preserving mappings are contractive. These results are formulated in the
following proposition which reduces to Lemma 2.1.6 of [60] in the case p =1 and is
proved in a similar way.

Proposition 5.2.2. Let C C V be a solid closed cone. Let v: C — [0,00) be
continuous, homogeneous of degree 1 and such that v(z) # 0 for all z € C'\ {0}.
Let f: C — C be homogeneous of degree p € R\ {0} and either order-preserving if
p > 0, or order-reversing if p < 0. Suppose that f(z) # 0 for all x € C'\ {0}. Let
Sy, ={x € C|v(x) =1} and let g: S, — S, be given by

Ve e S,.

Then, for every part P of C such that P # {0}, it holds

pc(g(x),9(y)) < |plpc(z,y) Vr,y € S, NP.

Moreover, if f is strongly order-preserving or strongly order-reversing, then

ne(g(x),9(y)) < Iplpc(z,y)  Vo,y € S, NP with x #y.

Proof. The first inequality follows from Proposition 5.2.1 and the fact that for all
a,B > 0and z,y € Pitholds pc(azx, fy) = pc(x,y). To prove the second inequality,
let z,y € S, NP with z # y. Then we have puc(x,y) > 0 since puc is a metric on
S, N P by Lemma 5.1.7. Hence it holds = # Ay for all A > 0. Set a = m(y/x;C)
and 8 = M(xz/y;C). It holds ay x¢ = x¢ Py since C is closed. Suppose that f
is strongly order-preserving and p > 0, then we have o f(y) <¢ f(z) <c BPf(y).
Hence, there exists 6§ > « and ¢ < ( such that 07 f(y) <¢ f(x) <¢ 9P f(y) and thus

pe(9(x),9(y)) = pe(f(x), f(y)) < (97/6%) = pn(9/0) < pln(B/a) = puc(z,y)-

If f is strongly order-reversing and p < 0, then we have 5P f(y) <¢ f(z) <c o f(y).
Therefore, there exists § > § and ¥ < « such that 0P f(y) <¢ f(x) =¢ ¥ f(y) and
it follows that

ne(g(x),g(y)) < In(07/9%) = |p|In(9/0) < |p|In(8/a) = [pluc(z,y),
which concludes the proof. O
We note that on R}, the element-wise power is a dilatation.

Lemma 5.2.3. Let C'=R", then for all o € R it holds

po(@®,y®) = lalpc(z,y)  Vo,y € RY with z ~cy.
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Proof. If a > 0, then M (z®/y*; C) = M(x/y; C)* and if a < 0, then M (z/y*; C) =
M(y/z;C)ll If o = 0, then 2 = (1,...,1) for all z € int(C) and thus M (z®/y*; C) =

1. The claim now follows from the definitions of u¢. O

Remark 5.2.4. We are not aware of bijective dilatations which are not isometric
for cones which are not simplicial. We refer to [61] for a discussion of isometries on
polyhedral cones. It is however worth to note that if C' is the cone of symmetric
positive semi-definite matrices, A, B € int(C) and o € [—1,1], the discussion in
Example 2.2.3 together with Proposition 5.2.1 imply that uc (A%, BY) < |a|uc (A4, B).

Propositions 5.2.1 and 5.2.2 are useful when combined with fixed point theorems.
We gather classical fixed point results in the following theorem. For its statement,
let us recall that in a metric space (X,7), u € X is said to be a locally attracting fized
point of f: X — X if it is a fixed point of f and there exists an open neighborhood
U C X such that u € U and for all z € U it holds limg_,o f*(z) = u.

Theorem 5.2.5. Let (X,7) be a complete metric space and f: X — X a mapping.
Let ¢ > 0 be a Lipschitz constant of f with respect to 1. Suppose that at least one
of the following conditions is satisfied:

a) ¢ < 1.
b) ¢=1, (X,n) is compact and f is contractive.

c) ¢ =1, (X,d) is a geodesic space and F has a locally attracting fixed point
rz € X,

Then, f has a unique fixed point v € X, and
lim ff(z) =u Vo € X.
k—o0

Proof. If F satisfies a),b) or ¢), then the claim respectively follows Theorem 3.1 [55],
Theorem 3.5 [55], or Proposition 3.2.3 [60]. O

We illustrate a combination of Theorem 5.2.5 with Proposition 5.2.2.

Example 5.2.6. Let C =R, M € R*" a matrix with at least one nonzero entry
per row and o € R\ {0} with |a| < 1. Let f: R}, — R, be defined as

fz) = (Mz)* Vo eR?,.

Then, f is order-preserving if a@ > 0 and order-reversing if a < 0. Let || - || be any
norm on R™ and let S; = {z € R}, |||z|| = 1}. Define g: S;y — Sy as
f(x)
g(z) = Vo € Sy,
1 (@)l

Proposition 5.2.2 implies that || is a Lipschitz constant of g with respect to the
Hilbert metric uc. As (S4+,d¢) is a complete metric space by Lemma 5.1.7, Theorem
5.2.5, a) implies that g has a unique fixed point. It follows that the equation

(Mz)* = Az, €Sy, A>0,

has a unique solution (), u) and for every = € Sy, limy_,o g% () = w.
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We conclude by noting that in Corollary 2.1 of [76], a formula is given which
characterizes the smallest Lipschitz constant of a locally Lipschitz mapping between
cones in terms of its derivatives.

5.2.2 Birkhoff-Hopf theorem

Let V, W be finite dimensional real vector spaces. For a cone C' C V and S C C, the
projective diameter of S with respect to pc is defined as

diam(S; pe) = sup{uc(z,y): z,y € S and = ~¢ y}. (5.6)

The projective diameter appears in the Birkhoff-Hopf theorem. This theorem shows
that the best Lipschitz constant k(L) of a linear mapping L: V' — W between the
cones C' C Vand K C W ie. L(C) C K, can be expressed in terms of the projective
diameter diam(L(C); ux ). Different proofs are known, see for instance [14, 23, 28|.
The Birkhoff-Hopf theorem is usually stated for a linear mapping L: V — W such
that L(C) € K where C C V and K C W are cones. For the discussion, it is
convenient to work with mappings defined on C' instead of the the whole vector
space V. As V is assumed to be finite dimensional, this can be done. We recall from
Definition A.6.3 of [60] that L: C' — K is cone linear if

L(ax + By) = aL(z) + BL(y),  Vz,y€C,a,B2>0. (5.7)

If L: C — K is cone linear, then the linear mapping L': (C'— C) — W defined as
L'(x) = L'(u) — L(v) for all x = v —v € C — C, is a linear extension of L on the
subspace C —C ={u—v|u,ve C} CV.

Theorem 5.2.7 (Birkhoff-Hopf). Let C C V and K C W be cones. Suppose that
L: C — K is a cone linear map. Let (L) be defined as

k(L) =inf{\ > 0| pux (L, Ly) < pc(z,y),vz,y € C,x ~¢c y},

then it holds
k(L) = tanh [§ diam(L(C); ux)].

with the convention tanh(co) = 1.

Proof. See Theorem A.6.4 of [60]. O

We refer to the quantity (L) as the Birkhoff contraction ratio of L. Cones can
be endowed with other projective metrics, however as discussed in Theorem 3.4 of
[22], the Hilbert’s metric gives the best contraction ratio for linear mappings among
a wide class of projective metrics. If K is the cone of positive definite matrices, then
the Hilbert metric is less explicit which makes the computation of diam(L(C); uk)
more difficult. We refer to [66] and [82] for discussions on diam(L(C); ux) in this
case.

When C' and K are simplicial cone, the formula of Theorem 5.2.7 has a particularly
nice expression. This expression is discussed in Theorem 6.2 of [28]. We recall its
derivation in the following. To this end, we first list properties of the projective
diameter in the following:
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Proposition 5.2.8. Let C C V be a cone.

a) If S C C and S’ C C are such that {tz|t >0,z € S} = {ty|t >0,y € '},
then diam(S; uc) = diam(S’; pc).

b) If S C C and all elements of S\ {0} are comparable, i.e. x ~¢ y for all
z,y € S, then diam(co(T); pc) = diam(7T; puc), where co(T') is the convex
hull of T'.

c) If C is closed and S C C is such that all elements of S\ {0} are comparable,
then diam(cl(S); uc) = diam(S; pe).

Proof. See Proposition 2.9 of [28]. O

Now, suppose that dim(V) = n,dim(W) = m and let C € V,K C W be
simplicial cones with basis vectors ey, ...,e, C Candeé),...,e,, € K. Let L: C — K
be cone linear. We denote by x;, y;, L; j respectively the coordinates of x € C, y € K
and L in the basis ej,...,e, and €,...,e),. First let us assume that L(C \ {0}) C

int(K), i.e. L;; > 0 for all 7,5. We want to compute diam(L(C); ui). Note that

d
L(C) = {ZakL(ej) la e Ri} = cone ({L(¢;) [j =1,...,n}).

j=1
Proposition 5.2.8 (a) and (b) imply that for all S C K it holds diam(S) = diam(cone(.5)).
It follows that

diam(L(C); pi ) = diam ({L(e;)|j = 1,...,n}) = max pr(L(e;), L(ej)).

jvjlzlv"vn

Finally, as K is simplicial, we have

L(e )zL(e '/)Z'/ LZ 'Li/ .7
Le: ,L ., — 1 ( J J ) — 1 ( )] »J )
MK( (ej) (ej )) i7i/I:I1127L?.(.’m . L(ej/)iL(ej)i/ i,i’I:nlE,%.}f,m . Li,j’Li’,j
It follows that
k(L) = tanh [$A(diam(L(C); uk))] (5.8)
with LI
B (L)) = o 1w (Li3L0)
lam< ( ) MK) Li’rznlz?‘.).(.,m . Li,j’Li’,j
P e
If C CVand K C W are solid polyhedral cones then, with a similar argument, the
formula in (5.8) can be generalized as follows: Let vy, ...,v, € C and wy,...,, wy, €
K* be such that cone({vy,...,v,}) = C and cone({w1,...,,wy,}) =K. Let L: C —

K be a cone linear mapping, then it holds

: N wi(Lvj) wy (L)
dlam(L(C)7 MK) N i,i’r:nl?.}.(.,m n (wi(ij/) wi/(ij) ) ’
Gi' =1,
The case where L is not strictly positive, i.e. L;; = 0 for some 4, j, is discussed in
details in Theorem 6.2 of [28]|. For later discussion, We recall the following result
which states that if a nonnegative matrix has a at least one nonzero entry per column
and at least one zero entry, then its contraction rate is 1.
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Lemma 5.2.9. Let M € R"™", if M has at least one positive entry per column
and a zero entry, then the Birkhoff contraction ratio of M: (R, PR ) — (R, MRT)
satisfies k(M) = 1.

Proof. Follows from Theorem 3.12 of [88]. O

In the next example we show how the result of Example 5.2.6 can be refined with
the Birkhoff-Hopf theorem.

Example 5.2.10. Let C =R}, M € R’}rxn a matrix with at least one nonzero entry
per row and o € R\ {0}. Let f: R}, — R, be defined as

f@) = (Mz)* Vo eR?,.

Then, f is order-preserving if o > 0 and order-reversing if @ < 0. By Lemma 5.2.3
we have that

ue(f(@), f(y) = lalpc(Mz, My)  Vo,y € RY,.
Hence, by Theorem 5.2.7, we deduce that

pe(f(x), f(y) < lals(M)pc(z,y)  Vo,y € RY .

Now, let || - || be any norm on R™ and let Sy = {z € R} | ||z[| = 1}. Furthermore,
define g: Sy — Sy as

@)
9 = 1@

Vo € S++.

Then, we have

pe(9(x), g(v)) = pe(f(x), f(y) < lalw(M)pc(z,y)  Va,y € RY .

It follows that if |«|k(M) < 1, then g has a unique fixed point by Theorem 5.2.5, a)
and thus the equation

(Mx)* = Xz reRT ,A>0 (5.9)

has a unique solution. If M € R}{", then (M) < 1 and thus (5.9) has a unique
solution for |a| < 1/k(M). In particular, note that if 1 < a < 1/k(M) then f is
homogeneous of degree strictly greater than one and a strict contraction with respect
to the Hilbert metric.

The case @« = —1 reduces to the particular case of the Sinkhorn-Knopp theorem
(see [56, Theorem 2.1 |), also known as classical DAD theorem (see |60, Theorem
7.4.4 | and [21, Theorem 1), where the matrix is positive. The latter guarantees
the existence of a diagonal matrix D with positive diagonal entries such DM D is
a stochastic matrix. Indeed, if € R", is such that (Mz)™' = Az, then with
w=A"22"1 we have Mu = u~!. It follows that, with D, = diag(u), it holds

n

n
1=u;(Mu); =» Mjuu; =Y (DuMDy);;  Vi=1,...,n.
j=1 j=1

i.e. D,MD, is a stochastic matrix.
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6 Vector valued Hilbert metric

The results of Section 5 motivate the use of the Hilbert metric for the study of
eigenvectors of homogeneous mappings leaving a cone invariant. Let V = Vi x...xVy
be the product of finite dimensional real vector spaces and C = C; X ... x Cq C V
a cone. The Hilbert metric puc, x..xc, induced by the cone C is not well suited for
the study of order-preserving multi-homogeneous mappings on C. This is because
the product structure of C is not preserved. To address this issue, in Section 6.2,
we introduce a vector valued version of the Hilbert metric. That is, for z,y € C,
we consider pe(x,y) = (e, (21, Y1), - - -, oy (Xa, Ya)) where pe, is the Hilbert metric
induced by C; for i = 1,...,d. Then pc(z,y) € Ri if © ~¢ y. A motivation for
using vector valued metrics is that a Lipschitz matrix can be meaningfully defined.
In particular we prove in Section 6.2.2 that the homogeneity matrix of an order-
preserving mapping is a Lipschitz matrix of the mapping with respect to p.. Before
proving such statement, we discuss vector valued metrics defined on the product of
metric spaces and Lipschitz matrices.

6.1 Vector valued metrics and Lipschitz matrices

Vector valued metric spaces are studied in fixed point theory |1, 2| and consist of a set
X and ametricn: X xX — Rﬁlr which satisfies the usual properties of a metric where
the inequality in the triangle inequality is understood with respect to the partial
ordering induced by Ri. Furthermore, since Ri is a cone, every vector valued metric
is a cone metric. Cone metric spaces generalize usual metric spaces in that the metric
takes value in a general cone instead of [0,00). This generalization has attracted
considerable attention in the fixed point community recently [53, 50, 6]. Nevertheless,
we note that, usually, these generalizations do not consider the particular structure
we are using, namely finite products of metric spaces. Perhaps a reason is that
in a cone metric space (X,) where : X x X — K takes values in a cone K
of a real vector space, the Lipschitz constant of a mapping f: (X,5) — (X,[) is
defined to be a scalar |6, Section 4|, i.e. a > 0 is a Lipschitz constant of f if
B(f(x), fly)) 2k af(x,y) for all z,y € X. In this case, if K = Ri, then for every
norm || - || on R% which is monotonic with respect to R?, n(z,y) = ||8(z,y)| is a
metric on X and n(f(x), f(y)) < an(z,y) for all z,y € X. This means that one can
use all the results of the classical fixed point theory to study the equation f(x) = z.
A similar argument can be done in the more general case where K is a normal cone
in a real vector space [53]. The above discussion suggests that cone metric spaces are
somewhat unnecessary. Nevertheless, it is acknowledged in [12, 54| that cone metric
spaces offer a more flexible framework. Such flexibility is extensively exploited here.

6.1.1 d-metric spaces and d-pseudo metric spaces

For the discussion, we consider the following definition of d-(pseudo)metric space.

Definition 6.1.1. For a positive integer d, let (X1,11), ..., (X4, n4) be pseudometric
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spaces. Let X = X7 x ... X Xy and define n: XXX—HRi as

n(z,y) = (m(z1,m), - na@a,va) Vo= (21,...,20),y = (y1.-.-,%q) € X.

Then, we say that (X, n) is a d-pseudometric space and refer to n as a vector valued
pseudometric. Furthermore, if (X1,m1),...,(X4,n4) are metric spaces, then we say
that (X, n) is a d-metric space and 1 is a vector valued metric.

In a d-pseudometric space (X, n), we use the same notation as in the product of
vector spaces, namely for x € X we write z; to denote the canonical projection of x
onto X; so that © = (x1,...,z4) with x; € X; for all 7. Similarly, if S C X’ then we
write .S; to denote the projection of S onto X; so that S =57 x ... x 5.

Up to the product structure on X, the definition of d-metric space coincide with
that of d-metric real linear space introduced in [1]. Note that the topology on X
induced by the open balls Be(z) = {y € X|n(z,y) < €}, with e € RY, coincide
with the product topology of (X1,11) X ... x (Xg4,14). Therefore we say that S C X
is open, closed, complete or compact in (X, n) if S; has the corresponding property in
(Xi,m) for all i = 1,...,d. In particular, we say that (X, n) is a complete d-metric
space if (X;,n;) is a complete metric space for every i.

6.1.2 Lipschitz matrices

Lipschitz matrices were considered independently in [1] and [37, 38]° and they are
implicitly used in the proofs of the nonlinear Perron-Frobenius theorems in [40, 36,
39, 74, 92]°.

Definition 6.1.2. Let d,d’ be positive integers. Let (X,n) be a d-pseudometric
space and (), ¢) a d'-pseudometric space. Let F: (X,n) — (V,¢), then A € RiXd
is a Lipschitz matriz of F if

C(F(x), F(y) < An(z,y) Yo,y € X.

If F has a Lipschitz matrix, then we say that F: (X,n) — (),¢) is Lipschitz
continuous.

We prove in the next section that if F: (X,n) — (X,n) is a mapping on a
complete d-metric space, and F has a Lipschitz matrix A € Rflﬁd with spectral
radius p(A) < 1, then one can apply the Banach fixed point theorem to prove that
F has a unique fixed point v € X and for every x € X, the iterates F*(x) converge
towards u as k — oo. Furthermore, we will prove that fixed point theorems for
non-expansive mappings can be used when p(A) = 1. First, let us discuss properties
of Lipschitz matrices and how to build them. We start with an example

Example 6.1.3. Let V =V xV,C = C x C with V = R" and C = R}. Let
M,Q € RY" and F: C — C given by F(z,y) = (My,Qz). Consider the vector
valued pseudometric

IJ’C((:U7 y)7 (xlv y/)) - (MO(% y): MC(J’J? y/))T V(x, y)? (1_/’ y/) ecC.
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For every (z,y), (2',y') € C with (z,y) ~¢ (2',y), we have

pe(My, My') < k(M)uc(y,y')  and  puc(Qz, Q') < k(Q)uc(w,a’)

where k(M) and k(Q) are the Birkhoff contraction ratio of M and @, respectively
(see Theorem 5.2.7). It follows that for all (x,y), (z/,y') € C with (z,y) ~c¢ (2/,v'),

ezt 76 = (gt o)) < (o ") Gelon):

=A

Hence, A € R7*? is a Lipschitz matrix of F: (int(C), p¢) — (int(C), pe). Note that
by Lemma 5.2.9, for G € R?"*2?" defined as

0 M
GZ(Q 0)’

it holds x(G) = 1. This means that the smallest Lipschitz constant of the mapping
F: (int(C) x int(C), poxc) — (int(C) x int(C), poxc) equals 1 where poxo is the
Hilbert metric induced by the cone R%r“ =2 (C x C CV x V. Finally, we note that if
the rank of M or @ is at least 2, then F: (int(C), pe) — (int(C), ) has no Lipschitz
constant in the sense of cone metric space. Indeed, suppose by contradiction that
there exists A > 0 such that po(F(z,y),F(@,vy")) < Ape((z,y),(2',y')) for all
(x,y), (2,y) € C with (x,y) ~c (2/,y). Then, we have

pe(My, My') < Muc(z,2')  and  pc(Qr,Qx") < Muc(y,y') (6.1)

for all (x,y),(2,y") € C. Without loss of generality, suppose that M has rank at
least 2, then there exists g, 7’ € R’ such that My and My are linearly independent
so that puc(My, My') > 0. By setting = 2/, y = ¢, ¥y = ¢ in (6.1) we get the
contradiction uc(My, My') = 0.

Fortunately, as noted in the following remark, Lipschitz matrices enjoy essential
properties of the usual Lipschitz constants.

Remark 6.1.4. Let (X,n),(),¢),(Z,v) be respectively a d-pseudometric space,
a d’-pseudometric space and a d”-pseudometric space. Suppose that A € ]R_‘{Xd is
a Lipschitz matrix of F: (X,n) — (),{). Then for every P € Ri,Xd such that
A jRi’” P, P is a Lipschitz matrix of F. Furthermore, if G: (,¢{) — (Z,~) has
Lipschitz matrix B € R? %% then the composition F o G: (X,m) — (Z,v) has
Lipschitz matrix AB € ]Rﬂlr"Xd.

In the next lemma we prove that the Lipschitz continuity of Definition 6.1.2 is
equivalent to the Lipschitz continuity in the product metric.

Lemma 6.1.5. Let (X,n) be a d-pseudometric space and (), ¢) a d’-pseudometric
space. Let ||-|]| and ||-||" be norms on R and R? respectively. Let F: (X,n) = (V,¢),
then the following statements are equivalent:
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i) There exists a > 0 such that ||(F(x), F()|" < a||n(z,y)|| for all z,y € X.
ii) There exists A € R‘_{Xd such that {(F(z), F(y)) < An(z,y) for all z,y € X.

Proof. Suppose that i) holds and let us prove that ii) holds. As the norms on a
finite dimensional real vector space are equivalent, we may suppose without loss of
generality that || - || is the #'-norm || ||; and || ||’ is the £*°-norm || - ||os. Let 1 € R
be the vector of all ones and E € R ¥4 be the matrix of all ones. Note that for every
z,y € X we have 1||n(z,y)|1 = En(x,y). Hence, if a > 0 satisfies condition i), then
for every z,y € X, we have

C(F(x), F(y)) < UC(F (), F(Y))lloo < alln(z,y)l = aBn(z,y).

It follows that aF € R¥*¢ is a Lipschitz matrix of F and thus ii) holds. Now,
suppose that A € Rﬁlr/Xd is a Lipschitz matrix of F and let |[|A||| be the operator
norm of A: (R, || -||) — (R, |- |I"), i-e. [||A]] = sup{||Ac|||lc|| < 1}. Furthermore,
let v > 1 be the normality constant of || - |' with respect to RY. Then, for every
x,y € X, we have

IC(F (@), F)I" < Al An(z,y)l| < ANl 0, ),

which implies that i) holds with a = 7|||A|||. This concludes the equivalence between
i) and ii). O

In the next lemma, we show that a Lipschitz matrix of F: (X,n) — (),() can
be obtained by analyzing the Lipschitz constant of F|%": (X;,m;) — (Y;,¢;) for all
i,j, where F|3": X; = Y, is defined for z € X,i=1,...,dand j =1,...,d as

FIH i) = F(@1, oy Bim 1y Yis Tig1s - - -, Td) Yy € X;. (6.2)

We also discuss the case where {(F(x),F(y)) < An(z,y), for every x,y € X such
that n(z,y) # 0. This condition allows to formulate a vector valued definition of
contractive mappings.

Lemma 6.1.6. Let (X,n) be a d-pseudometric space and (), ¢) a d’-pseudometric
space. Let F: (X,m) — (V,¢) and A € RiXd. If for every x € X, i = 1,...,d,
j=1,...,d" it holds

G(FE (i) s FI2H(z:)) < Ajimi(yi, 20), Vyi, zi € X, (6.3)

then
C(F(z), Fly) < An(z,y), Vz,y € X.

Moreover, if F satisfies (6.3) and for every i € {1,...,d} there exists j € {1,...,d'}
such that A;; > 0 and for all x € A" it holds

G(FIL (i) s FIZH(z)) < Ajini(i, 1), Vyi, zi € X; with n;(z4,y:) > 0,

then
C(F(z), F(y) £ An(z,y), Va,y € X with n(x,y) #0.
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Proof. Let eq,...,e4 be the canonical basis of RY. Let r,y € Xandfork=1,...,d+
1 define 2¥ € X as follows: 2! =z, 2%t =y

zk:(yh'"ayk’—lyxka---,wd), VkIQ,,d

Then, we have n(z%, 2 = n;(xi,y:)e; so that n(z,y) = Z?:l n(z%, z7+1). Tt holds
F(2'); = FIl(2;) and F(z"1); = FI2/ (i) for all i = 1,...,d. With the triangle

inequality, for every j = 1,...,d, we have

d d
G(F(2);, F(y))) < ZCj(]:(Zi)jaf(ZHl)j) = Zﬁj(fg’f(fvi)vfi’f(yi))
i1 =1
d
< ZAj,mi(l“uyi) = (An(z,9));, (6.4)
=1

which shows that A is a Lipschitz matrix of F. Suppose that n(z,y) # 0, then
there exists i € {1,...,d} such that n;(x;,y;) > 0. If there exists j € {1,...,d'}
such that A;; > 0 and for every u € X, and v;,v; € X; with n;(v;,v}) > 0 it holds
Cj(]:\fji(vi), ]:Hf(v;)) < Ajimi(vi,vlh), then, with v; = z;, v} = y; and u = 2%, we
have (j(]:i’f(xi), ]:i’f(yl)) < Ajini(xs,yi). It follows that the inequality in (6.4)
becomes strict and therefore {(F(z), F(y)) < An(z,y). O

The smallest Lipschitz matrix of F: (X,n) — (), () is related with the smallest
Lipschitz constant of F|5": (X;,m;) — (Y},¢;) for all 4,5 in the following theorem.

Theorem 6.1.7. Let (X,n) be a d-pseudometric space, (),¢) a d'-pseudometric
space and F: (X,n) = (V,¢). Fori=1,....d,j=1,...,d let

i’i(y@-), ]'_?;’i(zi)) < ani(yi, zi), Yyi»zi € Xi}-

L;; = sup inf {a >0 ‘ Cj(}_
reX

If Lj; < oo forall 4, j, then F is Lipschitz continuous and L is the smallest Lipschitz
matrix of F in the following sense:

L =inf{A e R |¢(F(x), Fy)) < An(z,y), Yo,y € X}, (6.5)

where the infimum is taken with respect to the partial ordering induced by Ri’x‘l.

Proof. By Lemma 6.1.6, we know that L is a Lipschitz matrix of 7. As L;; < o0

for all 4, j, it follows that F is Lipschitz continuous. To conclude the proof we show

that if A € R *?is a Lipschitz matrix of F, then L <paxa A. Fixi € {1,...,d} and
+

je{l,...,d'}. Letx € X,y;,2z; € X; and set § = (T1, ..., Tim1, Yis Tit1s -+, Td)s 2 =
(561,...,xi_l,Zi,ﬂfi_;,_l,...,:Ud). We have

G(FE (i), FIZ (z:)) = C(F@), F(2)); < (An(g, 5))j = Aj;ini(yi, zi)-

As the latter is true for every y;, z; € X;, we have that A;; is a candidate for a > 0
in the definition of L;;. Hence, L;; < Aj;; and thus L <gaxa A. Tt follows that L is a
+

lower bound on the set of Lipschitz matrices of F with respect to the partial ordering
induced by RiXd. As L is a Lipschitz matrix itself, L is a minimal element. O
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As a direct consequence of Theorem 6.1.7, we have that if A and B are both
Lipschitz matrices of F: (X,n) — (,¢), then M € R¥*? defined as M;; =
min{A; ;, B; ;}, is a Lipschitz matrix of F as well. Indeed, for L as in Theorem
6.1.7, we have L jRixd A and L jRixd B which implies that L jRixd M and thus

M is Lipschitz constant of F.

6.2 Vector valued Hilbert metric and multi-homogeneous mappings

We introduce the vector valued Hilbert metric. Then, we combine the results on
Hilbert’s metric discussed in Section 5 together with the results on vector valued
metrics and Lipschitz matrices discussed in Section 6 to construct Lipschitz matrices
for multi-homogeneous mappings on cones.

6.2.1 Vector valued Hilbert metric

Let V = Vi x ... x Vg be the product of finite dimensional real vector spaces and let
C C V be a cone. For every x,y € C, the vector valued Hilbert metric induced by C
is given by

ue(@.y) = (ney (@), - ney(eaya)) | € RY, (6.6)
where R? = [0, 00]? and pc,: C; x C; — R, is the Hilbert metric induced by C; for
alli=1,...,d.

Example 6.2.1. Let YV = R™ x ... x R™ and C = R* x ... x R}* C V. Then for
every x,y € int(C), it holds

-
14 YLi TdiYd,j
pe(z,y) = ln( max M),...,ln( max 7’1y’J)
1<ij<n1 Y14 1, 1Sij<na Yd,i Td,;

Note that the scale invariance property of the Hilbert metric implies that for
every x,y € C with x ~¢ y, it holds

pela®@z,BRy) = pe(x,y) Va,B € RY .. (6.7)

Furthermore, if C is closed, then for every =,y € C satisfying z ~¢ y and po(z,y) =0,
there exists a € Ri . such that a ® x = y. This observation, shows that for every
mapping F: C — C and z € C such that z ~¢ F(z), it holds

p(F(x),z) =0 <= 3IXx€R? such that F(z) = A @ .

In other words, likewise eigenvectors of homogeneous mappings are fixed point with
respect to the Hilbert metric, eigenvectors of multi-homogeneous mappings are fixed
points with respect to .

The following consequence of Lemma 5.1.7 discusses the completeness of p.

Lemma 6.2.2. Let C C V be a closed cone. Let P C C be a part of C such that
P, # {0} for i = 1,...,d. Then (P,pc) is a d-pseudometric space. Moreover,
let v: C — RY be a multi-normalization of C and S, = {z € C: v(z) = 1}. Then,
(SuNP, pe) is a complete d-metric space and its topology coincides with the product
norm topology of V.
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Proof. (P, pc) is a d-pseudometric space since (Cy, pc;) is a pseudometric space for
all 7. Fori =1,...,d let S; € C; be such that S, = S7 x ... x S;. Lemma 5.1.7
implies that (P; NS;, pue,) is a complete metric space for ¢ = 1,...,d and therefore
(Su NP, ue) is a complete d-metric space. The topology on (S, NP, pe) coincide
with the product topology of (Py NS, pey) X ... x (PgN Sy, pcy). As Lemma 5.1.7
implies that the topology of (P; NS;, puc,) coincide with the norm topology on V;,
this concludes the proof. O

There is an elegant representation of p, using the partial ordering < induced by
the simplicial cone R‘i discussed in page 10: For z,y € C define

M(z/y;C) = inf {B € RL |z ¢ By}, (6.8)

m(z/y;C) = sup{e € R la®y ¢}, (6.9)

where the supremum and infimum are defined with respect to the partial ordering
induced by R, and M(z/y;C); = oo if there is no 3; > 0 such that z; <¢, Biy;.
Note that for all z,y € C with x ~¢ y it holds

M(z/y;C) = (M (x1/y1;C1), ..., M(x4/ya; Ca)) ",

m(z/y;C) = (m(x1/y1;C1), ..., M(za/ys; Ca)) ',

where M(-/-;C;) and m(-/-; C;) are defined as in Equation (5.1) with C' = C;. With
this notation, for all z,y € C with  ~¢ y we have

pe(z,y) = In (M(z/y;C) o M(y/2;C)) = In (M(z/y;C) o m(z/y;C) ")

where the logarithm is applied component-wise.

6.2.2 Lipschitz matrices of multi-homogeneous mappings

We discuss the Lipschitz matrix of multi-homogeneous mappings on the product of
cones. To this end, we use Theorem 6.1.7 to prove the multi-homogeneous versions
of Propositions 5.2.1, 5.2.2.

Let V=Vi x...xVgand W = Wiy x...x Wy be products of finite dimensional
real vector spaces. Let C C V and K C W be cones. For the reading convenience,
let us recall that for a matrix A € R¥*¢ |A| denotes the component-wise absolute
value of A. Furthermore, for a mapping F: C — K, we denote by F|}': C; — Kj,
the mapping defined for z € C, i € {1,...,d} and j € {1,...,d'} as

‘F|Jxﬂ(yl) - .F(ll?l, oy Li—15 Y T 1y - - - )xd)j V?/z S CZ

The following lemma follows from a direct verification and therefore its proof is
omitted.

Lemma 6.2.3. Let C C V and K C W be cones, F: C — K a mapping, x € C and
ie{l,...,d}je{l,....d}.
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i) If F is multi-homogeneous of degree A € RY >4 then F |?,;1 is multi-homogeneous
of degree A; ;.

ii) If F is order-preserving, resp. strongly order-preserving, with respect to C
and K, then F|%" is order-preserving, resp. strongly order-preserving, with
respect to C; and Kj.

iii) If F is order-reversing, resp. strongly order-reversing, with respect to C and
K, then F|%" is order-reversing, resp. strongly order-reversing, with respect
to C; and K.

Proposition 6.2.4. Let C C V and K C W be closed cones and let F: C — K
be multi-homogeneous of degree A € RY*4 and either order-preserving or order-
reversing. Then for every z,y € C with  ~¢ y, it holds

pc(F (), F(y)) < [Alpc(z,y).
Proof. Follows from Theorem 6.1.7, Lemma 6.2.3 and Proposition 5.2.1. O

Proposition 6.2.5. Let C C V be a solid closed cone. Let v:(C — Ri be a
multi-normalization of C and set S, = {z € C|v(x) = 1}. Let F: C — C be multi-
homogeneous of degree A € R¥*9¢ and either order-preserving or order-reversing.
Suppose that for every = € C such that x; # 0 for all i =1,...,d it holds F(z); # 0
foralli=1,...,d. Define G: S, — S, as

G(z) = v(F(x) ' ®F(z) Vees,.
Then, for every part P of C such that P; # {0} for all i = 1,...,d, it holds
pi(G(2),G(y) < [Alpe(z,y)  Va,y e S, NP.

Moreover, if F is strongly order-preserving or strongly order-reversing and A has at
least one nonzero entry per column, then

re(G(2),6(y)) < [Alpe(z,y) Yo,y € S, NP with z #y.
Proof. Follows from Theorem 6.1.7, Lemma 6.1.6, Lemma 6.2.3, Proposition 5.2.2
and Equation (6.7). O
7 Fixed point theorems on products of metric spaces

We prove fixed point type results for mappings defined on d-metric spaces. We then
discuss the connection between the vector valued Hilbert metric pue and the Hilbert
metric po, x...xc,- Finally, we prove Perron-Frobenius type theorems for eigenvectors
of mappings defined on the product of cones.
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7.1 Vector valued fixed point theorems

We start by proving a vector valued version of the Banach fixed point theorem. This
result was proved independently in [38, Theorem 4.2]° and [2, Theorem 1].

Theorem 7.1.1. Let (X,n) be a complete d-metric space and let F: (X,n) —
(X,7n) be a mapping with Lipschitz matrix A € RiXd. If p(A) < 1, then F has a
unique fixed point v € X and limy_,o F*(x) = u for every x € X. Moreover, for any
x € X and any positive integer k, it holds

n(F*(x),u) < AMI = A)'n(F(x),z)
n(fk(x),u) < An(}"k_l(x),u) (7.1)
n(F*(x),u) < AU = A) " 'n(FH (), 7 (@)).

Proof. Let x € X, then we have n(F?(z), F(z)) < An(F(z),z). Adding n(F(z), z)
on both sides of this inequality we get

n(F(2), F(x)) +n(F(x),z) < An(F(2), x) +n(F(z), ),

which can be rearranged into
(I = An(F(x),2) 2 n(F(x),z) — n(F(x), F()).

It follows from p(A) < 1 that I — A is invertible and (I — A)~" = 72, A7 € R,
Therefore

n(F(@),2) < (1 - )7 (n(F(),2) - n(F(2), F@)) ).

Then, by the triangle inequality, for every m > k > 1 we have

n(F™H (2),FH(2)) < n(FH (2), F(x))

i=k
12( ]:'H-l 2( )) —7’](,7:i+2(£€),fi+1($))>
i=k
= l(n(F'“+1 Fh(@)) = p(F™H (@), F™H (2)  (7:2)

< (I—A) n(FH (e ),F"”(w))

In particular, if we set £k = 1 and let m — oo, we get
Zn ), F(x)) < (I = A)~'n(F(z), F(x)).

As the above inequality holds component wise, it implies that (F*(z);)3°, C X; is
a Cauchy sequence for every ¢ = 1,...,d. Since (Xj;,;) is complete for every i, it
follows that (F¥(z))%°, C X' converges towards some u € X. By Lemma 6.1.5, F is
continuous in the product topology and thus we have

w= lim F*(z) = f(kli_)ngo Fk(x)) = Flu), (7.3)

k—o00
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i.e. u is a fixed point of F. We prove that u is the unique fixed point of F. Let
y € X be such that F(y) =y, then

0 < n(u,y) = n(F*(u), F¥(y)) < A" n(u,y)

and by letting k — oo we deduce u = y since p(A) < 1 implies limy_,, A¥ = 0.
Finally, we prove the convergence rates in (7.1). Note that for all £ > 1 it holds

(I—A)~tAF = ZAJAk iAJ A’“ZAJ AR — A)7? (7.4)
j=k

Now, using (7.2) and (7.3) we find that for all &£ > 1, it holds
n(u, @) = lim n(F (@), ()
< dim (1= A7 (n(FH (@), FE (@) = n(F (@), () )
= (I - A7 'n(F*(z), Fr(x))
< (1= A)  AP(F(x),2) = AMI — A)"'n(F (), ).

Furthermore, it holds
n(F* (@), u) = n(F(FH(2), F(w) < An(F*(2), ),
and, by the triangle inequality,
n(F (@), u) < An(F*H(z),u) < A(n(F (@), FH(2) +n(F*(z), u)

which can be rearranged into (I — A)n(F*(z),u) < An(F*(z), F¥(z)) and, with
(7.4), we deduce that

N(F(x),u) < (I — AT An(F (@), Fi () = AU = A) " 'n(FH(x), FF (@),
which concludes the proof. O

The convergence rates (7.1) of Theorem 7.1.1 are remarkable because they provide
information on the convergence of (F*(z))2° , in each of the metric spaces (X;,n;).
The condition p(A) < 1 of Theorem 7.1.1 has the following interpretation: Given
a norm || - |lo on R? let us denote by | - |lasa the induced operator norm, i.e.
M |la—sa = sup{||Mc|la]llclla < 1} for M € R¥?. Now, let || - ||o be a norm on
R? which is monotonic with respect to R‘i. Suppose that A € R4 is a Lipschitz
matrix of F: (X,n) — (X,n). Then, for every z,y € X it hods

In(F (), Fy)lla < 1An(2,y)lla < [Allasa [0(2,9)]la- (7.5)

This means that ||A|q—q is a Lipschitz constant of F with respect to the metric
No: X X X — [0,00) defined as n(z,y) = ||n(z,y)|lo. Hence, in order to apply the
classical Banach fixed point theorem to F: (X,1n4) — (X, 14), we would like to find
the monotonic norm on R? which minimizes the quantity ||A|4—se. The infimum
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over all induced operator norms of a square matrix equals its spectral radius (see for
instance Lemma 5.6.10 [48]), that is

p(A) = inf {||Al|s=a: || - || is a norm on ]Rd}. (7.6)

It means that the condition p(A) < 1 of Theorem 7.1.1 could be replaced by the
existence of a norm || - || on R? such that ||Allqa—a < 1. We note however that the
infimum in (7.6) may not be attained and even if attained at some norm || - ||, it
could be that || - ||, is not monotonic with respect to R%Z. We prove in Lemma 7.1.2
below that whenever A has a positive left eigenvector then the infimum in (7.6) is
attained at a monotonic norm. The construction of such norm is motivated by the
following observation: Consider the particular case where [[c||o, = (|c|, a) for some
weight vector a € RY ,, then ||-||, is a norm on R? which is monotonic with respect to
]Ri. In this case, we have n,(x,y) = Zle a;ni(x;,y;) for all z,y € X. Furthermore,
note that for every x,y € X it holds

d

Yo ami(F(x)i, F(y)i) < Y aidinj(xs,y5)

i=1 i,j=1

Na(F (2), F(y))

-
Il

ATa);
Ta)mi(z: us) < ( !
(A" a)n;(zj, y;) < (j;"f{??id a;

I
M=~

)na(:ﬂ,y)-

.
Il
—

Hence, maszl,m,d(ATa)j/aj is a Lipschitz constant of F with respect to the metric
N Again, in order to apply the classical Banach fixed point theorem to F: (X, 7,) —
(X,na), we would like to find the weight vector a € R%, which minimizes this
quantity. This can be done using the Collatz-Wielandt formula (see for instance
Theorem 5.6.1 [60]), which states that
T
p(A) = inf max (4 a)j, (7.7)

aERi+ j:177d a]

and the infimum is attained if AT has a positive eigenvector. In particular this means
that the condition p(A) < 1 of Theorem 5.6.1 could be replaced by the existence of
a € RY, such that ATa < a. The interplay between the characterizations (7.6) and
(7.7) of p(A) is discussed in the following lemma which also summarizes the main
conclusions of our observations.

Lemma 7.1.2. Let F: (X,n) — (X,n) be a mapping with Lipschitz matrix A €
]RiXd. Suppose that A has a positive left eigenvector b € Ri . and consider the norm
lclla = (|c|, b) for all ¢ € RZ. Then, || -||o is a norm on RY, it is monotonic with
respect to RY and ||Alla—a = p(A). Moreover,

na(xvy) = ||77(x7y)”0¢ = <b7 "7(%3/))

is a metric on X such that
7704(]:(35)’-7:(3/)) Sp(A)nOl(may) vx7y€X
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Furthermore, if
n(F(z), Fy) < An(z,y)  Va,y € X with z #y,

then

Na(F(2), F(y) < p(A)na(z,y)  Vr,y € X with z #y.
Proof. 1t is easily verified that || - ||, is a monotonic norm and 7, a metric. Now,
as b is a left eigenvector of A, it holds ATb = Ab for some A € R. The Collatz-

Wielandt formula (7.7) implies that A = p(A) since b € R% . Now, let ¢ € RY, as A
is nonnegative we have |Ac| < A|c| and thus

lAc]a = [l|Acllla < [[Alellla = (Ale|, b) = (lc|, ATb) = p(4)|lc]a.

Furthermore, if ¢ € R%, then |Ac| = Alc| so that ||Ac||o = p(A)]c|lo for all ¢ € RL.
The discussion in Example 2.3.7, and more precisely Equation (2.7), implies that
|Allasa = sup{||Ac|la|c € RY,|c[la < 1} since A is nonnegative and || - [|o is
monotonic with respect to R%. It follows that ||A|la—a = p(A4) and, therefore, the
first inequality of the statement is implied by (7.5). To prove the last inequality,
note that (b, ¢) < (b, c’) for all ¢,¢’ € R% with ¢ < ¢ since b € RY . It follows
that if  # y and n(F(x), F(y)) < An(x,y), then

Na(F (), F(y)) = (b, n(F(z), F(y))) < (b, An(z,y))
= p(A)(b, n(z,y)) = p(A)na(z,9),

which concludes the proof. O

A combination of Lemma 7.1.2 and Theorem 7.1.1 yields the following vector
valued Banach fixed point theorem with real valued convergence rates.

Theorem 7.1.3. Let (X,n) be a complete d-metric space and let F: (X,n) —
(X,m) be a mapping with Lipschitz matrix A € RiXd. Suppose that AT has a
positive eigenvector b € R, and let 7, (z,y) = (b, n(x,y)) be the metric of Lemma
7.1.2. If p(A) < 1, then F has a unique fixed point v € X and limg_,oo F*(2) = u
for every x € X'. Moreover, for any z € X and any positive integer k, it holds

k
na(]-"k(x), u) < % Na(F(z), ),

Mo (FF(@),u) < p(A) na(F*(2),u), (7.8)

Mo (F*(2),u) < 15(;4()14) Na (F*(2), FF~ 1 (2)).

Proof. Existence and uniqueness of u as well as limj_,oo F* () = u follow directly
from Theorem 7.1.1. We prove the convergence rates (7.8). First, we recall from
(7.4) that for all & > 1, it holds A¥(I — A)~! = (I — A)~'A*. Hence, for 2 € X’ and
k > 1, the convergence rates in (7.1) imply
(I — A)n(}"k(:):),u) < Akn(]—'(:c),x),
n(F (@), u) < An(F* (@), u), (7.9)
(I = A)yn(F* (), u) < An(Fo (@), 77 (@),
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Now, note that for all ¥,z € X and k£ > 1, it holds

(b, (I—Am(y,2)) =(I—-A)"b,ny,2)=(1-p(A)b,ny,z))
= (1= p(A)naly, 2),
(b, A*n(y,2)) = (AT)*b, n(y, 2)) = p(A)*(b, n(y, 2)) = p(A)*na(y, 2).

The above identities together with (7.9) imply

(1= p(A))na (F¥ (), u) < p(A)* 10 (F(2), ),
Mo (F* (@), u) < p(A) na(F* (), u),
(1= p(A))1a (F* (@), u) < p(A) 10 (F* (), F* (@),
which, after division of the first and last inequations by (1 —p(A)), implies (7.8). O

In facts, Lemma 7.1.2 implies that Theorem 7.1.3 can be directly deduced from
the classical Banach fixed point theorem. However, by doing so, the convergence
rates become (7.8) which is less informative than (7.1) since 7, blends the distance
on all the X;’s. Furthermore, note that Theorem 7.1.1 does not assume that A has a
positive left eigenvector. This is not very restrictive because one can always perturb
a Lipschitz matrix with a small strictly positive matrix in order to have the existence
of a positive eigenvector by the Perron-Frobenius theorem. On the other hand, such
a perturbation induces more conservative convergence bounds.

In Section 4.4 we have shown that for the study of eigenvectors of a multi-
homogeneous mapping we may assume that the absolute value of the homogeneity
matrix is irreducible. A proof similar to that of Proposition 4.4.2 shows that if L is a
Lipschitz matrix of F: (X,n) — (X,n) and L is reducible, then by considering the
Frobenius normal form of L (see Theorem 4.4.3), the fixed point equation F(z) = z
can be decomposed into fixed point equations where the corresponding Lipschitz
matrices are either irreducible or zero. This approach is particularly relevant in this
context since Theorem 6.4.5 of [30] implies that the spectral radius of L equals the
maximum of the spectral radii of the diagonal blocks in the Frobenius normal form
of L. The latter means that decomposing the fixed point problem into subproblems
will neither improve nor damage the contractivity of the whole problem.

Similarly, the substitution technique discussed in Section 4.3 does not allows to
transform an expansive problem into a contractive problem. Indeed, if F: (X,n) —
(X,n) has a Lipschitz matrix L € Rﬁerd such that Lyq = 0, then F(z)q does not
depend on x4 since Ly q = 0 implies that for every z € X it holds

na(F(z1, ..., Za—1,Yd)ds F (X1, .., Td—1,%d)d) =0 Yya, za € X,
so that
Flxi, ... 2d-1,Yd)d = F(x1,...,Zd—1, 2d)d Yya, zq € Xaq.

A similar argument as in Proposition 4.3.2 shows that one can transform the fixed
point problem F(x) = z into an equivalent problem of the form (%) = & where
F:(X,m) — (X,7n) is defined as

A

]:(SAC) = .7:(.%1, e ,id_l,]‘—(.’il, e ,id_l,xd)d),
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with z4 € Xy fixed (arbitrary) and where (X,7) is the (d — 1)-metric space with
X =X1x...x Xg1 and 7j: X — R given by

(&, 9) = (m(@1,91), a1 (a1,9a1)) " Vi, jeX.
Note that F: (X, ) — (X, #) has Lipschitz matrix L € RE@=1*(d=1) given by
Lij=1Lij+Ligla; Yi,j=1,...,d—1. (7.10)

We prove in the next proposition that if L is irreducible, then p(L) = 1 if and only
if p(L) = 1 and p(L) < 1 if and only if p(L) < 1. The latter implies that F is
non-expansive, respectively a strict contraction, with respect to n if and only if F
is non-expansive, respectively a strict contraction, with respect to 1. We should
nevertheless point out that p(L) does not equal p(L) in general.

Proposition 7.1.4. Let L € Rff_Xd be an irreducible matrix such that Ly q = 0 and
define L € R@=D*(@=1) a5 in (7.10). Then L is irreducible and it holds p(L) = 1,
respectively p(L) < 1, if and only if p(L) = 1, respectively p(L) < 1.

Proof. First we prove that there exists be ]Rff_:_l such that L7b < b, resp. Lb < f),
if and only if there exists b € Ri 4 such that Lb < b, resp. Lb < b. Note that

for every b = (b1,...,bq) € RSLF and b = (b1,...,b4-1), Lgq = 0 imply that, for
l=1,...,d—1, we have

(Lb)l = (f/}s)l + Ll,d (bd — (Lb)d). (7.11)
Now, suppose that Lb < rb for some r € (0,1]. Then, by — (Lb)s > 0 and
TB[ =rb > (ﬁf))l + Ll,d(bd — (Lb)d) > (iB)l, l=1,...,d—1.

NowletbeRi+1bebuchthatLTb<bFort>Osetb():(1 Lba_1,t) €
R, . For every k =1,...,d — 1 and ¢t > 0, we have §; = (L ()) = (L (0))d>0

and (Lb(t))k = (ﬁﬁ)k + Ly q(t — dq). It follows that

(Lb@)k _ {5d (Lb), + Lyalt — 84) }
t 7k

kelond (B(0)e v b

b L
< max {(Sd, max ( - Ji + (t—9d4) max Akd} (7.12)
t Tk=l..d-1 b k=1d—1 fy

Hence, with ¢ = §4, we have b(J4) € RY, and

D)k < max{l, max (ﬁf’)k} = 1.

k:g%%..,d (b(4)) k=1,...d=1 Dy

Finally, suppose that L7b < b, then there exists e € (0,1) such that eLgp <
by — (Lb), for k=1,...,d — 1. From (7.12), it follows that

ol f )t cbual

a = , a -
kinl,..}.(,d (b(dg + €))k 0q + € k:?,l...,}gl—l by
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This concludes the proof of the claim that there exists b€ Rijrl such that Lb < f),
resp. Lb < 15, if and only if there exists b € R(—is——k such that Lb < b, resp. Lb < b.
Now, we show that L is irreducible. Let i,j € {1,...,d — 1}. As L is irreducible,
there exists a path from 4 to j in the graph whose adjacency matrix is L, i.e. there
exists ki,...,k, € {1,...,d} such that ky = i, k, = j and Ly, ,,, > 0 for all
I =1,...,n — 1. Note that if kj, k1 # d, then Ly, > 0 as well. Now, if
there exists [ € {2,...,n — 1} such that k; = d, then kj_1, k41 # d since Lgq = 0.
Furthermore, we have

Lsz1,kz+1 = Lsz1,kz+1 + Lk‘thde,sz = Lklflvliﬁl + Lkl—lylekl7kl+1 > 0.

This implies that there exists a path from ¢ to j in the graph whose adjacency matrix
is L and thus, as 7,5 € {1,...,d — 1} are arbitrary, L is irreducible as well. As both
L and L are irreducible, there exists ¢ € R?, and ¢ € RY, such that Lec = p(L)c
and Lé = p(L)é.

We prove that p(L) = 1 if and only if p(L) = 1. Suppose that p(L) = 1,
then Lc = ¢ and the above discussion implies that there exists be Ri 4 such that
Lb < b. Hence, the Collatz-Wielandt formula 7.7 implies that p(ﬁ) < 1. Suppose by
contradiction that p(L) < 1, then Lé < & which implies that there exists b € R%
such that Lb < b and then the Collatz-Wielandt formula implies p(L) < 1, a
contradiction. It follows that p(L) = 1. By swapping the roles of L and L in the
above argument, one can deduce that p(L) = 1 implies p(L) = 1 which proves the
first equivalence. Finally, to prove that p(L) < 1 if and only if p(L) < 1, suppose
that p(L) < 1, resp. p(ﬁ) < 1. Then, Lc < c, resp. Lé < & Hence, there
exists b € Rijrl, resp. b € Ri+, such that Lb < f), resp. Lb < b, and thus the

Collatz-Wielandt formula implies that p(L) < 1, resp. p(L) < 1. O

In the next result, we apply classical results of fixed point theory on the metric
space induced by Lemma 7.1.2 to prove vector valued fixed point theorems.

Theorem 7.1.5. Let (X,n) be a complete d-metric space. Let F: (X,n) — (X,n)
and let L € RiXd be a Lipschitz matrix of F which has a positive left eigenvector.
Suppose that at least one of the following assumptions is satisfied:

a) p(L) <1,

b) p(L) =1, (X, n) is compact and n(F(z), F(y)) < Ln(z,y) for every x,y € X
with x # y.

c) p(L) = 1, (X1,m),...,(Xg,n4) are geodesic spaces and F has a locally
attracting fixed point z € X.

Then, F has a unique fixed point u € X and

lim F*(z) = u Ve € X.

k—o0
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Proof. If F satisfies a), then the claim follows from Theorem 7.1.1. Now, let b € Ri n
be a positive left eigenvector of L. By Lemma 7.1.2, we have that (X, 7,) is a metric
space where 7, is the metric on X’ defined as n,(z,y) = (b, n(z,y)). Note that
(X, 1) is complete since (X, n) is a complete d-metric space. Furthermore, we have

na(F(2), F(y)) < p(L)na(z,y)  Vo,ye X
and if n(F(x), F(y)) < Ln(z,y) for every z,y € X with = # y, then

Na(F(z), F(y)) < p(L)na(z,y) Vr,y € X with xz#y.

If (Xi,n;) is compact for all 7, then (X,7,) is a compact metric space. It follows
that if F satisfies b), then Theorem 5.2.5, b) implies that F has a unique fixed point
and the iterates converge to it. It is left to prove the result for F satisfying c). Let
x,y € X, if 7;: [0,1] — X; is a geodesic path between 7;(0) = z; and (1) = y;,
then g: [0,1] — X defined as g(t) = (y1(¢),...,74(t)) is a geodesic path between x
and y, with respect to 7,. Hence (X,7,) is a geodesic space and Theorem 5.2.5, ¢)
concludes the proof. O

7.2 Vector valued and real valued Hilbert metrics

Let V = Vi x ... x Vg be a product of finite dimensional real vector spaces and
let C = Cy x...xCq CV be acone. The goal of this section is to explore the
connection between the vector valued Hilbert metric p, and the real valued Hilbert
metric pc, x..xc,. More precisely, let P C C be a part of C. Let v: C — Ri be a
monotonic multi-normalization of C and set S, = {x € P |v(x) = 1}. For a given
mapping F: C — C, we study the relation between

"Fome)= it {o(B)| we(F(). F)) < Bucla). Yry €8}, (713)

and

7 (FHCrx...xCy) (7.14)

= IEI%&f {C}Mclx...xcd(}—(ﬂf);f(y)) S C,uclx.,.xcd(%y)avxay E SV7}7
c +

where any of the above quantities is set to oo if the infimum is taken over an empty
set. We begin with observations on pc,x..xc,. Let M(x/y;Cq1 x ... x Cg) and
m(z/y; C1 %X ...x Cy) be defined as in Equation (5.1) with C' = Cy x ... x Cy. Then,
for all z,y € C, it holds

m(z/y;C1 X ... x Cq) = mindm(xi/yi;ci).

i=1,..,

Hence, the Hilbert metric puc, x...xc, can be expressed for z,y € C, v ~¢ y, as
BCy x..xCy(T,Y) = max In (M (z;/yi; Ci) M (y;/25; Cy))-

The next lemma shows that in general uc, x..xc, cannot be expressed in terms of
pe when d > 2.
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Lemma 7.2.1. Suppose that d > 2. Let C C V be a closed cone and let P C C be a
part of C such that P, Py # {0}. Then, for every function ¢: Ri — R, there exists

T,y € P such that ¢(Mc($,y)) # ey X‘..Xcd(a%y)'

Proof. Suppose by contradiction that there exists ¢: Ri — R4 such that for all
xz,y € P, it holds ¢(pc(z,y)) = poix..xc,(x,y). Let € P, then x1,x2 # 0 as
P, Py # {0}. Let a(s) € RY, be defined as a(s) = (s,s71,1,...,1) for all s > 0.
Then, with (6.7), for every s > 0, we have

0= u01X~~~XCd(x>$) = ¢(:U’C(xa l‘)) = ¢(/’LC(O‘(S) @ J},QS‘)) = :u01><~~><cd(a(3) @ xvx)

There exists 6 > 0 large enough such that for all s > ¢, it holds M (a(s) @ z/x;C) =
sM(z1/z1;C1) = s and M (z/a(s) ® x;C) = sM(x2/x2;Ca) = s. It follows that

0= pcyx..xo,(a(s) @z, z) =In (M(:rl/xl; Cr)M (z2)x2; Cg)) + ln(sz) = 21In(s)
for every s > 9§, a contradiction. O

Next, we show how to obtain an upper bound on r(F, s, x..xc,) when F is
order-preserving and multi-homogeneous. To this end, let us recall that for a matrix
A € R4 the ¢°>°-norm of A is defined as the maximal absolute row sum of A, i.e.

d
| Aljoc.co = max Z|Ai,j|.
i=1,...,d =

Lemma 7.2.2. Let C C V be a closed cone, v: C — Ri a monotonic multi-
normalization of C, and set S, = {x € C|v(z) = 1}. Let F C C — C be order-
preserving and multi-homogeneous of degree A € RiXd. Then, for every z,y € S,
with x ~¢ y, it holds

Mclx...XCd(F(m)af(y)) S ||AHOO,OO MClx...xC,j(xay)7

Proof. Let 1 = ||Al|co,00- Note that as A € Ri, it holds 7 = max;—1,._4(Al);. Let
D = diag(rl — A1) € R and define G: C — C as G(z) = v”(z) @ F(a) for all
x € C. Then, G is order-preserving and multi-homogeneous of degree D + A. In
particular note that (D + A)1 = r1 and thus, by Lemma 3.3.1, G is homogeneous

of degree r. Hence, Proposition 5.2.1 implies that for every x,y € C with x ~¢ y it
holds

HCyx..xCy (g(x)a g(y)) < T e x..xCy («Ta y)-
To conclude the proof, note that for every x € S, it holds G(z) = F(x). O

Let F: C — C be order-preserving and multi-homogeneous of degree A € ]Rff_Xd.
Lemmas 6.2.4 and 7.2.2 imply that

r(Fipe) <p(A)  and 7 (F,poix.xcq) < [[Alloo,0o (7.15)

where 7(F, pe) and r(F, puoy x..xc,) are defined in (7.13) and (7.14), respectively.
The construction in the following proposition is inspired from [39, Example 3.3|° and
shows that these bounds are sharp:
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Proposition 7.2.3. Let d > 2, n > 2 and A € R Let C; =R? fori=1,...,d
sothat C =R} x...xRY. Let m: {1,...,n} = {1,...,n} be a permutation. Define
F:C—C as

Ay . .
F@)igo=[[oisty  Yi=1...dji=1,....n

Then, for all £k > 1, it holds

H(F me) = p(A%)  and  r(FF peyxxc,) = 14 oo c0-
Proof. First, we prove the case kK = 1. Lemma 5.2.3 implies that pq(F(z), F(y)) =
Ape(x,y) for all z,y € C with x ~¢ y. Hence,
A=inf {B € R | pe(F(2), Fy)) < Bue(x,y), Yo,y € Sy, ~c y}.

By monotonicity of the spectral radius, it follows that 7(F, o) = p(A4). Now, by
Lemma 7.2.2, we have 7(F, pucyx..xcy) < [[A]lco,00. To prove the reverse inequality,
define v®") = (s,¢,1,...,1) € R, and 200 = (v .. oD € int(C) for all
s,t > 0. Then, for every s,t,35,t > 0, it holds

d .
(3,0) §/s if ji =1, F (5/s) iz i) if () = 1,
i )7 oo 0Ji ~ d A, . .
G =\ =2 and SR = () S (g) =2,
hJi 1 otherwise, 1 otherwise.

Therefore
pe(F(z®D), F(z1)) = | Allsosope (1, a) Vs > ¢ > 1,

and thus || A|cc,c0 < r(FF, Wy x...xCy ), which concludes the proof for the case k = 1.

To generalize the result for k > 1, we prove that for every k > 1,7 € {1,...,d}
and j; € {1,...,n}, it holds

(AF);,
i (%) = xlm’C(jf)
=1
To this end, let B € RiXd and o: {1,...,n} — {1,...,n} a permutation. Define
G:C—2C as

Yz € int(C). (7.16)

d
)igi = H Vi=1,...,d,ji=1,....n

Then, for all z € C, i € {1,...,d} and j; € {1,...,n}, it holds
d d B (AB)
2 I,k 'Lk
7]2 H g ,7r ]l H ( xk ,o(m(y ) H a(m(4i))
=1 k=1 k=1

Equation (7.16) is now a direct consequence of the above relation by inductively
letting G = F, F2,... Now, (7.16) implies that the iterates F* of F are all of the
same form as F and thus the first case applies to F* for all k > 1 which concludes
the proof. O
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We note that the permutation 7 in the definition of F in Proposition 7.2.3 can
always be chosen so that the gradient of F is irreducible at every point in int(C).
This assumption will appear later in the discussion when studying existence and
uniqueness of positive eigenvectors of non-expansive mappings. In particular, we
note that Proposition 7.2.3 allows to construct examples of mappings which are
non-expansive with respect to pe and expansive with respect to pc; x..xc,. Such a
mapping is discussed in the following example.

Example 7.2.4. Let d =3 and C = R} x R} x R}. Let € € [0,1) and 7: C = C
defined as in Proposition 7.2.3 with

1

\V)

_1—6

4=

0
1
0

o = O

0
4
Then, for any integer m > 1 it holds

(1—¢)*m

APl — (1 —e)?mmlg and AP — 1

3
0
1

O = O

3
0
1

Furthermore, p(A) = 1 —¢, b = (1,4,1)" € R} satisfies ATb = p(A4)b, and for
all m > 1 it holds ||A?" | = 3(1 — €)™ ! and [|[A*™||c = 3(1 — €)?™/2. In
particular, if e = 0, then we have

3
F(‘Fk’u’) =1< 5 = r(fkaluCﬁX-..XCd) Vk > 1,

i.e. F* is non-expansive with respect to the vector valued Hilbert metric whereas
every power of F is expansive with respect to the Hilbert on Ri”.

Let F: C — C be order-preserving and multi-homogeneous of degree A € ]R‘fd.
Then F* is multi-homogeneous of degree A* for all k > 1 by Lemma 3.3.5. Hence
(7.15) implies that

P(F* pe) < p(A%)  and  r(FF peyxexey) < 1A oo

for all £ > 1. Remarkably the above estimates are linked by the Gelfand formula
(see for instance |48, Corollary 5.6.14]). Indeed, the Gelfand formula implies that

A Ak ke _ f Ak 1/k
(A) = Jim IAFILE, = i |44

= Jim 44125 Lo

and as p(A*)/% = p(A) for all k > 1, it follows that

inf Akl/k’:-fAkl/k.
inf p(A7) Inf [ A%o0,00

This observation suggests that pc, x..xc, and pe can be connected via the following
generalization of the Banach fixed point theorem:
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Theorem 7.2.5. Let (X, () be a complete metric space and let f: X — X be a
continuous mapping. For k > 1, let f* be the k-th composition of f with itself and

r(fk,C) = inf {a >0 C(fk(x), fk(y)) < al(z,y), Vx,y € X}. (7.17)
Suppose that ]ir>1f1 T(fkaC)l/k < 1. Then, f has a unique fixed point v € X, and for
each z € X it holds lim Fz) = u.

k—o0
Proof. See Theorem 3.11 in [55]. O

The condition infj>q r(f*, C)l/k < 1 only depends on ¢ up to equivalence in the
following sense:

Lemma 7.2.6. Let X be a set and let (: X x X — [0,00), 0: X x X — [0,00) be
metrics on X. Suppose that there exists ¢ > 0 such that

L(z,y) <olz,y) <cC(z,y)  Voye X, (7.18)
then for every continuous mapping f: X — X it holds

. k ~\1/k _ E _\1/k
Inf r(£7,¢) Inf r(f%, )77 (7.19)

Lemma 7.2.6 is a well known result (see for instance [55, page 53]). Nevertheless,
we reproduce its proof here as it is insightful for the discussion. The main argument
relies on the submultiplicative version of Fekete’s lemma recalled in the following:

Lemma 7.2.7 (Fekete). Let ()72, C Ry be a sequence such that agm < oy,

for all k,m > 1. Then lim a,lg/k exists and lim oz,lg/k = inf a'/¥,
k—o0 k—o0 k>1

Proof. Note that if there exists & > 1 such that o, = 0, then it holds a4 < o, =
0 for all m > 1 which implies that «,, = 0 for all m > k and the result is obvious.
Now, suppose that ap > 0 for all & > 1. For all k,m > 1, it holds In(agiy,) <
In(ay) + In(oy,) and therefore (In(ag))p2,; € Ry is a sub-additive sequence. The
conclusion now follows from Theorem 7.6.2 in [46]. O

Proof of Lemma 7.2.6. Since for all m, k > 1 it holds
r(fS ) < (M QOr(fm ) and (S 0) < e (fF0)r(f7 0),
Lemma 7.2.7 implies that

. k 1k _ 7 k Ak ko Uk _ 1 k N\1/k
’gflr(f ,Q) klin;or(f Q)R Igflr(f ,0) lim r(f", o)"". (7.20)

Furthermore, (7.18) implies that
(O <r(ff o) <r(ff0 vR>1
Hence, by the sandwich theorem, it holds
Jim (5,0 = lim r(f5,0)VE.

The above equality together with (7.20), implies (7.19). O
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We now generalize these arguments in order to obtain a similar conclusion as in
Lemma 7.2.6 which relates r(F, pe) with 7(F, poy x..xc,)- Let (X, n) be a d-metric
space and let F: (X,n) — (X,n) be continuous. For every k > 1, set

R(F*,m) = inf {B S RiXd ‘ n(F*(x), F¥(y)) < Bn(z,y), Va,y € X}. (7.21)

Note that by the continuity and monotonicity of the spectral radius, if F* has a
Lipschitz matrix with respect to 7, then we have

p(R(F*,m)) = inf {p(B) | n(F*(z), F*(y)) < Bn(z,y), Y,y € X}.

dxd
BeRY

If F does not have a bounded Lipschitz matrix with respect to 7, then we use the
convention that p(R(F*,n)) = oo in the following. The study of the quantity

inf p(R(F*,m))"/*

inf p(R(F7,m))
is delicate. Indeed, Fekete’s lemma can not be used directly since Lipschitz matrices
do not commute and although

R(F"n) Sgaxa REFY,mR(F™m)  Vhkm>1,

the relation p(R(F*,n)R(F™,n)) < p(R(F*,1))p(R(F™,n)) is not true in general.
Thus the sequence (p(R(F*, n)))zozl is not necessarily submultiplicative. We have
the following generalization of Lemma 7.2.6:

Theorem 7.2.8. Let (X,n) be a d-metric space and let (: X x X — [0,00) be a
metric on X. Suppose that there exists a norm || - || on R? and ¢ > 1 such that

Lin(@,y)| < ¢(z,y) <cln(z,y)|  Vo,yeX. (7.22)

Let F: X — X and for every k > 1, let »(F*,¢) and R(F*,n) be respectively defined
as in (7.17) and (7.21), then it holds
1/k

]glr(f ,€) Iglp(R(f 1))

Proof. Define 7, = infy>1 r(F*, ()/* and R, = infy>; p(R(}"k,n))l/k. Note that by
Lemma 6.1.5, it holds r, < oo if and only if R, < oc. So, let us assume that ., Ry, <
oo. First, we prove that R, < r,. To this end, let £ > 1 be a positive integer such that
R(F*m) <ocoandlet A € RiXd be a Lipschitz matrix of F*: (X,n) — (X,n). Let
e>0andset A. = A+ell17. As A < A, we have p(A) < p(A.) (see Example 2.3.6)
and by continuity of the spectral radius we have lim._,g p(Ac) = p(A). Furthermore,
as A, € Riﬁd, the Perron-Frobenius theorem implies the existence of b, € ]Rff_ 4 such
that A b, = p(Ac)b.. Lemma 7.1.2 implies that p(A.) is a Lipschitz constant of
FF: (X, n.) — (X, n.) where 7. is the metric on X defined as n(z,y) = (be, n(x,y)).
It follows that r(F* n.) < p(A¢) and thus for m > 1 it holds r(F™ n.) < p(A)™.
Now, note that

inf r(F",ne)!/™ < inf r(F 0V < p(AgUE. (7.23)

m

m>1

69



As all norms on R? are equivalent and ||c|| = (b, |c|) is a norm on R?, there exists
~v > 0 such that %Hn(m,y)H < ne(z,y) < yln(z,y)| for all z,y € X. Hence, with
(7.22), we have %ne(fv,y) < ((x,y) < eyne(z,y) for all z,y € X. It now follows
from (7.19) that inf,,> 7(F™, n.)"/™ = r, which together with (7.23) implies that
e < p(Ad)Y*. By letting € — 0, we find that 7, < p(A)Y/*. Taking the infimum over
all Lipschitz matrices of F* implies that r, < R(F*,n)"/* and taking the infimum
over all k > 1 shows that r, < R,. We prove the reverse direction. Let ¢ > 0 and

for i = 1,...,d, consider the norm || - ||; . on R? defined as ||c|/;c = || + €2 lcil-
Note that || - || and || - ||;,c are equivalent for all ¢ =1, ..., d, hence there exists 7. > 1
such that
,7||C||zye <lel < vellelie,  VeeR%i=1,....d.
€

Now, let £ > 1 be a positive integer such that 7“(.7-"’“, () < oo and a > 0, a Lipschitz
constant of F*: (X,¢) — (X,¢). Then, for every z,y € X and i = 1,...,d, it holds

0i(F*(2)i, FF(y)i) < [In(FF @), FF@)lie < velln(F (@), 7))
< (eve) C(F¥(@), F*(y)) < (cre) al(a,y)

ie = (c7)%a (m(xi, vi) + € > ny(, yj))-
J#1

< (cve)*alln(z,y)|

Now, let A, € Riﬁd be defined as A, = a(I + ¢(117 — I)). By the above chain of
inequalities, for every z,y € X we have

n(F* (), F*(y)) < (ere)*Aen(a, y)-

Furthermore, it holds p(A¢) = a(1+€(d—1)), so that R(F*, 1) < a(cye)?(1+e(d—1)).
Now, by taking the infimum over all Lipschitz constants a of F*: (X,¢) — (X, (),
we deduced that
R(F*,m) < (e7e)*(1 + e(d = 1)) r(F*, Q).

Note that the constant a. = (¢7.)%(1 + €(d — 1)) does not depend on k and thus
R(F*E, m)Vk < o/ r(Fk, OV for all k > 1. Tt follows that, with 8, = o r(F*, ¢) for
all k, we have R, < infy>; B;. The sequence (8i)32; C [0,00) is sub-multiplicative.
Indeed, for all k,m > 1, it holds By im < acr(FF,Or(FF,¢) < Brfm since ae > 1.

Finally, with Lemma 7.2.7, we deduce that
. 1k o /k _ 4 ko\1/k _ k \1/k _
< = = = =
R* = ]ir>_l:§ ﬁ]g klinolo /Bk kh—H)lo T(f bl C) /igﬁ T(.F 9 C) 7’*,
which concludes the proof. O

As a direct consequence of Theorems 7.2.5 and 7.2.8 we get:

Theorem 7.2.9. Suppose that (X, n) is a complete d-metric space and let F: X —
X be Lipschitz continuous. For k£ > 1, let

7(F*,m) = inf {p(B) | B € R¥** and n(F*(z), F*(y)) < Bn(z,y), Yo,y € X'}
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If 1nf 7“(.7-" )l/k < 1, then F has a unique fixed point v € X and

lim F*(z) = u Ve € X.

k—o0

Proof. For k> 1, let L € RiXd be defined as
Ly = inf {B € RY! [ n(F*(2), F*(y)) < B(a.y), Yo,y € X}.

Such an L exists as the set of Lipschitz matrices of F is lower bounded by 0 and
not empty since F is Lipschitz continuous. By continuity and monotonicity of the
spectral radius with respect to RiXd (see Example 2.3.6), we have p(Ly) = 7(F*, n).
Let | - || be a norm R? which is monotonic with respect to R%. Then ((z,y) =
In(z,y)| is a metric on X and (X,() is a complete metric space since (X,n) is
complete. Theorem 7.2.8 implies that infy>1 r(F*, )Yk < 1 where r(F*, () is defined
as in (7.17). The claim now follows from Theorem 7.2.5. O

Finally, we need the following lemma in order to use Theorem 7.2.8 to compare
the real valued and vector valued Hilbert metrics. The main idea of the proof is
similar to that of |94, Theorem 4].

Lemma 7.2.10. Let C C V be a closed cone and let P C C be a part of C such that

P #{0}foralli=1,...,d. Let v: C — R‘i be a monotonic multi-normalization of
Cand S, = {z € P|v(x) = 1}. For every norm | - || on R?, there exists 7 > 1 such
that

%H”C(xvy)u < MClx...xCd(x,y) < THP’C(J:vy)H V‘T7y 6Sl/- (724)

Proof. Let || - ||1 and | - || be respectively the ¢! and £>° norm on R?. As all the
norms on R are equivalent, is suffices to prove that
e (@, y)lloo < porx..xcy(@,y) < llpe(@,y)ll  Va,y €S,

Let z,y € S, and fori = 1,...,d let oy = M (x;/y;; C;) and B; = M (y;/xzi;C;). As v
is monotonic and x,y € S,,, Lemma 5.1.3 implies that «;,3; > 1 forall i = 1,...,d.
Furthermore, note that

:u’ClX...XCd(‘ray) = max ln(al) + .ma‘X ln(ﬂj)a

i=1,....d j=1,...,d

and pe(z,y) = (In(ar) + In(B1), . .., In(ag) + In(Bq)) so that

d

e (@, y)lloc = max In(ai)+In(5;)  and  |lpe(z,y)lh = > (In(a;)+1In(8;)).
i=1

Finally, as In(«;),In(8;) > 0 for all i, we have
d
max In(a;) + In(8;) < mem%dln(az) + max, In(B;) < Z () + Zln Bj),

which concludes the proof. O
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Lemma 7.2.10 together with Theorem 7.2.8 directly imply the following corollary.

Corollary 7.2.11. Let C C V be a closed cone and let P C C be a part of C such that
P, #A{0} foralli=1,...,d. Let v: C — Rf{_ be a monotonic multi-normalization of
Cand S, = {xr € P|v(z) = 1}. Let F: C — C, then it holds

. ok 1/k _ k 1/k
]}:gflr(f , e) Igflr(]: JCy x.xCy) T

where #(F¥, ue) and r(F*, ey« xc,) are defined as in (7.13) and (7.14), respectively.

It follows that for S, as in Corollary 7.2.11, (X,() = (Su, pcyx...xcy), (X, ) =
(Su,pe) and G: S, — S, the assumptions of Theorem 7.2.5 hold if, and only if,
the assumptions of Theorem 7.2.9 hold. Nevertheless, for every N > 1, there exists
order-preserving multi-homogeneous mapping F: C — C such that

r(fk,uc)l/k <l< r(fk,uclx,_xcd)l/k Vk=1,...,N.

Such mappings can be constructed by letting € > 0 small enough in the definition of
the mapping F discussed in Example 7.2.4.

7.3 Fixed point theorems on the product of cones

We prove fixed point theorems for mappings leaving invariant a cone in the product
of finite dimensional real vector spaces V = V7 x ... x V4. To this end, we use the
properties of the vector valued Hilbert metric together with the vector valued fixed
point theorems proved in Section 7.

Our first result shows that mappings which contracts under the vectors valued
Hilbert metric have a unique eigenvector.

Theorem 7.3.1. Let C C V be a closed cone and let P be a part of C such that
Py # {0} for i = 1,...,d. Let v: C — R% be a multi-normalization of C and set
Sy, = {z € C|v(z) = 1}. Furthermore, let 7: PNS, — P and define G: PNS, —
PNS, as

G(x) =v(F(z) ' @ F(z) VeelUUNS,.

If there exists L € R2*? and m > 1 such that p(L) < 1 and
pe(F™ (), F™(y)) < Lpe(z,y) Yo,y eUNS,. (7.25)

Then, the equation F(z) = A®z with (X,z) € RL x (PNS,) has a unique solution
(0,u). Furthermore, 0 € ]Rf‘lH and for every x € PN S,, it holds

lim ¢7(x) =u and  pe(G""(2),u) < LMI — L) pe(G™ (2),u) (7.26)

Jj—o0
for every k > 1.

For the proof we need the following lemma which relates the eigenvectors of F
with the fixed points of G.
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Lemma 7.3.2. Let C C V be a cone, v: C — R} a multi-normalization of C and
set S, = {z € C|v(z) = 1}. Let U C C be such that U NS, # (. Furthermore, let
F:UNS, — C and suppose that F(x); # 0 for all i =1,...,d and x € U. Define
G:UNS, = CNS, as G(z) = v(F(x))™! @ F(x) for every x € U NS,. Then, the
following hold:

i) For every x,y € U, it holds p-(G(2),G(y)) = pe(F(x), F(y)).

ii) If u € UNS, is such that F(u) = A ®u with A € R%, then A € RY, and
v(u)T®ueUns, is a fixed point of G.

i) If w € U NS, is a fixed point of G, then it holds F(u) = A ® u with
A =v(F(u)).

iv) There is a unique solution to the equation F(x) = A ® =z with (A,z) €
Ri x (UNSy) if, and only if, G has a unique fixed point.

Proof. First of all note that the condition F(z); # 0 for alli=1,...,d and 2 € U
implies that v(F(z)) € RL, for all z € U and thus G is well defined. Furthermore,
note that if x € Y NS, then z; # 0 for all ¢ = 1,...,d since v(z); > 0 for all
i=1,....d
i) Let 2,y € U and ¢ € {1,...,d}. Note that if F(z); ~¢c, F(y); then, as
v(F(z)); > 0 and v(F(y)); > 0, it holds G(z); ~c, G(y)i. It follows from
(5.2) that

F@)i  Fy)
v(F (@) v(F(y))i
If F(x); e, F(y)i, then G(z); #¢, G(y); and thus

pe; (F ()i, F(y)i) = 00 = ey (G(2)i, G(y)i)-

In both cases we have uc, (F(2)i, F(y)i) = puc,(G(2)i, G(y)i). As the latter is
true for all i € {1,...,d}, it follows that pe(F(z), F(y)) = pe(G(x),G(y)).

pe; (F(x)i, F(y)i) = ﬂci( ) = pc, (G(2)i, G(y)s).

ii) Suppose that u € U NS, is such that F(u) = A ® u with A € R%. Then,
we have v(F(u)) = v(A®u) = Aov(u) = A and thus XA = v(F(u)) € RY,.
Furthermore, it holds

Gu)=v(Fu) ' @Fu)=A"®A®u) =u,
i.e. u is a fixed point of G.

iii) If u € U NS, is a fixed point of G, then it holds u = G(u) = v(F(u)) ™! @ F(u)
and thus F(u) = v(F(u)) ® u.

iv) If y,2 € U NS, are such that there exists 8,9 € R% with F(y) = 6 ® y and
F(z) = 9 ® z, then ii) implies that y and z are both fixed points of G. Hence,
if G has a unique fixed point, then y = z. Furthermore, it holds

0=0ov(y) =vO@xy) =v(Fly) =v(F(z) =v(@z)=~>%or(z) =1.
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It follows that (8,y) = (9, z) and thus the equation F(z) = A®z with (X, z) €
Ri X (U N Sy) has a unique solution. Conversely, suppose that y,z € U NS,
are both fixed points of G, then iii) implies that F(y) = v(F(y)) ® y and
F(z) = v(F(z)) ® z. It follows that (v(F(y)),y) and (v(F(z)),z) are both
solutions to the equation F(z) = A®z with (A, z) € R% x(UNS,). In particular,
if the latter equation has a unique solution, then (v(F(y)),y) = (W(F(2)), z)
and thus y = z which implies that G has a unique fixed point. O

Proof of Theorem 7.3.1. First note that as P; # {0} for all ¢ and F(z) € P for all
x € S, NP, we have F(z); # 0 forall i = 1,...,d and thus G is well defined. Lemma
6.2.2 implies that (P NSy, pe) is a complete d-metric space. Now, for k > 1, let

7(G*, ne) = inf {p(B) | B € R and pe(G*(2), G"(y)) < Bue(z,y), Va,y € PNS, }.
By Lemma 7.3.2 and (7.25), we have
pe(G™ (), 6" (y) = pe(F"(2), F"(y)) < Lpe(r,y) Yo,y € PNS,.  (7.27)

It follows that 7(G™, o) < p(L) < 1, and thus infz>; 7(G*, ue)/* < 1. Hence,
by Theorem 7.2.9, we know that G has a unique fixed point v € P NS, and
limg 0o G¥(z) = u for all z € PN S,. Lemma 7.3.2 implies that the equation
F(z) = A®z with (A, ) € RZ x (PNS,) has a unique solution (,u) and 8 € RY .
To conclude the proof, note that u is a fixed point of G™ as well and thus (7.26)
follows from (7.27) and Theorem 7.1.1. O

The following result allows to deduce from (7.26), a convergence rate in terms of
norms on Vp,..., V.

Proposition 7.3.3. Let C C V be a closed cone and let P be a part of C. For
i=1,...,d,let || - |l; be a norm on V; with normality constant 1 with respect to Cj.
For z € V define ||z]| = (||z1]l1,- .- [|zalla) T € RY and let S = {z € C|||z] = 1}.
Finally, let A € Rflﬁd with p(A) < 1, u € PNS,, and let (x1)72, C PNS, be a
sequence such that

pe(zp,u) < AFT — A) ez, o) Vk > 1. (7.28)
Then, with ¢ = (I — A) " pe(x1,20), it holds
llzx — u|| < 3exp(A¥c)o AFc  VE>1,
where the exponential is applied component wise. Furthermore, if A has a positive
eigenvector a € th and w = z‘fll,f.i.}.(,d %, then

|z — ul| < 3p(A)fw(exp(p(A)fwa) o a) Vk > 1.

Proof. For z,y € PNSy, as the norms || - ||; are monotonic, by Lemma 5.1.9, we have
llz — y|| < 3(exp(pe(z,y)) — 1). Now, the inequality e! — 1 < tef for ¢t > 0 implies
Iz — yll < exp(pac (1)) o pre(w, ). Letting & =z, y = u, with (7.28), we get

lle — ull < Bexp(pe (@, u)) o pelzr, u) < 3exp(Afe) o Ale,
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This proves the first convergence rate. Now, suppose that A has a positive eigenvector
ac R‘Lr and let £ = max;—1 4 pe(x1,20)i/a;. Then, Aa = p(A)a and for every
k >0 it holds A¥c < A¥(I — A)~'¢a. Furthermore, for all k > 0 we have

KT A)-la — R g 1 k p(A)* a
A=) Ta= AT Ma= A = 10

It follows that A*c < p(A)*¥wa and thus
ok — ull < 3exp(A¥e) o AFe < 3p(A)w exp(p(A)iwa) o a,
which concludes the proof. O

Theorem 7.3.4. Let C C V be a solid closed cone. Let v: C — Ri be a multi-
normalization of C and set S, = {z € C|v(z) = 1}. Furthermore, let F: int(C) N
S, — int(C) and define G: int(C) NS, — int(C) NS, as G(x) = v(F(z)) ! & F(x)
for every x € U N S,. Suppose that there exists u € int(C) NS, and @ € RY such
that F(u) = @ ® u. Suppose that there exists L € R‘fd satisfying the following
conditions:

i) L is irreducible and p(L) = 1.
ii) It holds

pe(F(2), F(y) < Lpe(z,y)  Va,y € int(C) NS,y

iii) There exists an open neighborhood ¢ C int(C) such that u € U and

pe(F(2), F(y) £ Lpe(z,y)  Vo,y eUNS, with z # y.

Then, (0,u) is the unique solution to the equation F(z) = A ® z with (A, z) €
R? x (int(C) N Sy). Moreover, 6 € R, and for every € int(C) N S,, it holds
lim; 00 G7(x) = u.

Proof. Note that as F(u) € int(C) and u € int(C), it holds u; # 0 and F(u); # 0
for i = 1,...,d. Hence, F(u) = 6 ® u implies & € RY,. As p(L) = 1 and L
is irreducible, there exists a,b € ]Rle_ such that La = a and L'b = b. Lemma
6.2.2 implies that (int(C) NSy, pe) is a complete d-metric space. Now, let B(u) =
{z € int(C) NSy | pe(x,u) < ea} where € > 0 is small enough so that B(u) C U.
Lemma 6.2.2 implies that the topology induced by p coincides with the product
norm topology on V = Vi x...x V; and thus B(u) is a compact subset of int(C)NS,.
Furthermore, by Lemma 7.3.2, we have that u is a fixed point of G and for all
x € B(u), it holds

re(G(@),u) = pe(9(2),6(w) = pe(F(x), F(u) < Lpe(r,u) < Lea = ca.

If follows that G(B(u)) C B(u). Furthermore, it holds

pe(9(2),G(y) < Lpc(x,y)  Va,y € B(u),z # y.

75



It follows from Theorem 7.1.5, b) that G has a unique fixed point in B(u) and for
all z € B(u) it holds limj_,oo G/(z) = u. Hence, u is a locally attracting fixed
point of G in int(C) N'S,. Now, for i = 1,...,d let v;: C; — R be such that
v(r) = (ri(z1),...,va(zq))" for all z € C and set S; = {z; € C;|vi(x;) = 1}
Furthermore, let w € int(C*) and ¥; = {x; € C;|w;(z;) = 1} for i = 1,...,d. Let
Gt (B nint(Cy), pey) — (Si Nint(Cy), pey) be given by (i(zi) = zi/vi(x;) for all
x; € 3; Nint(C;). Then, ¢; is a continuous bijective isometry with inverse ¢, 1(:51) =
xi/w;(z;). Corollary 2.6.4 in [60] implies that (2; Nint(C;), uc,) is a geodesic space
and thus the existence of ¢; implies that (S; Nint(C;), uc;) is a geodesic space as well.
As the latter is true for all i = 1, ..., d, Theorem 7.1.5, ¢) implies that G has a unique
fixed point in int(C) NS, and lim;j_,oo G7(x) = u for all € int(C) NS,. Finally, the
uniqueness of u as a fixed point of G together with Lemma 7.3.2 imply that (0, u) is
the unique solution to the equation F(z) = A®z with (A, ) € RL x (int(C)NS,). O

8 Multi-linear Birkhoff-Hopf theorem

As shown in Example 5.2.10, the Birkhoff-Hopf theorem can be used to exploit the
linear structure in non-linear mappings in order to prove smaller Lipschitz constants.
Motivated by this observation and the fact that the eigenvector problems discussed in
Section 4.2 all exhibit some kind of linear structure, we generalize the Birkhoff-Hopf
theorem 5.2.7 for multi-linear mappings defined on the product of cones. Then,
we explain how the result can be used to analyze the Lipschitz matrix of multi-
homogeneous polynomial mappings. Finally, we consider the particular case C =
R} x ... x R and discuss bounds on the Lipschitz matrix of such mappings.

8.1 Birkhoff-Hopf theorem for cone multi-linear mappings

Let V=V x...xVzgand W = Wy x...x Wy be products of finite dimensional vector
spaces. For cones C C V and K C W let pe and py be the vector valued Hilbert
metrics induced by these cones (see Equation (6.6)). The next result is a Birkhoff-
Hopf theorem for multi-linear mappings on cones which generalizes Theorem 5.2.7.
The infinite dimensional case is discussed in Theorem 3.4 of [38]°. We have seen
in Section 5.2.2 that for the applications of the Birkhoff-Hopf theorem 5.2.7 it is
convenient to generalize the concept of linearity to that of cone linearity. Motivated
by this observation, we introduce the following definition where for 7: C — K, z € C,
i€{l,...,d} and j € {1,...,d'}, we denote by F|%': C; — K, the mapping defined
as
f\;;](yz) = .F(H?l, e X1, Yiy L1y e ,.Z‘d)j Yy, € C;.

Definition 8.1.1. Let C C V and K C W be cones and F: C — K. We say that F
is cone multi-linear if for every x € V, i =1,...,d and j = 1,...,d’, the mapping
FIi:C; - K ; is either cone linear or constant.

The reason for allowing constant F |§;": C; — Kj in the above definition is to
include mappings F: C — K where z — F(x); does not depend on one of the x;. This
situation typically arise when studying the ¢P%"-singular vectors of a nonnegative
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tensor, where, for p = ¢ = r = 2, we want to find the eigenvectors of a multi-
homogeneous mapping F: R! x R™ x R® — R x R™ x R™ of the form

Flx,y,z) = (T(-,y,2),T(x,-2), T(x,y,-)),

with T € ]lemxn (see Section 4.2.1). In particular, note that, for instance, T'(+,y, 2)
is multi-linear in the classical sense as a mapping from R™ x R"® — R but it is not
multi-linear on R’ x R™ x R" since for all o, 8 and (z,y,2) € R x R™ x R™ and
# € R! with # # z, the mapping f(x,y, z) = T(-,y, 2) is such that f(az+ Bz,y,2) =
f(z,y,z) and thus, except in some exceptional cases such as f(z,y,2) = f(Z,y,2) =
0, we have f(ax + BZ,y,2) # af(x,y, z) + Bf(Z,y, 2).

Note that if 7: C — K is cone multi-linear, then F is order-preserving and multi-
homogeneous of degree A € {0,1}¥*¢ We have the following generalization of the
Birkhoff-Hopf theorem:

Theorem 8.1.2 (Multi-linear Birkhoff-Hopf). Let C C ¥V and K C W be cones and
F:C — K a cone multi-linear mapping. Let L € ]RiXd be defined as

L=inf {A € R | pye(F(2), F(y) < Ape(@,y), Yo,y € C,x ~c y}.
Then, for every i =1,...,d and 7 = 1,...,d’, it holds

Lj; = suptanh [% diam(F|%4(C;); LK)
zeC
Proof. Let x € C,i=1,...,dand j = 1,...,d". If .7-"]5[;Z is constant then it holds
,LLKj(f%’l(yi),ngl(zi)) = 0 for all y;,2; € C; and so diam(f|‘;’l(0i);MKj) =0 If
F |5g’ is cone linear, then Theorem 5.2.7 implies that the smallest Lipschitz constant
of FIF': (Ci,pe,) — (Kj, px,), satisfies w(F[%") = tanh [§ diam(F[2"(Cy); k)] -
Finally, Theorem 6.1.7 implies that L;; = sup,cc s(F[%"). O

Remark 8.1.3. We make observations which are helpful for the estimation of L;;
in Theorem 8.1.2. So let C C V and K C W and suppose that F: C — K is a cone
multi-linear mapping.

a) By the monotonicity of the hyperbolic tangent, for every 4, j it holds

sup tanh [ diam(F|%4(C); /ik,)] = tanh [+ sup diam(F|%(Cy); pK;)]
zeC zeC
i

b) For every i, 7, as F|z does not depend on x;, it holds

sup tanh [ diam(F|%*(Cy); LK, )]
zeC

= suptanh [§ sup o, (FI2 (i), I ()]
zeC yi,zieci

= sup tanh [ sup prc, (FI (2:), FI(20))]

xeC 2, €C;4
= sup tanh EMKJ' (.7:(1‘), F ?gl(zz))]

z€C,z;€C;
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¢) Let v: C — R? be a multi-normalization of C, then by the scaling invariance
property of i (see Equation (6.7)) and the multi-homogeneity of F, it holds

su;c) tanh [1 diam(F|2"(C;); nK;)| = sug tanh [+ diam(F|%"(S;); 1K),
ze s

where S =51 x ... x Sg={z eC|v(z) =1}

d) If there exists i,i" € {1,...,d} with ¢ < i’ such that C; = C and there exists
j€{l,...,d'} such that x — F(z); is partially symmetric with respect to 4
and 4’ in the sense that for all z € C it holds

f(xl,...,mi,...,xi/,...,xd)j :f(wl,...,xi/,...,xi,...,xd)j,
then, it holds L;; = L; ;. Indeed, for x € C, set
x' = (3}1, ey L1 Ty L1y e oo s Ljl =15 Ljy Ll 415+ -+ ,xd).
Then, for all y; € C; we have
f]?c”(yz) = F(.@l, ey L1 Yy L1y e e e s L 1, Tjt s Lty 1y e e - ,xd)j
= .7-"(361, e L1y Tty L Ly e e e s Tt 15 Yiy Tif 1y v - - ,:Iid)j = f]i’,’l(y,)
It follows that

sup diam(F|2*(Cy); ;) = sup sup o, (FI2 (i), FI12* (7))
zeC zeC y;,5:€C}

=sup sup px; (FIL (i), FI2 (9:))
z’'€C y;,5,€C;

= sup diam(F |2 (Ci); pix, ),
z’'eC

and thus L;; = L; by a).
We illustrate an application of Theorem 8.1.2 with an example.

Example 8.1.4. Let € > 0 and let T' € Riﬁfw be the symmetric tensor given by

| ==k
Ti,j,k:{ Br=I=R i k=12,

€ otherwise
Let C=R2 xR2, K =R% and L = (L1, Ly) € R}*? defined as
L=inf {4 € RY?| ue(T oy, 2),7(5,2) < Apel(y,2), (7, 2),
W(y.2), (§,2) € C with (y,2) ~c (5:3) }-
Then, by Theorem 8.1.2, we have

L, = sup tanh [% diam(T(-,Ri,z);uK)], Lo = sup tanh [% diam(T(-,y,Ri);,uK)].
z€R% yeR%
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As T is symmetric, we have T'(+,y, z) = T(+, z,y) for all y, z € R? and thus L; = L.
We compute L;. Note that for all 3,z € R?, it holds

T(',y,Z):(l—G)yOZ+€<y, 1><Za 1>17 (81)
where 1 = (1,1)" € R2. By Remark 8.1.3, (a), we have

L; = tanh E sup diam(T(-,]Ri,z);uK)].
ZGR%_

The cone ]R?F is simplicial and has the canonical basis e, es of R? as generators.
With Proposition 5.2.8 and (8.1), for every z € R2 \ {0}, we have

diam(T(.’R?H Z);HK) = :uK(T('a €1, Z)’T('7 €2, Z)) = | In <;E:7 Z;, j;iig’ :? 32) ’
= } In ( ((1 —€)z1 +€(z1 + 22)) ((1 —€)zg +€(z1 + 2’2)) >‘
€ (21 + z2)e(z1 + 22)
_ (21 + €22)(22 + €21)
= }ln< 1 62(Z21+222)2 1 )‘

Now, by Remark 8.1.3 (c¢), with Ay = {(¢t,1 —¢) |t € [0,1]}, we have that

sup diam(7T(+,R%, 2); ux ) = sup diam(T(-,R%, 2); pux)

zeR2 ZEAL
(t+e(1—1)((1—1t) +et) (1+¢)?
tiﬁf,’u‘“( e )‘ ‘n< 4e2 ) (8.2)
and thus ) ) 1 |
+e€ —€
Ll—Lg—tanh‘iln( > >‘_1+3e' (8.3)

In Example 8.1.4, we have computed

L;; = suptanh [1 diam(F
xeC

2(C); k)]

exactly, but our computations heavily use the fact that the cones in C were two
dimensional. In general, even when C is a simplicial cone, the computation of L;;
can be difficult. In the next section, we discuss how to derive upper bounds on L;;
for the particular case where C = R}! x ... x R

In the next result, we discuss how the multi-linear Birkhoff-Hopf theorem 8.1.2
can be used to derive Lipschitz matrices for polynomial mappings on cones. There
are mainly two motivations for such a result. The first is that, for instance, the
mapping characterizing the rectangular ¢P4-singular vectors of a nonnegative tensor
with p = ¢ = 2 is not cone multi-linear. Let us recall from Section 4.2.3 that for a
third order tensor T' € R™*™*"  the latter mapping is given by

Flz,y) = (T(-,y,y), T(x,-,y)) V(z,y) € R x RY.
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Clearly (z,y) — T(z,-,y) is cone multi-linear, however y — T'(+,y,y) is quadratic.
Similarly, the mapping characterizing the Z-eigenvectors of a third order tensor, i.e.
the £2-eigenvectors, suffers the same problem as in this case the mapping is given by
F(z) = T(-,z,z) for some T € RY*™ ™. The situation becomes worst as the order
increase. Indeed, the Z-eigenvectors of a forth order tensor T' € RI*™ ™ ™ are the
eigenvectors of F(x) = T(-,z,x,x) which is cubic in z. The second motivation is
that, unlike cone linear mappings, the composition of two cone multi-linear mappings
is not cone multi-linear in general. To address these cases, we have the following
result:

Theorem 8.1.5. Let C C V and K C W be cones and let a be a positive integer.
Let o1, ...,0m, be a partition of {1,...,d} into non-empty disjoint subsets. Suppose
that [; <; for all [; € 0y, l; € 0 such that ¢+ < j. Furthermore, for all i = 1,...,m,
suppose that Cj, = Cl; for all I;,1; € o; and let s; = min{k; | k; € 0;}. Let F: C — K

be a cone multi-linear mapping and define G: C =K as

G(Z)=F(Z1,. ., T1ye ooy Ty v oy ) Vi = (Z1,...,2m) €C,
—— —_———
|o1| times |om| times
where € = Cy, % ... x Cy, and for i = 1,...,m, |o;| denotes the cardinality of o;.

Let I € R¥*™ be defined as
L=inf{A€RV™|puec(G(2),6(0) < Apa(i,§), Vi, € C, & ~g G}
Then, for all j =1,...,d and ¢ =1,...,m it holds

e ;)] (8.4)

Lj; < Z Slélc) tanh [+ diam(F
x

liEO'i
Proof. Let L € RY*? be defined as
L = inf {A € RY* | u(F(x), F(y) < Ape(,y), Yo,y € Coaw ~c v}
Then, by Theorem 8.1.2, for every i = 1,...,d and j = 1,...,d’, it holds

Lj; = sup tanh [§ diam(F[2"(Cy); p;)]-
zeC
For all 2,9 € C such that & ~¢ ¢, for z = (T1ye ey Ty e ooy Bmy e v oy &) and y =
(W15 U155 Ums - -, Um), We have x ~¢ y and pe(z,y) = Pps(2,9), where P €
{0,1}™*? is defined as P ;=1ifl € 0; and P;; = 0 otherwise. Furthermore, note
that L = LP and thus

tc(G(2),G(9)) = pc(F(), F(y)) < Lpe(x,y) = LPps(x,y) = Lps(E, 1),
which concludes the proof. O

The following example shows that the bound on L given by Theorem 8.1.5 is
sharp, nevertheless we believe that there are cone multi-linear mappings for which
the inequality in (8.4) is strict and leave the improvement of this upper bound to
future work.
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Example 8.1.6. Let C = R2, ¢ > 0 and let T € RZ*?*? be the tensor of Example
8.1.4. We recall that the smallest Lipschitz matrix L = (Ly, Ly) € RY?2 of (y,2)
T(-,y,z) is given in (8.3). By Theorem 8.1.5, we have that for all z,y € R%— with
x ~¢ y it holds )

:U’C(T('7 €, 33), T('v Y, y)) < LMC(mv y),
with

. 1—

L < sup diam(T'(-,R2, 2); ux) + sup diam(T'(-,y,R%); ) = 2’ €|.
2 2 14 3e

2€RY yERL

Now, we prove that this bound is attained. Let y(-): (0,00) — R% | be defined as
y(t) = (t,1). Then, we have u(1,y(t)) = |In(¢)| for all ¢ > 0. Furthermore, by (8.1),
it holds 7T'(-,1,1) = (1 + 3¢)1 and

L2 4 2
Tl = ({0 wso

By L’Hospital’s rule, we have

(1—e)t2+e(1+t)?

Ly SOLTCLY) _y,, 7 (Ebdsor) |

t—1 w(y(t), 1) t—1 In(t)
‘2(1—6)t(t26+t6—|—t—|—6)‘ 11— e

im =2 .

t—1 | (82 + 2te + €) (t%e + 2te + 1) 1+ 3¢

which shows that
- 1 —¢

L=2 .
14 3e

The mapping G of Theorem 8.1.5 is multi-homogeneous and order-preserving.
Hence, its homogeneity matrix is a natural Lipschitz matrix of the mapping with
respect to the vector valued Hilbert metric. We note however in the next result that
if G maps in the interior of a cone, then there always exists a Lipschitz matrix with
strictly smaller spectral radius.

Theorem 8.1.7. Let C C V and K C W be solid closed cones and let a be a positive
integer. Let 01,...,0m, F:C = K, € and G: C — K be defined as in Theorem 8.1.5.
Suppose that m = d’. Then, G is multi-homogeneous of degree A € R¥*?" with
Aj; = Zlien Bj, foralli,j=1,...,d where B € R >4 ig the homogeneity matrix
of the cone multi-linear mapping F. Let L € R¥*™ he defined as

L=inf {A€RV™|puec(G(2),6() < Apa(i,§), Vi, i € C,& ~g G}

If G(int(C)) C int(K), A is irreducible and there exists j, € {1,...,d’'} such that
F(z)j, € int(C},) for all z € C satistying x1,..., 24 # 0, then p(L) < p(A).

Proof. Note that G is continuous as F is a cone multi-linear mapping on the product
of finite dimensional vector spaces. G is order-preserving since F is order-preserving.
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Furthermore, the multi-linearity of F directly implies the multi-homogeneity of G.

Hence, Proposition 6.2.4 implies that A is a Lipschitz matrix of G and therefore it

holds L =<gpaxa A. We recall from Example 2.3.6 that if M,Q € R‘fd are such that
+

M jRerxd Q, then p(M) < p(Q) and if additionally M + @ is irreducible and M # @,

then p(M) < p(Q). Hence, to prove that p(L) < p(A), it is enough to show that
L # A since the irreducibility of A implies that of L + A. Let L € RY*? be defined
as

L =inf {M € R{*| pe(F (), F(y) < Mpc(e,y), Va,y € C,x ~c y}.

Since F is multi-homogeneous of degree B € R¥*4 and order-preserving, B is a

Lipschitz matrix of F: (C,puc) — (K, pux) by Proposition 6.2.4. It follows from

Theorem 8.1.2 that L =<paxa B. Now, we show that the existence of j, € {1,...,d'}
+

such that F(z);, € int(Cj,) for all x € C satisfying z1,...,24 # 0 implies that
Lj,; < By, foralll € {1,...,d} such that Bj,; > 0. Let v: C — R% be a multi-
normalization of C and S, = {z € C|v(z) = 1}. For [ = 1,...,d, with Theorem
8.1.2 and Remark 8.1.3 (c), we have

Lj,,= su}c) tanh [% diam(}"g*’l(Cl); PEK;, )]
xe

= suép tanh [} diam (F|I-1(Cy); K, )]
TESY

= sup sup tanh [$ug, (FIEH (), Flirt(z)]
€Sy Y,2€ESL

< sup sup tanh [fur; (FI2'(w), FII' ()]
z,0ESY Y,2€Sy

= sup tanh [i,qu* (f(x)j*,}"(v)j*)].
TWES,

Now, as S, is a compact subset of C, F is continuous and F(x);, € int(C},) for
every x € C satisfying x1,...,24 # 0, the set U;, = F(S,);, is a compact subset of
int(C}, ) and therefore there exists v, < oo such that uk, (F(z);,,F(v);,) < v for
all z,v € §,,. It follows that for each [ € {1,...,d} such that B;, ; > 0it holds L;, ; <
1 = B, ;. Note that such [ exists otherwise we would have A;, ; = Zlieai Bj ., =0
for all i = 1,...,d" which contradicts the irreducibility of A. So, let I, € {1,...,d}
be such that Bj,;, > 0 and let i, € {1,...,d'} be such that I, € o;,. Then, by
Theorem 8.1.5, we have

Ljio <Y Lyt <Y Bji= A5,
lEUi* l€o;

which concludes the proof. O

8.2 Projective diameter of positive tensors

We discuss upper bounds on the quantities L;; of Theorem 8.1.2 for the particular
case of tensors with positive entries in the following theorem and then illustrate
applications of this result with examples. We note that similar (but more conservative)
upper bounds were derived in Lemma 5.1 of [38]° for integral operators on cones.
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Theorem 8.2.1. Suppose that d > 2 and let C = R x ... x R}, K = R}' and
T € R} ™. Then, it holds

sup diam(7'(+,R'?, z3,...,2q); pr) < In(A), with (8.5)
zeC
> T}, o033 o0 alia) L 3,03 (380 a(3)
03€6({43,35})5--,04€S({Ja,i5})
A= max :
le]lE[nl]v"-vjdvjde[nd] Z jﬂj{»j270'3(j3)7~-a0'd(.jd)7—jjl,jé:US(jé)n-,Ud(jé)

03€6({j3,43}):--,0a€6({ja.iy})
where for i =1,...,d, [n;] ={1,...,n;} and
S({ji, ji}) = {os: {ji, ji} = {ji-ji} | i bijective}.

Proof. 1f d = 2, then the statement follows from (5.8), hence we can suppose that d >
3. Note that if € C is such that z; = 0 for for some i > 3, then T'(+, y2, x3,...,2q)
0 for all yo € R"? and thus diam(7'(-,R"}?, x3,...,2q); ux) = 0. It follows that

sup diam(T'(+,R"?, x3, ..., 2q); prc) = sup diam(T (-, R’?, x3,...,2q); i),
zeC z€Co

with Co = {z € Clz; #0,i =1,...,d}. Note that T(-,z2,23,...,2q9) € R} for
all z € Cp since T' € R} "4 The cone R'}? is simplicial and generated by the
canonical basis ey, ..., e, € R". Proposition 5.2.8 implies that for every = € Cyp,

diam(T(-, R, 23, ..., 24); pixc )

= max uK(T(-,ejQ,:pg,...,xd),T(-,ejé,xg,...,xd))
1<72<jy<n2
T(', €joy L3y .- ,xd)le(-, ejé, T3y .. ’xd)ji
= max In
1<i<ji<ni \NT(, €5y, 23, 2a) 1 T+ €5, 23, .., Td)j,
1<j2<j5<n2

As the logarithm and the maximum are continuous, we have

sup diam(7'(+, R}, x3,...,2q); ux) = sup diam(T(-, R}, x3,...,2q); pK)-
z€Co z€int(C)

By combining the above observations, we see that for the proof it is enough to bound
the quantity
T(-s )y, 23, 2a)jy T(+ e, @3, Td) j1

T(.7 €j2,l‘3, e ,ﬂfd)j T(-’ ejé’ T3y ,.Id)jl

(8.6)
1
for all j1, 7] € [n1], j2, 75 € [n2] and z € int(C). To this end, we use the following
inequality which can be proved by induction over k£ > 1 (see also [41, Lemma 4.3)]):

k
Die1 @i <

a;
max —
k = max o=
S b I<i<k b

Yai,...,ag,b1,...,br > 0. (87)

Despite being sharp as we have equality when a; = b; for all ¢ = 1,...,k, the
estimation in (8.7) can be quite conservative. However it can be made more tight
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by symmetrizing the sums in the nominator and the denominator. For intuition, we
first show how it works in the case d = 3 and then prove the general case. Suppose
that d = 3 and let 7,4" € [n1], j, j' € [n2], y € RT3, be fixed. Then we have

T('7 €5, y)ZT(.u €j, y)l’

. ( ZZi1 Ti,jysys) ( 2?21 Ti’,j’,tyt)

T('7 €j, y)’LT('7 €, y)l’

DI

>

<

a (>0 Ty sys) (o020 Ty jae)

>t LigsTir jr Ysy
T ,5' sT’,j tYsYt

(Tijs T jrot + TijaTir g s)Yst

n3
s,t=1

2

(8.8)

n3

si=1(Ligr sTy e+ Ti g T s )Ys

TijuTi gk + TijwTi ok

S Imax )
kk'elns) Ti jr kT j ok + T jr g Lir ke

where we have used (8.7) for the last inequality. Now, we prove the general case:

.y .y . , ,
Let j1, 71 € [m], jo,j5 € [n2], © € int(C) and for all I3,l5 € [na],...,lq, 1}, € [ng] set
d
ng,lg, dayll Hl‘rl Lyl = (953 I3 31 ) T (5Ed7ld xd,zji)-
r=3
Then, we have
T(', €jo, L3y .- ,1‘d)j1T<-, ejé,l'g, .o ,xd)]i
T(-, €jé,x3, ‘e ,xd)le(-, €joy L3y - ,xd)]i
Z Ty ol lg®3,05 "+ Zd ld)( E : Th:]ng: A3 .xdvlld)
. l3€[n3],...,ld€[nd] l/E[n5] Jd [ ]
Z Tji,jml&-wldx&l?, e xd,ld) < Z T31,327l AR N '$d7l&)
136[n3],...,ld€[nd] l’E[ng},...,l'dG[nd]
E T oo Lt g o, Xt 1 1
l3,lé€[n3],...,ld,l:16[nd}
> Tyttt i Xis by,
lg,lge[ng],...,ld,lde[nd}
D Xyt Y Tivioors(ia)oalt) T, s 14). 00l
B lg,lée[’I’Lg],.‘.,ld,lée[nd} 0366({13,lé}),‘..,adeﬁ({ld, d})
ZXl&lé,---,ld,lﬁl Z J17]27‘73(l3)7---70d(ld)Tj17j5703(l'/3)---70d(l£1)>
l3,lée[ng],...,ld,l:ie[’nd] O'3€6({l3,l/3}),...,O'dEG({ld, Zi})

>

03€6({js,55}),--,

le7j2703(j3),---

0a€6({Jja.ig})

oalia) Lil 3b,05(38) oali))

< max
j3ajéG[n?)L'“’jdij;E[nd}

>

0366({j3»j§,})7""

T’ji7j2»03(j3)7-~~70d(jd)z}1:j§703

04€6({ja.dg})
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By taking the maximum over ji, ji € [n1] and ja, j4 € [n2], we find that

T( €5y, 23,...,2q) T (- €1 T3 - - - ’xd)ji N
— 9
T(-, €joy L3y - ,xd)jiT(.7 €515 T35 - - - ,l‘d)jl
which concludes the proof. O

Note that if in Theorem 8.2.1, d = 2, i.e. T is a matrix, then by (5.8), we have
equality in (8.5). If d > 3, it can however happen that inequality (8.5) is strict as
shown by the following example.

Example 8.2.2. Let d =3, K = R? and let T € R7$**? be the tensor of Example
8.1.4 with € > 0. From (8.2) we know that

<(1+e)2>|.

sup diam(7T(-,R%, 2); ug) = | In 12

zeR%
Let A defined as in Theorem 8.2.1. First, suppose that € € (0, 1], then we have

2
A A Lijelo g +TigwTy e TiaaToo2 +Ti12Th21  1+e€
it g ke k' =12 T jr gLy gk + Lo Ty g Ti21T212 +T122T211 2¢2

This gives the bound

1+¢)? 1+ €
In (( +26) ) = sup diam(7T(-,R%,2); ux) < In(A) = ln< +2€ )

Note that

(1 +e2> 1 ((1 +¢€)? N (1- 5)2).
2¢2 4¢2 4e2

It follows that, for € € (0, 1], the bound given by Theorem 8.2.1 is sharp for ¢ = 1 and
gets increasingly more conservative as e tends to 0. Now, suppose that € € [1,00),
then

TijeTyjw + TijeTo gk TipaTona +TipaTon1 o
A= max = =€
it 3og ook =1,2 T jo kT e+ Tijr o Ty gk TraaTo20 +T111To20

This gives the bound

42 i ) )
In <(1 n 6)2) = ZSJR% diam(7'(+,R%, 2); px) < In(A) = In(e”).

Note that
4¢? (e+ 3)62)

In(e?) = In (m +(e—1) e

It follows that, for € € [1,00), the bound given by Theorem 8.2.1 is sharp for e = 1
and gets increasingly conservative as € tends to co.
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Remark 8.2.3. The proof of Theorem 8.2.1 shows that the maximum defining A
is always attained at indexes ji,j] € [n],...,Jd,J} € [na] such that j; < j] and
J2 < jb. However, it can happen that j; = j/ for some ¢ > 3. This is for instance
the case in Example 8.2.2 when € > 1. Furthermore, numerical experiments suggest
that whenever € > 1, the maximum is only attained at indexes j1, ji, j2, 5, J3, j4 such
that jg = jé

Next, we show how to apply Theorem 8.2.1 with an example.

Example 8.2.4. Let C =R}, C = CxCxC, M ¢ Ran’R e RWXnXn a5
T € R™™mx" - Suppose that T is symmetric, i.e. the entries T; ;3 of T" are left
invariant by any permutation of the indexes i, j, k,l. Define F: C — C as

Flx,y,z) = (Mz,R(w, ~2), T (-, x,y, z)) V(x,y,z) €C.
Let L € R3*? be the smallest Lipschitz matrix of F, i.e.
L =inf{A € RY®| pe(F(u), F(v)) < Ape(u,v), Yu,v € C,u ~c v}.

We use Theorem 8.2.1 to derive upper bounds on L;; for all 7,5 = 1,2,3. Let
(z,9,2),(2,9,2) € C with (2,7, 2) ~¢ (Z,9,2). The mapping (z,y, z) — Mz is cone
multi-linear, hence by Theorem 8.1.2, we have

/J'C(M'é:7 ME) S LLll'LC(i.: i.) + LI,QI'LC(gv g) + L1,3/'LC(27 2)7
with
1. (Mi,jMz",j’) 7
4 Mi7j/Mi/7j
where the bound L; 3 can be derived either with Theorem 8.2.1 or via (5.8). The
mapping (x,y, z) — R(-,z, z) is cone multi-linear, hence by Theorem 8.1.2, we have

L1 =L10o=0, Lisg= max tanh[
’ ’ ’ 1<i,i’ 5,5’ <n

/LC(R(ii’, y 2)7 R('%a %y 2)) < L2,1MC(§:7 53) + LQ,Q“C(Q; g) + L2,3,UC(27 2)7

with
L2,1 S tanh(ln(AR?l)/él), L2’2 = 0, L2,3 S tanh(ln(AR,g)/él),
where
Apg = A Rmemyw-+RMthgw,
UKyt kk <n Ry g g Rir i + R g Rt ke
and
AR3 = max BBl g o + Riyr ol

1<iitgg' kk'<n Ry j o R o g + Rir jr kR jir

nNXnNXn

The expression for Ag 1 follows by applying Theorem 8.2.1 to the tensor ReR ok
defined as R”k =R foralli,j,k=1,...,n,so that R(z,-,2) = R(-,x, z) for all
z,z € R and thus

sup diam(R(R",-,2)) = sup diam(R(-,R";, 2)).

2€RY 2€R7
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Similarly, the expression for Apg 3 follows by applying Theorem 8.2.1 to the tensor
}:3 € RA™™ defined as Rmk = Rjy, for all 4,5,k = 1,...,n, so that R(z,-,z) =
R(-,z,z) for all z, z € R"}. The mapping (x,y, 2) — T'(-,z,y, ) is cone multi-linear,
hence by Theorem 8.1.2 we have

IU'C(T('a i'?:ga 2)7T('7§:7g7 2)) < LS,LMC(‘%a 'CE) + L3,2MC(Q7 g) + L3,3MC(272)7

with
L371 = L372 = L373 S tanh(ln(AT)/4),
where
LTy g v + Tigw a L gk + Tige T g 1 + Lo v Lo 2 kg
Ar = max

1<ii' g’ <n T jrwea T v + Tigr o a T e + Do T g + Do v T e
1<k 1I'<n
The equality Lz = Lz2 = L33 follows from Remark 8.1.3 (d) and the expression
for Ap follows from Theorem 8.2.1.

The above example shows that in order to obtain bounds for each entry of the
Lipschitz matrix of a nonnegative tensor, it suffices to apply Theorem 8.2.1 on the
tensors obtained by permuting the indexes. With this procedure, we directly obtain
the following corollary of Theorem 8.2.1:

Corollary 8.2.5. Suppose that d > 2. Let k,l € {1,...,d},k#1,C=R}" x ... x
R}, K =R} and T € R} ™", Then it holds

suIC) diam (T (21, ..., Th—1, % Thpts - - - T—1, RY i1, . wa)i ) < In(Agy(T))
A

(8.9)
where
TR, s -+ das 5)
) AR ] b
Agg(T) = max Tl (i, 4l — (8.10)
]17]16[711]7---,]d7]d€[nd] T (]17]17 CIEaE 7.7d7.7d)
with
7]‘;7[ . ./ . AN
T (j17]17"'7]d7jd)_
Z TUl(jl),~~-,0k71(J'kfl),jkﬂkﬂ(jk+1),-~~70171(jzf1)7jz,01+1(jz+1)7~--,0d(jd) )
. . . . . . . . ?
16 (00l ]) TU1(31)7---,%—1(];_1)7J;'€,Uk+1(J;’c+1)7---,01—1(J{_1)7J{701+1(J{+1)7---70d(Jé)
0a€6({ja.j}4})
k7l . i . -/ _
T (]17]17 cee 7]d7]d) -
Z Tal(jl),~~-70'k—l(jkfl)ajfczo'kJrl(jk+1)7-~~:0'l—1(jl—1)7j1701+1(jl+1)7~--,¢7d(jd) )
‘Tal(ji)w"vgkfl(j]lcfl)vjkaak#»l(j]/c+1)7"'7al71(j;,1)7j27ol+l(jll+1)7"'7o'd(jél)

o1€6({j1.31})

04€6({jai}})

and, for t = 1,...,d, 6({ji,7;}) is defined as in Theorem 8.2.1.
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Remark 8.2.6. Note that if 7' € R},"?  then for every k,l € {1,...,d}, k # 1
with Ay ;(T) defined as in (8.10), it holds Ay ;(T) = A;x(T). This observation is
consistent with the fact that if d = 2, then T = M € R}™ is a matrix and
k(M) = r(MT) (see Theorem 5.2.7 and (5.8)).

In the particular case of a third order tensor T € R7}™*", there is a way to
compute

sup diam(T'(+,RY, y); prn ),
yeERY

using the Sinkhorn-Knopp method [56]. Indeed, let C' = R’}, then by (8.6) and (8.8),
we have

. Z? s'=1 (Ti,s,kn’,s/,k’ + T‘i,s’,kT‘i’,s,k/)ysys’
sup diam(7T'(-,C,y); ux) = max sup —mn .
yERT 1i<i'<n yery, Yss=1(Tv sk Tis i + Tir o kT k7 )YsYs
<k<k'<n
The objective in the right hand side of the above optimization problem is the ratio
of two symmetric quadratic forms. That is
T (Z7k72/7k/)
: y B y
sup diam(7'(+,C,y); px) = max  sup R
yeR? 1<i<i’'<n yeR™ , Y ALRLE ) g
* 1<k<k/<n T
where AWK K) BlkIE) ¢ R7%™ are the symmetric matrices defined for every
/
s, =1,...,n as

(izkvilvk/) —

ikl K
BN = T4 Ty oo + T T and AU =Ty 0T g + T 1T g

Proposition 8.2.7. Let A, B € R}\" be symmetric matrices, then there exists a
unique v € R’ such that D, AD, is a doubly stochastic matrix with D,, = diag(u).
Furthermore, it holds

T
y By _

sup —= = max usBgguy.

yeRT | Yy Ay 1<s,8'<n

Proof. By the discussion in Example 5.2.10, there exists u € R, such that D, AD,
is doubly stochastic with D, = diag(u). Let ¥4y = {z € R} |21 + ...+ z, = 1}.
Then, for every y € ¥4+, we have y' DyAD,y = 1. It holds R? | = {D,z|z € R}

and thus - -
y By y DuBDyy

sup yTDuBDuy.

sup =
vern, Y Ay yern, Y DyADyy  yes,
Let || - |1 denote the £! norm on R”, then
T T

D,BD D,BD
sup yTDuBDuy = sup M = sup T Puduly

Jox, S TR iR Tl
= 1§123>;n(DuBDu)575/ = 1591,3};71 usBs sy,

where the second inequality follows from Theorem 1 in [7] and the before last equality
follows from Theorem 1 in [62]. O
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We believe that a similar idea can be used for tensors of higher order by solving
the generalized Schrédinger equation discussed in Sections 4.2.2 and 11.2.5 and leave
such generalization to future work.

9 Existence of positive eigenvectors

Theorem 7.3.1 combined with the results of Section 6.2.2 and/or the multi-linear
Birkhoff-Hopf theorem 8.1.2 provide various conditions which ensure that a mapping
has an eigenvector in the interior of a solid closed cone. However, all these result rely
on the fact that the underlying mapping contracts under the vector valued Hilbert
metric induced by the cone.

The purpose of this section is to prove results which guarantee the existence of a
positive eigenvector of mappings which are not strict contractions, where by positive
etgenvector we mean an eigenvector in the interior of the cone. In the context
of nonnegative matrices, the classical assumption is that the matrix needs to be
irreducible in order to have a positive eigenvector. Irreducibility is not a necessary
condition for the existence of a positive eigenvector and we refer to Theorem 6.4.5
of [30] or Theorem 3.10 [11, Chapter 2| for a necessary and sufficient condition.
However, irreducibility implies more properties than merely existence of a positive
eigenvector such as uniqueness of the positive eigenvector. In facts, it is shown in
Lemma 3.17 of |11, Chapter 1| that a linear mapping L: C — C, where C C V
is a closed cone in the finite dimensional real vector space V is irreducible, i.e. it
leaves no proper face of C' invariant, if and only if L has exactly one (up to scalar
multiples) eigenvector in C, and this vector is in int(C). Generalizing irreducibility
to nonlinear mapping is a delicate task and it turns out that generalizing different
characterizations of linear irreducible mappings lead to different results. In this
section we consider two generalizations of irreducibility. The first one implies that
all the eigenvectors of a multi-homogeneous mapping are in the interior of the cone
and generalizes the following characterization of irreducible matrix: M € R}*" is
irreducible if and only if there exists k > 1 such that (I + M)* € R"%"™. The second
one merely implies the existence of an eigenvector in the interior of the cone and
generalizes the characterization of irreducible matrix which states that M € R}*"
is irreducible if and only if the graph whose adjacency matrix is M is strongly
connected. The main motivation for these particular generalizations of irreducibility
is that they respectively reduce to the definitions of irreducible and weakly irreducible
tensors introduced in [31, 24, 26]. We shall point out that a condition characterizing
the existence of an eigenvector in the interior of the cone R’} of order-preserving
homogeneous mappings is discussed in |58, Theorem 5.1|. In Section 10.4, we discuss
a third generalization of irreducibility which guarantees that a positive eigenvector
is unique.

9.1 Irreducible mappings on the product of cones

We consider the following definition of irreducible mapping on the cone C C V where
V=V x...x Vyis the product of finite dimensional real vector spaces.
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Definition 9.1.1. Let C C V be a solid closed cone and let F: C — C be a mapping.
We say that F is irreducible, if for every x € C with z; # 0 for all ¢ = 1,...,d,
there exists a positive integer m, such that H™=(x) € int(C), where H: C — C is the
mapping defined as H(z) = z + F(z) for all x € C.

If d =1, C =R} and F(z) = Mx for some M € R}*", then F is irreducible
in the sense of Definition 9.1.1 if and only if M is an irreducible matrix and in this
case H(x) = (I + M)z so that H™(z) = (I + M)™x for all m > 1.

A linear mapping L: V — V', where V is a finite dimensional real vector space
V', leaving a solid closed close cone C' C V invariant is irreducible if it does not leave
any proper face of C' invariant (see Definition 3.14 [11, Chapter 1]). It follows from
Theorem 3.20 of [11, Chapter 1] that the latter definition is equivalent to Definition
9.1.1 in the case where d = 1 and F is a linear mapping. A similar equivalence
holds for order-preserving and multi-subhomogeneous mapping and is proved in the
following result which generalizes [40, Lemma 6.10 (v)|°:

Proposition 9.1.2. Let C C V be a solid closed cone and let F: C — C. Then, F
is irreducible if, and only if, for every face Q of C such that Q # C and @; # {0} for
alli=1,...,d, it holds F(Q) ¢ Q.

Proof. Let H: C — C be defined as H(z) = = + F(x) for all x € C. Let Q be
a face of C such that Q@ # C and @Q; # {0} for all ¢ = 1,...,d. If F(Q) C Q,
then we have H(Q) C Q and thus F is not irreducible since H™(x) € Q for all
m > 1 and Q # C implies that @ Nint(C) = (). We prove the reverse direction.
For z € C, let Q(z) = {y € C|3a € RY, st. a®y =¢ 2} be the face of C
generated by z. Now, let x € C with x; # 0 for all i = 1,...,d. If € int(C), then
H(x) € int(C) and we are done. Suppose that z ¢ int(C). We have Q(z) C Q(H(z)).
As F(Q(z)) ¢ Q(x) by assumption, we have Q(z) € Q(H(z)). For all y € C,
it holds span(Q(y)) = Q(y) — Q(y) since Q(y) is a cone in V. It follows that
Q(z) € Q(H(z)) implies dim(span(Q(x))) < dim(span(Q(H(x)))). Now, for k > 1,
we have  <¢ H(x) =¢ H2(x) =¢ ... Z¢ HF(x) and thus HF¥(x); # 0 for all
i =1,...,d. Hence, we can repeat the argument, and find m < dim()) —d such that
span(Q(H™(x))) = V. It follows that H™(x) € int(C). Hence, F is irreducible. [

Remark 9.1.3. The proof of Proposition 9.1.2 shows that if F is irreducible, then
the integer m, of Definition 9.1.1 satisfies my, < dim(V) — d.

The condition of Definition 9.1.1 is less restrictive than requiring that no proper
face of C is left invariant by the mapping. Indeed, as shown in Example 9.1.4 below,
there are mappings which are irreducible in the sense of Definition 9.1.1 and leave a
proper face Q of C invariant. This does not contradict Proposition 9.1.2 since there
exists 7 such that @; = {0}. The motivation behind Definition 9.1.1 is to prove
that a multi-homogeneous irreducible mapping has all eigenvectors in the interior
of the cone. Since an eigenvector x of F: C — C is required to satisfy x; # 0 for
all i = 1,...,d (see Definition 4.1.1), it turns out that the condition in Definition
9.1.1 is more appropriate than requiring that for all y € C\ {0} there exists m, such
that H™(y) € int(C), where H(z) = z + F(z) for z € C, which is equivalent to the
condition that F does not leave a proper face of C invariant.
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Example 9.1.4. Let S,T € R\"", C =R} x R} and F: C — C defined as

f(x7y) = (T('>x>y)>5('7x>y))'

Then, for all (z,y) € C such that z,y # 0 we have F(z,y) € int(C) and thus F is
irreducible. However, note that F(0,y) = F(z,0) = 0 for all (z,y) € C. It follows
that for every face @ of R, F leave the proper faces {0} x @ and @ x {0} of C
invariant.

Next, we prove that the eigenvectors of an irreducible mapping are all in the
interior of the cone.

Proposition 9.1.5. Let C C V be a solid closed cone and let F: C — C be multi-
homogeneous of degree A € R%*? and irreducible. Every eigenvector u € C of F
satisfies u € int(C).

Proof. Let H: C — C be defined as H(z) = z + F(x) for all € C. Furthermore,
let A € R be such that F(u) = XA ® u. We prove by induction over k > 1 that
H*(u) <¢ 0 @u with 6 = dx_1 +)\06,‘?_1 c RﬂlrJr and §; =14+ € Ri+. For k =1,
we have H(u) = (1 +A)®u = §; @u. Let k > 1 and suppose that H*(u) <¢ 6 @ u.
Then,

F(HM(u)) 2¢ F(6p @ u) = 83 @ F(u) = (8 o A) @ u,

so that
H () = 1 (u) + F(HF (1) Z¢ 0k @ u+ (07 0 X) @ u = 8j11 @,

which concludes the induction. Finally, as F is irreducible, there exists a positive
integer m such that H™(u) € int(C). It follows that u € int(C) since H"™(u) =¢
dm ®u € int(C) and §,, € RY . O

The above results together with Theorem 4.1.5 imply that a continuous multi-
homogeneous mapping always has a positive eigenvector.

Theorem 9.1.6. Let C C V be a solid closed cone and let F: C — C be continuous,

multi-homogeneous of degree A € R¥? and irreducible. There exists u € int(C) and
A € R? such that F(u) = A ® u.

Proof. As F is continuous, Theorem 4.1.5 implies that there exists u € C and A € Ri
such that uy,...,uq # 0 and F(u) = A ® u. Then, Proposition 9.1.5 implies that
u € int(C). O]

We conclude by noting that when the cone C is polyhedral and the mapping
defined on C is order-preserving and multi-homogeneous, irreducibility can be checked
in a finite number of steps. This is proved in the next proposition which generalizes
|97, Theorem 5.2] and [40, Lemma 6.10 (iii)]®. The latter results hold for the case
where F is a polynomial mapping on C = R’" x ... x ]Ri’i. Let us recall that for a
positive integer N we let [N] ={1,...,N}.
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Proposition 9.1.7. Let C C V be a solid polyhedral cone and for ¢ = 1,...,d,
consider v; 1, ..., v; n, € C;\{0} such that C; = cone({v; 1,...,v; n,}). Furthermore,
let 7: C — C be order-preserving and multi-homogeneous and define H: C — C as
H(z) = x + F(x) for all x € C. Then F is irreducible if and only if there exists
a positive integer m < (dim(V) — d) such that H™(v1j,,...,vaj,) € int(C) for all
J1 € [N1l, ..., ja € [Nd].

Proof. Suppose that F is irreducible and let j; € [Ni],...,7q € [IVg]. Then, there
exists an integer my, . j, > 1 such that H™i-da(vyj,...,v4,,) € int(C). By
Remark 9.1.3, we know that m;, _;, < (dim(V)—d). Note that for all z € int(C), it
holds H(z) € int(C) since z Z¢ H(x). It follows that m = max;, ¢(n,).... jue[Na] M1.....5a
satisfies the desired property. Now, suppose that there exists a positive integer m <
(dim(V) — d) such that H™(v1,,...,vaj,) € int(C) for all j; € [N1],...,ja € [Nq].
Let z € C with x; # 0 for all i =1,...,d. Fori e {1,...,d}, let a;1,...,00,n, >0

be such that x; = valzl a;1,v;1,- The coefficients «;1,..., a1 N, exist since C; =
cone({v;1,...,v;n;}) by assumption. Furthermore, as z; # 0, there exists j; € [IV;]

such that «; ;, > 0 and it holds «; j,vi j, 2¢, ;. Hence, with o, = Zle g, =
(1j1s--yaj,)/ax and v = (v1j,,...,va ,) We have @ ® v <¢ = and a € (0,1)%
Now, as F is multi-homogeneous there exists A € RY? such that g @ F(y) =
F(B®y) for all B € (0,1)% and y € C. Note that H is order-preserving since F
is order-preserving. It follows that H™(a ® v) <¢ H™(x). To conclude the proof,
we show that there exists a,, € (0,1)? such that a,, @ H™(v) <¢ H™(a @v). As
H™(v) € int(C) this will imply that H"(a®wv) € int(C) and therefore H™(z) € int(C)
since H™ is order-preserving. To construct au, € (0,1)? we show by induction that
for every positive integer k > 1 there exists ay, € (0,1)? such that oy ® H*(v) =¢
HF (a®w). For k =1, let a; = inf{e, @}, where the infimum is taken with respect
to the partial ordering induced by Ri, i.e. component wise. The multi-homogeneity
of F implies that

a1 ®@H(v) = a1 ®@v+ a1 @ F(v) jca@v—l—aA@]-"(q))

Suppose that for k > 1, there exists ay, € (0,1)? such that ap @ H*(v) <¢ HF(a®v)
and let a1 = inf{ay, a’,?}. Then, we have

a1 @ H M (0) = a1 @ HE(v) + a1 © ]:(/Hk(v))
<c o, @ HH(v) + gt @ F(HE (v))
= ay, @ H* (v) + F(ou, @ H¥(v))
=c Ha®v) + F(H (a@v) = H T (aowv),

which concludes the inductive proof. As H™(v) € int(C) and o, ® H™(v) =¢
H™ (o ® v) <¢ H™(z) this concludes the proof. O

9.2 Irreducible nonnegative tensors

We relate Definition 9.1.1 with the definitions of irreducible tensors which were
introduced in the study of fP-eigenvectors, rectangular ¢P4-singular vectors and
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(P1--Pd_gingular vectors of a nonnegative tensor (see Sections 4.2.4, 4.2.3 and 4.2.1
respectively).

The next lemma implies that the irreducibility of the mappings characterizing the
P 4-singular values of a nonnegative matrix and the fP-eigenvectors, the rectangular
fP9-gingular vectors and the /P%"-singular vectors of a nonnegative tensor do not
depend on p,q,r € (1,00) and is entirely determined by the zero pattern of the
entries of the tensor.

Lemma 9.2.1. Let C C V be a solid closed cone. Let F: C — C and G: C — C be
such that for all z € C it holds F(z) ~¢ G(x). Then, F is irreducible if and only if
g is irreducible.

Proof. Let #:C — C and H: C — C be defined as H(x) = z + F(z) and H(z) =
z + G(x) for all x € C. We have H(z) ~c H(z) for all z € C. Tt follows that for
all m > 1 and z € C, H™(z) ~c H™(z). In particular, we have H™(z) € int(C)
if and only if H™(x) € int(C) which shows that F is irreducible if and only if G is
irreducible. O

Corollary 9.2.2. Let C = R* x ... xR} and 7: C — C. Let ay,...,aq > 0 and
define F: C — C as F(z) = (F(2){',..., F(x)3) for all x € C. If F is irreducible,
then F is irreducible.

Proof. Fori=1,...,d, as a; > 0, we have x; ~¢, z;* for all z; € C;. It follows that,
for all z € C, we have x ~¢ (2{*,...,25") and thus F(z) ~¢ F(z). The conclusion
follows form Lemma 9.2.1. O

The following lemma implies that Definition 9.1.1 is equivalent to the definition
of irreducible tensors introduced in [31] when F is the mapping characterizing the
¢P1rPd_gingular values of a nonnegative tensor.

Lemma 9.2.3. Let C = R} x ... x R}, T € RY**" and py,...,pq € (1, 00).
Define F7: C — C as

.F(ZC) = (T('7 T2y -y xd)l/(plil)ﬂ s 7T(‘,1:17 <oy Td—1, ')1/(pd71)) Vo € C7
and let Z = U%_; ({i} x [n;]). Then, the following statements are equivalent

a) F is irreducible.

b) For every J C Z such that J # 0 and J; # [n,] for all i = 1,...,d where
Ji = {l; € [ng]|(i,l;) € T}, the following condition holds: There exists k €
{1,...,d} and j1 € [ni],...,Jqa € [ng] such that T, ;, > 0, jp € J; and
Ji € [ng) \ J; for all i € {1,...,d} \ {k}.

Proof. For z € C, let Q(z) = {y € C|Ja € RL, st. @ ®y =<¢ z}. Suppose that F
is irreducible. By Corollary 9.2.2, we may assume that p; = 2 for i = 1,...,d. Let
J C I be such that J # 0 and J; = {l; € [n;] | (4,1;) € T} # [ni] for alli =1,....d.
Define z € C as %, = 0 if (4,5;) € J and z; j, = 1 otherwise. By Proposition 9.1.2,
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we know that Q(F(z)) ¢ Q(z). Hence, there exists (k,l;) € Z such that F(z)y,, >0
and 2z, = 0. Now, F(z)k,, > 0 implies the existence of ji,...,jq such that

Tjy,ga?lg1 " 2=,k 1 ZhA iy~ 2dyjg > 0

It follows that T}, j, > 0 and z;;, > 0 for all i € {1,...,d} \ {k}. As 2 >0
implies that (7,7;) ¢ J, this proves b). Now, suppose that b) holds. Again, by
Corollary 9.2.2, to prove that F is irreducible, it is enough to consider the case
p1=...=pg=2. Let Q be a face of C such that Q # int(C) and Q; # {0} for all
i=1,...,d and set J = {(i, ;)| ®ij, = 0,Yx € Q}. Then, J # 0 and J; # [n;] for
alli=1,...,d where J; = {l; € [n;] | (4,1;) € J}. Hence, there exists k € {1,...,d}
and j1 € [m],...,Jq € [ng] such that T}, ;, > 0, jr € J and j; € [ng] \ J; for
all i € {1,...,d} \ {k}. Furthermore, as Q is a face, there exists z € Q such that
21, = 0 if and only if (i,1;) € J (2 is any element of the relative interior of Q). In
particular, we have z; j, > 0 for all 7 # k. It follows that

F(z)kdk Z 1_“7‘17"'7de1va e Zk*lyjk:*lzkdrlvjkﬁ»l e Zd:jd > O'
As xp 5, = 0 for all x € Q, we have F(Q) ¢ Q. Finally, Proposition 9.1.2 implies
that F is irreducible. O

The following lemma implies that Definition 9.1.1 is equivalent to the definition
of irreducible tensors introduced in [24] when F is the mapping characterizing the
fP-eigenvectors of a nonnegative tensor.

Lemma 9.2.4. Let C = R, T € R}*" an m-th order tensor, and p € (1,00).
Define F: C — C as

F(z)=T(,z,...,2)Y®D  vrec,
and let Z = {1,...,n}. Then, the following statements are equivalent

a) F is irreducible.

b) For every J C Z such that J # () and J # Z, the following condition holds:
There exists ji,...,Jjq € Z such that T}, ., >0, j1 ¢ J and jo,...,ja € J.

Proof. By Corollary 9.2.2, we may assume that p = 2. The result now follows from
Theorem 6.1 in [98]. O

Next we prove that Definition 9.1.1 is less restrictive than the definition of
irreducible tensors introduced in [26] when F is the mapping characterizing the
rectangular (P ¢-singular vectors of a nonnegative tensor.

Lemma 9.2.5. Let C = R x R}, T € RIP*X"*"X" 5 d-th order tensor, and
p,q € (1,00). Let F: C — C be defined as

Fla,y) = (TC 2 m, gy VO D@y, gy YD)
N e N —’ S

(a—1) times (d—a) times a times (d—a—1) times

for all (z,y) € C, and let Z; = {1,...,m},Zo = {1,...,n}. Consider the following
statements:
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a) F is irreducible.

b) For every iy € Zy,iy € Zy and J; C Iy, Jo C Iy such that Ji, Jo # () and
N # 11, Jo # Iy, there exists ji,...,5¢ € Z1 and jgt1,...,74 € Zo such
that T3, it gertsenda > 05 Tidavizysia > 0, 925+ 3 Ja € T1Jat2s - - -5 Jd € T2,
1 ¢ T, Jar1 & Jo.

Then, b) implies a).
Proof. Follows from Theorem 2.4 in [99]. O
The following example shows that, in Lemma 9.2.5, a) does not imply b).

Example 9.2.6. Let T € Rixgxg be defined as
Tipg=Tin2=Ti13=Ti31=To12="T213="T221=T312="T313=1,
and T ; , = 0 otherwise. Let C = ]R§r X Ri and define F: C — C as
F(z,y) = (T(y,9). Tz, y)  V(z,y)€C.

Then, for every x = (21,22,23) ",y = (y1,y2,¥3) " € R%, it holds

x1 Y1 y1(y1 + y2 + 2y3) z1(y1 + y2 + y3) + (2 + 23)(y2 + y3)
J-"( z2 |, | y2 ) = ( y1(2y2 +u3) |, Loy )
T3 Y3 y1(y2 + y3) T1Y1

In particular F is irreducible. However, for = (1,0,0)" and y = (0,1,0) " it holds
F(z,y) = ((0,0,0)7,(1,0,0)") and thus, by Lemma 2 in [26], T does not satisfy b).

We refer to [40, Section 6.4]° for a detailed discussion on irreducibility of polynomial
mappings induced by a nonnegative tensors, i.e. mappings of the form

]'—(13) = VfT(l'l,...,l‘l,. . .,xd,...,xd),
S——— ———
a] times aq times

where T € RT"'Xﬁm and m=a; +...4+ay.

9.3 Weakly irreducible mappings

In [34], a definition of graphs associated to order-preserving 1-homogeneous mapping
on R? is introduced. It is proved that when the graph is strongly connected,
the mapping has a positive eigenvector. This result was then reused to prove the
existence of positive ¢P-eigenvectors [31], rectangular ¢P9-singular vectors [65] and
¢P1--Pd_gingular vectors [36]°, [31] of nonnegative tensors. The nonnegative tensors
for which the result can be applied are called weakly irreducible tensors.

Let V=R™ x...xR™ and C = R" x ... x Ri"’. We introduce the definition of
a graph induced by an order-preserving multi-homogeneous mapping with a similar
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approach as [34]. For the definition of this graph, consider, for all i = 1,...,d,j; =
1,...,n;, the mapping u(Ji) R4+ — C defined as

d

(u(i,ji)(t))k’lk _ {t if (k,lk.) = (4, Ji) (k1) € U {v} x n,, (9.1)

1 otherwise,

Then, the graph associated to an order-preserving multi-homogeneous mapping is
given by the following:

Definition 9.3.1. Let F: C — C be order-preserving and multi-homogeneous. The
directed graph induced by F, denoted G(F) = (Z, &), is defined as follows: There is
an edge from (k, i) to (4,7;), i.e. ((k:,lk), (Z,jl)) €&, if

lim F (u("99) (1))

= OQ.
t—o00 kg

If d = 1, then the graph of Definition 9.3.1 reduces to that introduced in [34].
Moreover, if F(z) = Max for some nonnegative matrix M € R}*", then G(F) =
({1} x [n], &) is the graph with M as adjacency matrix. If G(z,y) = (My, M "z),

then G(G) = (({1} x [m])U ({2} x [n]), ) is the graph with ( 0

matrix. Weakly irreducible mappings are then defined as follows:

M .
0 )& adjacency

Definition 9.3.2. Let F: C — C be order-preserving and multi-homogeneous, and
let G(F) = (Z,€) be its associated graph. F is said to be weakly irreducible if

F(int(C)) C 1nt( ) and for all v € [d], I, € [n,] and (j1,...,Jq4) € [n1] X ... X [ng],
there exists 4, € [d] so that there is a path from (i,, j;, ) to (v,,) in G(F),

The condition in Definition 9.3.2 is equivalent to requiring that G(F) is strongly
connected when d = 1. Generally, if G(F) is strongly connected, then G(F) satisfies
the assumption of Definition 9.3.2 but the converse implication may fail when d >
1, as shown by the mapping of Example 9.3.3 below. The condition F(int(C)) C
int(C) for weak irreducibility is meaningful as our goal is to prove the existence of a
positive eigenvector. Indeed, if F is order-preserving, multi-homogeneous and has an
eigenvector u € int(C) then F(int(C)) C int(C). F(int(C)) C int(C) is implied by the
strong connectivity of G(F) but not by the condition on G(F) discussed in Definition
9.3.2. Furthermore, this condition is necessary to prove that for the particular case
where F is the mapping characterizing rectangular ¢P4-singular vectors of tensors,
Definition 9.3.2 reduces to the corresponding definition of the literature (see Lemma
9.4.5).

Example 9.3.3. Let ny = ng = 2 and F € H? with

F((s,1), (u,v)) = ( (mi.n{su, Sv}>l/4’ (maX{su,tv}> 1/4)

min{tu, tv} max{sv, tu}

Then, F is multi-homogeneous of degree A = 1 G 1), F(1,1) = (1,1) and G(F)
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is given by
Next we show that if G(F) = (Z,€) is undirected, then G(F) satisfies the
connectivity assumption of Definition 9.3.2 if and only if G(F) is strongly connected.

Lemma 9.3.4. Let F: C — C be order-preserving and multi-homogeneous and let
G(F) = (Z,€) be its associated graph. If for every (i, j;), (v, 1) € Z, ((i, i), (v, 1)) €
& implies ((1/, L), (Z,jz)) € &, then F is weakly irreducible if and only if G(F) is
strongly connected.

Proof. Let A € R™? be the homogeneity matrix of F. If G(F) is strongly connected,
then G(F) satisfies the condition of Definition 9.3.2. Furthermore, as G(F) is strongly
connected, for each (k,l;) € I there exists (i,j;) € T such that ((k, ), (i,7:)) €
€ and therefore there exists ¢ > 0 large enough so that F(u(™9)(t))g;, > 0. As
w3 (t) € int(C), for every x € int(C) there exists @ € R?_ such that w79 (t) <
a®z. Tt follows that F(ul™9) (1)), <c Fla® 2)ry, = a? @ F(z)g, since F is
order-preserving and multi-homogeneous, and thus F(x); > 0. As the latter is
true for every (k,l) € Z, it follows that F(int(C)) C int(C) and thus F is weakly
irreducible. Now, suppose that F is weakly irreducible and let (v,1,), (7,ly) € T.
Furthermore, let (j1,...,74) € [n1] X ... X [ng]. As F is weakly irreducible, there
exists iy,75 € [d] such that there is a path from (iy,J;,) to (v,1,) and a path from
(i3, Jiy) to (#,1p) in E. If i, = iz, then there is a path from (v,1,) to (7,1) since the
paths can be walked back by assumption. If 4, # i3, note that, by weak irreducibility
of F, for all k = 1,...,d, there is a path from one of (1,j1),...,(d,jq) to (k,jr).
As every path can be walked in both directions, it follows that for every i,k € [d]
there is a path from (i, j;) to (k,jx). In particular, there is a path from (i,,j;,)
to (i7,Ji,). Hence, there is a path from (v,l,) to (7,l;) which shows that G(F) is
strongly connected. O

We prove the following generalization of [34, Theorem 2| which is discussed in
[39, Theorem 4.3]°:

Theorem 9.3.5. Let C = R} x ... x RT and let F: C — C be continuous, order-
preserving and multi-homogeneous of degree A € ]Rﬂerd. Suppose that A is irreducible
and p(A) = 1. If F is weakly irreducible, then F has an eigenvector in int(C).

For the proof of Theorem 9.3.5, we need the following lemma:

Lemma 9.3.6. Let C = RY' x ... x ]RT and let F: C — C be continuous, order-

preserving and multi-homogeneous of degree A € R‘fd. Let w € int(C*), &,(x) =
(w1 (), ..., wa(zq)) € RL for all z € C and define ., = {z € C|&,(x) = 1}. For
every € > 0, define the mapping F): C — C as

FOr) = Fla) +e€ ()  ®1  Vrel. (9:2)
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Then, F(©) is continuous, order-preserving and multi-homogeneous of degree A.
Furthermore, there exist ()52, C (0,1), (z(%)2 C %, N int(C), (/\(E’“))i‘;1 C
R, z* € ¥, and A* € RZ such that for all k > 1 it holds F(¥) (x()) = Aler) @ len)

lim e, =0, lim z(%%) =2*  lim M%) =X* and F(z*) = A @ 2™
k—00 k—00 k—o00
Proof. Let € > 0, then it is straightforward to verify that F( is continuous, order-
preserving and multi-homogeneous of degree A. Furthermore, note that F(X,) C
int(C) and thus the existence of z(9) and Al follows form Lemma 4.1.6. Finally, the
existence of (e;)7°,, x* € Xy, and A* € R? with the desired properties can be proved
in the same way as in the proof of Theorem 4.1.5. O

The proof of Theorem 9.3.5 relies on the following construction which generalizes
the technique proposed in Section 3.2 of [34]: Let F: C — C be continuous, order-
preserving and multi-homogeneous of degree A € ]RiXd. Suppose that A is irreducible
and let G(F) = (Z, ) be the graph associated to F, and b € R? | the Perron vector
of AT. For r > 0, define

d

U(r)=sup{t>0| min  Flu®®@) T F kW) < T}'
( ) p{ B ‘ ((Z,jl),(k‘,lk))eg ( ( ))7'7.71' s—]l ( ( ))s,as -
(a‘17~“’ad)€j S;Z

Note that, by definition of G(F), if F is weakly irreducible, then ¥(r) < oo for any
r > 0 and W is an increasing function. Moreover, note that ¥ has the following
property: Let (ji,...,ja) € J, i € [d], (k1) € Z and t > 0, if ((i,5:), (k, ) € €
then

d
[T 70w <r — < U(r). (9.3)
s=1

In the case d = 1, the proof of Theorem 6.2.3 [60] uses on the following idea: if
F:C — C is order-preserving, homogeneous, G(F) is strongly connected and the
eigenvector z* € R™ \ {0} given by Lemma 9.3.6 has a zero entry, then one gets
the contradiction z* = 0. We use a similar idea for the case d > 1 and prove that
if 7:C — C is a mapping satisfying the assumptions of Theorem 4.1.5 and z*, the
eigenvector of F given by Lemma 9.3.6, has a zero entry then ! = 0 for some i € [d],
contradicting the fact that x* is an eigenvector.

Proof of Theorem 9.3.5. Let w € int(C*), &, (z) = (wi(z), ..., wa(zq)) € R for all
z € C and define ¥, = {z € C|&,(z) = 1}. Let (&), C (0,1), (z(*)2, C
¥, Nint(C), (/\(6’“))2":1 C RY,, 2* € B, and A* € R? be the sequences given by
Lemma 9.3.6 and for all k > 1, let F(¢): C — C be defined as in (9.2) with € = ¢
Since A(6%) — A, there exists a constant My > 0 such that

d
[T <My vEkeN. (9.4)

s=1
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Let J = [n1] X ... X [ng] and suppose by contradiction that z* € %, \ int(C). By

taking a subsequence if necessary, we may assume that there exists (ji,...,jq) € J
and w € [d] such that min, ¢, ]xg ts) = xij), Vs € [d],k € N, and limy_, :L‘EJ Jl =
x) . = 0. By the compactness of ¥,,, there exists v > 0 such that ys;, <7 for all

WJW
Yy € Xy. It follows that

d
0 < lim (:I:(E’?)) < A7 lim (2 () )b =0, (9.5)

k")OO 1 EEVE] k*)OO WyJw
s=

Since z* € 3y, there exists (I1,...,lq) € J with 7, > 0 for all s € [d]. Thus,

d d
lim [Tl = [[(a2,.)" > o. (9.6)

k—oo
s=1 s=1
Let v € [d], by assumption on G(F), there exists i, € [d] and a path (i,,j;,) =
(m1,6my) = (M2,&my) = oo = (M, &my, ) = (1) in G(F) with N, <ng+...+
ng. Define i(1),i(2),...,i(N,) € J as

m if s = as
is(a) = {5 o HEEm Vs € [d], a € [N,).
Js otherwise.

Fix k € N and let t = ) /x(e’“) and a = ((:Ugejl))*l, ce (a:(ek.))*l). Note that

ma2 fm m2,Jmog d,jaq
o is well defined since z(%) € int(C) for all k. We have u(™m2:&m2) (1) <¢ a ® z()
and thus F(u(m24m2) (1)) <¢ F(a @ (). Furthermore, as F(y) <¢ F()(y) for all
y € C, it holds F(a ® z(%#)) <¢ F) (a @ z(*)). Tt follows that

d d
(6 ) bm ma,Sm bs (E ) bm € bs
(xmﬁ,jml) ! l:Ilf(“( - 2)(t))s,is(1) < ("”Cm]i,jml) ! 1:[1]:(0‘ ® ol k))s,is(l)
d d
< (a:i;??jml )P H-F W @ ()’ Hs(1) = ( 11 (ngjs))m) H]:(Gk ). 13(1)
s=1,
s#EM
d —-1 d d
= (TLeh) TIs) = Gl v L)
s=1, s=1 s=1
s#£m1
< (i), )P M, (9.7)
where My > 0 satisfies (9.4). Hence, by (9.3), t %)émz /ngl’;?jmz < ¥ (Mp) and
d d
[[a! ) < an TS0 with My = w(a)e.
s=1 s=1
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Applying this procedure again to (ms, &), we get the existence of a constant My > 0
independent of k, such that

d
[L ) < 2t H or)"”
s=1
Indeed, let t = :1:7;’; ey Jx 7(7611;, my then u™3€m3) (1) <¢ a ® (%) and, similarly to
(9.7), we get
d b d
(1)) TTF (5 0) 5 ) < (), )02 [T Fla@ @)l )
s=1 s=1
d -1 d
< (x(ek?ng e Hf * Ot ® x(fik))s is(2) = ( H (:L,S;:))bs) H Ek) 513(2)
s=1 s=1, s=1
s#ma
- S SONRCSIRY: - ()
€ s € bm € bm
=(IT ) T el =, e [ <l Pt

s#ma

Hence, with My = W(MyM;)’ms, we get (x(e’“) /l‘(ek)~ Yoms < My which

m3,&mg/ M3, Jmg
implies the desired inequality. Repeating this process at most NV, times, we obtain

7, > 0 independent of k, such that

:&

(x(ﬁk))bl,

vy

d d
(@ = [T ) <w [T veen.  (98)
s=1 s=1

X
N
AN

Taking the product over v € [d] in (9.8) and dividing by ngl(ngfs))(dfl)bs shows

d d
H (€k H Ek) Vk € N,
v=1 s=1

where v = H:f:l vy. Finally, using (9.5) and (9.6) we get a contradiction. O

9.4 Weakly irreducible nonnegative tensors

We relate Definition 9.3.2 with the notions of weak irreducibility introduced in the
literature of nonnegative tensors. To facilitate the discussion, we first prove the
following simple but useful lemma which implies that the weak irreducibility of the
mappings characterizing the fP-eigenvectors, the rectangular /79-singular vectors and
the ¢P1-Pd_gingular vectors (see Sections 4.2.4, 4.2.3, 4.2.1) does not depend on p, ¢

or P1,...,Pd:
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Lemma 9.4.1. Let F: C — C be order-preserving and multi-homogeneous. Let
ai,...,aq >0 and let F: C — C be given by

Fla) = (F@)@,..., Fx)%) Ve C.

Let G(F) = (Z,¢€) and~G(]}) = (Z,€) be the graphs respectively associated to F and
F, then it holds € = £.

Proof. Let (i,7j;), (k,lx) € T and u(t) defined as in (9.1). By continuity of s — s%,
we have

lim ]?(u(i,ji)(t)) = lim ]:(u(i,ji)(t))“k - ( lim f(u(@ji)(t))klk>ak

t—oo k.l t—o0 kil t—oo
and therefore it holds ((4, ), (k, 1)) € & if and only if ((4, i), (k, 1)) € E. O

Given a nonnegative tensor T € R™"*"*" depending on which eigenvector problem
is considered for T, the graph of the induced multi-homogeneous mapping can be
quite different. This is illustrated in the following example:

Example 9.4.2. Let T € R3*3*3 be defined as
T27271 = T37271 = T17371 = T27272 = T17173 =1 and Ti,j,k =0 otherwise.

Let F1: R3 — R3, Fp: R3 xR3 — R xR3 and F3: RY xR3 xR3 — R3 xR3 xR3
be defined for all x,y, z € Ri as

./—"1(:(}) = T(',.T,.%'), .Fg(l',y) = (T(',y, y),T(:L’, '7y))u

F(x,y,2) = (T(-,y,z),T(aﬁ, -,z),T(w,y,-)).

Then, with p = ¢ = r = 2, the eigenvectors of F1, Fa, F3 respectively characterize the
fP-eigenvectors, the rectangular ¢P9-singular vectors and the ¢P%"-singular vectors
of T. The graphs G(F;) = (Z;,&;),i = 1,2,3 associated to these mappings are such
that

T ={1}x[3], To=({1}xBNU({2}x[3]), Zs = ({1} xBNHU{2}xBNHU{3}x[3]),

with [3] = {1, 2,3} and are given by
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Note in particular that /7 and F3 are weakly irreducible but not F». Indeed, if we
let (j1,72) = (1,3) € [3] x [3] and (v,1,) = (1,3) € ({1} x [3]) U ({2} x [3]), then the
condition of Definition 9.3.2 fails to be satisfied. Furthermore, we note that none of
the F; are irreducible.

The following lemma implies that Definition 9.3.2 is equivalent to the definition
of weakly irreducible tensors introduced in [31] when F is the mapping characterizing
the ¢P1--Pd_gingular values of a nonnegative tensor.

Lemma 9.4.3. Let C = R’ x ... x R4, T € RY""" and py,...,pa € (1,00).
Define F: C — C as

F(x) = (T(~ a2, ...,z VOV L T(x, . wgoq, )P )) vz ec.

Consider the following graph induced by T: Let G(T) = (Z,€) be defined so that
there is an edge ((k,l;), (v,1,)) € & if there exists j1 € [n1],...,Jqd € [ng] such that
Jk = lg, ju =1, and T}, ;, . j, > 0. Then, the following statements are equivalent:

.....

a) F is weakly irreducible.
b) G(T) is strongly connected.
Furthermore, if F is irreducible, then F is weakly irreducible.

Proof. By Lemma 9.4.1 we may suppose without loss of generality that p; = ... =
pa = 2. Now, let G(F) = (Z, ) be the graph associated to F. Recalling that for all
l=1,...,dand 5; =1,...,n; it holds

Fa), = > Tj,ojm L1 " Ty Tl Loy, " Tdjg VT EC,
J1€[n1l,egi—1€[n—1]
Ji+1€[ni41]5-dd€MNd]

together with the fact that the function u(%7%) : [0, 00) — C of (9.1) satisfies u(’:ji)(t) €
int(C) = R}, x ... x R} for all ¢ > 0, we see that ((k,l;),(v,1,)) € & if and

only if ((k, 1), (v,1,)) € E. Tt follows that G(T') = G(F). Now, note that G(T) is
undirected and therefore Lemma 9.3.4 implies that F is weakly irreducible if and only

if G(F) = G(T) is strongly connected. Finally, if F is irreducible, then Lemma 9.2.3
and [31, Lemma 3.1 imply that T satisfies b) and thus F is weakly irreducible. [

The following lemma implies that Definition 9.3.2 is equivalent to the definition
of weakly irreducible tensors introduced in [31] when F is the mapping characterizing
the ¢P-eigenvectors of a nonnegative tensor recalled in Section 4.2.4.

Lemma 9.4.4. Let C = R, T € R}™*" an m-th order tensor, and p € (1,00).
Define F: C — C as

Fla)=T(,z,...,e)/"")  vrec

Furthermore, consider the following graph induced by T: Let C(T) = (I,f) be
defined so that there is an edge (I, k) € £ if there exists ja,...,jm € [n] such that
ke {j2,. ., jm} and 11, ;. > 0. Then, the following statements are equivalent
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a) F is weakly irreducible.
b) G(T) is strongly connected.
Furthermore, if F is irreducible, then F is weakly irreducible.

Proof. By Lemma 9.4.1 we may suppose without loss of generality that p = 2. Let
G(F) = (Z,€) be the graph associated to F. Recalling that for all I = 1,...,n it
holds

f(.%’)l = Z Tl,jg,...,jmsz T, Vo € C,
J25edm=1
together with the fact that the function %) : [0, 00) — C of (9.1) satisfies u1*) (t) €
int(C) = R, for all ¢t > 0, we see that (I,k) € £ if and only if (I,k) € . Tt follows
that G(F) = G(T). Hence, G(F) is strongly connected if and only if G(T') is strongly
connected. Now, if G(T) is strongly connected, then for every | € [n] there exists
k € [n] such that (I,k) € E. Tt follows that there exists jo,...,jq € [n] such that
T j,,....j, > 0 and thus F(x); > 0 for all z € int(C). Hence, F is weakly irreducible if

and only if G(T) is strongly connected. Finally, if F is irreducible, then Lemma 9.2.4
and [31, Lemma 3.1] imply that 7" satisfies b) and thus F is weakly irreducible. [

Finally, we prove that Definition 9.3.2 directly reduces to the definition of weakly
irreducible tensors introduced in [26] when F is the mapping characterizing the
rectangular ¢P4-eigenvectors of a nonnegative tensor recalled in Section 4.2.3.

Lemma 9.4.5. Let C = R x R, T € R -XMX"X" 4 d-th order tensor, and
p,q € (1,00). Define F: C — C as

Fla,y) = (T¢, z,....x, g,y WO T, a. oy, .y V)
N e e N — —

(a—1) times (d—a) times a times (d—a—1) times

for all (z,y) € C. Consider the following graph induced by T Let G(T) = (Z,8)
be defined so that there is an edge ((k,lx), (v,s,)) € & if there exists ji,...,jq €
[m], jat1, - --,Ja € [n] such that T}, ;, > 0 and one of the following is satisfied:

i) k=1,v=1,j1 =l and s, € {jo,...,Ja}
i) k=2,v=2, jor1 =1l and s, € {Jar2,---,Jd}-
i) k=1, v=2,j1 =l and sy € {Jat1,---,Jd}-
iv) k=2, v=1, jos1 =l and s, € {J1,...,ja}.
Then the following statements are equivalent:
a) F is weakly irreducible.
b) G(T) is strongly connected.

Furthermore, if F is irreducible, then F is weakly irreducible.
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Proof. By Lemma 9.4.1 we may suppose without loss of generality that p = ¢ = 2.
Let G(F) = (Z, &) be the graph associated to F. Recalling that for all j; =1,...,m
and jo = 1,...,n it holds

]:(xvy)ldl = E : Ty ,jaZiz " TjaYias1 Yia V(z,y) €C,
j27"‘7jae[m]7
Ja+1s-Jd€n]

}—(37)2,3'2 = E , Ty, jaTin * TjaYjara  Yia V(z,y) €C,
jl»'“:jﬂe[m]v
Ja+25---Jd€N]

together with the fact that the function u®%) : [0, 00) — C of (9.1) satisfies u®!) (t) €
int(C) = RT, x R%, for all t > 0, we see that ((k,lx), (v,1,)) € & if and only if
((k,lg), (1,1,)) € &, ie. €= E. Hence, if G(T) is strongly connected then G(F)
is strongly connected as well. Moreover, if C(T) is strongly connected, then for all
(k, 1) € T there exists (v,1,) € Z such that ((k, 1), (v,1,)) € € and therefore we have
F ()1, > 0forall z € int(C) which implies that F(int(C)) C int(C). It follows that if
C(T ) is strongly connected, then F is weakly irreducible. On the other hand, suppose
that F is weakly irreducible and let (k,lx), (v,l,) € Z. As F(int(C)) C int(C), there
exists ji,...,Jq such that Tj, _;, > 0and jp =1l f k=1, let ¥ =2 and ' = j,
and if k = 2, let ¥ = 1 and I’ = j;. Then, we have ((k,lx), (K',l")) € £ and
(K1), (k,lx)) € €. Furthermore as F is weakly irreducible, there exists either a
path form (k',1") to (v,1,) or a path from (k,l;) to (v,1,). Both cases implies the
existence of a path from (k,lx) to (v,1,) and thus G(F) is strongly connected which
implies that C(T) is strongly connected and thus proves the equivalence between (a)
and (b). Finally, we prove that irreducibility implies weak irreducibility. Suppose
that F is not weakly irreducible and let us prove that F is not irreducible. If F is
not weakly irreducible, then G(F) is not strongly connected and thus there exists a
nonempty proper set J C Z such that there exists no edge in £ between J and Z'\ J.
Let J1 = {j € /m]|(1,4) € J}, Jo = {j € [n]|(2,5) € J} and consider the faces
Ql = {x S RT‘%ﬁ = O,le c Jl} and QQ = {y S Ri|yj2 = O,ng c JQ} of RT
and R’} respectively. Then, as there is no edge in £ between J and 7\ J, it holds
F(Q) C Q. Hence, to show that F is not irreducible, it is enough, by Proposition
9.1.2, to show that Q1 # {0},Q2 # {0} and Q # C. It holds Q # C since J is a
proper subset of Z. The end of the proof is about showing that J; # @ and J # () in
order to ensure that Q1 # {0} and Q2 # {0}. Note that if either J; = () and Jo = [n]
or J; = [m] and Jy = 0 then, as G(T) = G(F), we have T = 0 which contradicts
F(int(C)) C int(C). Furthermore, if J; = ), then by the previous argument we have
Jo # [n] and furthermore it holds Jy # @ since J # (). But then it holds Tj, _;, =0
for all ji, ..., jq such that j,41 € [n]\ J2 which again contradicts F(int(C)) C int(C).
Hence, we must have J; # (). Similarly, if Jo = (), then we have shown that J; # [m]
and J; # (). However, the latter implies that T},....j, = 0 for all ji,...,jq such that
J1 € [m]\ Ji which contradicts F(int(C)) C int(C). It follows that .Ji,Jo # 0 and
thus, by the above discussion, F is not irreducible. ]

We refer to [40, Section 6.3|° for a detailed discussion on weak irreducibility of
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polynomial mappings induced by a nonnegative tensors, i.e. mappings of the form

f(x):VfT(xl,...,ajl,...,xd,...,a:d), (9.9)
S—— S——
a] times aq times

where T € RT"'Xﬁm and m = a; + ... + aq- The following lemma provides a
convenient way to construct the graph associated to such mappings and is needed
for later discussion.

Lemma 9.4.6. Let 7: C — C be asin (9.9) and G(F) = (Z, £), its associated graph.
Then, F is differentiable and for every = € C it holds ((k, k), (4, 7;)) € € if and only
if g F (@)1, > 0.

Proof. Note that if ((k,x), (4, ji)) € £, then z; j, appears effectively in the expression
of the polynomial F(2);, and thus »2—F(2);, > 0 since = € int(C). Conversely,

611-7]-1.
if %mf(x)mk > 0, then x; j, appears in the expression of the polynomial F(x),
and thus F(uJi(t))y,, — oo for t — oo. O

10 Maximality and uniqueness of positive eigenvectors

Given a nonnegative matrix M € R™ with spectral radius p(M), the Collatz-
Wielandt formula states that

M)
sup min =p(M)= inf max ( m)l.
CCER”J,\{O} z;#0 X z€RY , 1=1,..n T

(10.1)

The left-hand side of (10.1) is useful to prove that the maximal eigenvalue of M
in magnitude corresponds to an eigenvector with nonnegative entries. Indeed, if
Mv = Qv with v € C"\ {0} and § € C, then by the triangle inequality we have
|Mv| < M|v| and thus

O] — i [OT0H] _ o (M)

- < p(M).
v; 70 "Uz‘ ;70 ”Uz‘ - p( )

A generalization of this argument is used in [31] to prove that the maximal ¢P1Pd-
eigenvalue of a nonnegative tensor 7' € R ™" is attained in R}' x ... x R}
On the other hand, the right hand side of (10.1) is useful to obtain upper bounds
on p(M). Furthermore, it implies that the eigenvalue corresponding to a positive
eigenvector of a nonnegative matrix equals the spectral radius. Indeed, if v € R}
is an eigenvector of M with eigenvalue A > 0, then

p(M) < max (M) = A,

i=1,...,n (7

and thus A = p(M). Collatz-Wielandt type formulas are known for homogeneous
mappings on cones and are discussed in [60, Section 5.6], [4] and [35]. Furthermore,
a Collatz-Wielandt formula for order-preserving multi-homogeneous mappings on
C =R} x ... xR} is discussed in [39, Theorem 5.1 |°.
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Eigenvalues of multi-homogeneous mappings on the product of cones are defined
in Definition 4.1.3. For the reading convenience, we recall the definition here: Let
YV =V, x...x Vg be a product of finite dimensional real vector spaces and C C V
a cone. Furthermore, let 7: C — C be a mapping which is multi-homogeneous of
degree A € Rf{_Xd where A is an irreducible matrix. Let b € Ri o be the Perron
vector of AT i.e. ATb = p(A)b and Z?:l b; = 1. If x € C is an eigenvector of F, i.e.
x; # 0 for i =1,...,d and there exists A € R‘i such that F(z) = A ® z, then the
eigenvalue corresponding to x is the scalar § € R, defined as 6 = Hf: d )\?i. We have
proved in Lemma 4.1.4 that if z,y € C are eigenvectors of F with corresponding
eigenvalues 6,19 such that 6 < ¢, then for every o € Ri +, the eigenvalues 6,9
respectively corresponding to @ ® z and o ® y satisfy 0 =ab <ad =1 where @ > 0
is a positive scalar. The scaling dependence of eigenvectors has been addressed
in the spectral theory of nonnegative tensors by fixing the eigenvectors to have unit
norms. Indeed, in the definition of /P-eigenvalues, rectangular ¢P-4-singular values and
¢P1--Pd_gingular values of a nonnegative tensors (see Section 4.2), the eigenvectors
are scaled on a product of /P-spheres. We adopt a similar approach in the following.

10.1 Maximality of positive eigenvectors

We prove an analogue to the left hand side of (10.1). In particular, it implies that
if a multi-homogeneous mappings on a solid closed cone has a positive eigenvector,
then the corresponding eigenvalue is maximal. In the case d = 1, the proof reduces
to that of Lemma 5.2.1 of [60].

Theorem 10.1.1. Let C C V be a closed cone and let v: C — R‘i be a monotonic
multi-normalization of C. Let F: C — C be order-preserving and multi-homogeneous
of degree A € R4 Suppose that p(A) < 1, A is irreducible and let b € ]R‘le be
the Perron vector of AT. Furthermore, let z,y € C be such that v(z) = v(y) = 1
and there exists A, 0 € Ri and o € Ri . satisfying

F(z) 2c A®x, 02y =<c Fly) and a®y =S¢ x.
Then, it holds [T%, 67 < T4, Ab.
Proof. First of all note that, as F is order-preserving, we have
02y =<cFly) Zc Flalor)=a e F(z) < (a?oA) @z

Hence, if A; = 0 for some i € {1,...,d}, we have ; = 0 since a4 ¢ ]R‘Lr and
zi,yi € C; \ {0}. Tt follows that [J%, 0% =0 < 0 = [, A%, If 6; = 0 for some
i €{1,...,d}, then Hle 95-” =0< H?Zl )\i’i. Now, suppose that 8, X € Ri+. Let
6 = (1 — p(A)) and define F: C — C as F(z) = v(z)! @ F(z). Then, F is order-
preserving and multi-homogeneous of degree A = A + (1 — p(A))I. In particular, A
is irreducible, p(A) = 1, and ATb = b. Furthermore, as v(x) = v(y) = 1, we have

F(r)2c Az and 9®yjc]}(y).
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Lemma 3.3.8 implies that for every k£ > 1, it holds
Fra@) < A=Y g and 050 gy <0 Fry).
As F* is order-preserving and multi-homogeneous of degree A*, for k > 1, we have
(a1 08T V) @y <c o @ Fi(y) = Fha®y) < Frx) 2 AD-V @ a,

Using that v is a monotonic normalization and v(z) = v(y) = 1, we get

(TLet) -

d
o (A (Eim0 AV _ [« A @30 ATy biy ()l

—_

'.:Iw:j&

=TIv((@™ 0655 %) o)
=1 '
d 1 b; d k—1 b; d
< H I/(AZJ*O Ao a:) = H ()\ZJ*O AJ) v(z);, = H )\fb’
i=1 R i=1

It follows that

d I )\bi k
0<Ha§i§(“b> Vk > 1.
=1 H 0;"

1=1"1

If Hd /\b'/Hf 1 95 < 1, then we obtain a contraction by letting & — oo. Hence,
Hf 10 < HZ 1 /\b which concludes the proof. O
We get the following corollary:

Corollary 10.1.2. Let C C V be a solid closed cone and let v: C — Ri be a
monotonic multi-normalization of C. Set S, = {z € C|v(z) =1} and let F: C = C
be order-preserving and multi-homogeneous of degree A € R%*?  Suppose that
p(A) <1, Ais irreducible and let b € R? | be the Perron vector of AT. If F has an
eigenvector u € int(C) NS with corresponding eigenvalue A, then

d
TES, i1

In particular, for every eigenvector x € S, of F with corresponding eigenvalue 6, it

holds 6 < A.

Proof. Let x € S, as C is closed, we have m(F(x)/x;C)®@x <¢ F(x). Asu € int(C),
there exists @ € RY | such that 2 <¢ a®u. Let § € R% be such that F(u) = § ® u.
Then, by Theorem 10.1.1, we have

d d
[[m(F(@)i/zi i) < T 67 = A
i=1

=1
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This shows that

d
sup | [ m(F(x)i/zi; i)™ < . (10.2)
IGSV i=

Finally, suppose that z € S, is an eigenvector of F with corresponding eigenvalue 6.
There exists ¥ € R? such that F(z) =9 ® z and 0 = H;.i:l 19?’ It follows that

d d d
0 =[]0 m(ai/zi; Ci)' = [ [ m@izi/ai; Ci)% = [ [ m(F (x)i/xi; Ci)’* < A
i=1 i=1 i=1
Finally, note that if x = u, then # = X and thus we have equality in (10.2). O]

Theorem 10.1.1 implies that an order-preserving multi-homogeneous mapping
cannot have more than one scaled eigenvalue on each part of the cone. In particular,
if the cone is polyhedral, then one gets an upper bound on the number of eigenvalues
of the mapping. This is stated in the following corollary which is a consequence of
|60, Theorem 5.2.3] when d = 1.

Corollary 10.1.3. Let C C V be a closed polyhedral cone and let v: C — Ri be a
monotonic multi-normalization of C. Let F: C — C be order-preserving and multi-
homogeneous of degree A € R4, Suppose that p(A) < 1, A is irreducible and let
b e Ri . be the Perron vector of AT. Furthermore, let

o(F) = {f[Ai-”
=1

Then, it holds |o(F)| < ngl(Ni — 1) where N; is the number of parts of C; for all
i=1,....d

dr € Cs.t. v(z) =1 and F(x) = )\®3:}.

Proof. Let P be a part of C. Note that if P contains an eigenvector of F, then
P; # {0} for i = 1,...,d. In particular, there are H?Zl(Ni — 1) such parts. Now,
suppose that x,y € P are eigenvectors of F. Then there exists A\, 0 € R‘i such that
F(r) =A®z and F(y) = @ @ y. Furthermore, as x,y belong to the same part, we
have x ~¢ y and thus there exists o, 8 € RfIH such that a ®z <¢ y and B8Ry <¢ x.
It follows from Theorem 10.1.1 that [T, 6% < [T, A% and [T%, A% < TTL, 6%

=14 i=1"1
Hence, x and y have the same eigenvalue which implies that F has at most one
eigenvalue on {z € P|v(z) = 1} and proves the claim. O

We note that with a generalization of the argument of Theorem 5.2.3 in [60], it
can be shown that the bound on |o(F)| of Corollary 10.1.3 is tight.

10.2 Collatz-Wielandt formulas

We prove an analogue of the right hand side of the Collatz-Wielandt formula (10.1)
for order-preserving multi-homogeneous mappings. The proof of the following result
uses techniques inspired from the proofs of [36, Theorem 21|° and [13, Lemma 3.3]
which give Collatz-Wielandt formulas for the £P1»Pd_gingular values of a nonnegative
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tensor and the P4-singular values of a positive matrix, respectively. Furthermore,
the following theorem reduces to the corresponding result of [39, Theorem 5.1]° when
C=R}"x... xR}

Theorem 10.2.1. Let C C V be a solid closed cone and let v: C — Ri be a
monotonic multi-normalization of C. Set S, = {z € C|v(z) =1} and let F: C — C
be order-preserving and multi-homogeneous of degree A € R%*?  Suppose that
p(A) <1, A is irreducible and let b € R% | be the Perron vector of AT. Suppose
that there exists u € int(C) NS, and @ € R%, such that F(u) = @ ® u. Then, it
holds

d
0bi = f M(F ‘
H ! x61n11:nC)ﬂSu Zl_[ /mu z)

Proof. Let x € int(C)NS,. Lemma 5.1.2 implies that m(u/x;C) = M(z/u;C)~! and
that for all y,v € int(C) and @ € RZ_, it holds M(a ® y/v;C) = a ® M(y/v;C). It
follows that

0 o M(u/z;C) 4 = 0 o M(u/z;C) ™ o M(u/z;C) = m(z/u;C)* o M(0 @ u/z;C)
= M(m(z/u; C)* @ F(u)/2:C) = M(F(m(z/u; C) @ u) /2;C)
< M(F(z)/x;C). (10.3)

By Lemma 5.1.3, we have 1 < M(u/x;C) and thus 1 > ngl M (w; /x5 Cy) (1= P(A)b:
It now follows from (10.3) that

H@b <H9b (ui/zi; C Z)((I Ab)Z<HM x);i /x5 Z) .

=1

Hence, we have

d
b;
il_[l@ < mfms,,l;[M )i /i Ci)b.

z€int(C)

To prove that equality holds, note that @ = M(F(u)/u;C) and thus

d
[107 = HM wi/uis Ci)",
i=1

which concludes the proof. ]

In Section 4.1, and more particularly Lemma 4.1.2, we have seen that if p(A) =
1, then the eigenvalues are scale invariant. A similar argument shows that when
p(A) = 1, the multi-normalization is not needed in the Collatz-Wielandt formulas of
Corollary 10.1.2 and Theorem 10.2.1. Indeed, we have the following result, which for
d =1 and F linear reduces to (10.1) in the case where the matrix is assumed to have
a positive eigenvector. The assumption on existence of a positive eigenvector can be
removed at the price of a considerably more technical proof. The main difficulty lies
in defining the spectral radius of a multi-homogeneous mapping without assuming
the existence of an eigenvector. We refer to [39]° for such a discussion in the case of
order-preserving multi-homogeneous mappings defined on ¢ = R}* x ... R4,
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Theorem 10.2.2. Let C C V be a solid closed cone. Let F:C — C be order-
preserving and multi-homogeneous of degree A € R?*?. Suppose that p(A) =1, A
is irreducible and let b € Ri 4 be the Perron vector of AT, Suppose that F has an
eigenvector u € int(C) with corresponding eigenvalue . Then, it holds

d

sup Hm(}"(:v)i/xi;ci)bi: = inf HM x)i /x5 Z) ,

zeCo ;4 z€int(C
where Co = {x € C|x1,...,2q4 # 0}.

Proof. Let v: C — R4 be a monotonic multi-normalization of C and set S,, = {z €
Clv(z) = 1}. By Lemma 4.1.4, (a), we have that the eigenvalue corresponding to

v(u)™! ® u equals \ since (H?Zl 1/(u);bi)p(‘4)_1 = (H?:l V(u);bi)o = 1. Now, let
x € Cp, and x € Rle_, then we have

m((a” ® F(2))i/ (@ ® 2);; Ci)"

—

.
Il
i

d
H Hl(]:(a ® :L‘)Z'/Oéil'i; Cl)b’ =
=1

AP (F (@) fas; )

|
.:&

ﬁ
Il
—

m(]-'(x)z/:r“C’l)bL (10.4)

|
.:&

Il
—

()

The same argument as above with m(-/-; C;) replaced by M(-/-; C;), shows that

d d

[[M(F(a® 2)i/aizi; Ci)" = T M(F () /25 Ci)"". (10.5)

i=1 =1

With a = v(z)~!, we have a ® x € S,,. Hence, (10.4) and Corollary 10.1.2 imply

d d
sup | [m(F(x)i/zi;Ci)" = sup [[m(F(v(z) " @2)i/(v(z)™" @ x)s; Ci)
z€Co i=1 z€Co i=1
d
= sup Hm(]—"(a:)z/xl,cl)b =\,
z€Sy ;4

Similarly, (10.5) and Theorem 10.2.1 imply

A= inf HM x);/xi; C i = inf HM X)) xq; i)a

z€Int(C)NSy - z€int(C
=1

which concludes the proof. O

We conclude this section with a result which shows that the iterates of an order-
preserving multi-subhomogeneous mapping induce two monotonic sequences which
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converge to the maximal eigenvalue of the mapping. Similar results were proved
in the literature of nonnegative tensors as for instance in [71, Theorem 2.4], 26,
Theorem 7], [36, Proposition 28|, and for multi-homogeneous mappings on C =
R} x ... x R in [39, Lemma 6.4]°.

Theorem 10.2.3. Let C C V be a solid closed cone and let v: C — R?Z be
a monotonic multi-normalization of C. Set S, = {z € C|v(z) = 1} and let
F: int(C) — int(C) be order-preserving and multi-homogeneous of degree A € R4*4,
Suppose that p(A) < 1, A is irreducible and let b € R%, be the Perron vector of
AT, Furthermore, let G: int(C) NS, — int(C) NS, be defined as

G(z) =v(F(z))™! @ F(x) Vo € int(C) NS,.

Then, for every x € int(C) NSy, it holds

d
H m(F(G(x))i/G(x)i; Ci)" = [ [ m(F(2)i/ai; Ci)",

[IM(F(G())i/G()is C)* < [[MIF(@)ifws; €)™

Proof. Let z € int(C) NSy, then G(z) € int(C) NS, and by Lemma 5.1.3, we
have that m(G(x)/z;C) < 1 < M(G(z)/x;C). As F is order-preserving and multi-
homogeneous, we have

m(G(z)/z;C)* ® F(z) = F(m(G(x)/2;C) @ z) Zc F(G(2)),

F(G(x)) Zc FIM(G(x)/2:C) ® x) = M(G () /;C)" © F(x).

It follows that

x;C)A oM (f(x)/]:(x);C)

2;C)* o M(F(x)/2;C) " o M(F(x)/a;C)

o M(G(x)/x;C)~" o M(F(x)/x;C)

A=l o M(F(x)/z;C), (10.6)
and

m(G(x)/x;C)* " o m(F(x)/x;C) = m(G(x)/x;C)" o m(G(x)/;C) ™" o m(F () /;C)
G(x)/x;C)* om(F(x)/2;C) ™" o m(F(x)/;C)

g x)/x;C)A om (]-"(:U)/f(;t);(f)

m (m(G(z)/2;C)* ® F(z)/F(x);C)
o m(F(G(x))/F(x);C) = m(F(G(x))/G(x);C). (10.7)
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Now, as m(G(z)/z;C) <1 < M(G(x)/z;C) and —(AT —I)b = —(p(A) —1)b € RY,

we have

d d
[TM(G () /a;0)A ) = T[M(G ()i fai; C) PP < 1,
i=1 i=1
d d
1< [[m(G(@)i/mi; C) D% = TT(m(G(x) /a; )" ).
i=1 i=1

Hence, with (10.6), we obtain

d

T MFG ()i /G ()i o

i=1

M(F(G(x))/G(x); )%

I
,:&

@
Il
i

(M(G(2)/2;C)4T o M(F(z) /2:C))""

IA
:&

1

-.
Il

d d
= ([IOaG@) /20 ) [T MF @)/ )
=1 =1
d
< H M(F(2);/2i; Ci)",
=1
and, with (10.7), we obtain
d d d
[T m(F @)/ ) < ([Tm@ (@) ;)% ) [T m(F () /wis i)
i=1 i=1 i=1
d
= [ (m(G(x)/z;0)* " o m(F(x)/x:C))"
=1
d
< [ m(F(G(=))i/G(x)i; Ci)™,
=1
which concludes the proof. O

10.3 Semi-derivative of mappings on cones

As discussed in [5] and [60], many results of the non-linear Perron-Frobenius theory
still hold with a weaker notion of derivative, namely semi-differentiability. We recall
the definition of semi-differentiability from [60, page 124]: Let (V|| - ||v) be a finite
dimensional normed real vector space. For z € V and r > 0 define B,(z) = {v €
Villv==z|y <r}. U CV and z € U, then U is locally convex at x if there exists
r > 0 such that B,(z) N U is convex. Given U C V locally convex at x € U, define

Sy = {v € V| there exist ¢, > 0 such that x +tv € U for all t € [0,¢,]}.
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The set S, is convex and tS, = S, for all ¢ > 0. Suppose that U is locally convex at
x and let f: U — V be such that the one-sided Gateaux derivative

flz+tv) — f(z)

t—0+ t

exists for all v € S;. For all v € S, with z + v € U, we can write

R(v) = f(z +v) = f(z) = f2(v).
If fI: Sy, — V is continuous and

IB@)lv _
Jollv—0  [[v]lv ’

we say that f: U — V is semi-differentiable at x € U. For S C U, if f is semi-
differentiable at every x € S, then we say that f is semi-differentiable on S and
if is semi-differentiable at every x € U, then we say that f is semi-differentiable.
The map f.: S, — V is called the semi-derivative of f at x. In general, f., may
be nonlinear. However, f/: S, — V is positively homogeneous of degree one. If
f: U — V is Fréchet differentiable at x € U, then f is semi-differentiable at x
and fl(v) = Df(z)v for all v € S;. The main motivation for the consideration of
semi-differentiable mappings here is that the maximum and the minimum functions
are semi-differentiable [5]. Note that if C' C V is a solid closed cone and f: C' —
V' is order-preserving, then for all z € int(C') we have C' C S, and if f is semi-
differentiable at x, then

o) — tim L@ @)

t—0+ t

eC.

We refer to [5] for a detailed discussion on the properties of semi-differentiability and
its relationship with other types of derivatives.

In the following lemma we discuss properties of the semi-derivative of a mapping
on C C V where C is a solid closed cone in the product of finite dimensional real
vectors spaces V =V x ... x V.

Lemma 10.3.1. Let C C V be a solid closed cone and F: C — C an order-preserving
mapping. Let u € int(C) and suppose that F is semi-differentiable at w. Then, for
every v, w € C such that v ~¢ w, it holds F,(v) ~¢ F,(w). Furthermore, for every
aeRY,if G: C— Cis given by G(7) = a ® F(x), then G is semi-differentiable at
u and it holds (F/,)*(v) ~c (G.)¥(v) for every k > 1 and v € C.

Proof. Let v,w € C with v ~¢ w, then, there exists «, 5 > 0 such that av <¢ w =<¢
Bv and thus tav <¢ tw =<¢ tBv for every t > 0. Hence, for every ¢ small enough so
that v+ tav, u + tw,u + tfv € C we have F(u + tav) 2¢ F(u+tw) <¢ F(u+tpw),
it follows that

F'(av) = lim F(u+tav) — F(u) < lim F(u+tw) — F(u)
t—0+ t t—0+ t

= Fl(w).
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And by the homogeneity of the semi-derivative it follows that aF, (v) = F, (au) =<¢
F,(w). Similarly, it holds

, L Fluttw) — F(u) . Flu+tpv) — Fu) o
Fu(w) = lim ; Sc lim " = Fu(Bv) = BF,(v).
It follows that aF),(v) <¢ Fi(w) <¢ BF,(v), i.e. F(v) ~¢c F,(w). Let v € C, we
show by induction over k > 1, that (G.)*(v) ~c (F.)*(v). If k = 1, then G/, (v) =
a ! ® F (v) ~¢ F!(v). Now, let k > 1 and suppose that (G/)*(v) ~¢ (F.)k(v).
Then, by the above argument, we have (G/,)((G,)*(v)) ~c (G.,)((F,)*(v)) and thus

(G () = (GG (V) ~c (G)(Fo)*(v))
=a '@ (F)((F)" ) ~e (F) ),

which concludes the induction proof. O

10.4 Uniqueness of positive eigenvectors

We prove a sufficient condition for the uniqueness of an eigenvector in the interior of
a solid cone in the product of finite dimensional real vector spaces V = Vi x ... x Vj.
The proof resembles that of [39, Theorem 5.3]° for the case of multi-homogeneous
mappings on C = R} x ... x R} and [60, Theorem 6.1.7| for the case d = 1. The
later results show that the eigenvalues of an eigenvector on the boundary of the
cone must be necessarily strictly smaller than the eigenvalue of an eigenvector in
the interior of the cone. This conclusion is also implied by the next theorem which
further shows the uniqueness of an eigenvector in the interior of the cone up to scale.
We should nevertheless point out that the uniqueness of an eigenvector in the interior
of the cone are proved under less restrictive conditions in [39, Theorem 5.5|° and |60,
Theorem 6.4.6] for the particular cases mentioned above.

Theorem 10.4.1. Let C C V be a solid closed cone, v: C — Ri a monotonic multi-
normalization of C and set S, = {x € C|v(x) = 1}. Let F: C — C be continuous,
order-preserving and multi-homogeneous of degree A € RiXd. Suppose that A is
irreducible, p(A) = 1 and let b € R%, be the Perron vector of AT. Furthermore,
suppose that F has an eigenvector u € int(C) NS, with corresponding eigenvalue
6 > 0. Suppose that F is semi-differentiable at v and let F,: C — C be its semi-
derivative. If for every y € C \ {0} there exists ¢ € {1,...,d} and an integer N > 1
such that

N
— Z(f;)k(—y) eCy x...xC_1 % int(CZ-) X Ciy1 X ... x Oy, (108)
=1

then for every z € S, such that z # wu, it holds Hle m(F(z);/zi; Ci)¥% < 6.
Furthermore, u is the unique eigenvector of F in S, and if v € S, \ int(C) is an

eigenvector of F with corresponding eigenvalue 1, then 9 < 6.

Remark 10.4.2. Note that if in Theorem 10.4.1, F is a polynomial induced by a
nonnegative tensor, then the weak irreducibility of F and condition (10.8) are related
by Lemma 9.4.6.
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Proof of Theorem 10.4.1. Let x € S, with = # u and set @ = m(u/z). Note that
a € ]RfiH since z; # 0 and u; € int(C;) for all i = 1,...,d. Furthermore, a ®  <¢ u
since a® x = u would contradict x # u. Indeed, (int(C) NSy, pe) is a d-metric space
by Lemma 6.2.2 and po(a ® x,u) = pe(z,u).

First, suppose that F(u) = u so that § = 1. Then, F*(u) = u for all k¥ > 1 and
the chain rule for semi-differentials (see [60, Lemma 6.1.6]) imply that F* is semi-
differentiable at u for every k and (F.)¥ = (F*)! for every k > 1. Let z € C \ {0}
be defined as z = u — a ® x. Then, by assumption, there exist ¢ € {1,...,d} and

N > 1 satisfying
- Z Fiyk(—z) e cg,

with € = C7 x ... x Ci_1 % mt(Ci) X Ciy1 X ... x Cy. For t € 0,1], let
u=(1-thut+takr=u—tzeC.
As FF* is semi-differentiable at u,
F(ur) = F(u) + t (FF)(=2) + [t 2y Ru(~t 2)

where || - ||y is a norm on V and lin%) Ri(y) = 0. Hence,
y—

N N
>° (Frw) = Fr) = (= Y (FDH=2) — =lvRa(—t2)).

k=1 k=1

As, — Z]kvzl(f&)k(—z) € int(C) and liH(l) Ri(y) = 0, there exists ¢t; € (0, 1) such that
Yy—r

N
Z .Fk ut)) S CZO Vt € (O,tl).

k=1

Note that o ® = < u; for all ¢ € [0, 1] and thus

N
(]—"k(ut)—]:k(aééx)) eC Vit € (0,t1).
k=1
It follows that
ec? eC
N N N
Z —F¥ a®x)):2(}'k(u — F*(uy) —1—2 (F*(u) — FFla® 2)) € C5.
k=1 k=1 k=1

With F*(u) = u and F*(a ® z) = a?” @ F*(z), it follows that

N
(Fruw) - Frawr) = (u— ot @ Fi2)) e cf.



Now, let 8 = m(F(z)/x;C), then B ® x <¢ F(x) and Lemma 3.3.8 implies that
YIS A @ p <o Fi(z)  WE> 1.
It follows that

N N
1 k 1 k k=1 4j
N w-at @ F @) cu— (=Y at opEi ) grecs.
N (v2 )

By the inequality between arithmetic and geometric means, we have

1 N
o Tha At o g B T (Ho/‘koﬁzk Y < 3 a0 g
k=1
and thus N -
u—(aﬁzk 1AkOIBNZk 1252 A)@%EC?.
In particular, as & = m(u/z;C) and C is closed, we have
(4 oIS <
It follows that
. N - g s
(Hafl)<Hszl) :H(QNZk:1 oﬁNZk 12252 A)A <Ha?i’
i=1 i=1 i=1 7 aie
and thus )
Hm /3317 7,) H,B <1N+1—1_6’
=1

To conclude the proof, suppose that F(u) = A ® u with A € ]Ri. Note that
if A\ ¢ RY,, then 6 = H?Zl )\?i = 0 which contradicts our assumption that 6 > 0.
Define G: C — C as G(z) = A1 ® F(z) for every € C. Then, G(u) = u and
m(G(x)/x;C) = A Tom(F(x)/x;C). Furthermore, G is continuous, order-preserving,
and multi-homogeneous of degree A. Note that G satisfy (10.8). Indeed, if y € C\{0},
then there exists N > 1 and i € {1,...,d} such that Y0 (F,)*(y) € C? and by
Lemma 10.3.1, we have that (F.)¥(y) ~c (G.)*(y) for all k = 1,..., N. It follows
that Z{le(g;)’“(y) € C? which implies that G satisfies (10.8). Hence the above
discussion implies that for z € S,,, we have

d
H)\_ ' x)ifzi; Ci)" = [[m(G ()i /s Ci)% < 1,
i=1
which implies that []%, m(F(x):/zs; Ci)b < [T, A2 = 6.

Finally, if v € S, is an eigenvector of F with corresponding eigenvalue 9, then
there exists 8 € Ri such that F(v) = B ® v so that Hle m(F(v);/vi; C;)P =
Hle ﬂfi =1. If v ¢ int(C) then v # w since u € int(C) and thus the above discussion
implies ¥ < 0. If v € int(C), then Theorem 10.2.1 implies that ¢ = #. Therefore,

we must have v = u otherwise the above discussion would imply the contradiction
¥ < 6. O
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Next we prove another result which guarantees the uniqueness of an eigenvector
in the interior of the cone. In the linear case, it reduces to say that the positive
eigenvector of a primitive matrix is unique up to scale. While this is more restrictive
than the condition of the previous Theorem 10.4.1, it has the advantage of not
assuming semi-differentiability and implies the convergence of the normalized iterates
towards the eigenvector in the interior of a cone. For its statement, we introduce the
following definition which reduces to Definition 6.5.2 of [60] in the case d = 1.

Definition 10.4.3. Let C C V be a solid closed cone and let F: C — C. We say that
F satisfies condition L4 at x € int(C) if for every y € int(C) with y <¢ x, there exists
a positive integer ky > 1 and iy, € {1,...,d} such that F*(y);, <¢ F*(z);,. We say
that F satisfies condition Uy at = € int(C) if for every y € int(C) with z <¢ y, there
exists a positive integer k, > 1 and i, € {1,...,d} such that F*v(z);, <c¢ F"(y);

Ty -

Note that every strongly order-preserving mapping satisfies both, condition Ly
and condition Ug, at any « € int(C). Furthermore, as discussed above, if M € R}*",
then M is strongly order-preserving if M € R”X” and x — Mz satisfies condition
Lg or Uy at x € R, if it is a primitive matrlx Indeed, M being primitive implies
the existence of k > 1 such that M* e R, . The connection between the conditions
of Definition 10.4.3 and primitivity is made more clear by the following result which
generalizes Lemma 6.5.7 of [60]:

Lemma 10.4.4. Let C C V be a solid closed cone and F: int(C) — int(C) be order-
preserving and multi-homogeneous of degree A € R¥*?¢. Suppose that there exists
u € int(C) and A € RY such that F(u) = A ® u and F is semi-differentiable at u
with semi-derivative F,: V — V at w. Finally, for i = 1,...,d, let

C; :Cl X ... X Ci—l xint(Cl-) X Ci—l—l--- X Cd.
Then:

i) If there exists k* > 1 and i* € {1,...,d} such that (F.)¥" (v) € C3. for every
v € C\ {0}, then F satisfies condition Uy at u.

ii) If there exists k, > 1 and i, € {1,...,d} such that (F})*(—v) € —C;, for
every v € C \ {0}, then F satisfies condition L4 at u.

Proof. First of all, note that as F(int(C)) C int(C), we have A € R% . So, let
H: int(C) — int(C) be given by H(z) = A1 @ F(x) for all z € int(C). Then, it
holds H(u) = u and, by Lemma 10.3.1, (H)*(v) ~c (F.)k(v) forallv € C and k > 1.
Furthermore, note that #H satisfies condition Uy, resp. condition L4, at u if and only
if F does. For ¢ =1,...,d let || - ||; be a norm on V; and set ||v||y = max;—1,._q|vills
for all v € V. Furthermore, let S = {z € C|||z1|1 = ... = ||zqll¢d = 1}. Then Sis a
compact set since C is closed.

i) Let k* > 1and i* € {1,...,d} be such that (H.,)*" (v) € C5. for every v € C\{0}.
Note that &* and i* exist since (H.,)*(v) ~c (F.)k(v) for all v € C and k > 1.
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By the chain rule for semi-derivatives (see [60, Lemma 6.1.6]), for v € C \ {0},
we have

HY (u+0) = HY (w) + (H)™ (0) + o]y R (v), (10.9)
where [| - [|y is a norm on V and limy,,,—,0 Ri+(v) = 0. Now, the continuity of
(H!)¥" together with the compactness of S imply that (H/,)*"(S) C C%. Let
(H)F(S)i = {zi|z € (H,)*(S)} C int(C;). There exists 7 > 0 such that
the T-neighborhood N; -((H.)*"(S);) is contained in int(C;). By the positive
homogeneity of the semi-derivative, for all ¢t € (0, 1], we have

Nigr (M) (£8):) = tNi-(H1)" (8):) C int(Ci).

There exists § > 0 such that |Rg=(v)||y < 7 for ||v]ly < d. As ||Rp«(v)i]li <
| Rix (v)|lv, it follows that for every v € C such that 0 < ||v|y < 4, it holds
(H.)F" (v); + ||lvly R+ (v); € int(C;) and therefore by (10.9) we have

HE (w); <o, HY (u+v); Yo e\ {0}, |v]ly <é.

To conclude, note that if y € C\ {0} is such that ||y|| > J then, with t = §/||y|| €
(0,1), we have y =ty + (1 — t)y, ||ty|]ly = 6 and (1 —t)y € C. Hence, as H is
order-preserving, by the above argument, we have

HY (w)i <o HY (u+ty)i 2o, HY (u+ty + (1= t)y)i = H* (u+ y)i,
which proves that H satisfies condition Uy at w.

ii) The proof is essentially the same as for (i). Therefore, we only mention the
main changes. Equation (10.9) becomes

M (u =) = HY (u) + ()™ (—0) + ol Ry, (v),

and 7 is chosen so that N;,((H.)*(=S);) € —int(C;). Then, by choosing
9 small enough, we have that for every v € C with 0 < |jv||y < 4, it holds
(H!)E" ()i + [Jv]|[y R+ (v); € — int(C;) which implies H* (u — v); <o, H" (u);
and therefore H satisfies condition L4 at u. ]

The following result is a special case of [60, Corollary 6.5.8] when d = 1 and
generalizes [39, Theorem 6.3|° which holds for differentiable multi-homogeneous
mappings on C = R' x ... x R}

Theorem 10.4.5. Let C C V be a solid closed cone, v: C — Ri a multi-normalization
of Cand §, = {x € C|v(x) = 1}. Let F: int(C) — int(C) be order-preserving
and multi-homogeneous of degree A € RiXd with A is primitive and p(A) = 1.
Suppose that F(int(C)) C int(C) and let G: int(C) — int(C) be given by G(x) =
v(F(z))~! @ F(x) for every z € int(C). If F has an eigenvector u € int(C) NSy,
and F satisfies condition Lg or Uy at u, then u is the unique eigenvector of F in
int(C) NS, and for every x € int(C) it holds limy_,., G*(2) = w.
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For the proof, we need the following theorem which formulates results of fixed
point theory in our particular setting. For its statement, let us recall that for a
solid closed cone C C V, = € int(C) and F: int(C) — int(C), the orbit of x under
F, denoted O(F,z), is defined as O(F,z) = {F*(z)|k € N}. The w-limit set of x

under F', denoted w(F, ), is the set of accumulation points of O(F, z), i.e.

w(F,x) = {y €int(C) | I(k;)32, C N with lim 7% (z) = y}.
J—00
Theorem 10.4.6. Let C C V be a solid closed cone and let F: int(C) — int(C)

be order-preserving and multi-homogeneous of degree A € R¥?. Suppose that A is
irreducible and p(A) = 1. Then, the following hold:

i) If there exists u € int(C) such that (F*(u))°, C int(C) has a bounded
subsequence in int(C), then O(F, x) is bounded in int(C) for each x € int(C).

ii) If z € int(C) is such that O(F,z) has a compact closure in int(C), then
w(F, ) is a non-empty compact set and F(w(F,z)) C w(F,z).

iii) If x € int(C) is such that O(F,z) has a compact closure in int(C) and
|w(F, )| = p, then there exists z € int(C) such that limy_,. FP¥(x) = 2
and w(F,z) = O(F, 2).

iv) For every z € int(C) and y € w(F,x), it holds w(F,y) = w(F, z).

Proof. In order to apply fixed point results on metric spaces, we consider a weighted
Thompson metric on C. We define the metric and discuss its properties related
to the assumptions of the results we use. As A is irreducible, let b € Ri 4 be the
Perron vector of AT. Fori =1,...,d,let dc,: int(C;)xint(C;) — Ry be defined as in
Equation (5.4) of Remark 5.1.8. d¢, is the Thompson metric induced by C;. Consider
the vector valued Thompson metric defined as d¢(x, y) = (3¢, (z1,91), - - -, 0c, (Zd, Ya))
for all z,y € int(C). Corollary 2.5.6 of |60] implies that (int(C;),d¢,) is a complete
metric space and its topology coincide with the norm topology on V;. It follows
that (int(C),d¢) is a complete d-metric space and its topology coincide with the
norm topology on V. Now, by [60, Corollary 2.1.4] and Theorem 6.1.7, we know
that A is a Lipschitz matrix of F with respect to d¢c. Lemma 7.1.2 implies that
F is non-expansive with respect to the metric d,: int(C) x int(C) — [0,00) given
by do(z,y) = (6c(z,y), b) for every z,y € int(C). Furthermore, we note that
(int(C), 04 ) is a complete metric space. The topology of (int(C),ds) coincides with
the product topology on (int(C),d¢) and therefore to the norm topology of V. It
follows that the closed balls of §, are compact sets in V and F: int(C) — int(C)
is continuous. Now, i), ii), iii) and iv) respectively follow from Theorem 3.1.7 and
Lemmas 3.1.2, 3.1.3 and 3.1.6 of [60]. O

Proof of Theorem 10.4.5. Let b € ]RﬁlH_ be the Perron vector of AT and let a € Ri+.
First, suppose that F(u) = u. Let x € int(C), we prove that there exists a € RL
such that w(F,z) = {a ® u}. As O(F,u) = {u}, Theorem 10.4.6, i) implies that
O(F,x) is bounded. It follows that O(F,z) has compact closure and thus Theorem
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10.4.6, ii) implies that w(F, z) is a non-empty compact set and F(w(F, x)) C w(F,z).
Now, for k > 1, define

§k—Hm .7-"k )i/ Z) and Ck—HM .7-"k )i/ u; Z) .

=1

Then, for all £ > 1, it holds
d d
1 = H ))i/wi; Ci) H x)/u; C) @ ) fug; Ci)

m(F¥ () /us; Ci)? m(F (u)i fui; Co)* = &,

1
‘::]& I

@
Il
—

I
A:&

N
Il
—

Cht1

d
M(F(F ( )i/ wi; Ci) H (z)/u;C) @ u);/ui; Z)

M(F* ()i fus; Ci)¥ M(F (u)i /ui; Ci)" = G

Il
:&

1

-
Il

It follows that & < &ky1 < (1 < (g for all £ > 1 and therefore there exists £€,7 > 0
such that limg_o & = € and limg_,o, (& = ¢. Hence, for every y € w(F,x) it holds
H?Zl m(y; /ui; C;)% = € and Hle M(y; /u;; C;)% = (. Furthermore, by Theorem
10.4.6, i), we have F*(w(F,x)) C w(F,z) for all k > 1. It follows that

d
[[m(F*(2)ifui; )Y = ¢, HM Fr(2)iJui; C)Y = ¢, (10.10)
-1

for every k > 1 and z € w(F,z). Now, let z € w(F,x) and suppose by contradiction
that z # a ®u for all & € R%,. Then, it holds m(z/u;C) ® u ¢ 2 and 2z ¢
M(z/u;C) ® u. If F satisfy condition Lg at w, then there exists k., > 1 and
i, € {1,...,d} such that F*(m(z/u;C) ® u)i, <¢,, Fr(z);,. It follows that
m(F* (m(z/u;C) ® u)/u;C) < m(F*(2)/u;C) and therefore, with (10.10), we get

the contradiction

d
¢=Im(F ) /uc)" > Hm (F5 (m(z/u; C) @ w) Ju; €)™
=1
= Hm zi [ ui; C; (A *b)i (fk*(u)/u; C’i)bi

= Hm(zz/uz, Cl)bZ = f
i=1
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Similarly, if F satisfies condition Uy at u, then there exists k* > 1 and i* € {1,...,d}
such that 7% (2) <c,. F¥ (m(z/u;C)®@u)+ so that M(F*" (m(z/u; C)®@u) /u; C) <
M(F* (2)/u;C) and, with (10.10), we get the contradiction

d

(= HM (]:k*(z)/u;Ci)bi <

i=1

M (]:k*(M(z/u;C) ®u)/u; C’i)bi

—

@
I
—

Mz /s C) A DI M (FH () fu; )

I
.E&

@
I
—

M(zz/ul, Cl)b’ = C

|
.:&

s
Il
i

The above argument shows that there exists a, € R‘i 4 such that z = a; ® u. As
z € w(F,z), Theorem 10.4.6, iv), implies w(F,z) = w(F,a, ® u). Finally, the
primitivity of A implies that limy_,.c A¥ = B, where B = ab' and a € R‘i . is the
unique eigenvector of A such that Aa = a and (a, b) = 1. It follows that

A

lim F*(a, ®u) = lim afk ® F¥(u) = lim azk @u=al@u,

k—o0 k—o0 k—o0

and thus w(F,z) = w(F,a, ® u) = {a? @ u}. Finally, Theorem 10.4.6, iii) implies
that limy_s0o F*(2) = o ® u. Now, we show by induction over k > 1, that G¥(z) =
v(F¥(z))~! @ F¥(x). The case k = 1 holds by definition of G. Suppose it is true for
k > 1, then

F(GH(2)) = Fw(F¥(2)) @ Fh(2)) = v(F*(2))* © F** (x)
so that
GH () = v(F(GF(2))) " © F(G"(x))
= W(F @) ov(FH (@) ™) @ (L(FH (@) 0 FF (x))
= v(F () @ F (),
which concludes the induction proof. By continuity of v, it follows that

lim G*(z) = V(kli_{glofk(@)fl ® (kli)ngofk(x)) =vw) Tou=u.

k—o00

To prove uniqueness, note that if v € int(C) NS, is an eigenvector of F, then by
Lemma 7.3.2, v is a fixed point of G and by the above argument we have

u= lim G¥(v) = lim v =,
k—o00 k—o00

which implies that u is the unique eigenvector of F in int(C) N'S,.

Finally, if F(u) = A®u with A € R? | then it holds A € R since F(u) € int(C).
Define F: int(C) — int(C) as F(z) = AL @ F(x) for all 2 € int(C). Then, F satisfies
condition Uy, resp. condition Ly, at u if and only if F does. Hence, by the above
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discussion, u is the unique eigenvector of F in int(C) NS,. As z € int(C) NS, is an
cigenvector of F if and only if it is an eigenvector of F, we conclude that u is the
unique eigenvector of F in int(C) NS,. Finally, note that for every = € int(C) NS, it
holds G(z) = v(F(z))~! ® F(z) = v(F(z))~! @ F(z), and thus limy_,. G*(z) = u
for all x € int(C) N S,. O

11 Perron-Frobenius theorems on the product of cones

We collect here the main results of this thesis. We group the results in two main
theorems. The first is a Perron-Frobenius theorem for multi-homogeneous mappings
and the second refines some results by taking the multi-linearity into account. We
discuss the consequences of such results on the existing literature for the examples
discussed in Section 4.2. To facilitate the statements, we make assumptions that are
sometimes unnecessarily restrictive for a given result. The finer assumptions can be
found by looking at the corresponding results referred in the proof. Furthermore,
the convergence rates in the following results are stated in terms of the vector valued
Hilbert metric puo. We recall however that they can be formulated in terms of norms
on the underlying vector space using Proposition 7.3.3.

11.1 Perron-Frobenius theorems

Let V = V4 x ... x Vg be the product of finite dimensional real vector spaces.
For the reading convenience, we recall that multi-normalizations are introduced in
Definition 3.1.1 (p. 14). Multi-homogeneous mappings and their eigenvectors are
defined in Section 3.2 (p. 15) and Section 4 (p. 23), respectively. The mappings
M(-/+;C),m(-/-;C) and the vector valued Hilbert metric p, are introduced in Section
6.2 (p. 54). Irreducible and weakly irreducible mappings are discussed in Section 9.1
(p. 89) and 9.3 (p. 95), respectively. Semi-differentiability is recalled in Section 10.3
(p. 112).
Our first main result is the following:

Theorem 11.1.1 (Multi-homogeneous Perron-Frobenius theorem). Let C C V be a
solid closed cone, let v: C — R% be a monotonic multi-normalization of C and set
Sy, ={x € C|v(z) = 1}. Let F: C — C be continuous, order-preserving and multi-
homogeneous of degree A € R¥*?. Suppose that A is irreducible and F(int(C)) C
int(C). Let b € RZ, be the Perron vector of A",

I) Existence: F has an eigenvector u € int(C) if at least one of the following
conditions hold:

a) F is irreducible.
b) p(4) < 1.
c) p(A) =1,C =R} x ... xR}? and F is weakly irreducible.

Furthermore, if any of the above is satisfied, then there exists A € Ri 4 such
that F(u) = A ® u.

122



1)

111)

V)

Maximality: If p(A) < 1 and F has an eigenvector u € int(C) NS, with
corresponding eigenvalue 6, i.e. § = Hle )\;” where A € R% satisfies F(u) =
A ® u, then 0 is a maximal eigenvalue in the following sense

(z) =9 @uc}.

=1

Furthermore, the following Collatz-Wielandt formula holds,

d
F 0 =0 = f M(F C
sup Zl;[lm( (z)/;C); renitns, l;[ x)/;C)Y.
Moreover, if p(A) = 1, then
d
su m(F(x x;Cbi = mf M(F(x)/z;C
sup [[mFw)/m)t 0= H 0) [0

where Cy = {z € C|x1,...,zq # 0}.

Uniqueness: If F has an eigenvector u € int(C) N'S,, then u is the unique
eigenvector of F in int(C) NS, if at least one of the following conditions hold:

a) p(A) <1,
b) p(A) = 1, A is primitive and there exists an integer £ > 1 and an open

neighborhood ¢ C int(C) such that u € U and F* is strongly order-
preserving in U,

c) p(A) =1, F is semi-differentiable at u with semi-derivative F,,: C — C and
for every y € C \ {0}, there exists i € {1,...,d} and N, > 1 such that

—Z.F/ EClx XCZ‘_1Xth(Ci)XCZ'+1X...XCd.

Furthermore, if any of the above conditions is satisfied and F is irreducible,
then u is the unique eigenvector of F in S,.

Convergence: Let z € int(C) NS, and consider the sequences (x)72, C
int(C), ()i, (Br)iey C [0,00) defined by x¢ = = and

Tepr = v(Flo) @ Flay) Ve >1,

and
ap = Hm (xk)/zk;C) bi, HM (zg)/zy; C )b‘ vk > 1.

If F has an eigenvector u € int(C) NS, with corresponding eigenvalue 6, then
it holds

lim zp =u, lim o = lim B, =0

k—o0 k—o0 k—o0

123



and
g1 <o <O B < B VE2>1, (11.1)

if at least one of the following conditions is satisfied:

a) p(A) < 1.

b) p(A) = 1, A is primitive and there exists an integer £ > 1 and an open
neighborhood ¢ C int(C) such that v € U and F* is strongly order-
preserving in U.

c) p(A) =1, A is primitive, F is semi-differentiable at v with semi-derivative
Fp,: C — C and there exists ¢ € {1,...,d} and N > 1 such that

(FIYN(y) € Cy x ... x Ci_y x int(Cy) x Ciyq X ... x Cy
for every y € C \ {0}.
Furthermore, if p(A) < 1, then it holds
pe(zp,u) < APv  VE>1, (11.2)
with v = (I — A) e (21, 70).

Proof of Theorem 11.1.1. For the conclusions which follows from different possible
conditions, we refer to the result which implies the statement.

i)

i)

iii)

iv)

Note that if w € int(C) is an eigenvector of F, then there exists A € Ri such
that F(u) = A ® u. Now, as F(int(C)) C int(C), we necessarily have A € R% .
The existence of u is implied by the following results:

a) Follows from Theorem 9.1.6.

b) Follows from Proposition 5.2.1 and Theorem 7.3.1.

c¢) Follows from Theorem 9.3.5.
Follows from Corollary 10.1.2, Theorem 10.2.1 and Theorem 10.2.2.

a) Follows from Proposition 5.2.1 and Theorem 7.3.1.
b) Follows from Theorem 10.4.5.
c) Follows from Theorem 10.4.1.

Furthermore, Proposition 9.1.5 implies that if F is irreducible and = € §,, is an
eigenvector of F, then x € int(C) N'S,. Hence, if u is the unique eigenvector of
F in int(C) NSy, then it holds z = w.

Note that if limyg_, o 2 = u, then, by continuity of F, it holds limy_, . F(xx) =
F(u). Hence, with A € R% such that F(u) = A ® u, it holds

d
li = li .0
Jim oy, = lim Z||1 m(F (zx)/z; C);
d

d
= [[mA @ /)l =[N = 9. (11.3)
=1

=1
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A similar argument shows that limy_,o, B = 0. Now, limg_.o p = w is implied
by the following results:

a) Follows from Proposition 5.2.1 and Theorem 7.3.1.
b) Follows from Theorem 10.4.5.
c) Follows from Lemma 10.4.4 and Theorem 10.4.5.

Finally, (11.1) and (11.2) respectively follow from Theorem 10.2.3 and Theorem
7.3.1.

O]

Except those related to irreducible mappings, the conclusions of Theorem 11.1.1
hold for order-preserving multi-homogeneous mappings with homogeneity matrix
A € R4 guch that p(A) < 1. By imposing more structure on the mapping such as
(cone) multi-linearity (see Definition 8.1.1, p. 76), some of the results can be further
refined using the multi-linear Birkhoff-Hopf theorem 8.1.2. As a motivation for the
assumptions in the next theorem, let us recall that all the examples discussed in
Section 3.2.5 are eigenvector problems of multi-homogeneous mappings of the form
F(z) = ¥(G(x)) where ¥ is a non-linear mapping and G is a polynomial mapping.

Theorem 11.1.2 (Multi-linear Perron-Frobenius theorem). Let C C V be a solid
closed cone, let v: C — RY be a multi-normalization of C and set S, = {z €
C|lv(z) = 1}. Furthermore, let sq,...,s4 be positive integers, m = s1 + ... + sq
and deﬁneézé’l X ... xé’m as

C=C1x..xC1x...xCyx...xCy.
— —

s1 times Ssq times

Let L: C — C be a cone multi-linear mapping such that £(int(C)) C int(C) and let
Le R‘ixm be such that for every i € {1,...,m} and j € {1,...,d} it holds

Lji> sup tanh [fuc; (L£(2)5, L(21, .., &1, 90 Zig1, - - Em)j) |-
fGé,giEC’i

Let so = 0 and let B € {0,1}%*™, the binary matrix given by Bjy=1ifs +...+
sj—1 <1< s1+4...+s; and Bj; = 0 otherwise. Moreover, let ¥: int(C) — int(C)
be a multi-homogeneous mapping and let Q € ]le_Xd be such that

pe(¥(2), ¥(y)) < Que(z,y)  Va,y € int(C).
Finally, let M = QLB € RY*? and define F: int(C) — int(C) as

F(z)=9(L(z1,...,%1,...,Td,...,Tq)) V€ int(C).

s1 times Ssq times

If p(M) < 1, then F has a unique eigenvector u € int(C) NS, and for every = €
int(C) NS, the sequence ()72, given by

Tppr = v(F(xp) T @ Flag)  Vk>1,
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satisfies
lim z; = u and pe(zy,u) < Mhv Vk > 1,

k—o00

with v = (I — M) ‘e (21, 70).

Remark 11.1.3. Useful properties for the estimation of

sup tanh [i/lc]‘ (,C(i)], ’C’(iila s 7'@171’ giai"i+1a s 75777’1)])}5
5366,@16@1'

are discussed in Remark 8.1.3 (p. 77). Moreover, if C = R}' x ... x R}* and L is
expressed in terms of nonnegative tensors, upper bounds on the above supremum
are discussed in Section 8.2 (p. 82).

Proof of Theorem 11.1.2. Let G: C — C be defined as
Q(x):E(:Ul,...,xl,...,xd,...,xd)) Vx e (.

s1 times Ssq times

Let i € {1,...,m} and j € {1,...,d}, then by Remark 8.1.3 (b), we have

?U.p . tanh [%NCJ' (ﬁ(':%)jv ﬁ(.’%l, s 7':2'1'717 gi) i‘H*la s 7:%d)j)}
zeC,y;€C;

= sup tanh [ diam(ﬁ]é’i(@); ne;)]
zeC

where we recall that for every = € C, the mapping E\;Z C; — Cj is given by

£|§:«71(y2) - E(ﬂ?l, cee 7j:i717 Qi) j’.H*la cee 7i'd)j vg’t S él
By Theorem 8.1.5, we have

Now, as F(x) = ¥(G(z)) for all z € int(C), we have

pe(F(x), F(y) < Que(G(2),G(y) < Mpe(z,y)  Va,y € int(C).

Hence, if p(M) < 1, the existence and uniqueness of u as well as the convergence of
(x1)72, follow from Theorem 7.3.1. O

Remark 11.1.4. Note that if, in Theorem 11.1.2, W is order-preserving, then F is
order-preserving as well. Hence, if the homogeneity matrix A € R4*? of F satisfies
p(A) <1, Theorem 11.1.1 can be used to obtain further results on F.

11.2 Applications

We discuss the consequences of Theorems 11.1.1 and 11.1.2 on each of the examples
discussed in Section 4.2. Again we stress that the convergence rates in the following
results are given in terms of the vector valued Hilbert metric p.. They can be
formulated in terms of norms on the underlying vector space using Proposition 7.3.3.
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11.2.1 /P9-singular values of a nonnegative matrix

Let M € R"™™, p,q € (1,00) and let ||-||,, ||-|l4 be the £P-norm on R™ and the £?-norm
on R", respectively. Let C = R x R, consider the monotonic multi-normalization
v:C — R% defined as v(z,y) = (||z[lp, |yllq) and set S, = {(z,y) € C|v(z) = 1}.
We have seen in Section 4.2.1 that the /P9-singular vectors and values of M are
characterized by the solutions to the following system of equations:

My = \gP1 -
{ y=a with  (\, (2,)) € Ry x Sy (11.4)

Mz = )\yq_l
We recall from (3.2) and (4.3) that the above system characterizes the nonnegative

critical points of the objective function defining the /7%-norm of M, defined as

B (x, My)
= max TR TEETEETEE)]
220570 || zp]lyllq

Py (11.5)

where (-, -) is the Euclidean inner product on R™. In particular, it holds
| M||p.q = sup{A |\ is an /P9-singular value of M?}.

Moreover, we have proved in Proposition 4.2.1 that the ¢P¢-singular vectors of M
are characterized by the eigenvectors of the multi-homogeneous mapping F: C — C
given by

Fla,y) = (My)V®= VD (M Tz)/@=Dy  v(z,y) eC, (11.6)

A=(-n "%7Y)

Now, note that 121272 = 0 and therefore, by the discussion in Example 4.3.1, more
generally by Proposition 4.3.2, we know that (z,y) € S, is an eigenvector of F if and
only if z € S, is an eigenvector of : C — C where C =R, S, = {z € C|||z||, = 1}
and

with homogeneity matrix

F(z) = (M(M " z)"/ =D)L/ (p=1) Vz € R". (11.7)

Note that F is order-preserving and homogeneous of degree r with 7=t = (p—1)(q —
1).

In Example 4.3.1 we have shown that the eigenvectors of F and F corresponding
to positive eigenvalues are in bijection. The connection between the eigenvalues of
F and F is discussed in the following lemma.

Lemma 11.2.1. In the above setting, suppose that (z,y) € S, satisfies one of the
following conditions:

i) (x,y) is an eigenvector of F,

ii) 2 is an eigenvector of F and y = v/||v||, with v = (M Tz)!/(@=1),
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If € = (x, My) # 0, then it holds
f(:v,y) = (51/(p_1):c,§1/(q_1)y) and F(z) = gCJ/((p—l)(q—l))x_

Proof. The proof of Proposition 4.2.1 implies that if (x,y) € S, is an eigenvector of F
then it holds F(x,y) = A® (z,y) with A = (£1/@=1 ¢V/(@=Dy and ¢ = (x, My). The
discussion in Example 4.3.1 further implies that F(z) = 6z with 6 = Sé/ P-D3, =
¢a/((b=1(@=1) " Conversely, the discussion in Example 4.3.1 implies that if z € S,
satisfies F(z) = Az and M 'z # 0, then (z,y) € S, is an eigenvector of F with
y = v/|Jv|ly and v = (M T2)"/(¢=D_ Furthermore, it holds F(z,y) = 8 ® (z,y) with
0 = (Avllg /%", ||vly). Proposition 4.2.1 then implies that AP~[[v]|} = ¢ =
||vHZ_1 so that |Jv]|, = €071 and X = ¢9/((P=D@=1) Ty conclude, note that with

the above expressions we have )\Hqu_l/(p_l) =/ -1, O

_ Next, we discuss properties Qf F . First, note that F can be written in the form
F(z,y) =V (L(x,y)) where L: C — C is the cone multi-linear mapping defined as

L(z,y) =My, M z)  V(z,y)€C,

and ¥: C — C is the nonlinear mapping defined as

U(z,y) = (/@D /@y vz y) e C.

Let x(-) denote the Birkhoff contraction ratio discussed in Theorem 5.2.7. By
Theorem 8.1.2 we have that for all (z,y), (Z,7) € C with (z,y) ~s (Z,7), it holds

pe(L(z,y), £(Z,9)) < Lpc((2,9), (2,9))

where L € R¥*? is given by

E= (i "G"):

Asp > 1and g > 1, U is order-preserving and multi-homogeneous of degree Q € R?*?

with
Q- <1/(p0— 1) 1/(qo_ 1)) _ diag <pilq—11)

By Lemma 5.2.3, for all (z,v), (z,7) € C with (z,7) ~¢ (Z,7), we have

pe(¥(z,y), ¥(Z,9)) = Que((2,y), (2, 9))-

It follows that

with
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Note that the spectral radius of L is given by

- K(M)k(MT)
=@

As ¥(z,y) ~s (z,y) for all (z,y) € C, Lemmas 9.2.1 and 9.2.2 imply that F is
irreducible, F is weakly irreducible, respectively F(int(C)) C int(C) if and only if £
has the corresponding property. We further note that Lemma 3.1 of [31] implies that
L is irreducible if and only if £ is weakly irreducible. Note that £(int(C)) C int(C) if
and only if M has at least one positive entry per row and per column. Furthermore,
it can be shown that £ is irreducible if and only if MM T € R™*™ and M " M € R
are irreducible matrices.

Next, we discuss the properties of F. By the Birkhoff-Hopf theorem 5.2.7 and

Lemma 5.2.3, for every z,z € C with x ~¢ & we have
K(M)R(MT)
(p—1)(¢—1)

Furthermore, as F(x) ~c M "Mz for all € C we have that F is irreducible if and
only if MM " is an irreducible matrix. Similarly, it can be verified that F is weakly
irreducible, resp. F(int(C)) C int(C) if and only if MM " is irreducible, resp. MM "
has at least one positive entry per row. From the above observations, we deduce that
if F is irreducible, resp. F(int(C)) C int(C), then F is irreducible, resp. F(int(C)) C
int(C). The converse is however not true in general. Indeed, if M = G 8), then
MTM € R¥$? and thus F(C \ {0}) C int(C), however F(int(C)) ¢ int(C) as M T
does not have a positive entry on the second row. This example shows that the
substitution technique of Section 4.3 is helpful to gain irreducibility in the problem.
By combining the above observations with Theorem 11.1.1 we obtain the following
Perron-Frobenius theorem for 9-singular values of nonnegative matrices.

pe(F(x), F()) < cpe(x,2) with c= (11.8)

Theorem 11.2.2. Let M € R?*", p,q € (1,00) and let | - ||, || - || be the P-norm
on R™ and the ¢?-norm on R" respectively. Let S = {z € R} |||z|, = 1} and ¢ > 0
defined as in (11.8). Then (11.4) has solution and the following assertions hold:

i) If either MM " has at least one positive entry per row and ¢ < 1 or (p —
1)(g—1) =1 and MM is irreducible, then (11.4) has a unique solution
(A, (u,v)) such that v € R, . Furthermore, for every o € RT', NS, the
sequence (xx)72, C R, NS defined as

F(xx)

T = Bk =0,1,.., (11.9)
IF )l
where F: R — R is defined in (11.7), satisfies klim xp, = u. Moreover, it
— 00

holds v = % and if additionally MM T is irreducible, then (X, (u,v)) it
q
the unique solution of (11.4). Finally, if ¢ < 1, then

prm (21, o)
prm (T, u) < * (ﬁ) Vk > 1.
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ii) If either (p — 1)(¢ — 1) > 1 and MM T has at least one positive entry per
row or (p—1)(¢—1) =1 and MM is irreducible, then the unique solution
(A, (u,v)) of (11.10) such that u € R, is maximal in the following sense:

A = sup{\ | is an /P9-singular value of M}.
Furthermore, the following Collatz-Wielandt formula holds:

M(M T2/ (@=1)y. 4 M(M T )@y,
sup min (M( izl )y =\ = inf min (M ;le )].
zeS ;70 T z€RT, NS je[m] T

Moreover, the sequences (o), (k)72 defined in terms of the sequence
()2, of (11.9), by

o = min F(@r); and B, = max
jetml (k); jelm] (zk);

satish
y q
g1 <o K A@DE-D < By < By,

q
for every k > 1, and limg_.oo a = limg_yo0 B = Al@=De-D,

Proof. Lemma 11.2.1 implies that for all x € R']* such that M Tz # 0, it holds F(z) =

Az if and only if ()\(P*)q(Q*U ,(z,y)) is a solution of (11.4) with y = %
q

Note that if MM T has at least one nonzero entry per row, and = € R™", satisfies
F(x) = Az, then M T2 # 0. Furthermore, let us show that if MM is irreducible,
then for every x € R, , DF(x) is primitive. First, note that, as MM T is irreducible,
MM has at least one positive entry per row and thus F(z) € R, for all z € R, .
Furthermore, note that for all ¢,j € [m] it holds

Fla) ™ T yat T
DF(z);; = ———F——— M; (M x)" M, ..
( ),] (p_1>(q_1)lz:; ,l( )l l,j

It follows that (MM ");; > 0 implies DF(z);; > 0. Now, as MM is irreducible
and positive semi-definite, p(M M ") is a simple eigenvalue of MM " and thus MM "
is primitive by Theorem 1 of [93]. Hence, MM is primitive and thus DF(z) is
primitive as well. The proof follows now from Theorem 7.3.1 and Theorem 11.1.1
(Ic), (IlIc), (II), (IVa) and (IVc) applied to F. O
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Figure 1: Plot of the lines (p—1)(¢—1) = 1 (in red) and k(M )x(MI) = (p—1)(g—1)
(in green) with p on the z-axis and ¢ on the y-axis.

The existence and uniqueness of a solution to (11.4) as well as the convergence
of (x)52,, the monotonicity and convergence of (o), (Bk)5e, and the Collatz-
Wielandt formula are proved in Theorems 1 and 2 of [36]° under the assumption that
(p—1)(¢—1) > 1 and MM is irreducible. These results improve previous work
in [13, 17, 31]. Indeed, in [17] uniqueness of the positive solution is not proved, in
[13] the matrix is assumed to be irreducible and in [31] it is assumed that p,q > 2
and MM, MTM are irreducible matrices. The condition ¢ < 1 for the existence
of a solution (A, (u,v)) to (11.4) with u € R}, its uniqueness and the convergence
of (z5)72, is new. It is the first known condition which ensure the computability
of || M|, when (p —1)(¢ — 1) < 1. We illustrate the improvement offered by this
new condition in Figure 11.2.1 where we plot the lines (p — 1)(¢ — 1) = 1 and
k(M)k(MT) = (p—1)(g—1), i.e. ¢ =1, for the matrix M, € R%rxf defined in terms
of e € (0,1) as

_1—6
C14€

€

M, = (6 1) so that k(M) = r(M))

11.2.2 ¢Pr--Pi_gingular vectors of a nonnegative tensor

Let d >2, T € R " py ... pg € (1,00) and let || - ||, be the Pi-norm on R™.
Let C = R} x ... x Rﬁd, consider the monotonic multi-normalization v: C — R‘i
defined as v(z) = (||z1]lp;, - - -, [|zdllp,) and set S, = {z € C|v(z) = 1}. We have
seen in Section 4.2.1 that the ¢P1-Pd_singular values/vectors, of T" are the solutions
to the following system of equations:

T(',.Z'Q,...,.led) = )\.Z‘Zl)l_i
T(x1,+,23,...,T = Azb?”

e ’ 2 2 with (A, z) € Ry x Sy. (11.10)
T(x1,...,T4-1,*) = )\$Zd_l
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We recall from Equation (4.3) that the above system characterizes the nonnegative
critical points of the objective function defining the ¢P*+Pd-norm of T, defined as

m fT(l'l,...,I'd)
2170,...2a#0 |1 [|p, - - [|2dllpg

1T lpr,v.oipa =

In particular, it holds
T |lpy....ps = SUP{A| X is an £P1+Pi_singular value of T'}.

Moreover, we have proved in Proposition 4.2.1 that the ¢P1»-Pd-gingular vectors of
T are characterized by the eigenvectors of the order-preserving multi-homogeneous
mapping F: C — C given by

F(z) =¥(L(x)) Vo € C, (11.11)
where L: C — C is the cone multi-linear mapping defined as
L(z) = (T(,x2,...,2q),....,T(x1,...,24-1,+)) Vz eC, (11.12)
and ¥: C — C is the nonlinear multi-homogeneous mapping defined as
U(z) = (z/Y e/ PDy e
We discuss properties of L. First, note that from Lemmas 9.2.3 and 9.4.3, we have

that L is irreducible, resp. weakly irreducible, if and only if 7" is an irreducible, resp.
weakly irreducible, tensor in the sense of [31]. Next, note that if 7' € R} "4,
then L£(Cy) € int(C), where Cyp = {x € C|z1,...,2q # 0} and in this case L is

irreducible. Furthermore, it holds £(int(C)) C int(C) if and only if 7" is such that for

alli=1,...,d and l; € [n;], there exists j; € [n1],...,Jq € [ng] such that j; = [; and
Tj,.....js > 0. Note that the latter assumption is not very restrictive, as for instance,
if n1 = ... =ng and T is the identity tensor, then L£(int(C)) C int(C). Moreover,

by definition of weak irreducibility, we have that if £ is weakly irreducible, then
L(int(C)) C int(C). To summarize, we have the following chain of implications:

L(Cp) C int(C) = L irreducible = £ weakly irreducible = L(int(C)) C int(C).

Now, let L € RiXd be defined as L;; =0 for i = 1,...,d and

Vi, e {l,....d}k#1,

Lo — tanh [% ln(Ak,l(T))] T e Rilf...xnd’
YT otherwise,

where Ay ;(T) is defined in (8.10). Then, by Corollary 8.2.5, for all 7,5 € {1,...,d},
we have

Ljvi = sSup tanh [i/‘LCj (;C(l')j,»c(.fl,...,.’L’i,l,yi,l’i+1,...,l‘m)j)]'
zeC,y;€C;
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Moreover, note that unless all the entries of T" are equal, in which case L = 0, then
all the off diagonal entries of L are positive and thus L is irreducible. By Theorem
8.1.2, we have

pe(L(z), L(y)) < Lpe(z,y)  Vz,y € int(C).

We discuss properties of . Let Q € RiXd be defined as

Q = diag (555, -5 5oo1) (11.13)

then @ is the homogeneity matrix of ¥. Moreover, as p; —1 >0 for all i =1,...,d,
¥ is order-preserving and Lemma 5.2.3 implies that

pe(V(2),¥(y) = Que(z,y)  Vaz,yeC with z~cy.

Note also that ¥(z) ~¢ « for every z € C and thus F(x) ~¢ L(z) for all z € C.
Hence, by Lemmas 9.2.1 and 9.2.2, we have that F(Cyp) C int(C), F is irreducible,
F is weakly irreducible, respectively F(int(C)) C int(C) if and only if £ has the
corresponding property.

Finally, note that F is order-preserving as ¥ and L are order-preserving. Now,
let A, M € R%9 be respectively defined as

A=Q11" —I) and M =QL, (11.14)
then A is the homogeneity matrix of F and it holds
pe(F(x), F(y)) < Mpe(z,y)  Va,y € int(C).

Note in particular that, as L <paxa (117 — 1), we have M =gixa A and therefore
+ +

by monotonicity of the spectral radius (see Example 2.3.6) and the linear Collatz-
Wielandt formula (10.1), it holds

d—1
M) < p(A) < Al); = '
p(M) < p( )—ig?ffd( ) iTod py — 1

(11.15)

Furthermore, note that if 7' € R’ ™" \ R} *" je. T has at least one zero
entry, then L = (117 — I) and thus M = A. We discuss the behavior of M and A

with respect to pi,...,pg. To this end, consider the mappings fas: (1,00)¢ — ]RiXd
and fa: (1,00)% — ]R‘iXd given by
— A3 1 1
fM(Q17"'7qd)_dlag(qli_lW")qdi_l)La and

falqr,- - qa) = diag (17, .-, =) (11" = 1).

Then, M = far(p1,...,pq) and A = fa(p1,...,pq). Moreover, if T does not have
all entries equal, then L and (117 — I) are irreducible matrices. Hence, by the
discussion in Example 2.3.6, we have that for all ¢1,...,44,q1,...,d4 € (1,00) such

that (q1,...,494) < (G1,-..,qq) it holds

p(fular, - qa)) > p(fu(Grs---,da)) and  p(falar,- - qa)) > p(fald,-- -, da))-
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Furthermore, it holds
tliglop(fM(tpl, e ,tpd)) =0 and tl_i)rélop(fA(tpl, . ,tpd)) =0.

It follows that by choosing pi,...,pq large enough, it is always possible to have
p(M) <1orp(A) <1

Note that A is irreducible, so let b € Ri + be the Perron vector of AT. The
eigenvectors and eigenvalues of F are related to the solutions of (11.10) in Proposition
4.2.1 where we have shown that x € S, is an ¢P'»~Pd-gingular vector of T' if and
only if it is an eigenvector of F. Moreover, let A be the ¢P1rPd_gingular value
of T corresponding to = and let 6 be the eigenvalue of F corresponding to x, i.e.
F(r) =9 @z with 9 € Ri and 0 = H‘ii:l 192”, then there exists v > 0, independent
of z, A and 99, such that § = A7 which implies that the eigenvalues of F on &, and
the ¢P1>Pd_gingular value of T" have the same ordering.

We combine the above observations with Theorems 11.1.1 and 11.1.2 to obtain to
the following Perron-Frobenius theorem for ¢P1Pd-singular vectors of nonnegative

tensors.
Theorem 11.2.3. Let d > 2, T € R ™™™ py ... pg € (1,00), let |||/, be the £Pi-
norm on R". Let C =R} x...xR}4 and S, = {z € C|||z1|lp, = ... = [|zdllp, = 1}

Let £: C — C be defined as in (11.12), let A, M € RiXd be defined as in (11.14) and
let b € R%, be the Perron vector of AT. Then (11.10) has a solution and the
following assertions hold:

i) If £L(int(C)) C int(C) and p(M) < 1, then (11.10) has a unique solution (A, u)
such that u € int(C). Furthermore, for every z( € int(C) NSy, the sequence
(k)2 C int(C) NS, defined as

o :( f(l‘k)l .F(:Ek)d )
T NFE@) e IF @) dllp,

where F: C — C is defined in (11.11), satisfies

k=0,1,..., (11.16)

lim z; = u and pe(zp,u) < MPv VEk > 1,

k—o0

with v = (I — M) ' pq(21,20). If additionally, £ is irreducible, then (\,u)
is the unique solution of (11.10).

ii) If p(A) =1 and £ is weakly irreducible, then (11.10) has a unique solution
(A, u) such that u € int(C). Furthermore, for every yo € int(C) NS,, the
sequence (), C int(C) NS, defined as

(A Ha
Yrt1 = (”H(yk)lnpl e ||’H(yk;)ded>

where H: C — C is defined as H(z) = (z o F(z))
(11.11), satisfies

k=0,1,..., (11.17)

1/2 and F is defined in

lim y, = u.
k—o00

If additionally, £ is irreducible, then (A, u) is the unique solution of (11.10).
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iii) If either p(A) < 1 and L(int(C)) C int(C), or p(A) = 1 and L is weakly
irreducible, then the unique solution (A, u) of (11.10) such that u € int(C) is
maximal in the following sense:

A = sup{\| A is an (P1+Pé_gingular value of T'}

Furthermore, with v = Z?Zl p_b—il, the following Collatz-Wielandt formula
holds,
d L b d r _bi
- 1 .. i—1
sup H ( max (x%’l]l)p =X = inf H ( min o), ’1]Z>p :
zeS, ;7 \Ji€lni zpfh eemt(C)NSy 7= \ ji€lni] :Uplj

Moreover, the sequences (o), (Bk)721s (Ce) iy, (§k)iey C (0,00) defined
in terms of the sequences (x1)32 4, (yx)32, C int(C) of (11.16) and (11.17),

by
_ ﬁ ( Tk)i m-)bi B = f[ < ]:(xk)i,ji)bl
o Jznelﬁlz] wk) ) Pl sem) (@h)ig,
d d
_ Y )igi \ 2 _ H(xk)ig |2
B ZI;II (Jze["Z] (Yk)ijs ) &= £[1 <Jir€l?5§} (Yk )i ji ) ’
satisfy

apt1 < ap <A< B < B and Cot1 < Cp <AV < &g <&,

for every k > 1, and if p(A) < 1, respectively p(A) = 1 and L is weakly
irreducible, then
lim ap = lim B = A7, respectively  lim (; = lim & = \7.
k—ro0 k—o0 k—ro0 k—ro0
Proof. We begin with general observations. We recall from Proposition 4.2.1 that
for every u € Sy, (A, u) is a solution of (11.10) if and only if F(u) = 9 ® u with
9 = (A= AV (Pa=1)) where F is defined in (11.11). As F is continuous, the
existence of a solution to (11.10) follows form Theorem 4.1.5. Note that H: C — C is
order-preserving and multi-homogeneous of degree B = (A+1)/2. Then p(B) = p(A)
and, as A is irreducible, B is primitive. BT has the same Perron vector as A", namely
b € R¢,. Furthermore, note that if z € int(C) N S, satisfies F(z) = ¥ @ x with
® € RY, then, it holds H(z) = (o F(x))'/2 = (0 (@@ 1))> = 9202 It
follows that if 0 is the eigenvalue of F corresponding to x, then the eigenvalue of H
corresponding to = equals v@. Conversely, if it holds H(z) = B8 ® = with 8 € R?,
then F(z) = 7' oH(x)? = B> @z and thus if « is the eigenvalue of H corresponding
to x, then the eigenvalue of F corresponding to = equals a?.

i) Follows from Theorem 11.1.2.
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i) F is weakly irreducible since £ is weakly irreducible. Thus, the existence of
(A, u) follows from Theorem 11.1.1 (Ic). As L is weakly irreducible, Lemma
9.4.6 implies that its Jacobian matrix DL(u) € RT1+"'+nd)X(n1+"'+nd) is

irreducible. The Jacobian matrix of F at wu is given by

2—pq 2-p4

DF(u) = diag((p1 — VL), ..., (pa = DL(w)g* ") DL(w).

It follows that DF(u) is irreducible as well and thus the uniqueness of (X, u)
follows from Theorem 11.1.1 (IIlc). The Jacobian matrix of H at w is given
by

DH(u) = % diag(H(u))~V/2 (diag(F(u)) + diag(x) DF (u)).

Hence, DH(u) is a primitive matrix since it is the sum of a positive diagonal
matrix and an irreducible matrix. The convergence of (yx);2; now follows
from Theorem 11.1.1 (IVc).

iii) The maximality of A as well as the Collatz-Wielandt formula follow from
Theorem 11.1.1 (II). Finally, the monotonicity and the convergence of the
sequences ()2 1, (k)71 (Cr) 55 (§k) 72 follow from Theorem 11.1.1, (IVa)
and (IVe). O

The results of Theorem 11.2.3 assuming p(A) < 1 are implied by Theorems 3.2
and 3.3 in [40]° and improve previous results of the literature: The existence and
uniqueness of solutions to (11.10) and a Collatz-Wielandt formula were proved in
Theorem 1 and Corollary 4.3 of [31] under the assumption that min{p1,...,pq} > d
and L is weakly irreducible. Furthermore, the convergence of the sequence (x)32,
towards a unique ¢P-Pd-gingular vector u € int(C) is proved in Corollary 5.2 [31]
under the assumption that min{pi,...,ps} > d and DL(u) is primitive. These
assumptions are more restrictive than those of the corresponding result in the above
theorem. Indeed, we see from (11.15) that min{p1,...,pqs} > d implies p(A) < 1 but
the converse is not true in general. Furthermore, as £ is weakly irreducible if and
only if DL(u) is an irreducible matrix (by Lemmas 9.4.3 and 9.4.6), the assumption
that DL(u) needs to be primitive is more restrictive than requiring £ to be weakly
irreducible. The convergence of (x)32, for p(A) <1, d > 3 and DL(u) primitive is
implied by Theorem 11.1.1, (IVc). Furthermore, the convergence of (xj)z, under
the assumption that £(int(C)) C int(C) and p(A) < 1 implied by Theorem 11.2.3,
(i) is strikingly less restrictive than asking for DL(u) to be primitive. By using
the substitution strategy discussed in Section 4.3, a Perron-Frobenius theorem for
¢P1--Pd_gingular vectors of nonnegative tensors is proved in [36]° under a slightly less
restrictive conditions on pi,...,py, and similar irreducibility conditions, than that
of [31]. We note however that the condition on py,...,pq discussed in [36]° implies
p(A) <1 (see Proposition 7.1.4). We stress that, when 7' € R’}}/*"¢ the condition
p(M) < 1 of Theorem 11.2.3, (i) is the first known condition which implies existence
and uniqueness of a positive solution to (11.10) as well as the convergence of (x)32
for choices of pi,...,pq satisfying p1,...,pq < m. We illustrate the improvement
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Figure 2: Plot of the surfaces p(A(p1,p2,p3)) = 1 (in blue), p(M (p1,p2,ps3,€)) = 1
(in green) and min{p;, p2,ps} = 1 (in red) with p; on the z-axis, pa on the y-axis
and p3 on the z-axis.

offered by Theorem 11.2.3 in Figure 2 where we plot the conditions discussed above
on p1,pa, p3 for the tensor T, € R3%**? defined for € € (0,1) as

Uitk
(T2)ijn = ne=d Vi i k=1,2. (11.18)
€ otherwise

From Example 8.2.2, we know that A, ;(7¢) = 12—+66r2 for all 7 # 7, so that

V1+eZ — /2
€) = tanh [L In(A; (T.))] = V———. 11.19
f() [4 ( J( ))] \/1—}——624—\/56 ( )
In particular, we have
1 47 1 22 3 )
)< = — < = -] < —. 11.20
f<4)_96’ f<2>_96’ f<4)— 1 ( )
For all p1,p2,p3 € (1,00), let
1 1
1 p1—1 p11—1
A(p17p27p3) = p21—1 (1) pa—1 P M(plup?vp?n 6) = f(e)A(p17p27p3)'
p3—1 p3—1 0

Note that p(A(p,p,p)) < 1 if and only if p > 3 while p(M(2,2,2,¢)) < 1 if € €
[1/2,1). Thus, the best rank one approximation [45, 63| (an NP-hard problem in
general) of T, can be computed in polynomial time when € € [1/2,1). As can
be seen in Figure 2, the condition p(M (p1, p2,ps,€)) < 1 which holds for all triples
(p1, P2, p3) above the green surface, improves the condition min{p;, p2, ps} > 3 which
is satisfied for all pair (p1, p2, p3) on and above above the red surface, especially when
€ is closed to 1. The red and the blue surfaces meet at (p1,p2,p3) = (3,3,3), ie.

p1=p2 =p3 =d.
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Finally, we note that in facts the condition p(M) < 1 of Theorem 11.2.3, (i) can
be further improved by using the smallest L satisfying the assumptions of Theorem
11.1.2. As discussed in Example 8.2.2, A; ;(T) only provides an upper bound on the
coefficients of the smallest L in Theorem 11.1.2. Indeed, by using the exact bound
L (computed for T' = T¢ in Example 8.1.4), it can for instance be shown that for
p1 = p2 = p3 = 2, the results of Theorem 11.2.3 (i) still holds for every € € (2/5,1)
(rather than € € [1/2,1)).

11.2.3 Rectangular /P?-singular vectors of a nonnegative tensor

Let d > 2, T € R**" with nq,...,ng so that there are integers m, n such that
m=mn; =...=ng and n = ngqy; = ... =ng. For p,q € (1,00), let || - ||, be the
¢P-norm on R™ and || - ||4 the £9-norm on R™. Define C = R x R"}, and consider the

monotonic multi-normalization v: C — R of C defined as v(z,y) = (|2, ||lyllq)
and set S, = {(z,y) € C|v(z,y) = 1}. We have seen in Section 4.2.3 that the
rectangular ¢P-%-singular values/vectors of T" are the solutions to the following system
of equations:

T(x,...,x,-,y,...,y) = )\yq—l

Moreover, we have discussed that the rectangular ¢P4-singular vectors of T are
characterized by the eigenvectors of the order-preserving multi-homogeneous mapping
F:C — C given by

. = p_l
{ T( ,:c,...,:(;,y,...,y) )\1’ and ()\’ (x,y)) ER_,’_ XSV. (1121)

Flz,y) =V(L(z,y)) VY(z,y)€C, (11.22)
where £: C — C is the mapping defined for every (z,y) € C as
ﬁ(gj,y):(T(-’ Lyeooy &y ya"'vy)7T(:Ba"'7:Ea°a Y- Yy )) (1123)
—_—— N—— —— S—
(a—1) times (d—a) times a times (d—a—1) times

and ¥: C — C is the nonlinear multi-homogeneous mapping defined as
U(z,y) = (/@D gDy vz y) eC.

We discuss properties of £. Note that if T' € R}*", then £(Cy) € int(C),
where Cy = {(z,y) € C|z,y # 0} and in this case £ is irreducible. Furthermore, it
holds £(int(C)) C int(C) if and only if T is such that for all i € [m] and all i’ € [n],
there exists ji,7] € [n1],...,J4,7y € [na] such that ji =4, 5, =, Tj, . j, >0
and Ty s > 0. Moreover, if £ is weakly irreducible then L(int(C)) C int(C).
Flnally, note that by Lemma 9.4.5 we know that if £ is irreducible, then L is weakly
irreducible. To summarize, we have the following chain of implications:

L(Cp) C int(C) = L irreducible = L weakly irreducible = L(int(C)) C int(C).
Now, let P € R¥*? be defined as



and let L € RY*? be defined as L = P if T € R+ \ R XM apd

L ( g tanh [FIn(Ay (7)) S, tanh[} In(Ay (7)) )
3oy tanh(3 In(Aq10(T))] ity yp tanh[} n(Aa1i(T))]

if T € R " where Ay (T) is defined in (8.10). Then, by Theorem 8.1.5, for
every (z,y),(Z,y) € C with (z,y) ~¢ (Z,7), we have

/J'C(ﬁ(xvy)v ﬁ('%vg)) S L/"’C((x?y)v ('%7g))

We discuss properties of . Let Q € ]R%rX2 be defined as

(-1 0
Q‘( 0 1/<q—1>>’ (11.24)

then @ is the homogeneity matrix of ¥. Moreover, as p—1 > 0 and ¢ — 1 > 0,
V¥ is order-preserving and Lemma 5.2.3 implies that for every (x,y), (Z,7) € C with
(.’E, y) ~C (:Z',Zj), we have

I'I’C(\I](x7y)7 \I]('%7g)) - QMC((%Z/% (QNJ, ?j))

Note also that ¥(z,y) ~¢ (z,y) for every (z,y) € C and thus F(z,y) ~¢ L(z,y) for
all (z,y) € C. Hence, by Lemmas 9.2.1 and 9.2.2, we have that F(Cp) C int(C), F is
irreducible, F is weakly irreducible, respectively F(int(C)) C int(C) if and only if £
has the corresponding property.

Finally, note that F is order-preserving as ¥ and L are order-preserving. Now,
let A, M € R%9 be respectively defined as

A=QP and M =QL, (11.25)
then A is the homogeneity matrix of F and it holds

pe(F(x), F(y)) < Mpe(z,y)  Va,y € int(C).

Note in particular that, as L =<paxa P, we have M =paxa A and therefore by
+ +

monotonicity of the spectral radius and the linear Collatz-Wielandt formula (10.1),
it holds

d—1d-1
M) < p(4) < max(A1); = max {S—-, “= -1 11.2
Pl )_p()_g%( )i = max b 11 (11.26)
Furthermore, note that if 7' € R ™" \ R *" je. T has at least one zero
entry, then L = P and thus M = A. We comment on the behavior of M and A
with respect to p,q. To this end, consider the mappings fas: (1,00)% — Ri“ and
fa: (1,00)% — R%rXQ given by

Far(rs) = (1/(7”0— 1) 1/(30— 1)) L and fa(r,s) = (1/%_ g 1/(30_ 1)) P.
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Then, M = fuy(p,q) and A = fa(p,q). Moreover, if T does not have all entries
equal, then L and P are irreducible matrices and by the discussion in Example 2.3.6,
we have that for all r, s, 7,5 € (1,00) such that (r,s) < (7, 5) it holds

p(fM(ra S)) > p(fM(FJ §)) and p(fA(r7 8)) > p(fA(f7§)>

Furthermore, it holds
Jim p(far(tptq)) =0 and  lim p(fa(tp,tq)) =0.

It follows that by choosing p, ¢ large enough, it is always possible to have p(M) < 1
or p(A) < 1.

Note that A is irreducible, so let b € Ri o be the Perron vector of AT. The
eigenvectors and eigenvalues of F are related to the solutions of (11.21) in Proposition
4.2.5 where we have shown that x € S, is a rectangular ¢P4-singular vector of T if
and only if it is an eigenvector of F. Moreover, let A be the ¢P-singular value of T’
corresponding to x and 6 the eigenvalue of F corresponding to z, i.e. F(z) =9 ®
with 9 € Ri and 0 = 19?119(2’2, then there exists v > 0, independent of x, A and 9,
such that 8 = A7 which implies that the eigenvalues of F on S, and the rectangular
(P 4-singular values of T have the same ordering.

We combine the above observations with Theorems 11.1.1 and 11.1.2 to obtain the
following Perron-Frobenius theorem for rectangular ¢7¢-singular vectors of nonnegative
tensors.

Theorem 11.2.4. Let d > 2, T € R} " with nq,...,ng so that there are
integers m,n such that m = ny = ... = ng and n = ngy1 = ... = ng. For
p.q € (1,00), let || - ||, be the fP-norm on R™ and || - ||; the £¢-norm on R™. Define
C=R} xR} and Sy = {(z,y) € C|||z|, = ||lyllq = 1}. Let L: C — C be defined as
in (11.23), let A, M € R2*? be defined as in (11.25) and let b € RZ_ be the Perron
vector of AT. Then (11.21) has a solution and the following assertions hold:

i) If £L(int(C)) C int(C) and p(M) < 1, then (11.21) has a unique solution

(A, (u,v)) such that (u,v) € int(C). Furthermore, for every (xo,yo) € int(C)N
Sy, the sequence (zx, yx)72, C int(C) NS, defined as

F @k, yk)1 F(@r, yr)2 ) k=0,1,..., (11.27)

IF @rs yi)allp " 1 (s g )allq
where F: C — C is defined in (11.22), satisfies

($k+1, yk—H) = (

khm (xkayk) = (’LL,’U) and Nc((ﬂfk; yk)a (u,v)) < Mkc Vk > 1,
—00

with ¢ = (I — M) 'pe((z1,v1), (o, v0)). If additionally, £ is irreducible,
then (A, (u,v)) is the unique solution of (11.21).

ii) If p(A) =1 and £ is weakly irreducible, then (11.21) has a unique solution
(A, (u,v)) such that (u,v) € int(C). Furthermore, for every (wp,zp) €
int(C) NSy, the sequence (wy, 2;)5>, C int(C) NS, defined as

H(wg, z1)1 H(wk, 21)2 ) k=0,1,..., (11.28)

(Wkt1, 2641) = <||H(wk,2’k)1”p7 | H (wg, 21)allq
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iii)

where H: C — C is defined as H(z,y) = (z o F(x,y)1,y 0 F(x,y)2)"> and
F is defined in (11.22), satisfies

lim (wy, z) = (u,v).
k—o0

If additionally, £ is irreducible, then (A, (u,v)) is the unique solution of
(11.21).

If either p(A) < 1 and L(int(C)) C int(C) or p(A) = 1 and L is weakly
irreducible, then the unique solution (A, (u,v)) of (11.21) such that (u,v) €
int(C), is maximal in the following sense:

A = sup{\| A is a rectangular (7%-singular value of T'}

Furthermore, with v = z% + %, the following Collatz-Wielandt formula
holds,

b1

— by
(z,y)ESY i€[m],j€[n] xzp y;]

b
- ‘ | < (x’y 1’7/> < (x y > 21
= inf _ min i —)
(z,y)€int(C)NSy i€[m],j€[n] f y;l

C (0,00) defined
) of (11.27) and

Moreover, the sequences ()22, (Bk)72 s (Co)aoqs (§k)7y
in terms of the sequences (xy,yr)72,, (Wi, 2k)5e; C int(C
(11.28), by

_ . (f Tk, Yr)1 )bl( iﬂk»yk >b2
ap = min ;
i€[m],j€[n]
]: b1 b2
_ ( xkayk ) ( xk,yk )
B = max ,
i€[m],j€[n]
. <7‘l Wiy 2k)1 >2b1 < wlmzk >2b2
(r = min ,
i€[m],j€n]
(H W, 2k )1 >2b1 (H W, 2)2 >2b2
{r = max ;
i€[m],j€n]

satisfy
apr1 < ap <A < By < B and Cot1 < Cp <AV < &g <&,

for every k > 1, and if p(A) < 1, respectively p(A) = 1 and L is weakly
irreducible, then

hm o = hrn B = A7, respectively lim {p = lim & = A\".
k—o00 k—o00 k—o00
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Proof. We recall from Proposition 4.2.5 that for every (u,v) € Sy, (A, (u,v)) is a
solution of (11.21) if and only if F(u,v) = ¥ ® (u,v) with 9 = (A\/P=1) \/(a=1)
where F is defined in (11.11). As F is continuous, the existence of a solution to
(11.21) follows form Theorem 4.1.5. Note that H: C — C is order-preserving and
multi-homogeneous of degree B = (A + I)/2. Note that p(B) = p(A) and B is
primitive since A is irreducible. B' has the same Perron vector as A", namely
b € R?,. Furthermore, note that if (z,y) € int(C) NS, satisfies F(z,y) = 9@z
with 9 € R%, then, it holds

H(z,y) = ((,9) o Fla,y)? = ((z,y) 0 (9 @ (z,9))) /> = 92 © (z,y).

It follows that if 6 is the eigenvalue of F corresponding to (z,y), then the eigenvalue
of # corresponding to (x,y) equals v/f. Conversely, if it holds H(z,y) = B ® (x,y)
with 8 € R2, then F(z) = (2,9)' o H(z,9)? = 8% ® (z,y) and thus if « is the
eigenvalue of H corresponding to (x,y), then the eigenvalue of F corresponding to
(z,y) equals o?.

i) Follows from Theorem 11.1.2.

ii) F is weakly irreducible since £ is weakly irreducible. Thus, the existence
of (A, (u,v)) follows from Theorem 11.1.1 (Ic). As L is weakly irreducible,
Lemma 9.4.6 implies that its Jacobian matrix DL(u,v) € RT*”)X(’””) is

irreducible. The Jacobian matrix of F at w is given by

N
N

)

-p

DF(u,v) =diag((p — 1)L(u,v)?™", (¢ — 1)L(u,v)d " )DL(u,v).

It follows that DF(u,v) is irreducible as well and thus the uniqueness of
(A, (u,v)) follows from Theorem 11.1.1 (IIIc). The Jacobian matrix of H at
(u,v) is given by

DH(u,v) = % diag(H(u, v)) "2 ( diag(F(u, v)) + diag(u, v) DF(u, v)).

Hence, DH(u,v) is a primitive matrix since it is the sum of a positive
diagonal matrix and an irreducible matrix. The convergence of (wy, 2x)72
now follows from Theorem 11.1.1 (IVc).

iii) The maximality of A as well as the Collatz-Wielandt formula follow from
Theorem 11.1.1 (II). Finally, the monotonicity and the convergence of the
sequences (ag)e 1, (Br) i1, (Cr) (&) 72 follow from Theorem 11.1.1, (IVa)
and (IVe). O

The results of Theorem 11.2.4 assuming p(A) < 1 are implied by Theorems
3.2 and 3.3 in [40]° and improve previous results of the literature: The existence
and uniqueness of solutions to (11.10) were proved in Theorem 4.3 of [65] under
the assumption that min{p, ¢} > m and L is weakly irreducible. Furthermore, the
convergence of the sequence (z,yr)5; towards a unique rectangular ¢”%-singular
vector (u,v) € int(C) is proved in Theorem 7 of [26] under the assumption that p =
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Figure 3: Plot of the lines p(A(p,q)) =1 (in blue), p(M(p,q,€)) = 1 (in green) and
min{p, ¢} = 3 (in red) with p on the z-axis and ¢ on the y-axis.

g =m and T is irreducible in the sense of [26]. The latter definition of irreducibility
is a more restrictive condition than requiring £ to be irreducible in the sense of
Definition 9.1.1 (see Lemma 9.2.5 and Example 9.2.6). A Collatz-Wielandt formula
is proved in Theorem 4.6 of [97] under the assumption that £ is weakly irreducible and
p = q = m. These assumptions are more restrictive than those of the corresponding
result in the above theorem. Indeed, we see from (11.26) that p,q > m implies
p(A) < 1 but the converse is not true in general. Furthermore, note that if £ is
irreducible then £ is weakly irreducible by Lemma 9.4.5. Furthermore, we note that
the convergence of (zy,yx)72, under the assumption that L(int(C)) C int(C) and
p(A) < 1 implied by Theorem 11.2.3, (i) is less restrictive than asking for £ to be
weakly irreducible. We stress that, when 7' € R} "¢ the condition p(M) <
1 of Theorem 11.2.3, (i) is the first known condition which implies existence and
uniqueness of a positive solution to (11.21) as well as the convergence of (x, yr)i,
for choices of p,q satisfying p,q < m. We illustrate the improvement offered by
Theorem 11.2.4 in Figure 3 where the conditions discussed above on p, ¢ are plotted
for the tensor 7. € R2*?*? defined in (11.18). For all p,q € (1, 00), let

2
A(p,q>=(? p;1>, M(p.q,€) = F(€)Ap, ).
q

-1

[y

where f(e) is defined in (11.19). Figure 3 shows that the condition p(M (p, q,¢€)) < 1,
which holds for all pairs (p, ¢) above the green line, improve the condition min{p, ¢} >
3 which is satisfied for all pair (p,q) above the red line, especially when e is closed
to 1. Finally, we note that the red and the blue lines meet at (p,q) = (3,3), i.e.

p=q=m.
11.2.4 /P-eigenvectors of a nonnegative tensor

Let T € R**" be an m-th order tensor, p € (1,00) and let |- ||, be the £P-norm on
R™. Define C = R"}, and consider the monotonic multi-normalization v: C — R, of
C defined as v(z) = ||z||, and set S, = {z € C|v(z) = 1}. We have seen in Section
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4.2.4 that the rectangular ¢P-eigenvalues/eigenvectors, of T' are the solutions to the
following system of equations:

T(-,x,...,x) =AaP and (\z)e Ry xS,. (11.29)

Moreover, we have discussed that the ¢P-eigenvectors of 1" are characterized by
the eigenvectors of the order-preserving homogeneous mapping F: C — C given by

F(z) =9(L(x)) Va € C, (11.30)
where L£: C — C is the mapping defined as
L(z)=T(,x,...,x) Vr € C, (11.31)
and ¥: C — C is the nonlinear homogeneous mapping defined as
U(z) = 2"/ V(z,y) €C.

We discuss properties of £. Note that if T € R;*", then £(Co) € int(C),
where Cyp = {z € C|x # 0} and in this case L is irreducible. Furthermore, it holds
L(int(C)) C int(C) if and only if T is such that for all j; € [n], there exists ja,...,Jq €
[ng] such that Tj, _;, > 0. Moreover, if £ is weakly irreducible then L(int(C)) C
int(C). Finally, note that, by Lemma 9.4.4, we know that if £ is irreducible, then £
is weakly irreducible. To summarize, we have the following chain of implications:

L(Cp) C int(C) = L irreducible = L weakly irreducible = L(int(C)) C int(C).

Now, let L € Ry be defined as L =m — 1 if T € R \ R and

L= tanh[LIn(A(T)]  if T e R,
=2

where Ay ;(T) is defined in (8.10). Then, by Theorem 8.1.5, for every z,y € C with
x ~¢ Yy, we have

pe(L(z), L(y)) < Lpe(z,y).

We discuss properties of ¥. Note that ¥ is homogeneous of degree 1/(p — 1).
Moreover, as p— 1 > 0, ¥ is order-preserving and Lemma 5.2.3 implies that for every
x,y € C with  ~¢ y, we have

1
pe(¥(z), ¥(y)) = ﬁﬂc(%y)-
Note also that ¥(z) ~¢ x for every z € C and thus F(x) ~¢ L(z) for all z € C.
Hence, by Lemmas 9.2.1 and 9.2.2, we have that F(Cyp) C int(C), F is irreducible,
F is weakly irreducible, respectively F(int(C)) C int(C) if and only if £ has the
corresponding property.
Finally, note that F is order-preserving as ¥ and L are order-preserving. Now,
let A, M € R%9 be respectively defined as
-1 L
Aa=" and M= ——, (11.32)
p—1 p—1
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then A is the homogeneity matrix of F and it holds
pe(F(x), F(y)) £ Mpe(z,y)  Vr,y € int(C).

Note in particular that, as L < m — 1, we have M < A. Furthermore, note that if T’
has a zero entry, then L = m — 1 and thus M = A. Furthermore, it holds
lim L_lzo and lim —— =0.
p—oo p—1 p—oo p —
It follows that by choosing p large enough, it is always possible to have M < 1 or
A<l
The eigenvectors and eigenvalues of F are clearly related to the solutions of
(11.21). Indeed, = € Sy is an ¢P-eigenvector of T if and only if it is an eigenvector of
F. Moreover, let A be the ¢P-eigenvalue of T' corresponding to x and 6 the eigenvalue
of F corresponding to x, then A = #?~! which implies that the eigenvalues of F on
S, and the (P-eigenvalues of T have the same ordering.
We combine the above observations with Theorems 11.1.1 and 11.1.2 to obtain
the following Perron-Frobenius theorem for ¢P-eigenvectors of nonnegative tensors.

Theorem 11.2.5. Let T' € R *" be a tensor of order m, p € (1,00) and let || - ||,
be the P-norm on R". Define C = R and S, = {z € C|||z|, =1}. Let L: C = C
be defined as in (11.31) and let A, M € Ry be defined as in (11.32). Then (11.29)
has a solution and the following assertions hold:

i) If £(int(C)) C int(C) and M < 1, then (11.29) has a unique solution (A, u)
such that u € int(C). Furthermore, for every zg € int(C) NSy, the sequence
(zx)72, C int(C) NS, defined as

Lh+1 = 7]:(%)
T IF@

where F: C — C is defined in (11.30), satisfies

k=0,1,..., (11.33)

klim Tp=u and pe(zp,u) < Mke Vk > 1,

— 00

with ¢ = (1 — M) Lo (21, 20). If additionally, £ is irreducible, then (\,u)
is the unique solution of (11.21).

ii) If p(A) =1 and £ is weakly irreducible, then (11.21) has a unique solution
(A, u) such that u € int(C). Furthermore, for every yo € int(C) N'S,, the
sequence (yx)pe, C int(C) NS, defined as

H(yr)
Yhar = k)01, 11.34
= Tl (1L34)

where H: C — C is defined as H(z) = (z o .7-"(%))1/2 and F is defined in
(11.30), satisfies

lim yi = u.
k—o0

If additionally, £ is irreducible, then (A, u) is the unique solution of (11.21).
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iii) If either p(A) < 1 and L(int(C)) C int(C) or p(A) = 1 and L is weakly
irreducible, then the unique solution (A, u) of (11.21) such that u € int(C),
is maximal in the following sense:

A = sup{A |\ is an (P-eigenvalue of T'}.
Furthermore, the following Collatz-Wielandt formula holds,

L(z);
.

.

L(x
sup max (_) =\= inf min ——
zeS, Jj€ln] ¥ z€int(C)NSy j€ln] x?

—_

Moreover, the sequences (o), (Bk)721s (Ce) iy, (§k)peq C (0,00) defined
in terms of the sequences (x1)32 4, (yx)72, C int(C) of (11.33) and (11.34),

by
4 N 2
e £ (08
sl ()} g€l Myr)}
. N2
Bk = max E(xkzjl, & = max < aykh) )
i€l ()} Gl N (yr)s
satisfy

g1 < o <A< Brr1 < Pr and Chr1 < G <A < &1 <&,

for every k > 1, and if p(A) < 1, respectively p(A) = 1 and L is weakly
irreducible, then

lim ap = lim By = A, respectively lim {p = lim & = A.
k—o0 k—o0 k—o0 k—o0

Proof. As F is continuous, the existence of a solution to (11.29) follows form Theorem
4.1.5. Note that H: C — C is order-preserving and homogeneous of degree B = (A+
1)/2. Furthermore, note that if x € int(C)NS, satisfies F(x) = 6z with 6 > 0, then, it
holds H(z) = (zoF(x))Y/? = (mo(ﬁx))l/z = 0'/2z. It follows that if § is the eigenvalue
of F corresponding to x, then the eigenvalue of H corresponding to z equals v/6.
Conversely, if it holds H(x) = Bz with 8 > 0, then F(z) = 27! o H(z)? = B*x
and thus if 8 is the eigenvalue of H corresponding to z, then the eigenvalue of F
corresponding to x equals 3.

1. Follows from Theorem 11.1.2.

2. F is weakly irreducible since £ is weakly irreducible. Thus, the existence of
(A, u) follows from Theorem 11.1.1 (Ic). As L is weakly irreducible, Lemma
9.4.6 implies that its Jacobian matrix DL(u) € R}*" is irreducible. The
Jacobian matrix of F at u is given by

DF(u) = Qdiag(L(u) P~V DL(u).
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It follows that DF(u) is irreducible as well and thus the uniqueness of (A, u)
follows from Theorem 11.1.1 (ITlc). The Jacobian matrix of H at u is given by

DH(u) = % diag(H(u))~" (diag(F(w)) + diag(w) DF(u)).

Hence, DH(u) is a primitive matrix since it is the sum of a positive diagonal
matrix and an irreducible matrix. The convergence of (yj)%2; now follows from
Theorem 11.1.1 (IVc).

3. The maximality of A as well as the Collatz-Wielandt formula follow from
Theorem 11.1.1 (IT). Finally, the monotonicity and the convergence of the
sequences (o )p2,(Br)i21(Ck)ity(§k)py follow from Theorem 11.1.1, (IVa)
and (IVc). O

The results of Theorem 11.2.3 assuming p(A) < 1 are implied by Theorems
3.2 and 3.3 in [40]° and improve previous results of the literature: The existence
and uniqueness of solutions to (11.29) and a Collatz-Wielandt formula were proved
in Theorem 4.1 and Corollary 4.3 of [31] under the assumption that p > m and
L is weakly irreducible. Furthermore, the convergence of the sequence (xy);2,
towards a unique ¢P-eigenvector u € int(C) is proved in Corollary 5.2 of [31] under
the assumption that p > m and DL(u) is primitive. These assumptions are more
restrictive than those of the corresponding result in the above theorem. Indeed, as
L is weakly irreducible if and only if DL(u) is an irreducible matrix (by Lemmas
9.4.4 and 9.4.6), the assumption that DL(u) needs to be primitive is more restrictive
than requiring £ to be weakly irreducible. Furthermore, the convergence of (xj)22
for p > m and DL(u) primitive is implied by Theorem 11.1.1, (IVc). Nevertheless,
for p = m, we note that the convergence result of Theorem 11.2.5, (ii) is equivalent
to Theorem 5.4 in [49] in terms of assumptions. However, note that the converging
sequence in [49] uses an additive shift while we have a multiplicative shift. The
convergence of (zx);2; under the assumption that L(int(C)) C int(C) and p > m
implied by Theorem 11.2.5, (i) is a strong improvement on previous results in terms
of irreducibility. In Theorems 7 and 8 of [20], it is shown that the conclusions of
Theorem 11.2.5, (i), holds for the case p = 2 and T is an irreducible stochastic
tensor. Nevertheless for general positive tensors (not necessarily stochastic), the
condition M < 1 of Theorem 11.2.5, (i) is the first known condition which implies
existence and uniqueness of a positive solution to (11.10) as well as the convergence
of (x1)72, for choices of p satisfying p < m. To appreciate the improvement offered
by Theorem 11.2.3 we note that for the tensor T, € R3%**? defined in (11.18), with
M(p,e) = 219 it holds M(p,1/4) < 1 for all p > 95/48 ~ 1.9792, M(p,1/2) < 1
for all p > 35/24 ~ 1.4583 and M (p,3/4) < 1 for all p > 71/61 ~ 1.1639, where we
have used the bounds on f(€) discussed in (11.20).

11.2.5 Discrete generalized Schrodinger equation

Let T € R%" be a tensor of order d > 3. Let C = R} x ... x R} and Cy =
{r € Clxy,...,xq # 0}. We recall from Section 4.2.2 that the following system of
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equations is a particular case of the generalized discrete Shrodinger equation:

T(-,z2,...,2q) = a;l_i
T(l’l,',l‘.g,...,fl?d) N m; and x € Cp. (11.35)
T(x1,...,T4-1,*) = :U;;l
Now, let F: Cy — Cy be defined as
F(z) =T(L(x)) Va € Co, (11.36)
where L£: C — C is defined as
L(z) = (T(-,x2,...,2za)" ", ..., T(z1,...,2q-1,")"") VzeC (11.37)

and ¥: int(C) — int(C) is defined as
U(z) = (27", ... 25" Vz € int(C).
We discuss properties of £. Note that £(Cy) C int(C) as T € R;*". Let
L € R™? be defined as

h[Ln(A(T)]  if
Lk,l:{gan [3 (A (T)) ?fz#i’ Vk,le{1,...,d}, (11.38)
1 =

where Ay ;(T) is defined in (8.10). Then, by Corollary 8.2.5, for all 7,5 € {1,...,d},

we have

Lj7i 2 sup tanh [%Mcj ([,(x)j,ﬁ(:cl,...,mi_l,yi,xi+1,...,a:m)j)].
xGC,yZ‘ECi

Moreover, by Theorem 8.1.2 we have

pe(L(x), L(y)) < Lpe(z,y)  Va,y € int(C).

We discuss properties of ¥. Note that ¥ is multi-homogeneous of degree —1, ¥
is order-reversing and Lemma 5.2.3 implies that

pe(V(2), ¥(y)) = pe(r,y)  Va,y € int(C).

Finally, note that F is order-reversing as W is order-reversing and L is order-
preserving. Now, let A, M € R%*? be respectively defined as

A=(I-11") and M=1L, (11.39)
then A is the homogeneity matrix of F and it holds

Furthermore, we have proved in Proposition 4.2.4 that if z € Cy is an eigenvector of
F, then z € int(C) and there exists ¢ > 0 such that tx is a solution of (11.35).
With the above observations we obtain the following:
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Theorem 11.2.6. Let T' € R’{"" be a tensor of order d > 2 and let C = R"} x
. x R%Y. Let |- | be a norm on R™ which is monotonic with respect to R’.

Furthermore, let L € RiXd and F: int(C) — int(C) be defined as in (11.36) and
(11.38) respectively. If p(L) < 1, then the following hold:

i) Equation (11.35) has a solution u € int(C) and @ € int(C) is a solution of
(11.35) if and only if there exists aj,...,aq > 0 such that H?Zl a; =1 and
= (Qug, ..., 0qug).

ii) For every xo € int(C), the sequence (xy)3; C int(C) defined as

F(zp)1 F(wg)a
x = ey vk > 1,
e (nf(xk)lu ||f<xk>d||)
satisfies ul g
lm zp=d=(—-,..., .
koo (Hmll ||ud||)
Furthermore, ( quzﬁ))l/ 4 is a solution of (11.35) and

pe(zy,u) < Lfv Yk > 1,
with v = (I — L) tpe (1, 20).

Proof. Let v: C — R% be defined as v(z) = (||x1],...,|zq|]) and let S, = {z €
Clv(x) = 1}. Then, as p(L) < 1, Theorem 7.3.1 implies that F has a unique
eigenvector & € S,,. Furthermore, Theorem 7.3.1 implies the convergence of (z1)72; C
int(C) towards @ and the convergence rate in (ii). By Proposition 4.2.4, as @ is an

eigenvector of F, we have that u = (fT%))l/dﬂ is a solution of (11.35) and thus
F(u) = u. Moreover, by the scaling invariance of pe (see Equation (6.7)), we have
pe(xp,u) = pe(xg, @) for all k& > 0 which proves the convergence rate. We show
that the set of solutions to (11.35) is given by {@ ® u|a € R%, and H?:l a; = 1}.
Let o € Ri 4 be such that H?Zl a; = 1. As F is multi-homogeneous of degree
A= (I—-11T), we have

f(a@u):aA®.7:(u):aA(X)u:(aoa_llT)@u:a@u.

It follows that o ® u is a solution of (11.35). Now, let @ be a solution of (11.35).
Then, u is an eigenvector of F and, as F has a unique eigenvector in S,,, we have

(o o) == (g o)

T ey )] = U= T K

[ | [l | [ all

It follows that & = o ® u for some o € R4, . We prove that H?Zl a; =1 Asu
and v are solutions of (11.35), it follows that o ® w and w are solutions of (11.35).
Hence, it holds F(u) = v and F(a ® u) = o« ® u. Now, as F is multi-homogeneous
of degree A = (I —117), we have

at@u=0a®Flu) = Fla®u) = a®u.
It follows that a*~! = 1 and thus H;-lzl a; = 1 which concludes the proof. O]

We point out that the convergence of the sequence (z1)72; in Theorem 11.2.6 is
new.
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11.2.6 Quantum copulas

Let V7 be the space of symmetric matrices in R™*™ and V5 the space of symmetric
matrices in R™*". Let C; C V4 and Cy C V5 be the cones of positive semi-definite
matrices, V =V} x Vo and C = (] x Cy. Let @: V; — V5 be a linear mapping and
denote by ®* its adjoint with respect to (-, -), the Hilbert-Schmidt inner products
on Vi and Va. Suppose that ®(C1\{0}) C int(Cs2), then by Lemma 2 of [67], it holds
O*(C2\{0}) Cint(C1). Let C=C1 xCyand S = {(X,Y) € C| Tr(X)+Tr(Y) =1}
where Tr(-) denotes the trace operator. The following equation is discussed in the
context of quantum copulas in [67]:

—1y _ 1 y-1
{CD(Y )= wX with  (X,Y) € int(C) N S. (11.40)
d*(X) =1y
In particular, it is shown in Theorem 5 of [67| that Equation 11.40 has a unique
solution. The main idea of the proof in [67] is to use the substitution technique of
Section 4.3 to characterize the solutions of (11.40) as the eigenvectors of an order-
preserving homogeneous mapping on int(C7). We explain how to derive the same
result by keeping the problem in its multi-homogeneous form. Define F: int(C) —
int(C) as

FX,Y)= (@Y H oY X)) V(X,Y)eint(C). (11.41)

Then, F is order-preserving and multi-homogeneous of degree A € R?*? with

0 1
A= <1 0) |
By Proposition 4.2.7, we know that the solutions of (11.40) are eigenvectors of
F and that the eigenvectors of F can be uniquely rescaled to be a solution of
(11.40). Let x(®) and x(P*) be the Birkhoff contraction ratio given by the Birkhoff-
Hopf theorem 5.2.7. Furthermore, note that by the discussion in Example 2.3.5
we know that the map X + X! is order-reversing. Hence, by Proposition 5.2.1,
we have have pc, (X1 X1 < pe, (X, X) and e, (Y, YY) < pe, (Y, Y) for all
(X,Y),(X,Y) €int(C). It follows that for every (X,Y),(X,Y) € int(C), it holds

He,y (]:(Xa Y)la]:(X7Y/)1) < pey ((I)(Y_l)a (I)(Y_l)) < K(q))ucz(y_la}}_l)
(®)pc, (YY),

IN
>

It now follows from Theorem 6.1.7 that for all (X,Y), (X,Y) € int(C) it holds

II'C(]:(Xv Y)?‘F(X>f/)) S L“C((Xa Y),(X,?)), (11'42)

L= <,$(g>*) “((;I))) (11.43)

With these observations one can prove the following:

with
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Theorem 11.2.7. Equation (11.40) has a unique solution (X,Y’). Moreover, for
every (Yo, Xo) € int(C), the sequence (Y, Xi)32, € int(C) defined for all £ > 0 as

(11.44)

ey ! ™ (Xk)
(Yer1, Xiy1) = (Tr(<I>(§/k1)1)7 Tr(‘I)*(Xk))>

satisfies

lim (Y, X3) = (X,V)  with  (X,7)= (
k—o00
Furthermore, it holds

(X, nTr(®*(X))Y)
Tr(X) + nTr(®*(X)) Tr(Y)’

(X,Y) =

the matrix L € ]RiX2 of (11.43) has spectral radius p(L) = /£(®)k(P*) < 1 and
pe((X, Vi), (X,Y)) S v Wk =1,
with v = (I - L)ily‘c’((Xl?Yl)? (X07Yb))

Proof. Tt holds p(L) = \/k(®)x(®*) as L is irreducible and has (1/k(®), \/x(®*)) "
as positive eigenvector. As ®(C;\{0}) C int(C2) and ®*(C2\{0}) C int(Cy), we have
(®) < 1 and k(®*) < 1 by Theorem 8.1.7. It follows that p(L) < 1. Let v: C — R%
be the monotonic multi-normalization given by v(X,Y) = (Tr(X), Tr(Y)) and let
S, = {(X,Y) € C|lv(X,Y) = 1}. Then (11.42) and Theorem 7.3.1 imply that
F defined in (11.41) has a unique eigenvector (X,Y) € int(C) NS, and for all
(Xo,Yp) € int(C), the sequence (Xp, Y3)2, defined as

(X1, Vier1) = v(F( Xk, Vi) ™ @ F(Xp, i),
satisfies

knm(XkH,YkH):(X,?) and  po((Xp, Y2), (X, V) < LFv Yk >1,
—00

with v.= (I — L)~ Mc((Xl,Yl) (X, 05 )) s (X,Y) is the limit of the sequence
(Xk, Y3)2, we have F(X,Y) = (AX,0Y) with

(A, 0) = v(F(X,Y)) = (Te(@(Y )71, Te(2*(X)).

Proposition 4.2.7 implies that Tr(®(Y ~1)~1) = o Tr(@*(X)) and the pair (X,Y) =
t(X,nTe(®*(X))Y) is a solution of (11.41) with ¢ = (Tr(X)+n Tr(®*(X)) Tr(Y)) L.
The scaling invariance of pe (see Equation (6.7)) implies that g ((Xk, Y2), (X, Y)) =
pe((Xe, Vi), (X,Y)) for all k > 1 which proves the claimed convergence rate. Next,
we prove the uniqueness of the solution (X,Y’). Suppose that (X,Y) is a solution of
(11.40). Then, the pair (X/Tr(X),Y/Tr(Y)) € int(C) NS, is an eigenvector of F.
As F has a unique eigenvector in int(C) N'S,, we have

(TrXX')’ TrY}_/)) =(X¥)= (Tr)((X)’ Tri(/Y))'
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It follows that X = (Tr(X)/Tr(X))X and Y = (Tr(Y)/ Tr(Y))Y. To conclude, we
prove that for a, f > 0, (aX,3Y) is a solution of (11.44) if and only if « = 8 = 1.
Suppose that (aX,8Y) is a solution of (11.40). Then, it holds ®*(aX) = 2(8Y)
and since ®*(X) = %Y it follows that « = 8. Now, as (X,Y), (aX,5Y) € S, we
necessarily have a = 3 = 1 which implies that (X,Y) = (X,Y) and therefore (X,Y)
is the unique solution to (11.40). O

11.2.7 Generalized DAD problem

Let d > 2. Fori=1,...,d, let V; = R% C; =R}, z; € R}, and M; € R}y
with ngy1 = n1. Suppose that M; has at least one positive entry per row. Let
C =Cp x...x Cq. We have discussed in Section 4.2.6 that the generalized DAD
problem is formulated as

I9 O Mlajl = Z9
el MQCEQ = Z3

: : with (A, z) € Ry x int(C). (11.45)
xgo Mg12q9-1 = 24
1 © ded = )\2’1

It is proved in Theorem 7.1.4 of [60] that the above equation has a solution if there
exists ¢ € {1,...,d} such that xk(M;) < 1, where (-) is the Birkhoff contraction rate
discussed in Theorem 5.2.7. The main idea of the proof of [60, Theorem 7.1.4 | is
to use the substitution strategy discussed in Section 4.3 to formulate an equivalent
problem of the form f(z1) = Az; where f: R}Y — R} is a mapping which is
homogeneous of degree 1 or —1 and is order-preserving or order-reversing, depending
on the parity of d. We prove here a similar result by treating the problem directly
in its multi-homogeneous form. Let F: int(C) — int(C) be given by

F(x1,...,2q) = V(L(x)) Va € int(C), (11.46)
where L£: C — C is defined as
L(x) = (Mgxq, Mhz1, ..., Mg_129-1) Vz € C,
and U: int(C) — int(C) is defined as
U(z) = (zloxl_l,...,zdoxgl) Vz € int(C).

We discuss properties of L. Note that £ is cone multi-linear and thus by Theorem
8.1.2, we have

I’LC([’(:E)a 'C(y)) S LMC(xvy) vxa Yy e 1nt(C),
with L € RT*? defined as

kK(M;—1) ifi>landj=i—1
Lij = k(Myg) if i =1and j =d, (11.47)

0 otherwise.
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Furthermore, we note that p(L) = (Hgl:1 n(Mi))l/ a Indeed, L is irreducible and
thus it has a positive left eigenvector a € Ri+ such that LTa = p(L)a. Now, note
that LTa = (k(My)ag, k(My)ai, ..., x(My_1)ag—,) and thus LTa = p(L)a implies
that k(M;)a; = p(L)a;+1 fori =1,...,d—1 and k(My)ag = p(L)a;. Hence, we have

o (1) = (I oterm) = (1100 (IT)

which proves the claim.
We discuss properties of . Note that W is order-reversing and multi-homogeneous
of degree A € R¥*9 with

-1 ifi>landj=1-1
Aij: —1 ifizlandj:d,

’

0 otherwise.

Furthermore note that for all i = 1,...,d and x,y € int(C), it holds

—1 -1
V()i YY) Zi g % i i 1Y
Gigieln] W (Y)ig, (@) 4 Jisdi€nal 2,5 Y; 5, %031, i
=In ( max 71) = ’I’C(xay)h

Jisdi€lnil Tij; Ys 5!

and thus
pe(¥(x), ¥(y)) = pe(z,y) Yo,y € int(C).
Finally, we note that F is order-reversing and multi-homogeneous of degree A €
R4 and
pe(F(z), F(y)) < Lpe(z,y)  Va,y € int(C).

Furthermore, we have proved in Proposition 4.2.8 that if (x, \) solves (11.45), then
x is an eigenvector of F and if z is an eigenvector of F, then there exists a € Ri I
and A > 0 such that (A\, @ ® x) is a solution of (11.45).

We combine the above observations with Theorem 11.1.2 to obtain the following:

Theorem 11.2.8. Let F: int(C) — int(C) and L € R?*? be defined as in (11.46) and
(11.47). Fori=1,...,d, let ||-||; be a norm on R™. If there exists j € {1,...,d} such
that k(M;) < 1, then (11.45) has a solution (A, u). Moreover, for every zg € int(C),
the sequence ()72, C int(C) defined as

f(xkh f(wk)d
x = e Vk > 1,
= (Hf(a:k)llh uf<a:k>dud>
where F: int(C) — int(C) is defined in (11.46), satisfies
. N (75} Ud
lim zp =4 = Yo .
koo " (HulHl Hudud)
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Furthermore, let o € Ri + and A > 0 be defined as

) M1t
a1 = 1, Q41 = ”ZH_I ° ( Z—;l‘uz—’—l) ”H_l for = 1, .. .,d - 1,
1

and
Qaq

21 0 (Mydia) =1
Then (A, ® ) is a solution of (11.45) and, with v = (I — L)~ (1, 20), it holds

A=

pe(zy, a®a) < LFv VE> 1.

Proof. Let v: C — R be defined as v(z) = (||lz1|1,.--, |zdlla) and let S, = {z €
C|v(z) = 1}. By the above discussion we know that p(L) = (ngl R(Mi))l/d and
thus x(M;) < 1 implies p(L) < 1. Hence, by Theorem 11.1.2, we know that F has a
unique eigenvector 4 € int(C) NS, the sequence ()72, converges towards 1, and

pe(zy,w) < LPv Wk > 1.

Now, note that as @ is the limit of (z4)72,, we have F(u) = v(F(u)) ® 4. Hence,
Proposition 4.2.8 implies that (A\,a ® 4) is a solution of (11.45). Finally, by the
scaling invariance of p, (see Equation (6.7)), we have pe(zg, a @ @) = po(zk, u) for
all £ > 1 which proves the convergence rate. O

12 Conclusion

The goal of this thesis was to study, from a Perron-Frobenius perspective, eigenvector
equations of the following type:

]:(xl,...,xd)l = )\11’1

Flx1,...,x = Aoz
(o 2 o (A, z) € RL x Cp, (12.1)

F(x1,...,2q)g = Aaxq

where Cyp = (C1 \ {0}) x ... x (Cg\ {0}), C; is a cone in a finite dimensional real
vector space for ¢ = 1,...,d, and F: C — C is a mapping. To achieve this goal,
in Section 3, we have introduced multi-homogeneous mappings. The relevance of
such mappings is motivated in Section 4 where we have shown that equations of
the form (12.1) involving multi-homogeneous mappings appear in various places of
the literature and in particular that of nonnegative tensors. For the analysis of such
problems, in Section 6.2, we have considered the vector valued Hilbert metric induced
by a product of cones. We have proved that desirable properties of the usual Hilbert
metric in the study of homogeneous mappings on cones, such as non-expansiveness
and contractivity, can be generalized to multi-homogeneous mappings when using a
vector valued metric. To prove such generalizations, we have used results of Section
6.1 where Lipschitz matrices are discussed. Fixed point theorems for vector valued
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metrics are discussed in Section 7.1. In Section 7.2, we give strong arguments in
favor of the vector valued Hilbert metric over the real valued Hilbert for the study
of multi-homogeneous mappings. Then, in Section 7.3, we have discussed how to use
the vector valued Hilbert metric to study the solutions of (12.1) when F is a strict
contraction. In order to better identify strict contractions on the product of cones,
in Section 8, we have extended the Birkhoff-Hopf theorem to multi-linear mappings.
Then, in Sections 9 and 10, we address the case of non-expansive mappings and
prove multi-homogeneous versions of other classical results of the Perron-Frobenius
theory such as the existence, the maximality and the uniqueness of an eigenvector
in the interior of the cone, the Collatz-Wielandt formula and the convergence of the
normalized iterates towards eigenvectors in the interior of the cone. Our main results
are summarized in Section 11.1. In Section 11.2, we have shown how they can be
applied to improve, complete and recover results of the literature on #P-eigenvectors,
rectangular /P4-singular vectors and ¢P*Pd-gingular vectors of nonnegative tensors.
Furthermore, we have seen that they allow to deduce new results for the computation
of the solution to the discrete generalized Schrodinger equation and offer a new point
of view on the generalized DAD problem as well as in the study of quantum copulas.

All in all, multi-homogeneous mappings are useful to unify the study of various
problems and allow a natural generalization of the results from the nonlinear Perron-
Frobenius theory of homogeneous mappings. The nonlinear Perron-Frobenius theory
has numerous further results which were not mentioned in this thesis and could
be potentially extended for multi-homogeneous mappings. For instance, extending
the definition of spectral radius in [68] to a multi-homogeneous mappings defined
on the product of general cones would allow to refine results on the existence of
eigenvectors and the Collatz-Wielandt formula as the latter definition does not
assume the existence of an eigenvector. Also, we have not discussed Denjoy-Wolff
type results [59] which describe the behavior of the normalized iterates of a mapping
which does not have an eigenvector in the interior of the cone. Furthermore, we are
convinced that introducing the concept of multi-subhomogeneous mappings would
broadly extend the range of applications of vector valued metrics on cones. We
refer to [3] and [60, Chapter 8] for a discussion on subhomogeneous mappings.
We believe however that multi-subhomogeneous mappings should generalize a more
refined concept, namely p-subhomogeneous mappings, i.e. mappings f: C — C for
which o f(z) < f(az) for all x € C and « € (0,1]. Such approach allows to fully
exploit the vector valued version of the Thompson metric (which is typically used
for the study of subhomogeneous mappings). Finally, we note that the estimation of
the projective diameter in the multi-linear Birkhoff-Hopf theorem, mainly discussed
in Section 8.2, can be improved in two ways: First, by working on parts of the cone.
This would allow zero entries in the tensor while still having a bounded projective
diameter. Second, by sharpening the upper bound A;;(7T") discussed in Theorem
8.2.1. Such result would enlarge the range in which p, ¢ and p1, ..., pg can be chosen
in order to guarantee existence and uniqueness of fP-eigenvectors, rectangular ¢P9-
singular vectors and ¢P1Pd-gingular vectors of non-negative tensors.
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