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Abstract 

Alcoholic and non-alcoholic steatohepatitis (ASH and NASH) represent risk factors for the development 

of hepatocellular carcinoma. The prevalence of ASH and NASH is strongly increasing worldwide. Within 

this work, different mechanisms responsible for steatohepatitis disease progression were elucidated 

in murine models. 

The insulin-like growth factor 2 (IGF2) mRNA binding protein (IMP) p62/IMP2-2 was shown to promote 

progenitor or dedifferentiated cell populations in a model of NASH and thereby amplify fibrosis. 

In diet-induced steatohepatitis, epigenetic alterations strongly affected genetic regions playing a role 

in lipid metabolism and liver morphology. 

Depletion of Kupffer cells, the resident macrophages of the liver, induced liver damage and attenuated 

hepatic accumulation of storage lipids, while hepatotoxic lipids were incorporated. 

Taken together, this work provides evidence that p62 promotes the appearance of undifferentiated or 

dedifferentiated cells and thereby disease progression and furthermore that macrophages are crucial 

in hepatic lipid homeostasis and protection of lipotoxicity. 

 

Zusammenfassung  

Die alkoholische und nicht-alkoholische Steatohepatitis (ASH und NASH) stellen Risikofaktoren für die 

Entwicklung eines hepatozellulären Karzinoms dar. Die Verbreitung von ASH und NASH nimmt 

weltweit stark zu. Innerhalb dieser Arbeit wurden verschiedene Mechanismen in Mausmodellen 

aufgeklärt, die für das Fortschreiten der Steatohepatitis Erkrankung verantwortlich sind. 

Es wurde gezeigt, dass das Insulin-ähnliche Wachstumsfaktor 2 (IGF2) mRNA bindende Protein (IMP) 

p62/IMP2-2 das Auftreten hepatischer Progenitorzellen oder dedifferenzierter Zellpopulationen in 

einem NASH Modell fördert und dadurch eine Fibrose begünstigt. 

In Diät-induzierter Steatohepatitis beeinflussten epigenetische Veränderungen genetische Regionen, 

die eine Rolle im Lipidstoffwechsel und in der Morphologie der Leber spielen. 

Die Depletion von Kupffer-Zellen, den Makrophagen der Leber, rief Leberschäden hervor und 

verringerte die Menge an Speicherlipiden in der Leber, während hepatotoxische Lipide eingelagert 

wurden. 

Zusammengefasst bietet diese Arbeit Hinweise darauf, dass p62 das Auftreten von undifferenzierten 

oder dedifferenzierten Zellen und damit den Krankheitsverlauf fördert und dass Makrophagen von 

entscheidender Bedeutung in der Lipidhomöostase der Leber und im Schutz vor Lipotoxizität sind.



 

 

 

 

 



 

1 

1 BACKGROUND 

1.1 NAFLD/AFLD - definition and prevalence 

The liver contributes to a wide range of functions and possesses the capacity to regenerate. It is a 

central organ and gland for digestion, detoxification, and metabolism. One of its key roles is the lipid 

metabolism. Under healthy circumstances, excess lipids are exported out of the liver and transported 

via the circulation to adipose tissue. However, under pathological conditions, disruption of the normal 

mechanism for synthesis, transport, oxidation, and storage of lipids causes an accumulation of lipids 

in hepatocytes (Bradbury et al., 2004).  

An excessive accumulation of fat in the liver in more than 5% of hepatocytes according to the 

guidelines is termed steatosis (EASL, EASD, EASO, 2016), the main feature of fatty liver disease (FLD). 

According to its etiology, the FLD can be distinguished into non-alcoholic and alcoholic fatty liver 

disease. In both cases, a secondary cause of hepatic lipid accumulation, such as steatogenic 

medication, hereditary disorders, or virus infections, need to be excluded (Chalasani et al., 2018).  

Non-alcoholic fatty liver disease (NAFLD) was first described in 1980 and is nowadays diagnosed when 

heavy alcohol consumption can be excluded, as it is the case when daily intake is less than 20 g of 

ethanol for women and 30 g for men (Ludwig et al., 1980; Ratziu et al., 2010). The disease is commonly 

associated with metabolic comorbidities, such as obesity, type 2 diabetes, hypertension, and 

dyslipidemia. These features of the metabolic syndrome are highly prevalent in patients with NAFLD 

(Vernon et al., 2011). Furthermore, an existing metabolic syndrome increases the risk of developing 

NAFLD, proposing it as the hepatic manifestation of the metabolic syndrome (Neuschwander-Tetri, 

2005; Younossi et al., 2011; Byrne et al., 2015).  

Alcoholic fatty liver disease (AFLD) is caused by excessive alcohol consumption (Mann et al., 2003; 

Adachi et al., 2005). Several risk factors for AFLD have been identified, including obesity, cigarette 

smoking, genetic factors, and sex. Females have an increased propensity toward alcohol-induced liver 

injuries than men (Gramenzi et al., 2006). A possible reason for the increased risk in females results 

from the presence of estrogen, a higher proportion of body fat, lower levels of gastric alcohol 

dehydrogenase, and therefore higher blood ethanol levels than men (Frezza et al., 1990; Eagon, 2010). 

NAFLD and AFLD range among the most prevalent liver diseases in developing as well as in developed 

countries (Rehm et al., 2013; Younossi et al., 2016). They have similar pathogenesis but different
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etiology and epidemiology. They are umbrella terms for a histological spectrum of diseases ranging 

from steatosis to steatohepatitis, advanced fibrosis, and cirrhosis (Figure 1) (Angulo, 2002).  

Alcoholic and non-alcoholic fatty liver (AFL/NAFL) is a simple hepatic steatosis, whereas alcoholic and 

non-alcoholic steatohepatitis (ASH/NASH) represent advanced stages of AFLD/NAFLD, characterized 

by steatosis coexisting with hepatocellular injury and inflammation with or without fibrosis (EASL, 

2012; EASL, EASD, and EASO, 2016). The prevalence of developing simple steatosis ranges from 15% 

to 30% for non-alcoholic steatosis and from 90% to 95% for alcoholic steatosis in people with chronic 

alcohol abuse with more than 60 g of alcohol per day (EASL, 2012; Schuppan et al., 2013). Only 10% to 

15% of patients develop steatohepatitis or a more severe outcome of the disease, like cirrhosis or 

hepatocellular carcinoma (HCC) (Figure 1) (EASL, 2012).  

 
Figure 1: Spectrum of alcoholic and non-alcoholic fatty liver disease (AFLD/NAFLD) progression. Estimated risks 
of progression are displayed in blue for AFLD and red for NAFLD. AFL/NAFL: alcoholic/non-alcoholic fatty liver; 
ASH/NASH: alcoholic, non-alcoholic steatohepatitis. (Adapted from the European Association for the Study of the 
Liver, 2012; Schuppan and Schattenberg, 2013). 

1.2 Pathogenesis of NAFLD/AFLD 

The European Association for the Study of the Liver (EASL) distinguishes NAFLD into “two pathologically 

distinct conditions with different prognoses”: NAFL and NASH, while the latter also includes fibrosis 

and cirrhosis (EASL, EASD, and EASO, 2016). According to the traditional view, widely known as the 

‘two-hit’ theory, a hepatic fat accumulation is a ‘first hit’ that sensitizes the liver to the development 

of hepatocyte injury. The ‘second hit’ (e.g. lipid peroxidation, reactive oxygen species, gut-derived 

endotoxin) results in inflammation and fibrosis (Day et al., 1998; Day, 2002). However, this theory has 

been challenged and fails to explain why steatosis is a benign process in the majority of patients in 

contrast to NASH. Therefore, the initial theory has been modified by a ‘multiple parallel hits’ 

hypothesis. This model suggests many hits acting in parallel and leading to an inflammation that may 

precede steatosis in NASH, supporting the separation of NAFL and NASH as two diseases (Tilg et al., 

2010; Yilmaz, 2012). 

1.2.1 Lipotoxicity and impaired triglyceride export 

Dysregulation of the lipid environment or the intracellular composition is called lipotoxicity and can 

possibly lead to organelle dysfunction, cell injury or cell death. Although triglycerides represent the 
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main lipid class, their accumulation can be considered as protective. In particular, blocking of 

triglyceride synthesis by inhibition of diacylglycerol acyltransferase 2 caused a reduction of steatosis 

associated with increased inflammation and fibrosis (Yamaguchi et al., 2007). Besides the total amount 

of lipids, the lipid composition may be more important (Cortez-Pinto et al., 2006; Puri et al., 2007, 

2009). Higher levels of free fatty acids (FFA), particularly saturated FFA, or of ceramide (CER), free 

cholesterol, and lysophosphatidylcholine (LPC) are associated with lipotoxicity and cell damage. Stress 

associated mechanisms are activated resulting in hepatic inflammation or apoptosis as shown in Figure 

2 (Mota et al., 2016). Here the stress-associated mechanism can be oxidative stress by production of 

reactive oxygen species (ROS) or endoplasmic reticulum (ER) stress with activation of the unfolded 

protein response (UPR).  

Another impaired mechanism in AFLD/NAFLD is the export of triglycerides (TG) via very-low-density 

lipoprotein (VLDL) particles made of TG, cholesterols, phosphatidylcholines (PC), and apolipoproteins. 

In vivo and in vitro studies showed an impaired VLDL secretion after ethanol administration 

(Venkatesan et al., 1988; Kharbanda et al., 2009; McVicker et al., 2012), which may inhibit the synthesis 

of PC, and therefore VLDL formation and TG export (Wehr et al., 1993). The link between choline 

deficiency and hepatic steatosis has been known for many years, leading to the establishment of 

choline-deficient diets modeling NAFLD in animals (Vance et al., 1985; Yao et al., 1990). 

 
Figure 2:  Influences of fatty diet and ethanol consumption on the liver. CER: ceramides; ER: endoplasmic 
reticulum; FFA: free fatty acids; IL: interleukin; LPC: lysophosphatidylcholine; LPS: lipopolysaccharides; MUFA: 
monounsaturated fatty acid; NASH/ASH: non-alcoholic/alcoholic steatohepatitis; ROS: reactive oxygen species; 
TLR4: toll-like receptor 4; TNF: Tumor necrosis factor; UPR: unfolded protein response; VLDL: very-low-density 
lipoprotein. Created with elements from Servier Medical Art (https://smart.servier.com/), licensed under a 
Creative Commons Attribution 3.0 Unported License. 
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1.2.2 Leaky gut, endotoxemia, and endogenous ethanol  

The cross-talk between the intestine and the liver plays an important role in the pathogenesis and 

progression of liver disease (Schnabl et al., 2014; Tripathi et al., 2018). In AFLD and NAFLD not only 

enteric dysbiosis (compositional changes of the gut microbiota) and bacterial overgrowth occur, but 

also increased gut permeability (Farhadi et al., 2008; Yan et al., 2011). This permeability might be due 

to a disruption of intercellular tight junctions in the intestine, as observed in NAFLD patients (Miele et 

al., 2009). Studies in germ-free mice showed modulation of hepatic lipid homeostasis through the gut 

flora, thus, inducing lipotoxicity (Turnbaugh et al., 2006).  

In patients with NAFLD as well as AFLD increased serum levels of bacterial endotoxins, such as 

lipopolysaccharides (LPS), can be detected, supporting the ‘leaky gut’ approach and the translocation 

of gut-derived bacterial endotoxins to the liver (Rao, 2009; Harte et al., 2010; Wong et al., 2015). The 

first evidence that LPS might play a role in the pathogenesis in steatohepatitis was already 

demonstrated in 1987. Rats receiving a liquid ethanol diet, the Lieber-DeCarli (LDC) diet, developed a 

fatty liver, while littermates challenged with an additional LPS injection developed necrosis with 

associated inflammatory changes (Bhagwandeen et al., 1987). LPS can activate Kupffer cells (KCs), the 

liver resident macrophages, via interaction with the toll-like receptor 4 (TLR4). This concludes in 

consequent activation of the inflammatory cascade, leading to the production of pro-inflammatory 

mediators, such as TNFα, IL1β, IL6, chemokines, and ROS (see Figure 2) (Liu et al., 2002; Hritz et al., 

2008). LPS also directly stimulates the activation of hepatic stellate cells or sinusoidal endothelial cells. 

Hence, liver non-parenchymal cells (NPCs) may play a pivotal role in the pathogenesis of NAFLD and 

AFLD (Seki et al., 2007; Jagavelu et al., 2010).  

The exposure to ethanol and its metabolites distinguishes AFLD from NAFLD. Nevertheless, in NASH 

patients and also in murine NASH models elevated endogenous ethanol produced by gut bacteria was 

found (Cope et al., 2000; Nair et al., 2001; Baker et al., 2010; Zhu et al., 2013). These findings support 

the hypothesis that NAFLD might be an endogenous AFLD, explaining the similar histopathology and 

molecular biology of both diseases (de Medeiros et al., 2015). 

1.3 Role of inflammatory cells in AFLD and NAFLD 

The liver is comprised of parenchymal and non-parenchymal cells working together in cohesion. For 

the understanding of the pathogenesis of AFLD and NAFLD, it has become of great importance to study 

their interaction and crosstalk.  

Hepatocytes represent the main liver cell type, which constitutes two-third of the total cell population 

(approx. 70%) (Gao et al., 2007). They fulfill the metabolic and detoxifying functions of the liver. The 

remaining cells are NPCs, including KCs, liver sinusoidal endothelial cells, biliary cells, lymphocytes, and 

hepatic stellate cells (HSCs). These HSCs play an unequivocal role in hepatic fibrosis and are generally 

quiescent cells that become activated during liver injury. They undergo morphological changes and 

differentiate into myofibroblasts producing collagen (Tsuchida et al., 2017).  
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The activation of inflammatory pathways is crucial in the progression of AFLD and NAFLD. One hallmark 

is the infiltration of inflammatory cells. However, this process and the involved inflammatory cells play 

a dual role: On one hand, inflammation is proposed to play a key role in promoting the progression 

towards steatohepatitis; on the other hand, an inflammation can have beneficial effects, such as host 

defense and liver regeneration (Gao et al., 2016).  

The first line of defense against injury are macrophages. KCs represent the largest population of tissue 

macrophages within the body. Their main role is the clearance of pathogen-associated molecular 

pattern molecules and translocated gut-derived bacteria. Still, their role in the pathogenesis of AFLD 

and NAFLD is controversially discussed, because they can have detrimental as well as beneficial effects, 

indicated in Figure 3. As described earlier, endotoxins activate KCs via TLR4. The importance of KCs and 

the TLR4 signaling in the development of NAFLD was demonstrated by Rivera and colleagues: mice 

lacking TLR4 or KCs are resistant to diet-induced hepatic inflammation and NASH (Rivera et al., 2007). 

In early and chronic stages of AFLD and NAFLD, where infiltrations of macrophages and lymphocytes 

are a prominent feature, inactivation or depletion of macrophages prevented experimental AFLD and 

NAFLD (Adachi et al., 1994; Lanthier et al., 2011).  

In contrast to these findings, KCs can also adopt an anti-inflammatory phenotype and release e.g. IL-

10 (Byun et al., 2013; Wan et al., 2014). Released cytokines and chemokines from hepatic macrophages 

can promote the transmigration of neutrophils in ASH and NASH for assistance in the defense against 

bacteria (Ebe et al., 1999). Nevertheless, neutrophils are supposed to promote progression of 

steatohepatitis by inducing hepatocyte injury (Ramaiah et al., 2007; Chang et al., 2015).  

 
Figure 3: Adverse and favorable effects of hepatic macrophages and neutrophils in AFLD and NAFLD. Pro-
inflammatory functions are activated during ASH and NASH, while phagocytic functions can be suppressed (Gao 
et al., 2016). 
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1.4 Kupffer cell depletion 

One method to study the function of KCs in the progression of steatohepatitis is the selective in vivo 

depletion by “the liposome-mediated macrophage ‘suicide’ technique” (Van Rooijen, 1989). 

Liposomes consist of amphipathic phospholipid molecules. In aqueous solutions, the phospholipids 

organize themselves into concentric phospholipid bilayers with aqueous compartments (Figure 4 A). 

Hence, strongly hydrophilic molecules, such as the bisphosphate clodronate (dichloromethylene-

bisphosphate), when solved in an aqueous solution, can be encapsulated within the liposomes. 

Clodronate itself is a non-toxic drug originally developed for the treatment of osteolytic bone diseases 

and cannot pass phospholipid bilayers of cell membranes or liposomes. These clodronate liposomes 

are used as a Trojan horse to be ingested by phagocytosis of macrophages (Figure 4 B: no. 1). Once 

ingested, the phospholipid bilayer is lysosomally digested (Figure 4 B: no. 2 and no. 3) and the 

clodronate is released within the cell and accumulates (Figure 4 B: no. 4). At a certain threshold 

concentration, irreversible damage causes the programmed cell death (apoptosis) of the macrophage 

(van Rooijen et al., 1996). The released clodronate has a short half-time and is rapidly cleared from the 

renal system. 

 
 

Figure 4: Illustration of a clodronate liposome and the macrophage ‘suicide’ mechanism. A: Clodronate 
liposomes consist of multilamellar phospholipid bilayers ( ) with encapsulated clodronate () separated by 
aqueous compartments (Rooijen and Sanders, 1994). B: The clodronate liposome is ingested by macrophages via 
endocytosis (1) and fuses with the lysosome (L) (2). Lytic enzymes like phospholipases disrupt the bilayers and 
digest the liposomes (3). The encapsulated clodronate is released within the cell (4). Clodronate is accumulated 
within the cell until a certain threshold concentration leads to cell apoptosis (van Rooijen, Bakker and Sanders, 
1997). 

An intraperitoneal (i.p.) injection of clodronate liposomes depletes macrophages in the peritoneal 

cavity. Via the lymph flow, they are carried to the blood circulation and lead to a depletion of 

macrophages in the liver (KCs), spleen, and bone marrow. Since the lymph flow circulation is a passive 

form of transport, i.p. administered clodronate liposomes may last approx. 3 days before depleting 

macrophages in the liver. For a longer depletion period than 5 days, injections have to be repeated in 
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order to avoid the replacement of depleted macrophages with new ones. Other immune cells like 

dendritic cells as well as neutrophils are not depleted by clodronate liposomes (Claassen et al., 1990; 

Qian et al., 1994). 

1.5 Role of liver progenitor cells in chronic liver disease 

Liver progenitor cells were discussed in the past years as a possible source of liver tumor development. 

Liver progenitor cells are quiescent cells and considered bipotential with the capacity to differentiate 

and carry markers for hepatocytes and cholangiocytes (Miyajima et al., 2014). Under persistent liver 

injury, when the ability of mature hepatocyte proliferation is compromised, liver progenitor cells are 

activated and expand in patients as well as in experimental injury models (Español–Suñer et al., 2012; 

Tarlow et al., 2014; Lu et al., 2015). 

 

Figure 5: Different functions of liver progenitor cells (LPCs) in chronic injured liver diseases, where liver 
regeneration is impaired. Liver progenitor cells can give rise to hepatocytes, but their activation, proliferation, 
and differentiation are reported to be involved in tumor development and NASH progression. Furthermore, the 
process requires extracellular matrix (ECM) remodeling and is associated with increased fibrosis (Lukacs-Kornek 
et al., 2017). 

Liver progenitor cell activation is accompanied by the ductular reaction, where ductules are formed, 

which may arise from existing cholangiocytes or liver progenitor cells (Roskams et al., 2004; Gouw et 

al., 2011). Additionally, liver progenitor cell activity is often accompanied by extracellular matrix (ECM) 

remodeling and pro-fibrogenic responses in animal models (Figure 5) (Van Hul et al., 2009; Kuramitsu 

et al., 2013; Peng et al., 2016). Moreover, liver progenitor cell activation and ductular reaction have 

been observed in several human chronic liver diseases including NASH, ASH, and HCC, where the 

degree of activation and ductular reaction correlates with their severity (Lowes et al., 1999; Roskams 

et al., 2003; Roskams, 2006; Richardson et al., 2007; Sancho-Bru et al., 2012; Gadd et al., 2014). 
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1.6 Epigenetic factors in AFLD and NAFLD 

AFLD and NAFLD comprise diseases, which are ranging from steatosis to steatohepatitis, advanced 

fibrosis, and cirrhosis. Despite their different etiology and epidemiology, they share similar underlying 

pathomechanisms. Susceptibility to and progression of AFLD/NAFLD is influenced by genetic as well as 

environmental factors (Figure 6) (Day, 2006; Eslam et al., 2018). 

 

Figure 6:  Interaction of genetic and environmental factors in the susceptibility and progression of AFLD and 
NAFLD (Eslam et al., 2016). 

Epigenetic changes have gained much interest in recent studies on the pathogenesis of liver diseases. 

The epigenome is involved in reversible changes in gene expression through modification of the 

secondary or tertiary structure of DNA, the chromatin, without altering the underlying DNA sequence 

and is representative for the cell phenotype. The epigenome is influenced by the genome through the 

presence of SNPs, by environmental factors such as diet or smoking, and also by age and gender (Figure 

6) (van Dongen et al., 2016). The underlying mechanism comprises histone modification, DNA 

methylation, and non-coding RNA mediated actions (Figure 7). 

Post-translational modifications of histones have an impact on gene transcription, making the DNA 

either more or less accessible to transcription and regulatory factors. Aberrant histone modifications 

have been shown to be associated and involved in the development of insulin resistance and 

consequently NAFLD (Ling et al., 2009). Ethanol exposure is linked to an imbalance of histone 

acetylation and deacetylation enzymes in hepatocytes, where H3K9 acetylation correlates with a 

transcriptional increase of the alcohol dehydrogenase (ADH1) (Park et al., 2005). Furthermore, ethanol 

might also be a stimulator of fibrosis by altering histone-modifying enzymes in HSCs, resulting in 

increased expression of extracellular matrix proteins including elastin (Page et al., 2015). 
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Figure 7: Epigenetic mechanisms important in the control of gene expression: histone modifications, non-coding 
RNAs, DNA methylation and hydroxylation (Moran-Salvador and Mann, 2017). 

DNA methylation takes place at the 5’-position of cytosines in CpG dinucleotides (Figure 7) and is 

catalyzed by DNA methyltransferases (DNMTs). CpG islands, clusters of CpG sequences, are found in 

an unmethylated state in promoters and are associated with a transcriptionally active state. 

Methylation, on the other hand, leads to chromatin condensation, inhibiting the binding of 

transcriptional activators, and therefore to transcriptional silencing (Edwards et al., 2010; Stadler et 

al., 2011). Different methylation patterns are proposed to distinguish different stages of NAFLD or 

fibrosis (Zeybel et al., 2015). Comparing mild to advanced NAFLD in liver biopsies of patients, Murphy 

and colleagues found general hypomethylated CpG sites in advanced NAFLD (Murphy et al., 2013). 

Additionally, it was shown in hepatoma cells that genes coding for the alcohol-metabolizing enzymes 

are regulated by DNA methylation (Dannenberg et al., 2006). 

In addition to histone modification and DNA methylation, endogenous non-coding RNA (ncRNA) 

molecules are important regulators of gene expression (Figure 7). They are classified by their size and 

functional mechanism. Aberrant profiles of microRNAs (miRNAs) have been found in NAFLD and AFLD 

and might be involved in NAFLD progression (Bala et al., 2012; Szabo et al., 2013; Ferreira et al., 2014). 

Characteristic plasma miRNA profiles have also been suggested as potential novel biomarkers for 

NAFLD and AFLD (Momen-Heravi et al., 2015; Pirola et al., 2015). Inflammatory responses are modified 

as well: Chronic alcohol feeding induced an increase of miR-155 in KCs and promoted TNFα productions 
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via increased mRNA stability, demonstrating an important role of miR-155 to promote liver 

inflammation (Bala et al., 2011). This was further supported by miR-155 knock-out mice, which were 

protected from alcohol-induced increased serum endotoxin and TNFα levels (Lippai et al., 2014). 

1.7 Insulin-like growth factor 2 mRNA binding protein p62 

The insulin-like growth factor 2 (IGF2) mRNA binding protein (IMP/IGF2BP) family represents a group 

of highly conserved RNA binding proteins, comprising three members (IMP1-3). They participate in 

posttranscriptional RNA processing i.e. by mediating RNA splicing, localization, stability, and 

translation of their target mRNA transcripts, such as IGF2 and H19 (Nielsen et al., 1999; Runge et al., 

2000; Bell et al., 2013). IMPs have a conserved structure of two N-terminal RNA-recognition motifs 

(RRMs) and four hnRNP K homology (KH) domains in the C-terminal region, which has been shown to 

be critical for their RNA-binding capacity (Farina et al., 2003). The IMP2 gene is located on chromosome 

3 q27.2 and encodes 16 exons. As shown in Figure 8 p62/IMP2-2/IGF2BP2-2 (NM_001007225.2) 

represents a human splice variant of IMP2. Compared to IMP2, p62 lacks exon 10 corresponding to 43 

amino acids between the KH2 and KH3 domain. 

 

Figure 8: Chromosomal location of the IGF2BP2/IMP2 and the p62 gene and the structure of the transcribed and 
spliced protein, giving the number of amino acids (aa) and the size (kDa) (chromosome created by the Genome 
Decoration Page/NCBI; adapted from Christiansen et al., 2009; Cao, Mu and Huang, 2018). 

IMP1 and 3 are classified as oncofetal proteins, whereas the expression of IMP2 in the adult liver has 

been controversially discussed. p62/IMP2-2 was originally identified in 1999 as an autoantigen in HCC 

(Zhang et al., 1999). In following studies, p62/IMP2-2 was not only found to be upregulated in human 

HCC but also to promote hepatocarcinogenesis and correlate with a poor outcome in human HCC 

(Kessler et al., 2013, 2015). 
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1.8 Murine models to study NAFLD and AFLD 

NAFLD and AFLD are very complex diseases and yet not fully understood. Therefore, animal models 

are being used to elucidate their pathogenesis. However, the ‘available’ animal models are only able 

to mirror single hallmarks of the diseases and do not fully display the complete pathophysiology of 

human NAFLD or AFLD. The animal models can be distinguished into dietary and genetic models. 

1.8.1 Models of NAFLD 

To investigate the pathophysiology of NAFLD the models presented in Table 1 are used.  

Thereby, the p62 transgenic mouse is a genetic model, expressing the human p62/IMP2-2 specifically 

in the liver. The p62 transgenic mouse was described in our group as a model for non-inflammatory 

steatosis with elevated lipid classes and fatty acids (Tybl et al., 2011; Laggai et al., 2013, 2014). 

Accordingly, other studies employing IMP2-deficient mice resist diet-induced obesity and fatty liver 

(Dai et al., 2015). p62 transgenic mice display steatosis and mild inflammation but neither obesity nor 

insulin resistance (IR) (Kessler et al., 2014; Laggai et al., 2014). With an additional diet e.g. the 

methionine-choline-deficient diet hepatic p62 expression was shown to amplify fibrosis (Simon, Sonja 

M Kessler, et al., 2014).  

A nutrient-deficient model is the methionine-choline-deficient (MCD) diet. The lack of methionine and 

choline leads to the hepatic accumulation of lipids through impairment of fat export from the liver via 

VLDL and increased fatty acid uptake (Rinella et al., 2008). Furthermore, the diet can model 

inflammation and liver fibrosis. However, it causes weight loss and does not display features of the 

metabolic syndrome, such as insulin resistance (Anstee et al., 2006).  

Overnutrition can be modeled by high-fat diet (HFD) feeding. Available diets vary in their relative 

carbohydrate and fat content ranging from 20% to more than 70% of total calories. Moreover, HFDs 

also differ in the saturation of the nutritional fatty acids, and the content of nutritional cholesterol. 

This inconsistency makes it difficult to compare the current literature. The HFD feeding induces 

obesity, insulin resistance, steatosis, and to some extent inflammation (Table 1) (Anstee et al., 2006). 

The outcome depends not only on the type of diet and the duration of diet exposure but also on the 

susceptibility of the mouse strain. 

Table 1: Animal models of NAFLD. IR: insulin resistance; MCD: methionine-choline-deficient diet; : occurs; : 
not detected. 

Model IR Obesity Steatosis Inflammation Fibrosis 

Genetic model 

p62 transgenic mice      (diet inducible) 

Feeding model 

MCD      

High-fat diet    (mild) (mild, after at least 1 year of treatment) 
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1.8.2 Models of AFLD 

The pathogenesis of AFLD is studied by using two feeding models presented in Table 2. 

Table 2: Animal models of AFLD. DW: drinking water;: not detected; : occurs. 

 

The ethanol in drinking water (DW) method represents the simplest way of ethanol administration. 

Here, increasing concentrations of ethanol from 10% up to 40% (v/v) are supplemented into the 

drinking water as the only drinking source. This ad libitum approach has been shown to cause mild 

steatosis and inflammation but no progression to fibrosis (Table 2) (Keegan et al., 1995; Cook et al., 

2007; Brandon-Warner et al., 2012). 

One of the first diets used for studying the effects of alcohol in vivo was the liquid Lieber-DeCarli (LDC) 

diet. This diet derives up to 36% of its calories from alcohol (DeCarli et al., 1967; Lieber et al., 1982). 

The LDC diet has been reported to induce steatosis and mild inflammation (Table 2). Pritchard et al. 

demonstrated that female C57BL/6 mice developed micro- and macrovesicular steatosis with a 

significant increase in liver triglycerides after a feeding period of 6 weeks (Pritchard et al., 2007). 

Furthermore, the liver to body weight ratios were elevated and the alanine-aminotransferase (ALT) 

activity in the serum was increased (Pritchard et al., 2007). Moreover, they also observed low 

inflammation with elevated liver cytokines, such as TNFα or IL6. Further hepatic injury can only be 

induced by an additional factor, such as injections of LPS or CCl4 (Pritchard et al., 2007).  

Model Steatosis Inflammation Fibrosis 

Feeding model 

Ethanol in DW  (mild) /  

Lieber-DeCarli diet  /  
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1.9 The aim of the present work 

Steatohepatitis is characterized by an inflammation-associated storage of excessive lipids in the liver. 

In the progression of the disease, liver-resident macrophages, i.e. Kupffer cells (KCs), play a crucial role. 

They can have both adverse as well as favorable effects, and their function is controversially discussed. 

p62/IMP2-2, the human splice variant of IMP2 was found to induce steatosis in a liver-specific p62 

transgenic mouse model and to promote other liver pathologies, such as fibrosis and liver cancer. The 

IMP family is a group of highly conserved RNA-binding proteins, comprising three members. IMP1 and 

IMP3 are classified as oncofetal proteins, whereas the expression of IMP2 in the adult liver is 

controversially discussed. 

Aim of this work was an in-depth characterization of the role of KCs in steatohepatitis and the impact 

of a liver-specific overexpression of p62 in a murine mouse model of steatohepatitis. The following 

aspects were investigated: 

1. The hypothesis that IMP2 is an oncofetal protein is aimed to be confirmed. Further, the 

influence of p62/IMP2-2 on progression towards fibrosis is characterized.  

 

2. The role of resident macrophages, i.e. KCs, in epigenetically regulated changes in gene 

expression was investigated in a murine steatohepatitis model.  

 

3. A potential role of p62 overexpression on the epigenome of hepatocytes was explored and 

how it impacts steatohepatitis dependent on the presence or absence of KCs. 
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2 CHAPTER I 

IMP2-2/p62 promotes the occurrence 

of liver progenitor cells  

2.1 Introduction 

The IMP/IGF2BP family members IMP1 and IMP3 are regarded as oncofetal proteins, whereas the 

expression of IMP2 in adult liver is controversially discussed (Zhang et al., 1999; Dai et al., 2011; Bell 

et al., 2013), not least due to the lack of quantitative data on IMP2 expression. Therefore, it was aimed 

to reliably quantify the expression of Imp2 at different stages of embryonic development and at 

different ages (Figure 9). 

 
Figure 9: Overview of embryonic (E12.5), neonatal (P0), infant (2 weeks), and adult (10 and 85 weeks) mice 
analyzed for hepatic IMP2 expression in a time-dependent course. Created with elements from Servier Medical 
Art (https://smart.servier.com/), licensed under a Creative Commons Attribution 3.0 Unported License. 

IMP2 was found to be highly expressed in glioblastoma cancer stem cells, where it is responsible to 

preserve their maintenance (Janiszewska et al., 2012). Undifferentiated liver progenitor cells are 

known to be activated in chronic liver diseases including NASH and HCC accompanied by a ductular 

reaction. Their degree of activation and the extent of ductular reaction correlates with the severity of 

liver disease (Roskams, 2006; Richardson et al., 2007; Gadd et al., 2014). Therefore, it was aimed to 

test the hypothesis that IMP2 is an oncofetal protein in the liver and that IMP2-2/p62 can promote cell 

stemness.
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2.2 Results 

IMP2 gene and protein expression in embryonic and adult livers were analyzed to test the hypothesis 

of an oncofetal protein. Publicly available RNA sequencing data sets (PRJNA66167, PRJNA280600; Yue 

et al., 2014) showed a high IMP2 expression in fetal mouse and human liver compared to the respective 

adult liver (Figure 10 A). Embryonic markers, such as IGF2 and H19, were also highly expressed in fetal 

livers (Figure 10 A). The low expression in adult, but high expression in fetal liver of Imp2, Igf2, and H19 

was confirmed by qPCR in a time-dependent course of embryonic (E12.5), neonatal (P0), and adult (2, 

10, and 85 weeks) mice (Figure 10 B, C, and D). The age-dependent pattern of murine Imp2 expression 

was confirmed on protein level by Western Blot analysis (Figure 10 E, F).  
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Figure 10: Expression of IMP2, IGF2, and H19 in embryonic and adult livers. A: IMP2, IGF2, and H19 gene 
expression from available RNA sequencing data sets of murine (PRJNA66167) and human (PRJNA280600) fetal 
liver compared to adults. Data are expressed as x-fold from the adult liver. B, C, D: qPCR analysis of Imp2 (B), Igf2 
(C), and H19 (D) in livers of fetal (E12.5; n=5), newborn (P0, n=8), 2-, 10-, and 85-week-old (each n=6) mice.  
E, F: Western blot analysis of IMP2 protein expression in fetal, young, and adult mouse livers. Representative 
picture of Western blot (E) and quantification of IMP2 levels normalized to tubulin (F) are shown. Imp2 signal 
intensities were quantified and normalized to the loading control values of tubulin. B, C, and D: Data are shown 
as the ratio of mRNA expression of the gene of interest to the reference gene Ppia. Results are presented as means 
± SEM or box plots with 25th/75th percentile boxes, geometric medians (line), means (square), and 10th/90th 
percentile as whiskers. P-values were calculated by Mann Whitney U test with Bonferroni correction. RPKM: Reads 
per kilobase transcript per million reads. 
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A high fetal hepatic expression of IMP2 suggests a role of IMP2 in undifferentiated liver cells. Since the 

degree of liver progenitor cell activation and ductular reaction have been shown to correlate with the 

severity of human chronic liver disease, the expression of IMP2 and common progenitor markers in 

gene expression data sets from human cirrhotic tissue (GSE14323) was first analyzed. Human cirrhotic 

and cirrhosis-associated HCC liver tissues showed an increased expression of IMP2 in parallel with the 

human liver progenitor cell marker genes SOX9, SPP1/osteopontin, CDH1, PROM1/CD133, BEX1, and 

EPCAM (Figure 11).  

cirrhosis

without HCC

cirrhosis

with HCC

Genes
x-fold 

change
p-value

x-fold 

change
p-value

IMP2 1.77 2.9E-08 1.58 1.5E-03

SOX9 4.67 1.9E-17 3.71 2.3E-10

SPP1 5.44 7.7E-11 4.40 6.8E-05

CDH1 1.63 4.0E-09 1.81 6.0E-05

AFP 0.91 6.0E-02 1.05 4.8E-01

PROM1 4.86 8.9E-13 2.95 4.7E-10

BEX1 1.47 3.7E-05 1.65 8.3E-07

EPCAM 14.71 6.8E-15 13.61 2.3E-10

 
 

Figure 11: Elevated stem cell marker expression in human cirrhotic and HCC/cirrhotic tissue. Analysis of GEO data 
set GSE14323  for IMP2, SOX9, SPP1, CDH1, AFP, PROM1, BEX1, and EPCAM gene expression in human cirrhotic 
(n=41) and cirrhosis-associated HCC (HCC/cirrhotic: n=17) liver samples. Values are shown as x-fold of healthy 
(n=19) liver samples and p-values were generated in comparison to healthy tissue (Mann-Whitney U test or 
Welch’s t-test). 
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The impact of IMP2 overexpression in the liver on stem cell features was investigated in a mouse model 

with hepatic overexpression of IMP2-2/p62, a human splice variant of IMP2. qPCR analyses of these 

transgenic livers revealed an upregulation of the murine homologous liver progenitor cell marker 

genes Spp1 and Cdh1, while Krt19 and Sox9 were not altered (Figure 12 A). To further study the impact 

of IMP2-2/p62 expression on liver progenitor cell occurrence in the context of liver disease, livers of 

IMP2-2/p62 transgenic mice challenged with a NASH-inducing MCD diet were analyzed. A strong 

ductular reaction in livers of IMP2-2/p62 transgenic mice was observed in our group after 4 weeks of 

MCD feeding compared to wild-type animals, based on immunohistochemical Krt19 stainings (Simon, 

2013). These livers were further analyzed for progenitor marker expression in this work. An induction 

of Krt19 and Sox9 mRNA expression was found and the expression of Spp1 and Afp was induced to a 

greater extent in MCD-fed IMP2-2/p62 transgenic mice compared to their wild-type littermates (Figure 

12 B). Since liver progenitor cell occurrence is often described together with ECM remodeling, the 

expression of ECM components in the occurring ductular reaction of IMP2-2/p62 transgenic livers was 

further investigated. The ductular reaction was accompanied by the deposition of ECM components, 

such as laminin and hyaluronic acid, determined by immunohistochemical stainings (experiments 

carried out by Dr. S. M. Kessler and Dr. Y. Simon, Figure 12 C). 
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Figure 12: Elevated stem cell marker and extracellular matrix component expression in p62 transgenic mice.  
A, B: Expression analysis of Krt19, Sox9, Spp1, Cdh1, and Afp in p62 transgenic (tg) mice (n=11-13) on normal 
chow (A) and on MCD diet (B), shown as x-fold of wild types (wt) (n=12-13). C: Representative 
immunohistochemical staining for laminin and hyaluronic acid in p62 transgenic animals fed an MCD diet. A, B: 
Results are shown as means ± SEM. Statistical significance compared to wild types was determined by Mann 
Whitney U test or Welch’s t-test. Rn18s was used as the reference gene. n.s.: not significant. 
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2.3 Discussion 

In the present study, an age-dependent IMP2 expression pattern is shown and together with previous 

work an oncofetal character of IMP2 not only in human but also in murine liver is strongly supported. 

Furthermore, hepatic overexpression of IMP2-2/p62, a human splice variant of IMP2, promoted a 

ductular reaction accompanied by undifferentiated cells and ECM deposition in a murine MCD model 

of NASH. 

The age-dependent pattern of IMP2 expression in murine liver with high embryonal and minimal adult 

expression was confirmed on mRNA as well as protein level in agreement with previous studies 

(Hammer et al., 2005).  As expected, the highest embryonal expression was found at embryonic day 

12.5 (Nielsen 1999). In contrast to these results, IMP2 has been suggested to be ubiquitously expressed 

on mRNA and protein level in adult murine tissue, including the liver (Dai et al., 2011; Bell et al., 2013). 

However, these studies did not quantitatively compare expression levels in the embryonic state with 

the adult one. In addition, re-expression of IMP2 and its splice variant IMP2-2/p62 has been described 

in liver cancer (Kessler et al., 2013, 2015) underlining its oncofetal expression pattern. Furthermore, 

IMP2 has been described to promote an undifferentiated character of HCC (Kessler et al., 2015). Thus, 

it was suggested that IMP2 might promote undifferentiated liver cells and investigated the expression 

of liver progenitor cell markers.  

Expression of Cdh1, which was elevated upon IMP2-2/p62 transgene expression, was shown to 

increase with elevated numbers of progenitor cells (Van Hul et al., 2009). In agreement with the 

literature (Furuyama et al., 2011; Y. Chen et al., 2015; Shimata et al., 2018), an induction of Krt19 and 

Sox9 occurred during ductular reaction, which was induced by IMP2-2/p62 expression upon MCD-

feeding. Although Spp1 and Sox9 are usually expressed by liver progenitor cells (Syn et al., 2011; 

Pritchett et al., 2012), their expression was also found in de-differentiated mature hepatocytes in a 

liver-injury induced model (Tarlow et al., 2014). Increased Afp expression further suggests 

dedifferentiation processes (Yanger et al., 2013) induced by IMP2-2/p62. Thus, the here presented 

findings favor the hypothesis that p62 promotes undifferentiated or dedifferentiated cells. 

Sox9 was found to regulate ECM component expression and Spp1 (osteopontin). IMP2-2/p62 

transgenic mice showed significantly elevated levels of Spp1 and when fed an MCD diet ECM 

deposition was detected by immunological stainings for laminin and hyaluronic acid. Spp1 functions as 

a pro-fibrogenic ECM protein and was reported to promote fibrogenesis in an MCD-induced model 

(Syn et al., 2011, 2012). Neutralization of the protein resulted in abrogated liver progenitor cell 

responses and fibrogenesis (Coombes et al., 2015), indicating a crucial role of Spp1 in progression of 

NAFLD. Interestingly, the IMP2-2/p62 transgenic mice were shown to have an elevated collagen 

deposition and increased fibrosis (Simon, 2013; Simon et al., 2014), suggesting a promoted 

fibrogenesis due to IMP2-2/p62-induced liver progenitor cell appearance. By inhibition of ECM 

components, especially laminin, liver progenitor cell activation and expansion was shown to be 
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impaired (Kallis et al., 2011). Laminin was reported to surround liver progenitor cells in rat and mouse 

liver injury models, as well as in human cirrhotic livers (Lorenzini et al., 2010). Furthermore, ECM 

production and deposition were proposed to occur before liver progenitor cell expansion and around 

liver progenitor cells in a CDE-induced liver injury rat model (Van Hul et al., 2009), underlining the 

importance of ECM with liver progenitor cell occurrence.  

Taken together, hepatic IMP2-2/p62 expression is accompanied by progenitor or dedifferentiated cell 

populations and enhances ductular reaction with ECM deposition, and thereby promoting fibrosis. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parts of the results presented in this chapter have been used for a publication submitted to Frontiers 
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SM IGF2 mRNA binding protein 2 transgenic mice are more prone to develop a ductular reaction and 

to progress towards cirrhosis. 
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3  CHAPTER II 

Different models of steatosis in p62 

transgenic mice 

3.1 Introduction 

Various dietary regimens are used in murine models to elucidate the pathogenesis of NAFLD and AFLD 

(Bertola, 2018). The genetic mouse model with a liver-specific expression of the human p62 was 

described as a model for simple steatosis with none to mild inflammation (Tybl et al., 2011; Laggai et 

al., 2014). To study the pathogenesis towards inflammation or fibrosis, a second hit for this model is 

needed. p62 was found to amplify NASH in an MCD feeding model (Simon et al., 2014). However, the 

diet results in a significant body weight loss and loss of liver mass (Anstee et al., 2006). Additionally, 

the comparison between MCD diet-induced NASH and human NASH is difficult because of differences 

in etiology (Larter, 2007). Therefore, models mimicking overnutrition like high-fat diets provide a more 

accurate model and were shown to have similar lipid alterations and histological changes as human 

NAFLD patients (Gorden et al., 2011). Furthermore, in NASH patients and murine NASH models 

endogenous ethanol was found to be elevated (Cope et al., 2000; Nair et al., 2001; Baker et al., 2010; 

Zhu et al., 2013). An ethanol diet or endogenous ethanol can lead to a leaky gut, from which 

lipopolysaccharides translocate to the liver and induce inflammation (Szabo et al., 2015). Therefore, in 

the following chapter two feeding models, the high-fat diet and the administration of ethanol in 

drinking water, were investigated with the objective of inducing steatosis and inflammation. In these 

models, the impact of hepatic p62 expression was examined. The best suitable feeding model was 

planned to be chosen for KC depletion and epigenetic analysis (see Chapter III). 

  



CHAPTER II   

22 

3.2 Results 

3.2.1 High-Fat Diet (HFD) 

To induce steatosis and inflammation mice were fed an HFD based on milk fat for 12 weeks. Milk fat 

diets were reported to promote more severe steatosis than lard fat diets (Sutter et al., 2012). 

Macroscopic examination of the livers showed no abnormalities (Figure 13 A). Analysis of microscopic 

HE stainings of liver sections revealed lipid accumulation within p62 tg livers, while it did not occur in 

any of the wild-type livers, on either diet (Figure 13 B). 

 
Figure 13: Representative macroscopic pictures (A) and HE stainings (B) of livers and liver sections (original 
magnification: 200x) from wild-type (wt) and p62 transgenic (tg) animals fed a high-fat diet (HFD) or a control 
diet (co) for 12 weeks. n(co wt)=21; n(co tg)=19; n(HFD wt)=22; n(HFD tg)=18. 

Overall, HFD-fed mice had significantly increased body weight (Figure 14 A, B), while the liver to body 

ratio did not differ (Figure 14 C). Total lipid analysis revealed no differences, neither between 

genotypes nor between treatment groups (Figure 14 D). 
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Figure 14: Body weight, liver weight, and total lipids of wild-type (wt) and p62 transgenic (tg) animals on control 
(co) or high-fat diet (HFD) for 12 weeks. A: Body weight over time. B: Change of body weight at the age of 15 
weeks compared to the weight at the beginning of the diet. C: Liver to body weight ratio. D: Total lipid analysis 
determined by the colorimetric sulfo-phospho-vanillin method. Results are shown as means ± SEM (A) or box plots 
with 25th/75th percentile boxes, geometric medians (line), means (square), and 10th/90th percentile as whiskers 
(B-D). P-values were calculated by Mann Whitney U test with Bonferroni correction (significance level set at 
p≤1.25E-2). n(co wt)=21; n(co tg)=19; n(HFD wt)=22; n(HFD tg)=18; n.s.=not significant. 
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Determination of serum parameters to assess the health of the animals revealed decreased glucose 

levels in p62 tg animals on control and high-fat diet compared to their wild-type littermates (Table 3). 

The lack of altered ALT and AST levels indicated the absence of inflammation. 

Table 3: Serum parameters of wild-type (wt) and p62 transgenic (tg) animals on control (co) or high-fat diet 
(HFD) for 12 weeks (n=18-22 each). Values are expressed as mean±SEM. P-values were calculated by Mann 
Whitney U test with Bonferroni correction (*p<0.0125 in comparison to co wt). 

 

In order to investigate possible inflammatory changes or changes in fatty acid and cholesterol 

metabolism, mRNA expression analysis was performed. No differences in expression of inflammatory 

markers F4/80/Adgre1 and Il1β, or genes involved in fatty acid and cholesterol metabolism (liver X 

receptor and HMG-CoA reductase) was seen, neither between genotype nor between diets (Figure 15 

A-D). These results underline the absence of inflammation. 
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Figure 15: Hepatic expression of genes involved in fatty acid and cholesterol metabolism and inflammatory 
markers. A-D: qPCR analysis of Adgre1 (F4/80) (A), LxR (B), Il1β (C), and Hmgcr (D) in livers of wild-type (wt) and 
p62 transgenic (tg) animals fed a high-fat (HFD: n(wt)=22; n(tg)=18) or control diet (co: n(wt)=21; n(tg)=19). 
Results are shown as box plots with 25th/75th percentile boxes, geometric medians (line), means (square), and 
10th/90th percentile as whiskers. Data are presented as the ratio of mRNA expression of the gene of interest to 
the reference gene Rn18s. 

Since a tendency in total lipids within the liver was seen, a more detailed analysis by ESI-MS/MS was 

performed to reveal changes in the lipidome between genotypes and diets (Table 4, Supplemental 

figure 7-1 - Supplemental figure 7-3). The p62 tg animals on the control diet had elevated levels of 

saturated cholesteryl ester, total species of ceramides, and polyunsaturated lysophosphatidylcholine 

when compared to the corresponding wild types (Table 4).  

Livers of wild-type, as well as p62 tg animals on HFD, displayed mostly decreased levels of sphingolipids 

and glycerophospholipids compared to the corresponding genotype on control diet (Table 4). 

 co HFD 

 wt tg wt tg 

Number animals (n) 21 19 22 18 

Serum ALT (U/l) 287.4 ± 74.1 321.4 ± 90.9 363.2 ± 75.5 375.9 ± 70.4 

Serum AST (U/l) 2,517 ± 683 2,693 ± 870 3,357 ± 763 3,932 ± 843 

Serum cholesterol (mg/dl) 125.0 ± 10.2 121.3 ± 7.03 140.7 ± 9.76 128.9 ± 6.81 

Serum glucose (mg/dl) 330.3 ± 25.8 220.8 ± 20.3 * 237.8 ± 30.5 213.3 ± 28.5 * 

Serum HDL (mg/dl) 100.6 ± 9.21 95.6 ± 7.63 112.6 ± 7.68 109.9 ± 7.22 

Serum triglycerides (mg/dl) 247.8 ± 26.0 176.2 ± 15.8 295.6 ± 27.7 213.6 ± 21.4 
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Table 4:  Simplified table of significantly increased or decreased lipid classes in livers of high-fat diet-fed (HFD) 
wild-type (wt) or p62 transgenic mice (tg) compared to the control diet (co) (n=18-21 per group). Increased levels 
of lipid classes are highlighted in dark grey and decreased levels in light grey color. The lipidome was determined 
by ESI-MS/MS by. Corresponding figures are shown in Supplemental figure 7-1 - Supplemental figure 7-3. CE: 
cholesteryl ester, CER: ceramide, SM: sphingomyelin, PC: phosphatidylcholine, PE: phosphatidylethanolamine, PE 
P: PE based plasmalogens, PS: phosphatidylserine, PG: phosphatidylglycerol, PI: phosphatidylinositol, LPC: 
lysophosphatidylcholine, sat: saturated species, unsat: unsaturated species, total: all species. 

   
HFD wt 

compared to  
co wt 

HFD tg 
compared to 

co tg 

co tg 
compared to  

co wt 

HFD tg 
compared to  

HFD wt 

Sterol lipids CE 
sat   ↑  

polyunsat ↑    

Sphingolipids 

CER 

sat  ↓ ↑  

unsat ↓ ↓ ↑  

total ↓ ↓ ↑  

SM 

monounsat ↓ ↓   

polyunsat  ↑   

unsat ↓ ↓   

Glycero- 
phospholipids 

PC monounsat ↓ ↓   

PE 

monounsat ↓ ↓   

polyunsat  ↓   

unsat  ↓   

total  ↓   

PE P 
PE P-16:0    ↑ 

PE P-18:0 ↑  ↑  

PS monounsat ↓ ↓   

PG total  ↓   

PI monounsat ↓ ↓   

LPC 

sat ↓ ↓   

monounsat ↓ ↓   

polyunsat ↓ ↓ ↑  

unsat ↓ ↓   

total ↓ ↓   

 

Due to the lack of steatosis and inflammation, the chosen HFD model was considered inadequate. 

Therefore, a new approach to induce inflammatory changes was used (c.f. 0). 

3.2.2 Ethanol in drinking water 

The second dietary approach to induce steatosis and inflammation in mice was the administration of 

ethanol in drinking water for 4 weeks (based on Zhou et al., 2002). This model was shown to induce 

mild steatosis (Cook et al., 2007).  

After 4 weeks of ethanol intake, mice showed an increased liver to body weight ratio compared to the 

control diet, without changes between genotypes (Figure 16 C). The increase in the liver to body weight 

ratio in ethanol-treated animals in both genotypes was due to increased liver weights, while body 

weight did not change (mliver (co wt) =1.09±0.05 g, mliver (EtOH wt) =1.22±0.05 g, p=5.1E-2;  

mliver (co tg) =1.08±0.05 g, mliver (EtOH tg) =1.22±0.05 g, p=4.2E-2) (Figure 16 A, B). Total lipid content 

of the livers did not differ, neither between genotype nor between diets (Figure 16 D). 
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Figure 16: Body, liver weight, and total lipids of wild-type (wt) and p62 transgenic (tg) animals on control (co) or 
ethanol in drinking water (EtOH) diet for 4 weeks. A: Body weight over time. B: Change of body weight at the age 
of 4 weeks compared to the weight at the beginning of the diet. C: Liver to body weight ratio. D: Total lipid analysis 
determined with the colorimetric sulfo-phospho-vanillin method. Results are shown as means ± SEM (A) or box 
plots with 25th/75th percentile boxes, geometric medians (line), means (square), and 10th/90th percentile as 
whiskers (B-D). P-values were calculated by one-way ANOVA in C and by Mann Whitney U test with Bonferroni 
correction in B and D (significance level set at p≤1.25E-2). n(co wt)=19; n(co tg)=19; n(EtOH wt)=20; n(EtOH 
tg)=20; n.s.=not significant. 

Histological analysis of HE and Sirius red stainings revealed no occurrence of steatosis and/or fibrosis, 

independent of genotype or diet. Nevertheless, a higher percentage of p62 tg animals showed 

apoptosis compared to wild types, while less apoptosis occurred on the ethanol diet (Figure 17 A). The 

ethanol drinking led to less lobular lymphocytic inflammation in the wild-type and p62 tg group, while 

there were no changes in infiltrates of neutrophilic granulocytes in p62 tg animals (Figure 17 B, C).  
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Figure 17: Histological scoring of HE stainings for apoptosis (A), lobular lymphocytic inflammation (B), and lobular 
infiltration of neutrophilic granulocytes (C) of livers from wild-type (wt) and p62 transgenic (tg) mice treated with 
ethanol in drinking water (EtOH)  for 4 weeks. P-values were determined with a chi-square test. co: control. 

The ethanol in drinking water administration was an insufficient feeding model to promote steatotic 

and inflammatory features. Therefore, the model for the Kupffer cell depletion and epigenetic analysis 

in Chapter III.1 and III.2 was changed to a Lieber-DeCarli (LDC) diet, which could be confirmed to induce 

steatosis and inflammation (see Chapter III) as previously reported (Pritchard et al., 2007).  
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3.3 Discussion 

The liver-specific expression of p62 was shown to cause a simple steatosis (Tybl et al., 2011). A second 

hit, such as an MCD diet, is required to amplify steatosis and inflammation (Simon, 2013; Simon et al., 

2014) for studying NASH. Still, the MCD diet has a big drawback: the effect of a significant loss of body 

weight and liver mass (Anstee et al., 2006). Therefore, in this study the effect of p62 on the 

pathogenesis of NAFLD/AFLD in a feeding model, mimicking over-nutrition, ethanol consumption or 

endogenous ethanol production, was elucidated. Two approaches were pursued, HFD feeding and 

ethanol in drinking water administration.  

The HFD led to an increased body weight change but lacked steatosis and signs for inflammation after 

12 weeks of feeding. Various dietary regiments exist and the development of steatosis and 

inflammation not only depends on the duration of feeding but also on different diet compositions, 

such as the fat content, cholesterol content, and lipid species. Dietary fatty acids may also play an 

important role in the promotion or inhibition of NAFLD (Ferramosca et al., 2014; Juárez-Hernández et 

al., 2016). Hepatic expression of p62 did not promote amplification of steatosis or the induction of 

inflammation as expected, possibly due to the age. Characterization of the p62 transgenic animals 

showed decreased hepatic p62 expression in 10-week-old mice (Tybl et al., 2011). Therefore, an earlier 

endpoint was chosen for further experiments and a change of diet, since the feeding of the HFD was 

not able to induce steatosis. 

Given that elevated endogenous levels of ethanol are found in NASH patients and murine NASH models 

(Cope et al., 2000; Nair et al., 2001; Baker et al., 2010; Zhu et al., 2013), administration of ethanol was 

chosen as a new approach. The administration of ethanol led to increased liver weight, but histological 

analysis and total hepatic lipid content did not show steatosis. Further, liver sections lacked infiltration 

on neutrophils, which was described in alcohol-fed mice and supposed to promote progression of AFLD 

(Ramaiah et al., 2007; Chang et al., 2015). Probably, the chosen time point of 4 weeks feeding was too 

short to provoke steatosis, as developed steatosis was shown after 8 weeks of ethanol diet (Brandon-

Warner et al., 2012). Furthermore, the C57Bl/6J mouse strain is a rather alcohol-preferring strain, 

whereas DBA/2J mice have a higher aversion to alcohol (Lê et al., 1994; Wahlsten et al., 2006; Blizard, 

2007; Yoneyama et al., 2008; D’Souza El-Guindy et al., 2010). DBA mice can resist eating or can be 

adversely affected by the diet, resulting in weight loss or increased mortality (Bertola et al., 2013). 

Since we crossed these two stains, their amount of alcohol consumption is unknown and was not 

monitored. Thus, the intake of alcohol might have been not enough to cause significant steatosis in 

this short period of time. Regarding changes between genotypes, total hepatic lipid content tended to 

be increased in ethanol-fed p62 transgenic mice, indicating a possible amplification of lipid storage. 

The genetic background of mouse strains used for modeling NAFLD/AFLD is crucial. Some mouse 

strains are more prone to a steatosis-like phenotype and alcohol-induced fatty liver disease (D’Souza 

El-Guindy et al., 2010; Tsuchiya et al., 2012; Fengler et al., 2016). The mice in this work had a mixed 

background, as C57Bl/6J crossed with DBA/2J mice were used. However, even in genetically identical 
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inbred C57Bl/6J mice, the response to high-fat feeding has been reported to be heterogeneous 

(Burcelin et al., 2002; Koza et al., 2006; Duval et al., 2010): This mouse strain was proposed to divide 

into low- and high-metabolic responders, while high-metabolic responders showed inflammation and 

more severe lipid accumulation compared to low-metabolic responders upon high-fat diet feeding 

(Duval et al., 2010).  

Emerging data reveal a major role of the intestinal microbiome in the susceptibility of liver disease 

(Hartmann et al., 2019). The absence of intestinal microbiota in germ-free mice resulted for instance 

in increased hepatic steatosis and ethanol metabolism (Chen et al., 2015). Fecal microbiota 

transplantation from ALD-resistant to ALD-susceptible mice prevented alcohol-induced liver injury in 

mice (Ferrere et al., 2017). Furthermore, mice receiving the microbiome from a patient with alcoholic 

hepatitis followed by alcohol treatment, developed more severe liver inflammation (Llopis et al., 

2016).  

Taken together, HFD and ethanol in drinking water feeding were inadequate to induce steatosis. 
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4 CHAPTER III 

The role of p62 and Kupffer cells in steatohepatitis 

III-1 Differential gene expression associated  

with epigenetic changes and the role of Kupffer 

cells in steatohepatitis 

III-2 Epigenomic profiling of hepatocytes 

overexpressing the lipogenic and tumor-

promoting mRNA binding protein p62/IMP2-2 
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4.1 Introduction 

For the understanding of the pathogenesis of AFLD and NAFLD, it is important to study the interaction 

and crosstalk between parenchymal and non-parenchymal cells, including immune cell populations 

within the liver. Kupffer cells (KCs) have been implicated in fatty liver disease. Still, their role in the 

progression of steatohepatitis and in inflammation is controversially discussed because of their 

pleiotropic functions (Dixon et al., 2013; Gao et al., 2016). Depletion of KCs was suggested to attenuate 

experimental AFLD and NAFLD (Adachi et al., 1994; Lanthier et al., 2011). Their activation trough 

translocated LPS deriving from a ‘leaky gut’ with consequent activation of the inflammatory cascade, 

is one proposed important mechanism (Rao, 2009; Harte et al., 2010; Wong et al., 2015). Additional 

aspects that have an influence on susceptibility or progression of steatohepatitis are epigenetic 

changes promoted by environmental factors including diet and alcohol (Mathers et al., 2010). Different 

methylation patterns have been described in different stages of NAFLD (Murphy et al., 2013; Zeybel et 

al., 2015). Therefore, in the following chapter (III-1) the role of KCs and epigenetically regulated 

changes in gene expression in steatohepatitis were investigated. 

 

In the liver, p62 expression was shown to induce simple steatosis (Tybl et al., 2011) and with an 

additional second hit, such as a diet, an amplification of inflammation was described (Simon et al., 

2014). Since the administration of ethanol in drinking water was inadequate to induce steatohepatitis 

(Chapter II) mice were fed a steatohepatitis-inducing liquid ethanol diet, as devised by Lieber and 

DeCarli (Lieber et al., 1989). This ad libitum feeding was shown to induce steatosis and inflammation 

after 6 weeks (Pritchard et al., 2007). Here (III-2), the impact of p62 expression in this steatohepatitis 

model in the presence or absence of KCs was investigated and further characterization of the p62 

transgenic model was performed. Previous studies reported that the expression of the imprinted genes 

IGF2 and H19 is elevated by p62 (Tybl et al., 2011). Thus, the aim of the following chapter (III-2) was to 

further characterize the animal model with regard to the epigenome of hepatocytes and hepatic non-

parenchymal cells (NPCs). 
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4.2 Results 

III-1 Differential gene expression associated with epigenetic changes and the role of Kupffer 

cells in steatohepatitis  

III-1.1 Liver damage due to clodronate liposome treatment and augmented serum cholesterol due to 

LDC feeding 

To address the role of KCs in steatohepatitis, we performed four different treatment groups (Table 5). 

Mice were fed for 5 weeks either a control diet (co) or a steatohepatitis-inducing Lieber-DeCarli diet 

(LDC) as shown by Pritchard et al. (Pritchard et al., 2007). Additionally, KCs were depleted via 

clodronate liposome (clo) injections (Van Rooijen, 1989), while PBS was administered as a control.  

Table 5: Overview of the treatment groups for investigating the role of Kupffer cells in steatohepatitis. co: control 
diet; clo: clodronate liposomes; LDC: Lieber-DeCarli diet; KC: Kupffer cells. Created with elements from Servier 
Medical Art (https://smart.servier.com/), licensed under a Creative Commons Attribution 3.0 Unported License. 

co + PBS co + clo LDC + PBS LDC + clo 

Control 

  

Control/KC-depleted 

 

Ethanol-containing diet 

 

Ethanol-containing diet/ 
KC-depleted 

 

Macroscopic examinations of the livers did not exhibit distinct changes in size or color between the 

different treatment groups (Figure 18). Only one animal fed the LDC diet and receiving clodronate 

liposomes showed large necrotic areas in the liver (arrow Figure 18). 

 
Figure 18: Representative macroscopic pictures of livers from animals fed a Lieber-DeCarli (LDC) or a control (co) 
diet and treated with either PBS or clodronate liposomes (clo). The arrow indicates necrotic areas in the liver of 
one animal injected with clodronate liposomes and fed the LDC diet. 

In order to confirm the absence of KCs, the expression of the KC-specific marker Clec4f (Yang et al., 

2013; Lavin et al., 2014) was determined by qPCR. Clec4f expression levels in clo-treated animals were 

diminished, indicating a successful depletion (Figure 19 A). With regard to the clo treatment, animals 

had decreased body weight (Figure 19 B, C), while liver weight did not differ (data not shown). 

KC 
KC 
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Concerning the effect of LDC feeding, PBS-treated animals showed a decreased liver to body weight 

ratio compared to the control diet (Figure 19 D); body weight was comparable, while liver weight 

tended to decrease in the LDC-fed PBS group. 
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Figure 19: Confirmation of Kupffer cell depletion and body and liver weight analysis of animals fed a Lieber-
DeCarli (LDC) diet, treated with PBS or clodronate liposomes (clo) for 5 weeks. A: Clec4f qPCR analysis. Data are 
shown as the ratio of mRNA expression of Clec4f to the reference gene Csnk2a2 (n=13-15 each). B: Body weight 
over time (*p<0.05 compared to co+PBS, ‡‡p≤0.01 compared to LDC+PBS). C: Body weight change at the age of 
9 weeks compared to the weight at the beginning of the diet. D: Liver to body weight ratio after sacrificing. Results 
are shown as means ± SEM (B) or box plots with 25th/75th percentile boxes, geometric medians (line), means 
(square), and 10th/90th percentile as whiskers. P-values were calculated by Mann Whitney U test with Bonferroni 
correction in A and D and by One-way ANOVA in B and C. 

Serum parameters were determined to obtain a first indication of alterations in inflammatory or 

metabolic changes. Clo-treated animals compared to the respective control had significantly elevated 

ALT levels indicating liver damage. Also, AST levels were higher in clo-treated LDC-fed mice (Table 6). 

Regarding metabolic alterations, the LDC diet led to increased serum levels of HDL in the PBS-treated 

group and increased cholesterol levels in both treatment groups compared to the respective control 

(Table 6). These results indicate a dysregulation in cholesterol metabolism due to LDC feeding.  

Table 6:  Serum levels of animals fed a normal chow (co) or an LDC diet in combination with PBS or clodronate 
liposome (clo) injections (n=10-13 per group). Data are shown as mean ± SEM. P-values of ALT and AST were 
determined by Mann Whitney U test with Bonferroni correction: **p<2.5E-3 compared to co+PBS, †††p<2.5E-4 
compared to LDC+PBS. P-values of cholesterol and HDL were calculated by One-Way ANOVA:  
***p<1E-3 compared to co+PBS, ‡‡‡p<1E-3 compared to co+clo. 

 co LDC 
 PBS clo PBS clo 

Number animals (n) 10 12 13 11 

Serum ALT (U/l) 49.5 ± 5.60 102 ± 20.6 ** 51.2 ± 3.31 529 ± 263 ** ††† 

Serum AST (U/l) 325 ± 42.3 555 ± 70.7 337 ± 44.9 1,290 ± 363 ** ††† 

Serum cholesterol (mg/dl) 70.0 ± 4.65 77.9 ± 4.98 104 ± 4.15 *** 106 ± 3.51 *** ‡‡‡ 

Serum glucose (mg/dl) 381 ± 30.9 328 ± 36.2 402 ± 26.2 309 ± 38.0 

Serum HDL (mg/dl) 60.5 ± 4.04 64.2 ± 4.76 97.3 ± 4.59 *** 81.4 ± 8.06 

Serum triglycerides (mg/dl) 131 ± 11.9 131 ± 13.7 177 ± 14.5 175 ± 16.1 
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Since liver damage occurred, inflammatory changes were also suggested. However, mRNA expression 

levels for Tnfα, Il6, and Il1β were below the detection limit in all treatment groups (data not shown). 

Reduced expression of the endogenous anti-inflammatory mediator glucocorticoid-induced leucine 

zipper (Gilz, gene name: Tsc22d3) was seen in LDC-fed mice, as determined by qPCR (Figure 20 A), 

suggesting inflammatory changes. In clo-treated animals, a downregulation could derive from the 

depletion of macrophages expressing Gilz.  

An increased gut permeability can induce liver inflammation, as described in patients with alcoholic 

and non-alcoholic steatohepatitis (Szabo et al., 2010; Wang et al., 2010). In order to test the hypothesis 

of an ethanol-induced leaky gut, endotoxins were measured in the serum of LDC-fed mice. While mean 

and median LPS levels were elevated in mice fed the LDC diet compared to the control diet, the values 

did not have statistical significance (Figure 20 B). 
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Figure 20: Tsc22d3 mRNA expression in the liver and serum endotoxins levels. A: Tsc22d3 qPCR analysis of animals 
fed a control or Lieber-DeCarli (LDC) diet and treated with PBS or clodronate liposomes (clo). Data are shown as 
the ratio of mRNA expression of Tsc22d3 to the reference gene Csnk2a2 (n=13-15 per group). P-values were 
determined by Mann Whitney U test with Bonferroni correction (significance level set at p≤1.25E-2). B: Endotoxin 
in the serum of mice fed an LDC diet (n=11) compared to the control diet (n=8). The quantification was performed 
by an endpoint fluorescent assay EndoZyme® II Recombinant Factor C Assay (Hyglos GmbH). Results are shown as 
box plots with 25th/75th percentile boxes, geometric medians (line), means (square), and 10th/90th percentile 
as whiskers. LPS: lipopolysaccharide. n.s.: not significant. 

III-1.2 Hepatic accumulation of lipids due to LDC feeding and the impact of clodronate liposome 

treatment  

Liver sections were microscopically analyzed by HE stainings but did not show steatosis in any of the 

treatment groups. Given that microvesicular lipid incorporations are difficult to evaluate 

microscopically by HE stainings, lipidomic analyses via ESI-MS/MS were performed in order to 

determine changes in hepatic lipids due to treatment and diet.  

Accumulation of hepatic triglycerides (TG) as a hallmark of ALFD and NAFLD occurred in LDC-fed 

animals, compared to the respective control (Figure 21 A). Furthermore, all measured lipid classes 

were altered in the livers of LDC-fed animals. The analysis revealed an accumulation of sterol lipids (CE 

and FC), glycerophospholipids (PC, PE, PI), and sphingolipid species (saturated CER and total SM), 

assuming a general increased hepatic lipid incorporation (Figure 21 B - D, Supplemental table 7-2, 

Supplemental figure 7-4 -Supplemental figure 7-6). The elevated levels of cholesterol ester (CE) and 

free cholesterol (FC), confirm the previously suggested dysregulated cholesterol homeostasis. The only 

decreased species were unsaturated ceramides (CER) (Figure 21 E) and unsaturated sphingomyelins 

(SM) (Supplemental table 7-2, Supplemental figure 7-4 C, D). 
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When comparing clo-treated to PBS-treated mice on control diet, only CER were detected in a higher 

concentration and the SM to CER ratio was decreased (Figure 22 A, Supplemental figure 7-4 C).  

The LDC diet-induced increase of the most abundant lipid classes, i.e. TG, phosphatidylcholine (PC), 

and phosphatidylinositol (PI), was completely abrogated in the livers of clo-treated animals (Figure 21 

A-C), suggesting an impact of the clo treatment on the reduction of these lipids. 

In contrast, hepatic levels of FC, unsaturated CER, and lysophosphatidylcholine (LPC) were increased 

in clo-treated animals (Figure 21 D-F), indicating a contribution to the accumulation of these lipids. 

Furthermore, the PC to LPC and the CE to FC ratio were decreased in clo-treated LDC-fed mice (Figure 

22 B, C). No effect was seen on CE, SM, phosphatidylserine, PE-based plasmalogens, or phosphatidyl-

glycerol (Supplemental table 7-2, Supplemental figure 7-4 - Supplemental figure 7-6).  
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Figure 21: Impact of the LDC diet and Kupffer cells on selected lipid classes. Whole livers from animals fed a Lieber-
DeCarli (LDC) or control (co) diet and treated with PBS as control or clodronate liposomes (clo) for 5 weeks  
(n=10-13 per group) were analyzed. A-G: Lipidomic analysis of triglycerides (TG) (A), phosphatidylcholine (PC) (B), 
phosphatidylinositol (PI) (C), free cholesterol (FC) (D), unsaturated ceramides (CER) (E), lysophosphatidylcholine 
(LPC) (F) via ESI-MS/MS. Results are shown as box plots with 25th/75th percentile boxes, geometric medians (line), 
means (square), and 10th/90th percentile as whiskers. P-values in A, B, D, and F were calculated by One-Way 
ANOVA and in C and E by Mann Whitney U test with Bonferroni correction. 
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 Figure 22: Ratios of hepatic lipids in clodronate liposome (clo)-treated mice on control or Lieber-DeCarli (LDC) 
diet. Data are shown as the mean±SEM. P-values were calculated with t-test. 
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III-1.3 Treatment-dependent differential gene expression and DEGs associated with epigenetic 

changes in hepatocytes and non-parenchymal cells 

Hepatocytes and NPCs were isolated from animals of each treatment group and epigenomes were 

analyzed in two animals of each group. RNA sequencing was performed to reveal the transcriptome, 

reduced representative bisulfite sequencing (RRBS) to analyze the genome-wide methylation profile, 

and DNaseI-sequencing to identify open chromatin regions.  

Analyzing the methylation profile of hepatocytes from LDC-fed mice compared to the control, 1,352 

differentially methylated regions (DMRs) were found in total with a similar amount of hyper- and hypo-

methylated regions (43.2%/56.8%). In addition, RNA-sequencing revealed 504 differentially expressed 

genes (DEGs) with 182 being associated with epigenetic changes, i.e. DMRs and/or differentially open 

chromatin regions (DOR) as determined by DNaseI-sequencing (Table 7).  

In the NPC fraction isolated from mice receiving an LDC diet compared to the control, 5,422 mostly 

hypomethylated (71.1%) DMRs were found by RRBS.  

Table 7:  Number of differentially expressed genes (DEG) and DEGs associated with epigenetic changes, i.e. 
differentially methylated regions (DMR) and/or differential open chromatin regions (DOR) of hepatocytes and 
non-parenchymal cells of animals receiving a control (co) or a Lieber-DeCarli (LDC) diet treated with PBS or 
clodronate liposomes (clo) for Kupffer cell depletion (n=2 each). DEGs were determined by RNA-sequencing, DMRs 
by reduced representative bisulfite sequencing and DORs by DNaseI-sequencing. Up: upregulated, down: 
downregulated 

 co+clo 
compared to co+PBS 

LDC+PBS 
compared to co+PBS 

LDC+clo 
compared to LDC+PBS 

LDC+clo 
compared to co+clo 

Hepatocytes total up down total up down total up down total up down 

DEG 196 85 111 504 245 259 479 192 287 126 47 79 

DEG + DMR and/or DOR 58 19 39 182 74 108 24 9 15 60 22 38 

Non-parenchymal cells total up down total up down total up down total up down 

DEG 1940 812 1128 839 462 377 678 266 412 9 5 4 

DEG + DMR and/or DOR 924 380 544 337 180 157 125 37 88 5 3 2 

 
Venn diagrams (Figure 23) display slightly overlap of DEGs associated with DMRs and/or DORs between 

the different treatment comparisons in hepatocytes (A) and NPCs (B). 

 
Figure 23: Venn diagram displaying the overlap of differentially expressed genes associated with epigenetic 
changes (DMR and/or DOR) from different treatment comparisons of hepatocytes (A) and non-parenchymal cells 
(B). co: control diet; clo: clodronate liposomes; LDC: Lieber-DeCarli diet. 
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III-1.3.1 Impact of LDC feeding on DEGs associated with epigenetic changes in hepatocytes and NPCs 

 Upregulation of lipid-associated pathways in hepatocytes isolated from LDC-fed mice  

To identify altered biological processes of DEGs, Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway and Gene Ontology (GO) term enrichment analyses were performed using the STRING 

database V10.5 (Szklarczyk et al., 2015, 2017). To visualize significantly altered biological processes, 

semantic clustering was performed to identify similar GO terms and to generate multidimensional 

scaling scatter plots using the REVIGO tool (Supek et al., 2011).   

Comparing upregulated DEGs of hepatocytes between LDC-fed and control diet-fed animals, GO term 

enrichment analysis showed that several upregulated genes play a role in the ‘response to 

lipopolysaccharide’ (GO:0032496; FDR=2.1E-2; OGC=10; matching proteins: Alpl, Ccrn4l, Ednrb, F2r, 

Mrc1, Ptgfr, Raet1d, Sparc, Thbd, Vldlr; data not shown). Together with increased serum LPS levels, a 

leaky gut and subsequent translocation of LPS to the liver can be suggested. 

Figure 24 shows a simplified heatmap of all DEGs associated with epigenetic changes (in total 182) in 

hepatocytes isolated from LDC-fed mice compared to the control diet.  

 
Figure 24: Simplified heatmap of the 182 differentially expressed genes (DEGs) associated with differentially 
methylated regions (DMRs) and/or differentially open chromatin regions (DORs) for the comparison of 
hepatocytes isolated from animals fed an LDC diet to the control diet. DEGs were determined by RNA-sequencing, 
DMRs by reduced representative bisulfite sequencing, and DORs by DNaseI-sequencing. 
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Induced genes associated with epigenetic changes upon LDC feeding were involved in ‘lipid 

metabolism’, ‘fatty acid metabolism’, and ‘cholesterol metabolism’ (Figure 25 A) in compliance with 

the performed lipidomic analyses and the suggested dysregulation of lipid and cholesterol metabolism.  

 
 

Figure 25: GO enrichment analysis of upregulated (A) and downregulated (B) genes associated with epigenetic 
changes in hepatocytes isolated from animals fed an LDC diet compared to the control diet. GO terms for 
biological processes were categorized using semantic clustering and plotted by the REVIGO tool to identify similar 
GO terms among the enriched terms. Semantically similar GO terms remain closer together. Examples of genes 
included in the GO terms are shown in brackets. The circles represent individual GO terms or cluster of GO terms 
related to similar processes. Semantically similar GO terms remain closer together. The circle size corresponds to 
the percentage of genes annotated with the term in the reference database (UniProt for mus musculus) (larger 
means more general and smaller more specific GO term). The circle color illustrates the false discovery rate (in 
log10 FDR) of the GO enrichment analysis: red indicates the lowest and blue the highest significance. 

Notwithstanding the significant upregulation of Hmgcr (1.98 fold, p=1.2E-5; Figure 24) and Elovl6 (1.79 

fold, p=2.4E-4), the RNA sequencing result could not be verified by qPCR analysis of whole liver samples 

of animals fed the LDC diet compared to the control diet (Figure 26 A, B). Therefore, the epigenetic 

analyses have to be construed with caution, due to a small number of animals and individual variations. 

Downregulated genes associated with epigenetic changes (Figure 24), in hepatocytes from LDC-fed 

mice compared to the control i.a. play a role in the ‘complement and coagulation cascades’ as 

determined by KEGG pathway analysis (KEGG 4610; FDR=1.66E-8; matching proteins: C8a, C8b, F11, 

Fga, Fgb, Fgg, Hc, Plg, Serpina1c; data not shown). GO term enrichment analysis revealed a 

contribution in biological processes such as ‘negative regulation of apoptotic process’, ‘wound healing’, 

‘defense response’, and ‘immune response’ (Figure 25 B). Moreover, the downregulated genes were 

involved in ‘nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay’ (Figure 25 

B). Here, Zfp36 plays a central role and its downregulation was confirmed by qPCR in whole liver tissue 

(Figure 26 C), suggesting an impaired degradation of nuclear-transcribed mRNAs. 
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Figure 26: Hmgcr, Elovl6, and Zfp36 expression in LDC-fed animals. mRNA expression analysis of Hmgcr (A), Elovl6 
(B), and Zfp36 (C) determined by qPCR of animals fed a control (co) or Lieber-DeCarli (LDC) diet and treated with 
PBS or clodronate liposomes (clo). The measurements were performed on whole livers (n=13-15 per group). 
Marked in red are the expression levels of whole liver cell lysates of the animals used for RNA-sequencing. Data 
are shown as the ratio of mRNA expression of the gene of interest to the reference gene Csnk2a2 (n=13-15 per 
group). P-values were determined by Mann Whitney U test with Bonferroni correction (significance level set at 
p≤1.25E-2). Results are visualized as box plots with 25th/75th percentile boxes, geometric medians (line), means 
(square), and 10th/90th percentile as whiskers. n.s.: not significant. 

 DEGs associated with epigenetic changes in NPCs of LDC-fed mice are involved in 

morphology and immune response 

In order to characterize changes in NPCs during steatohepatitis, deregulated genes associated with 

epigenetic changes, i.e. DMR and/or DOR, were analyzed in NPCs isolated from mice fed an LDC diet 

compared to the control diet. A simplified heatmap is shown in Supplemental figure 7-13.  

LDC-diet led to increased apoptosis (Figure 27 A) and induced genes associated with epigenetic 

changes playing a role in morphogenetic changes with ECM remodeling (‘regulation of anatomical 

structure morphogenesis’, ‘extracellular matrix organization’, ‘regulation of cell migration’, ‘response 

to wounding’; Supplemental figure 7-14 A). Within these processes, the expression of genes encoding 

for collagen (Col14a1, Col4a1, Col4a2, Col6a2), laminin (Lamb1, Lamc1), matrix metalloproteinase 

(Mmp2, Mmp17), and extracellular matrix protein 1 (Ecm1) was increased. Furthermore, LDC-fed mice 

displayed lymphocytic inflammation and infiltrations of neutrophils (Figure 27 B and C).  

Downregulated DEGs associated with epigenetic changes were enriched in immune response and 

‘regulation of endothelial cell apoptotic process’ (Supplemental figure 7-14 B) and pathways, such as 

‘complement and coagulation cascades’, ‘chemokine signaling pathway’ (data not shown).  
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Figure 27: Histological analysis of livers from control (co) or LDC-fed mice in the presence (PBS) or absence (clo) 
of Kupffer cells (n=10-13). A-C: Histological scoring of HE stainings for apoptosis (A), lobular infiltration of 
neutrophilic granulocytes (B), and lobular lymphocytic inflammation (C). P-values determined by Chi-square test. 
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III-1.3.2 Impact of clodronate liposome treatment on gene expression in hepatocytes and NPCs 

In the following section, several treatment groups were compared to identify the impact of clo 

treatment on the transcriptome. First, clo treatment on control diet was analyzed  

(co+clo vs. co+PBS a)). Second, the effect of macrophage depletion on LDC-fed mice was determined 

(LDC+clo vs. LDC+PBS b)). Third, the effect of the LDC-diet on clo-treated animals was investigated 

(LDC+clo vs. co+clo c)). For all comparisons downregulated genes in hepatocytes were involved in the 

complement system, partly associated with epigenetic changes (see supplement 7.3.1-7.3.3) 

 Deregulated genes in hepatocytes of clo-treated mice play a role in the inflammatory 

response and the complement cascade 

The comparison of clo-treated animals to the control revealed upregulated genes involved in e.g. 

‘leukocyte migration involved in inflammatory response’, ‘neutrophil aggregation’, ‘regulation of cell 

death’, and ‘inflammatory response’. As proposed by RNA sequencing, the mobilization of leukocytes 

was confirmed by histological analysis showing neutrophil infiltration (Figure 27 B). Furthermore, the 

expression of Cxcl1, a chemokine produced also in hepatocytes (Su et al., 2018), was increased (3.1 

fold, p=2.32E-9). As a consequence of clo treatment, lymphocytic inflammation and apoptosis occurred 

(Figure 27 A, C), consistent with elevated serum ALT suggesting liver damage (cf. Table 6). 

Among the downregulated genes, enriched GO terms were involved in ‘innate immune response’ and 

‘apoptotic cell clearance’ (Supplemental figure 7-7 B). Further, biological processes correlating to lipid 

metabolism and gluconeogenesis were changed (Supplemental figure 7-7 B). Beside Elovl3 

downregulation, only genes encoding for the major urinary proteins (Mup3, Mup5, Mup10, Mup11, 

Mup16, and Mup19) were altered in these processes.  

 Clodronate liposome treatment during LDC feeding alters the expression of genes involved 

in cell division and DNA replication, and shows infiltrates of immune cells in the NPC fraction  

The impact of clo treatment in LDC-fed mice on differential gene expression was analyzed in order to 

investigate the role of Kupffer cells in steatohepatitis. Increased Apoa4 expression was found and 

confirmed by qPCR (p=2.7E-3, LDC+clo compared to LDC+PBS, Figure 34). Cell proliferation was 

suggested by induced genes in hepatocytes enriched in ‘DNA replication’, ‘cell cycle’, and ‘cell division’, 

including an upregulation of lipocalin-2 (Lcn2; 1.75 fold, p=3.5E-2) (Supplemental figure 7-9 A). 

Furthermore, NPCs had deregulated genes associated with epigenetic changes (A) also playing also a 

role in ‘cell cycle’, ‘cell division’ (Supplemental figure 7-15 A, B).  

An upregulation of immunoglobulin genes not associated with epigenetic changes was found in the 

hepatic NPC fraction comparing clo-treated to PBS-treated LDC-fed animals (Supplemental figure 7-16 

B). Moreover, histological analysis of liver sections revealed infiltration of neutrophilic granulocytes 

and apoptosis (Figure 27 A, B). Thus, clo treatment during LDC diet-induced infiltrates of immune cells 

resulting in a different cell type composition in the NPC fractions, possibly contributing to a stronger 

lobular lymphocytic inflammation (Figure 27 C).   
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Clo treatment led to the downregulation of genes involved in ‘granulocyte chemotaxis’ and ‘regulation 

of cytokine production’, as expected due to macrophage depletion. 

 LDC feeding in clodronate liposome-treated mice did not alter DEGs involved in lipid, 

cholesterol, or fatty acid metabolism  

LDC feeding in clo-treated mice revealed only downregulated genes in hepatocytes being enriched in 

e.g. ‘immune response’ (Supplemental figure 7-11). Moreover, downregulated genes were involved in 

lipid biosynthesis and gluconeogenesis. Here, no other genes involved in lipid metabolism were 

altered, except for major urinary proteins (Mup10, Mup16, Mup3; data not shown), indicating an 

impact of macrophages on lipid- and cholesterol-associated differential gene expression. 

III-1.4 Overview of results for LDC feeding and clodronate liposome treatment 

Table 8:  Overview of the most important results for investigating the impact of LDC-feeding and clodronate 
liposome (clo) treatment. Different treatment groups were compared to each other. vs.: versus/compared to; KC: 
Kupffer cells; co: control; LDC: Lieber-DeCarli; CE: cholesteryl ester; CER: ceramide; FC: free cholesterol; LPC: 
lysophosphatidylcholine; PC: phosphatidylcholine, PE: phosphatidylethanolamine; PI: phosphatidylinositol; SM: 
sphingomyelin; TG: triglycerides; ↑: increased; ↓: decreased; = no changes. Created with elements from Servier 
Medical Art (https://smart.servier.com/), licensed under a Creative Commons Attribution 3.0 Unported License.  

Effect of LDC-diet  

 

 

LDC diet              . 

         .          

vs. 

                co 

         

↑ serum cholesterol  ↑ HDL  = ALT, AST  Infiltration of neutrophils, lymphocytic inflammation     
↑ apoptosis  ↓ Gilz  ↑ TG, SM, PC, PE, PI, CE, FC, saturated CER 

  

DEGs associated with epigenetic changes 
  

↑ Upregulated genes in hepatocytes enriched in lipid, fatty acid,  
 and cholesterol metabolism 

= Hmgcr and Elovl6 expression 
↑ Upregulated genes in NPCs enriched in processes of physiology  

 and morphology, including ECM remodeling  
↑ genes encoding for collagen, laminin, and MMPs 

↓ Downregulated genes enriched in the complement system,  
 ‘negative regulation of apoptotic process’ 

↓ Zfp36 expression 
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III-2 Epigenomic profiling of hepatocytes overexpressing the lipogenic and tumor-promoting 

mRNA binding protein p62/IMP2-2 

III-2.1 p62 expression is treatment dependent and abrogates LDC-induced elevated serum levels of 

cholesterol, HDL, and triglycerides 

A potential role of p62 overexpression was investigated on the epigenome of hepatocytes and on a 

potential paracrine effect on the epigenome of hepatic NPCs. In order to investigate how p62 

expression impacts steatohepatitis dependent on KC presence or absence, wild-type and p62 

transgenic mice (tg) were fed an LDC diet and treated with PBS as a control or clo (Table 9).  

Table 9: Overview of the treatment groups for investigating the impact of p62 expression in an LDC-feeding model 
treated with PBS or clodronate liposomes (clo). co: control diet; LDC: Lieber-DeCarli diet; KC: Kupffer cells; p62↑: 
p62 transgenic mice expressing p62 exclusively in the liver. Created with elements from Servier Medical Art 
(https://smart.servier.com/), licensed under a Creative Commons Attribution 3.0 Unported License. 

wild-type (wt) mice  p62 transgenic (tg) mice 

co + PBS co + clo LDC + PBS  co + PBS co + clo LDC + PBS LDC + clo 

control 
control/  

KC-depleted 
Ethanol-containing 

diet  
 

control 
control/  

KC-depleted 
Ethanol-containing 

diet  
Ethanol-containing 
diet/ KC-depleted 

   

        p62↑              p62↑          p62↑            p62↑ 

  
Macroscopic examinations of livers did not reveal changes in size or color in any of the treatment 

groups. In the liver of one p62 tg mice on control and two p62 tg mice on LDC diet, receiving clo, 

histological analysis revealed large necrotic areas and macroscopical abnormalities (arrows Figure 28). 

 
Figure 28: Macroscopic pictures of livers from wild-type (wt) and p62 transgenic (tg) animals fed a Lieber-DeCarli 
(LDC) or a control (co) diet and treated with either PBS or clodronate liposomes (clo). Arrows indicate necrotic 
areas in the liver of p62 transgenic animals injected with clodronate liposomes fed a control or an LDC diet. 

KC KC KC 
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In order to confirm KC depletion, Clec4f mRNA expression levels were determined by qPCR. In the clo-

treated groups, expression was almost completely abrogated, indicating a successful depletion (Figure 

29 A). Furthermore, p62 expression was determined showing variable expression levels in tg animals 

(Figure 29 B). LDC diet and clo treatment significantly decreased hepatic p62 expression (Figure 29 B), 

so that these mice cannot be referred to as tg animals. 
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Figure 29: Confirmation of Kupffer cell depletion and p62 expression. A-B: qPCR analysis of Clec4f (A) and p62 (B) 
mRNA expression of wild-type (wt) and p62 transgenic (tg) animals fed a control (co) or Lieber-DeCarli (LDC) diet 
and treated with PBS or clodronate liposomes (clo) for 5 weeks (n=12-15 per group). Data are shown as the ratio 
of mRNA expression of the gene of interest to the reference gene Csnk2a2. Results are shown as box plots with 
25th/75th percentile boxes, geometric medians (line), means (square), and 10th/90th percentile as whiskers.  
P-values were calculated by Mann Whitney U test with Bonferroni correction. n.d.: not determined 

With regard to the impact of p62 expression, no changes in weight gain, liver weight or in the liver to 

body weight ratio were seen compared to wild-type mice (Figure 30 A-D). Treatments had similar 

effects in both genotypes: decreased body weight change due to clo treatment (Figure 30 B) and 

decreased liver to body weight ratios in LDC-fed mice due to decreased liver weight (Figure 30 C, D). 
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Figure 30: Body and liver weight analysis of wild-type (wt) and p62 transgenic (tg) animals fed a control (co) or a 
Lieber-DeCarli (LDC) diet and treated with PBS or clodronate liposomes (clo) (n=12-15 each). A: Weight over time. 
B: Change of body weight at the age of 9 weeks compared to the weight at the onset of diet. C, D: Liver weight 
(C) and liver to body weight ratio (D) after sacrificing. Results are shown as means ± SEM (A) or box plots with 
25th/75th percentile boxes, geometric medians (line), means (square), and 10th/90th percentile as whiskers. P-
values were calculated by Mann Whitney U test with Bonferroni correction (significance level set at p≤8.33E-3). 
n.s.: not significant. 
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Serum parameters were determined to reveal metabolic alterations. Also, the hepatic lipidome was 

determined by ESI-MS/MS since microsteatosis as it occurs in p62 transgenic animals is complicated to 

detect by analysis of microscopic HE stainings of liver sections. 

Even though the LDC diet significantly diminished p62 expression, mice exhibited differences in serum 

and hepatic lipids. The determination of serum parameters revealed that hepatic expression of p62 

abrogated increased serum levels of cholesterol, HDL, and triglycerides during LDC feeding (Figure 31 

A-C). As hepatic triglycerides (Figure 31 D), CE, and FC (Supplemental figure 7-3) were accumulated to 

the same extent in both, wild-type and p62 tg animals on LDC diet, an impaired lipid export out of the 

liver in tg animals can be suggested. 

Comparing to wild-type animals, the expression of p62 did not increase hepatic levels of triglycerides, 

neither on control nor on LDC diet. An impact of p62 expression was only observed on ceramide levels; 

hepatic p62 expression on control diet increased ceramide levels (Figure 31 E). Further changes in lipid 

storage between genotypes were not detected (Supplemental figure 7-17 - Supplemental figure 7-20).  
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Figure 31: Impact of p62 expression on serum and hepatic lipids. A-C: Serum levels of cholesterol (A), HDL (B), 
triglycerides (C), and hepatic levels of triglycerides (TG) (D), ceramides (CER) (E) of wild-type (wt) and p62 
transgenic (tg) animals fed a normal chow (co) or a Lieber-DeCarli (LDC) diet. Liver tissue lipidomes (D, E) were 
determined by ESI-MS/MS. Results are shown as box plots with 25th/75th percentile boxes, geometric medians 
(line), means (square), and 10th/90th percentile as whiskers. P-values were determined by Mann Whitney U test 
with Bonferroni correction (significance level set at p≤1.25E-2). n.s.: not significant. 

Histological analysis of liver tissues revealed increased apoptosis in p62 tg animals compared to wild 

types in all treatment groups (Figure 32 C). Furthermore, p62 tg livers showed less lymphocytic 

inflammation and lobular infiltration of neutrophilic granulocytes compared to wild types except for 

the combination of LDC diet and clo treatment, where both were increased (Figure 32 A, B). 
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Figure 32: Histological scoring of HE stainings for lobular lymphocytic inflammation, lobular infiltration of 
neutrophilic granulocytes, and apoptosis of livers from control (co) or LDC diet-fed wild-type (wt) or p62 
transgenic (tg) mice treated with PBS or clodronate liposomes (clo) (n=10-13 per group). P-values were calculated 
with the chi-square test. 

 

III-2.2 Differentially expressed genes associated with epigenetic changes in hepatocytes of p62 

transgenic mice are involved in lipid metabolism 

Previous studies in our group reported elevated expression of imprinted genes, H19 and IGF2,  in p62 

tg mice (Tybl et al., 2011). Therefore, a further characterization of the p62 tg mouse was performed 

with regard to a potential role on the epigenome of hepatocytes and a potential paracrine action on 

the epigenome of hepatic NPCs. Thus, hepatocytes and NPCs from wild-type and p62 tg animals 

receiving the control diet were isolated and epigenomes were analyzed by RRBS, RNA sequencing, and 

DNaseI sequencing. 

RBBS revealed 674 DMRs for hepatocytes of p62 tg mice, compared to wild types. There were similar 

amounts of hyper- and hypomethylated regions (55.5% / 44.5%). In NPCs isolated from p62 tg mice 

1,888 mostly hypomethylated DMRs were found (85.4%). However, NPCs of p62 tg animals had only 

42 DEGs compared to wild types, among which only 5 genes were associated with epigenetic changes, 

i.e. DMRs and/or DORs (Table 10, Figure 33). This indicates a rather minor paracrine effect on NPCs.  

Table 10: Amount of differentially expressed genes (DEGs) and DEGs associated with epigenetic changes, i.e. 
differentially methylated regions (DMRs) and/or differentially open chromatin regions (DOR) of hepatocytes and 
non-parenchymal cells from p62 transgenic (n=2) animals compared to wild types (n=2). DEGs were determined 
by RNA-sequencing, DMRs by reduced representative bisulfite sequencing and DORs by DNaseI-sequencing. 

  
p62 transgenic vs wild-type 

co+PBS tg compared to co+PBS wt 

  Hepatocytes Non-parenchymal cells 

 total up down total up down 

DEG 237 136 101 42 8 34 

DEG + DMR and/or DOR 61 20 41 5 2 3 
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With regard to the impact of p62 expression on hepatocytes, 237 genes were differentially expressed 

in comparison to wild types (Table 10). The 136 upregulated genes play a role in e.g. “ECM-receptor 

interaction” as determined by KEGG pathway analysis (FDR=3.73E-02; matching proteins: Cd44, Hspg2, 

Lama5, Spp1; data not shown), confirming an increased expression of the liver progenitor cell marker 

Spp1 (cf. Chapter I). Previous studies reported that especially the expression of the imprinted genes 

Igf2 and H19 is elevated by p62 (Tybl et al., 2011; Kessler et al., 2015). In this study, the expression 

levels Igf2 and H19 were significantly increased, but not associated with epigenetic changes in 

hepatocytes (Igf2: 1.65 fold change, p=3.3E-3; H19: 1.48 fold change, p=2.6E-2), indicating a regulation 

of the expression independent of epigenetic changes. H19 and Igf2 were both upregulated in NPCs and 

associated with a hypomethylation (Figure 33), suggesting a possible contamination with hepatocytes.  

In hepatocytes, epigenetic changes were associated with 61 DEGs (Table 10), listed in the following 

simplified heatmap (Figure 33). 

 
Figure 33: Simplified heatmap of the differentially expressed genes (DEGs) associated with differentially 
methylated regions (DMRs) and/or differentially open chromatin regions (DORs) of hepatocytes and non-
parenchymal cells (NPCs) isolated from p62 transgenic animals in comparison to wild types. 

Among the 61 DEGs associated with epigenetic changes in p62 transgenic hepatocytes, 41 genes were 

downregulated and 20 upregulated (Figure 33). Within these downregulated genes, Elovl3 (0.54 fold, 

p=4.5E-4) was associated with less accessible chromatin and Apoa4 (0.37 fold, p=5.8E-30) with a 

hypermethylation. Both genes play a role in “lipid metabolic process”, and “fatty acid metabolic 

process” as determined by GO Term enrichment analysis (Figure 34).  

The downregulation of Apoa4 in p62 transgenic mice was confirmed on mRNA level by qPCR (Figure 

35) and was also observed in all other treatment groups except for the control treatment with LDC 

diet, suggesting a reversed effect due to LDC feeding. 
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Figure 34: GO biological process enrichment analysis of differentially expressed genes associated with epigenetic 
changes (DMR and/or DOR) of hepatocytes isolated from p62 transgenic (n=2) animals compared to wild types 
(n=2). GO terms were categorized using semantic clustering and plotted by the REVIGO tool to identify similar GO 
terms among the enriched terms. Semantically similar GO terms remain closer together. Examples of genes 
included in the GO terms are shown in brackets. The circles represent individual GO terms or cluster of GO terms 
related to similar processes. The circle size corresponds to the percentage of genes annotated with the term in 
the reference database (UniProt for mus musculus) (larger means more general and smaller more specific GO 
term). The circle color illustrates the false discovery rate (in log10 FDR) of the GO enrichment analysis: red 
indicates the lowest and blue the highest significance. 
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Figure 35: Apoa4 mRNA expression analysis for the comparison of p62 transgenic to wild-type animals. Apoa4 
mRNA expression in whole liver samples of wild-type (wt; n=13) and p62 transgenic (tg; n=14) animals with 
control (co) or LDC diet and treated with PBS od clodronate liposomes (clo), determined by qPCR analysis. Data 
are shown as the ratio of mRNA expression of Apoa4 to the reference gene Csnk2a2. The fold changes are shown 
on top of the graph corresponding to the comparisons between genotypes within the same treatment groups. 
Results are shown as box plots with 25th/75th percentile boxes, geometric medians (line), means (square), and 
10th/90th percentile as whiskers. P-values were calculated by Mann Whitney U test and with t-test for LDC+clo. 
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4.3 Discussion 

4.3.1 LDC-fed mice showed features of a steatohepatitis 

To induce steatohepatitis, the administration of an ethanol-containing diet was chosen. Ethanol not 

only plays an important role in the development of AFLD, but also in NAFLD, as endogenous levels of 

ethanol are found in NASH patients and murine NASH models (Cope et al., 2000; Nair et al., 2001; 

Baker et al., 2010; Zhu et al., 2013). As ethanol metabolism takes place in the liver, the liver is prone 

to ethanol toxicity, lipotoxicity through alterations in the hepatic metabolism of lipids, and the 

development of steatosis (Cook et al., 2007). An initial step in the current project was to verify 

steatohepatitis due to the LDC diet. 

Here it is shown that LDC feeding induced apoptosis, neutrophilia, hepatic lipid accumulation, and 

altered gene expression involved in lipid metabolism in hepatocytes. In NPCs, deregulated genes were 

associated with morphogenic changes and ECM remodeling. 

4.3.1.1 LDC feeding dysregulated lipid and cholesterol homeostasis 

In this study, LDC-fed mice exhibited an increased hepatic lipid incorporation, especially of CE and FC, 

and upregulated genes associated with epigenetic changes in lipid- and cholesterol-associated 

pathways, pointing towards a steatohepatitis. The pathogenic relevance of hepatic cholesterol has 

been emphasized in the context of liver injury and inflammation (Ioannou, 2016). In human patients, 

increased hepatic FC was shown to be elevated in NASH, but not in steatosis (Puri et al., 2007; Caballero 

et al., 2009; Min et al., 2012). Furthermore, FC was shown to mediate hepatic lipotoxicity (Mota et al., 

2016). The lack of an upregulation of Hmgcr gene expression, encoding the HMG-CoA-reductase and 

catalyzing a necessary step in the biosynthesis of cholesterol, suggests increased hepatic cholesterol 

levels independent of gene expression. The HMG-CoA reductase was shown to be stronger regulated 

on protein, than on mRNA level (Jiang et al., 2018). Thus, a regulation on protein level is more likely. A 

decreased cholesterol excretion is rather unlikely since serum cholesterol and HDL were elevated.  

LDC feeding induced hepatic expression of genes associated with epigenetic changes playing a role in 

lipid-associated pathways, i.e. fatty acid and cholesterol metabolism. Previous studies reported altered 

expression and methylation of CpG islands of genes involved in lipid metabolism in LDC-fed mice (Kutay 

et al., 2012). Additionally, Kutay et al. found reduced DNA methyltransferase (Dnmt) activity. 

Interestingly, though, loss of one copy of Dnmt1 was shown to protect from alcoholic steatosis and to 

downregulate lipid-associated genes. 

4.3.1.2 LDC feeding-induced hepatic apoptosis and inflammatory changes 

Susceptibility to alcohol-induced liver injury is dependent on the microbiome (cf. 3.3). Ethanol intake 

can lead to changes in the intestinal microbiome composition and subsequent gut barrier dysfunction 
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in animal models as well as humans (Bajaj, 2019), accentuating the relevance of the gut-liver 

interactions in liver disease (Schnabl et al., 2014; Tripathi et al., 2018). Gut permeability permits LPS 

translocation to the liver, activating KCs and other immune cells via TLR signaling and, ultimately, 

inducing a downstream pro-inflammatory cascade (Seki et al., 2012). In contrast to published data 

(Szabo et al., 2010), serum LPS only tended to increase in LDC-fed mice. These differences can have 

several reasons. Only small changes, such as different maintenance chow or two distinct animal 

facilities can make mice more or less susceptible to experimentally-induced alcoholic liver injury 

(Ferrere et al., 2017; McClain et al., 2017). This reason should rather be ruled out since upregulated 

genes in hepatocytes showed an impact on ‘response to lipopolysaccharide’, supporting the actual 

presence of LPS in the liver. Rather a problem in the detection of LPS is assumed. In contrast to the 

classical LPS assay utilizing the Limulus Amebocyte Lysate (LAL) test, a recombinant Factor C (rFC) assay 

with higher specificity and sensitivity (0.001 EU/ml) was used (Ding et al., 2001). Manufacturers do not 

recommend classical LAL or rFC assays for LPS detection in sera due to the presence of assay inhibitors, 

making endotoxin detection challenging (Gnauck et al., 2015). However, these assays are still used for 

LPS detection in sera. Heating and diluting the samples was performed here, as recommended for 

patient sera (Huang et al., 2016). Still, not sufficient sample dilution or inadequate measurement 

parameters cannot be ruled out, resulting in the lack of LPS detection.  

In contradiction to the literature (Bykov et al., 2006; Pritchard et al., 2007), ethanol feeding in the here 

used setting decreased gene expression of the complement system (i.a. for C3, C6, C8, C9). 

Concordantly, data from the literature describe that inflammatory cytokine expression and serum ALT 

were increased after long-term feeding in C1q- or C3-deficient mice (Roychowdhury et al., 2009; Cohen 

et al., 2010), suggesting additional pathways involved in mediating chronic liver disease. An increase 

in transaminases, which usually indicates liver damage, was not detected in animals. Still, liver damage 

can also occur without elevated ALT serum levels, as it was shown in NAFLD (Papandreou et al., 2007; 

Fracanzani et al., 2008) as well as in alcoholic hepatitis (Diehl et al., 1984; Malakouti et al., 2017). 

Furthermore, the ethanol feeding-induced apoptosis and hepatic neutrophil infiltration in this study 

are thought to promote hepatocyte injury (Ramaiah et al., 2007). This is supported by experiments in 

a mouse model of steatohepatitis, where deletion of neutrophils ameliorated alcoholic liver injury 

(Chang et al., 2015). Unexpectedly, PBS-treated control mice exhibited infiltrations of neutrophils, 

which might be explained by repeated intraperitoneal (i.p.) injections (6-8 injections within 5 weeks), 

making comparisons to the control more difficult. Still, apoptosis, hepatic neutrophilia, and 

lymphocytic inflammation point towards inflammatory changes in the LDC-fed mice.  

The LDC feeding suppressed the hepatic expression of Gilz, which has been previously reported to be 

downregulated under inflammatory conditions (Berrebi et al., 2003; Zhang et al., 2009; Hahn et al., 

2014; Hoppstädter et al., 2015) and in livers of patients with alcoholic hepatitis (Hamdi et al., 2007). In 

HFD obesity-induced mice, Gilz expression was shown to be reduced in the whole liver, particularly in 

KCs; this downregulation promoted liver inflammation (Robert et al., 2016). Interestingly, two subsets 

of macrophages were shown to infiltrate upon the LDC diet, showing either anti- or pro-inflammatory 

phenotypes (Wang et al., 2014). This might explain also downregulated genes involved in immune 

response in the LDC-fed mice. 
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Another factor pointing towards an onset of steatohepatitis is a downregulation of Zfp36, also known 

as tristetraprolin (TTP). Zfp36 encodes for a zinc-finger RNA-binding protein which was found to target 

cytokine and chemokine mRNAs including Tnf-α, Ifn-γ, or Il-6 (Lai et al., 1999; Sauer et al., 2006; Ogilvie 

et al., 2009; Van Tubergen et al., 2011; Zhao et al., 2011). Reduced hepatic TTP levels were also found 

in murine models of obesity and in human diabetic livers (Sawicki et al., 2018). Zfp36-deficient mice 

suffer from severe chronic inflammation (Taylor et al., 1996; Carballo et al., 1998), demonstrating the 

importance of Zfp36 in anti-inflammatory responses (Sanduja et al., 2012). 

Taking together, altered immune activation, increased apoptosis, and inflammatory changes are 

pointing towards an onset of steatohepatitis in LDC-fed mice. However, the inflammatory phenotype 

was not very pronounced. Several factors can affect the severity of the ethanol-induced 

steatohepatitis, particularly with regard to the microbiome (cf. 3.3), the ethanol concentration of the 

diet, age, and strain of mice (Fengler et al., 2016). 

The originally developed LDC diet with a maximal intake of 36% of calories as ethanol, equivalent to 

6.4% (v/v) ethanol, was diminished in this study to 5% (v/v) ethanol according to published 

concentrations (Bertola et al., 2013). Nevertheless, the concentration had to be further decreased to 

4% (v/v) ethanol because of unexpected spontaneous death events. A reason for the high mortality 

can be the age of the mice since ethanol feeding in younger and lighter mice can develop weight loss 

or hypothermia (Bertola et al., 2013). In contrast to the recommended 8- to 11-week-old mice with 

body weight over 20 g, an early onset of the diet was chosen (4-week old with a weight around 15 g) 

due to the drop of p62 expression in older mice (Tybl et al., 2011). Additionally, an increased infection 

due to numerous injections cannot be excluded. The control mice already showed a high lobular 

lymphocytic inflammation with infiltration of neutrophils. Increased mortality of younger LDC-fed mice 

(6- to 8-week-old) was reported with an additional infection with Mycobacterium tuberculosis in 

comparison with older mice (17- to 22-month-old) (Tripathi et al., 2018). Accordingly, the age and 

beginning of ethanol feeding is an important factor.   

Varlinskaya and Spear suggested a greater ethanol tolerance of adolescent rats compared to their adult 

counterparts (Varlinskaya et al., 2006). Adolescent C56Bl/6 mice were shown to consume more alcohol 

and also to increase their intake in adulthood compared to their adult counterparts (Moore et al., 

2010). However, this behavior is dependent on the genotype since it was not seen in DBA mice (Moore 

et al., 2010). Thus, the genetic background of mice used for modeling ALD is crucial, as heterogeneous 

metabolic responses and severity of ethanol-induced steatohepatitis might differ between strains 

(cf.3.3). Little is known about the alcohol preference or genetic/epigenetic susceptibility to alcohol-

induced liver damage in the herein used crossing between C57BL/6J and DBA/2J mice. 

4.3.1.3 DNA methylation changes and ECM remodeling-associated morphogenic changes in NPCs 

Epigenetic modifications are emerging as an important mechanism contributing to the regulation of 

stable as well as transient gene expression. Epigenetic changes in the germline even determine 

susceptibility to diet-induced obesity and insulin resistance in the next generation (Huypens et al., 

2016), making it an interesting research topic for metabolic diseases. In this study, altered gene 
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expression associated with differential DNA methylation and DNase1 footprint was analyzed. Further 

epigenetic analyses, including histone modifications and miRNA expression, are presently being 

performed and not available yet. 

The DNA methylation profile from LDC-fed mice compared with the control diet, revealed a similar 

amount of hyper- and hypomethylated regions in hepatocytes, with a slight tendency towards 

hypomethylation. In the NPC fraction mostly hypomethylated DMRs were found by RRBS. Published 

data reported ethanol-induced global DNA hypomethylation due to the reduction of the principal 

methyl donor SAM in experimental animals and humans with AFLD (Lu et al., 2000, 2006). A decrease 

in SAM or feeding of methyl donor nutrition deficient diets has been associated with hepatic steatosis 

(Mato et al., 2007; da Silva et al., 2014; Lee et al., 2014). Also, a global hypomethylation of differentially 

methylated CpG sites was suggested to distinguish advanced NASH from simple steatosis in patients 

(Murphy et al., 2013). In contrast to these previously published data, the here presented results 

distinguish between parenchymal and non-parenchymal cells, showing clear hypomethylation in NPCs, 

suggesting an important role of the presence of NPCs in the examined epigenetic changes. 

Nevertheless, recruitment of inflammatory cells, including neutrophils (as seen above), monocytes, 

and macrophages upon ALD or chronic ethanol ingestion (Szabo et al., 2009) changes the cell 

composition of the NPC population. As different types or analyzed the infiltrates were not 

distinguished, the influence on epigenetic changes probably arises also from infiltrated cells. 

Furthermore, contaminations of the NPC fractions with hepatocytes during isolation and separation of 

the cells are also possible. RNA sequencing analysis of NPCs from LDC-fed mice further suggests 

increased morphogenic changes with ECM remodeling, possibly pointing towards tissue repair after 

injury and/or apoptosis. One possible reason can be an ethanol-induced activation of HSCs. LDC-

feeding was shown to directly stimulate epigenetic modifications in HSCs and to increase the 

expression of ECM proteins (Page et al., 2015).  

In conclusion, induced hepatic lipid accumulation, altered lipid metabolism and immune activation, 

increased apoptosis, and inflammatory changes are pointing towards an onset of steatohepatitis in 

LDC-fed mice with an important role of NPCs in morphogenic changes and ECM remodeling. 

4.3.2 Macrophages influence the development of ethanol-induced steatohepatitis 

A role of Kupffer cells, the liver resident macrophages, within the process of fatty liver disease has 

been controversially discussed due to their pleiotropic functions (Dixon et al., 2013; Gao et al., 2016). 

In the herein study, clodronate liposome injections in combination with different diets to investigate 

differences regarding inflammatory events or steatohepatitis ware used. 

The “liposome-mediated macrophage ‘suicide’ technique” with clodronate liposomes (clo) is 

frequently used in studies investigating macrophage function (Van Rooijen, 1989; van Rooijen et al., 

1996; Feng et al., 2011; Lanthier et al., 2015). In agreement with the literature (Rooijen et al., 1994; 

Clementi et al., 2009), Kupffer cells were successfully reduced in clo-treated mice. However, a 

limitation of this study is that the intraperitoneal (i.p.) administration route of clo is a nonspecific way 

of depleting macrophages (Lanthier et al., 2010). It not only affects KCs but i.a. also abdominal adipose 
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tissue macrophages (ATMs) (Biewenga et al., 1995; Leendertse et al., 2009; Lanthier et al., 2010; Bu et 

al., 2013).   

Herein, an increased hepatic injury, inflammation, and accumulation of toxic lipids in steatohepatitis-

induced macrophage-depleted mice is reported. Hence, the data suggest a rather protective role of 

macrophages in the progression of ALD. 

4.3.2.1 Macrophage depletion influences the immune response, leads to neutrophil infiltration, and 

metabolic changes 

Macrophage depletion caused distinct effects on metabolic changes as decreased body weight changes 

and infiltrations of neutrophils. Both were reported in studies using clo or a macrophage Fas-induced 

apoptosis transgenic mice to deplete macrophages (Wu et al., 2017; Bader et al., 2019), showing that 

macrophages regulate neutrophil homeostasis (Gordy et al., 2011). Lee et al. using a lysozyme M 

promoter-directed Cre (LysMCre) diphtheria toxin model for macrophage depletion strongly indicated 

decreased energy intake as the main cause for body weight loss in macrophage-depleted animals (B. 

Lee et al., 2014). In contrast, Bu et al. showed suppressed weight gain, while food intake did not alter 

in mice chronically administered with clo (Bu et al., 2013). In fact, less energy intake cannot be ruled 

out. Food intake during the control diet using normal chow was not monitored. For LDC-fed animals, 

the amount of eaten diet was monitored and a reduced caloric intake could be observed when injected 

with clo (p=0.03; LDC+PBS: 9.83±0.27 kcal/mouse/day and LDC+clo: 8.95±0.23 kcal/mouse/day; each 

n=14 animals, 2 mice housed in one cage). Another factor affecting the variance in weight gain and 

food intake might be the influence of a social hierarchy among cage-mates (Ellacott et al., 2010) since 

the animals were group-housed due to limited space. Thus, neutrophilia and weight loss might be the 

result of macrophage depletion and not the clo treatment itself, as it was also reported in other 

macrophage depletion models, possibly leading to less energy intake. 

Macrophage depletion increased hepatic expression of Cxcl1 in control animals and enhanced 

infiltrations of neutrophils in mice on the LDC diet. It is not surprising that the lack of macrophages 

provoked a deregulation of the immune system, recruitment of inflammatory cells, and consequently 

a changed cell composition in the NPC fraction. Neutrophils are supposed to promote progression of 

steatohepatitis by inducing hepatocyte injury via the release of ROS and pro-inflammatory mediators 

(Ramaiah et al., 2007; Chang et al., 2015). Blockade or deletion of important chemokines for neutrophil 

recruitment (Cxl1, E-selectin) was shown to prevent neutrophil infiltration and alleviate liver injury 

(Bertola et al., 2013; Chang et al., 2015; Wieser et al., 2017), confirming an injury-promoting function 

of neutrophils. However, more neutrophilic infiltration in patients with ASH was shown to cause a 

better outcome of the disease (Altamirano et al., 2014). Neutrophils not only have detrimental effects 

but can also function against bacterial infections and stimulate liver regeneration (Gao et al., 2016). 

This might explain the increased gene expression correlating with ‘cell cycle’ and ‘cell division’. Thus, 

feeding of the steatohepatitis-inducing diet in the absence of macrophages led to hepatocyte 

proliferation and possible liver regeneration in response to injury.  
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An increased Lcn2 expression, as detected here in macrophage-depleted mice during LCD feeding, was 

also found to promote liver regeneration (Xu et al., 2015) and to be protective against acute liver injury 

induced by hepatotoxins (Borkham-Kamphorst et al., 2013). Nevertheless, Lcn2 is also proposed to 

drive hepatic neutrophil infiltration, steatosis, and liver injury (Cai et al., 2016; Wieser et al., 2016). 

Furthermore, hepatic Lcn2 expression is highly elevated under inflammatory conditions and in ALD 

(Asimakopoulou et al., 2016; Xiao et al., 2017), confirming the suggested inflammatory changes due to 

macrophage depletion during LDC diet.  

In contrast to the literature reporting KC depletion to alleviate liver-injury and inflammation (Adachi 

et al., 1994; Tosello-Trampont et al., 2012), the data clearly show increased ALT and AST levels in 

clodronate-treated LDC-fed mice. Thus, the results point rather towards increased liver injury and 

hepatocyte proliferation in response to clo treatment in steatohepatitis. As macrophages are effector 

cells of the innate immune system, their depletion might represent a potential infection risk caused by 

microbial contamination. Absence of macrophages may increase bacteria and/or virus titers for 

instance. Even though it was paid attention to perform injections under clean conditions, an infection 

by frequent injections to maintain depletion over a long period of time cannot be completely excluded. 

The absence of macrophages led to increased apoptosis pointing towards increased injury. The results 

are supported by investigations of Teratani et al. demonstrating an aggravated CCl4-induced liver 

fibrosis in KC-depleted mice fed a high-cholesterol diet (Teratani et al., 2012). 

Taken together, the data suggest aggravated hepatic injury with inflammation as a result of 

macrophage depletion in steatohepatitis-induced mice. 

4.3.2.2 Livers of clodronate-treated and LDC-fed mice had decreased triglycerides, but accumulated 

lipids known to induce lipotoxicity 

LDC feeding in the absence of macrophages revealed deregulated genes encoding for major urinary 

proteins (Mups) without altering genes relating to lipid, cholesterol or fatty acid metabolism. Mups are 

produced in the liver and found to participate in the regulation of lipid and glucose metabolism 

(Charkoftaki et al., 2019). However, their mechanism of physiological function is not well understood. 

Decreased levels of Mup1 were found in genetic (db/db) or HFD-induced obesity in mice (Hui et al., 

2009; Zhou et al., 2009). Replenishment of recombinant Mup1 in these mice was found to ameliorate 

glucose intolerance, reduce hepatic triglycerides, and decrease the expression of glucogenic and 

lipogenic genes. In clodronate-treated mice, decreased TGs were found, but also decreased Mup1 

expression, suggesting the involvement of other mechanisms. Interestingly, downregulation of Mup1, 

Mup4, and Mup5 was detected in mice with dietary restriction (Miller et al., 2002; Dhahbi et al., 2004; 

Giller et al., 2013). As discussed above, a reduced caloric intake due to macrophage depletion is 

possible and could lead to decreased Mup expression. 

Depletion of KCs and/or ATMs with clo or gadolinium chloride (GdCl3), a selective toxicant for KCs, has 

been described to be associated with the protection of mice from developing hepatic steatosis (Rivera 

et al., 2007; Neyrinck et al., 2009; Huang et al., 2010). In agreement, decreased hepatic TGs in LDC-fed 

macrophage-depleted mice was also shown, but contrary to Bu et al. changed expression of genes 
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involved in lipogenesis could not be confirmed (Bu et al., 2013). Furthermore, the results contradict 

previous publications showing unchanged levels of hepatic CER and cholesterol in macrophage-

depleted livers (Huang et al., 2010; Stienstra et al., 2010).  

The lipidomic analysis showed only altered ceramide levels in macrophage-depleted mice on the 

control diet, suggesting an important impact of macrophages in ceramide homeostasis. As one aspect 

of the underlying mechanism, an elevated SM to CER ratio (Figure 22) can be an indicator for increased 

turnover as a result of sphingomyelinase activity (Hannun et al., 2008). Increased hepatic CER are 

thought to play an important role during inflammation and apoptosis due to relevant signaling 

properties (Clugston et al., 2011; Pagadala et al., 2012). This might explain the increased apoptosis of 

macrophage-depleted mice, showing that macrophage depletion on control diet already increases 

hepatotoxic ceramide.  

The reduction of hepatic TG in LDC-fed macrophage-depleted mice might be explained by an increased 

hepatic Apoa4 expression. Apolipoprotein A-IV has a wide variety of functions in lipid metabolism and 

metabolic regulation and is found on the surface of newly synthesized chylomicrons. Hepatic 

expression of Apoa4 was proposed to enhance TG secretion from the liver (VerHague et al., 2013). 

However, serum triglycerides were not changed. Further, PC was proposed to be a source for TGs in 

the liver (van der Veen et al., 2012), which in part might explain diminished TG levels by reduced PC. A 

decrease of PC while LPC is accumulated, as shown by the decreased PC to LPC ratio (Figure 22), might 

be explained by an increased conversion of PC to LPC via phospholipase A2, which can, in turn, be 

activated by increased ceramide (Huwiler et al., 2001).  

Increased LPCs are clinically associated with atherosclerosis, acute and chronic inflammation (Schmitz 

et al., 2010), and have been implicated to induce hepatocyte lipoapoptosis (Han et al., 2008; Hirsova 

et al., 2016). Together with FC, both are shown to mediate hepatic lipotoxicity (Mota et al., 2016). 

Increased hepatic FC is multifactorial in origin, including e.g. increased synthesis related to increased 

Hmgcr expression or activity, increased hydrolysis of CE to FC, impaired CE synthesis, increased uptake 

from circulation, or decreased excretion (Min et al., 2012). Although only limited inferences can be 

drawn about mechanistic aspects from lipidomic approaches, a decreased CE to FC ratio could suggest 

increased hydrolysis of CE. Elevated synthesis due to increased Hmgcr activity, but not expression, is 

another possibility since Hmgcr mRNA expression did not alter.  

KCs and ATMs were shown to accumulate toxic lipids in HFD-fed mice, including cholesterol and 

ceramides, and to exhibit a pro-inflammatory phenotype when fat-laden (Leroux 2012). Macrophage 

depletion in LCD-fed mice diminished ‘protective’ hepatic lipids such as TG, PC, PI, and led to an 

accumulation of toxic lipids, such as CER, LPC, and FC and thereby increasing the risk for liver damage 

and/or fibrosis. Thus, a crucial role of macrophages in maintaining lipid homeostasis and protection of 

the liver from lipotoxicity-induced damage is suggested. 
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4.3.3 Lack of lipid accumulation in p62 tg mice, but decreased Apoa4 expression 

Hepatic p62 expression was shown in our group to induce simple steatosis (Tybl et al., 2011). Here, a 

further characterization of the p62 mouse model on the epigenome was performed and addressed the 

role of p62 in a steatohepatitis model of LDC feeding dependent on the presence or absence of 

macrophages. 

A diminished p62 expression due to clo treatment and LDC diet was shown. Increased incorporation 

of lipids within hepatocytes could lead to changed expression pattern. However, steatosis in 2- and 4-

week-old mice on MCD-diet did not alter p62 mRNA expression (Simon, 2013). Furthermore, clo 

treatment induced liver damage and apoptosis. The therefore increased loss of cells could explain the 

deficit in p62 expression. Newly generated hepatocytes by liver regeneration or repair could lack 

expression of p62, as p62 was shown to be expressed in a heterocellular pattern (Simon, 2013) and 

shown to have high interindividual variability (Tybl et al., 2011), possibly due to reduced promoter 

activity.  

In accordance with a previous publication (Laggai et al., 2013), CER were increased in p62 tg mice on 

control diet. But, in contrast, they were the only altered lipid class. As discussed before and also 

detected in clo treated animals on control diet, increased CER levels could derive from increased 

sphingomyelinase activity since the SM to CER ratio was significantly decreased in p62 tg animals (0.82 

fold change; p=7.6E-5). As seen before, increased hepatic CER play an important role during 

inflammation and apoptosis (Clugston et al., 2011; Pagadala et al., 2012).  

The age of p62 expressing mice is crucial in experimental settings. The herein mice were sacrificed at 

the age of 9 weeks. The lack of differences between genotypes could derive from the deficit of p62 

expression levels, as it was shown to be strongly decreased at the age of 10 weeks (Tybl et al., 2011). 

However, mRNA expression was still upregulated. p62 tg mice with a normal histology were shown to 

not reveal significantly increased fatty acid content in the liver (Laggai et al., 2014), explaining the 

consistency between genotypes in this work. 

Analysis of DEGs associated with epigenetic changes revealed altered lipid and metabolic pathways 

with a downregulation of Apo4. As seen before, hepatic Apoa4 expression was described to enhance 

TG secretion from the liver (VerHague et al., 2013). Thus, a hepatic downregulation in p62 tg mice 

could reduce lipid export from the liver and explain hepatic lipid accumulation, while serum cholesterol 

and TG were decreased, compared to wild types. The downregulation was seen in all treatment groups, 

emphasizing an important role of Apoa4 in p62 tg animals.  

Taken together, the p62 expression did not alter hepatic lipid accumulation in control or LDC feeding 

probably due to diminished p62 expression due to age. Nevertheless, p62 expression increased CER in 

the control treatment and strongly decreased Apoa4 expression in all treatment groups underlining its 

role in p62 tg animals.
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5 SUMMARY 

NAFLD and AFLD range among the most prevalent liver diseases in developing as well as in developed 

countries. It is therefore important to understand the mechanism of disease pathogenesis and the 

progression from steatosis toward steatohepatitis, cirrhosis, and HCC. 

In the present work, the role of p62/IMP2-2 was investigated in steatohepatitis and in the progression 

towards malignancy and the role of macrophages in steatohepatitis was examined. 

The insulin-like growth factor 2 (IGF2) mRNA binding protein (IMPs) family members IMP1 and IMP3 

have been classified as oncofetal proteins. IMP2 expression in the adult liver is controversially 

discussed, not least due to the lack of quantitative data in IMP2 expression. The human splice variant 

p62/IMP2 2 was found to promote steatohepatitis and to be upregulated in HCC. Therefore, it was 

aimed to clarify the expression of IMP2 in the adult liver and to characterize the influence of p62 on 

the progression toward fibrosis. A high fetal IMP2 expression with only minimal levels in adult livers of 

human and mice, confirming an oncofetal appearance, was demonstrated. Employing transgenic mice, 

p62/IMP2-2 induced the expression of liver progenitor cell markers, such as Spp1 and Cdh1. When 

challenged an MCD diet, p62 transgenic mice additionally upregulated progenitor marker expression 

(Krt19, Sox9) and were more susceptible to a ductular reaction and the development of fibrosis. 

Human gene expression data further supported increased expression of IMP2 in parallel with liver 

progenitor cell marker genes in liver disease. 

As the expression of the imprinted genes Igf2 and H19 were found to be elevated by p62, it was aimed 

to further characterize the p62 transgenic mouse model with regard to a potential role on the 

epigenome. Differentially expressed genes (DEGs) associated with epigenetic changes, i.e. 

differentially methylated regions (DMRs) and/or differentially open chromatin regions (DOR) were 

mostly found in hepatocytes of p62 transgenic mice. These genes particularly play a role in lipid 

metabolism and fatty acid metabolism. To further characterize the impact of p62 on lipid 

accumulation, lipidomic analysis revealed only an elevated accumulation of ceramides. When 

challenged with a steatohepatitis-inducing Lieber-DeCarli (LDC) diet, no changes in hepatic lipid 

accumulation were found compared to wild-type animals. However, hepatic p62 expression abrogated 

the LDC-induced increase in serum levels of cholesterol, HDL, and triglycerides. Further, it induced a 

downregulation of Apoa4, suggesting an impaired lipid export from the liver. Interestingly, the p62-

induced Apoa4 downregulation was observed in all treatment groups, including macrophage-depleted 
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mice. The impact of p62 expression on macrophage-depleted steatohepatic mice was not further 

analyzed since clodronate liposome treatment strongly diminished hepatic p62 expression. 

Susceptibility to steatohepatitis can be promoted by epigenetic changes. Furthermore, interaction and 

crosstalk between parenchymal and non-parenchymal cells (NPCs), including Kupffer cells, has 

emerged as a critical mechanism in the pathogenesis of steatohepatitis. Still, the role of Kupffer cells 

in the progression of liver disease is controversially discussed. Therefore, the role of macrophages, i.e. 

Kupffer cells and adipose tissue macrophages, and epigenetically regulated changes in gene expression 

in a murine model using a steatohepatitis-inducing LDC diet were analyzed. The ethanol containing 

LDC diet-induced neutrophilia, lymphocytic inflammation, and apoptosis. Furthermore, LDC feeding 

dysregulated lipid and cholesterol homeostasis. Lipidomic analysis showed increased hepatic lipid 

incorporation. Additionally, upregulation of genes involved in lipid and cholesterol pathways was 

associated with epigenetic changes in hepatocytes. In NPCs, upregulated genes associated with 

epigenetic changes were shown to play a role in morphogenic changes and ECM remodeling. In order 

to investigate the role of macrophages in steatohepatitis, i.p. injections of clodronate liposomes were 

performed to deplete macrophages. In this steatohepatitis model, the absence of macrophages led to 

increased neutrophilia, lymphocytic inflammation, and apoptosis. Liver damage was detected by 

increased serum levels of AST and ALT. Furthermore, hepatic cell proliferation was suggested by 

upregulated genes in hepatocytes as well as in NPCs. Also, hepatocytes expressed Lcn2, known to be 

highly elevated under inflammatory conditions and in ALD. Interestingly, lipidomic analysis revealed 

abrogated hepatic levels of triglycerides, phosphatidylcholine, and phosphatidylinositol in the absence 

of macrophages, possibly due to induced hepatic export, as indicated by increased Apoa4 expression. 

Concurrently, lipids knowing to induce lipotoxicity were accumulated, i.e. free cholesterol, and 

lysophosphatidylcholine. Thus, macrophages appear to be rather protective in the presented 

steatohepatitis model. 

Taken together, this work provides insight into epigenetic changes and macrophages in steatohepatitis 

and the role of p62/IMP2 in dedifferentiation and contributes to a better understanding of processes 

involved in the pathogenesis of liver diseases.
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6 EXPERIMENTAL PROCEDURES 

6.1 Materials 

PCR, qPCR primers, and dual-labeled probes were obtained from Eurofins MWG Operon (Ebersberg, 

Germany). Taq-Polymerase (5 U/μl), 10 x Taq buffer and the dNTP mix (containing dATP, dCTP, dGTP 

and dTTP at a concentration of 10 mM, each) were from Genscript (Piscataway, NJ, USA). LE Agarose 

was purchased from Biozym Scientific GmbH (Oldendorf, Germany) and ethidium bromide (#E1510) 

from Sigma-Aldrich (St. Louis, MO, USA).  

Anti-Krt19 antibody (#52625) and anti-Afp antibody (#46799) for histological stainings were obtained 

from Abcam (Cambridge, United Kingdom), and the anti-laminin antibody (#L9393) from Sigma-Aldrich 

(St. Louis, MO, USA). 

Mouse anti-tubulin (#T9026, LOT#024M4767V) antibody was from Sigma-Aldrich (St. Louis, MO, USA). 

Antibodies used for Western Blot detection were obtained from LI-COR Biosciences (Lincoln, NE, USA): 

IRDye® 680RD goat anti-rabbit (#926-68071, LOT# C60329-15), and IRDye® 800 CW goat anti-mouse 

(#926-32210, Lot# C50909-01). 

All other chemicals were purchased either from Sigma-Aldrich (St. Louis, MO, USA; Steinheim, 

Germany), Carl Roth (Karlsruhe, Germany), and Grüssing (Filsum, Germany). 

6.2 Mice and treatments 

6.2.1 Animal welfare 

Animal handling was conducted in compliance with the guidelines of the local animal welfare 

committee (permission number: 38/2013, 34/2010, 11/2013). Mice were housed in a 12/12h 

light/dark cycle under constant conditions (temperature: 22℃±2℃; relative humidity: 55%±10%) with 

food and water ad libitum, if not stated otherwise (cf. 6.2.4.2, 6.2.4.3). 

6.2.2 Generation of p62 transgenic animals 

p62 transgenic mice were generated as previously described (Tybl et al., 2011). In brief, DBA/2J p62 

mice containing the human p62 gene under the control of the minimal cytomegaly virus promoter with 
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a tetracycline-resistance operon regulatory element (tetO) upstream of the promoter, do not express 

the p62 protein. They were crossed with C57BL/6J LT2 transgenic mice, which carry a liver-enriched 

activator protein (LAP) promoter controlling the expression of the tetracycline transactivator (tTA)  

protein. In the double-positive p62+/LT2+ transgenic offspring, the LAP promotor is activated via LAP, 

which is highly enriched in the liver, and tTA is expressed. It subsequently binds the tetO sequences 

resulting in an expression of the p62 gene downstream of the promoter (Figure 36). p62+/LT2+ mice 

are referred to as p62 transgenic animals (tg) in this work and were compared to p62-/wild-type (wt) 

mice in the experiments. C57BL/6J and DBA/2J wild-type animals were purchased from Janvier Labs 

(Saint-Berthevin Cedex, France). 

 

Figure 36: Generation of p62 transgenic mice. Liver-specific expression of p62 mRNA in double-positive p62+/LT2+ 
mice. Primer 1 and 2 indicate the binding region of primers used for genotyping. LAP: liver-enriched activator 
protein; tTA: tetracycline-controlled transactivator composed of TetR: tetracyclin Repressor fused to VP16 
(positive-acting transcription factor); tetO: tetracycline-resistance operon regulatory element;-CMV: 
cytomegalovirus. 

6.2.3 Genotyping 

For genotyping, ear biopsies were taken from mice and digested in 100 µl of a solution containing 20 

µg Proteinase K and 10 µl 10 x Taq buffer (in water) at 55°C while shaking (1500 U/min) for 1 hour or 

until the tissue was fully digested. Proteinase K (#03115879001, Roche Diagnostics GmbH, Mannheim, 

Germany) was heat-inactivated at 95°C for 15 min and 1 µl of the supernatant was used as template 

in the following PCR reaction with primers shown in Table 11. 

Table 11: Primer sequences used for genotyping PCRs with amplicon sizes and gene bank accession numbers. 

Gene Forward primer sequence 5´-3´ Reverse primer sequence 5´-3´ Amplicon size 
Gene bank 
accession number 

tTA GTGCAGAGCCAGCCTTCTTA CCTCGATGGTAGACCCGTAA 129 bp U89929 

p62 CATCAAACAGCTGGCGAGAT GTGCCCGATAATTCTGACGA 346 bp AF057352 

 

Reaction mixture:    Conditions:    
Taq-Polymerase (5 U/µl) 2.5 U  denaturation 95°C 5 min  
dNTPs (10 mM) 125 µM  denaturation 95°C 30 s 

35 
cycles 

10 x Taq-buffer 2 µl  annealing 57°C 30 s 
primers (10 μM, each) 0.5 µM  elongation 72°C 30 s 
template 1 µl  final elongation 72°C 5 min  
H2O ad 20 µl      

The PCR products were separated by an agarose gel electrophoresis (cf. 6.4) for amplicon detection. 
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6.2.4 Diets and treatments 

6.2.4.1 High-fat diet (HFD) 

Mice (n=80 in total, Table 12) were randomly divided according to genotype (wt or tg) and sex into the 

experimental groups at the age of 3 weeks and received either the control (co; D12489B) or high-fat 

diet (HFD; D12266B, Table 13), based on milk fat  (Sutter et al., 2012), purchased from Research Diets 

(New Brunswick, NJ, USA), for 12 weeks. 

Table 12: Number of animals for each genotype and sex used in the high-fat diet (HFD) and control diet (co). wt: 
wild types; tg: p62 transgenic mice. 

Diet Co HFD 

Genotype wt tg wt tg 

Sex f m f m f m f m 

Number of animals 11 10 9 10 10 12 10 8 

Total/genotype 21 19 22 18 

 

Table 13: Composition of the control and high-fat diet according to Research Diets. 

 Co HFD  

 D12489B D12266B  

 kcal% kcal%  

Protein  16.8 16.8  

Carbohydrate  72.6 51.4  

Fat 10.6 31.8  

kcal/g 3.9 4.41  

Fatty acid composition g/kg g/kg  

total 44.7 151.8  

Saturated 11.9 40.3  

Monounsaturated 11.9 40.5  

Polyunsaturated 21 71.2  

Ingredient g/kg g/kg  

Casein, 30 Mesh 161.3 182.2  

DL-Methionine  2.5 2.9  

Corn Starch 423.1 206.2  

Maltodextrin 10 29.7 71.9  

Sucrose 246.2 278.1  

Cellulose, BW200 25.5 28.8  

Butter Fat, Anhydrous 12.5 42.4  

Corn Oil 33.4 113.2  

Mineral Mix S10001  34.0 38.4  

Calcium Carbonate 4.7 5.3  

Sodium Chloride  4.7 5.3  

Potassium Citrate, 1 H2O 11.5 12.9  

Vitamin Mix V10001  9.3 10.5  

Choline Bitartrate 1.7 1.9  

FD&C Yellow Dye #5 0.1 0  

FD&C Red Dye #40 0 0.1  

 

Mice were sacrificed at the age of 15 weeks. Whole blood and livers were removed and processed as 

described in 6.2.5 and 6.2.6. 
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6.2.4.2 Ethanol in drinking water 

At the age of 3 weeks, mice (total n=76, Table 14) were randomly divided according to genotype (wt 

or tg) and sex into the experimental groups.  

Table 14: Number of animals for each genotype and sex used in the experiment with the application of ethanol 
(EtOH) in drinking water. wt: wild types; tg: p62 transgenic mice; co: control 

Diet Co EtOH 

Genotype wt tg wt tg 

Sex f m f m f m f m 

Amount 11 8 9 10 10 10 10 10 

Total/genotype 19 19 20 20 

 

All mice received normal chow (#1320, Altromin, Lage, Germany). The ethanol-fed mice received an 

increasing concentration of ethanol (EtOH: 7 kcal/g, #32205-M, CAS Number: 64-17-5, Sigma-Aldrich, 

Steinheim, Germany) in drinking water (1st week: 2.5%, 2nd week: 5%, 3rd week: 10%, 4th week: 15% 

(v/v) EtOH) as the only drinking source. Control mice received an isocaloric solution of maltodextrin 

from maize starch (Lamperts Maltodextrin 12, PZN 8605783, Berco Arzneimittel, Kleve, Germany) in 

drinking water with a metabolic energy of 3.84 kcal/g. The amount of calories had to be adjusted to 

the intake of maltodextrin solution since mice that received this solution tended to drink more. Mice 

were sacrificed at the age of 7 weeks and whole blood and livers were removed and processed as 

described in 6.2.5 and 6.2.6. 

6.2.4.3 Lieber-DeCarli diet and treatment with clodronate liposomes 

Female wild-type (wt) and p62 transgenic (tg) mice (n=111) were randomly divided into the 

experimental groups at the age of 3 weeks. The control group (co) received normal chow (#1320, 

Altromin, Lage, Germany). The other group was fed the Lieber-DeCarli (LDC, #F1258SP, BioServ, 

Flemington, NJ, USA) diet as the only food source. The composition of the diets is shown in Table 15. 

Table 15: Metabolic energy, carbohydrate, and fatty acid composition of the control (co, #1320, Altromin) and 
Lieber-DeCarli (LDC, #F1258SP, BioServ) diet. 

Metabolic energy Co  LDC 

kcal from protein 24 % 17.2 % 

kcal from fat 12 % 40.9 % 

kcal from carbohydrate 64 % 15.4 % 

kcal from ethanol (4%)   26.5 % 

Total 3,188 kcal/kg 877.5 kcal/l 

Carbohydrates     

Monosaccharides 0  1.3 g/l 

Disaccharides 49.5 g/kg 4.8 g/l 

Polysaccharides 358.9 g/kg 26.1 g/l 

Fatty acids     

Total saturated n.a.  5.2 g/l 

Total monounsaturated n.a.  23.5 g/l 

Total polyunsaturated n.a.  9.7 g/l 

The diet was prepared as shown in Table 16 based on the manufacturer’s instructions and Bertola et 

al., 2013 with a magnetic stirrer and a magnetic stir bar. To one-third of the dry mix one-third of warm 
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water was added, and mixed until the product dispersed. This step was repeated, ethanol was added 

and the product was dispensed into liquid diet feeding tubes (#13260, BioServ, Flemington, NJ, USA). 

Table 16: Directions for preparing 0% - 5% (v/v) ethanol liquid diet (#13260, BioServ). ρ (ethanol)=0.789 g/ml; 
energy density (ethanol)=7 kcal/g 

Ethanol % 
in diet (v/v) 

Finale 
volume 

(ml) 

Diet dry 
mix  
(g) 

Water a 
(ml) 

95% 
ethanol 

(ml) 

Calories from 
ethanol (kcal/l) 

Calories from 
ethanol (%) 

0% 100 14.1 95.4 - - - 

1% 250 33.3 236.6 2.6 58.0 8.2 

2% 250 33.3 234.0 5.3 116.5 15.3 

4% 250 33.3 228.7 10.5 232.5 26.5 

5% 250 33.3 226.1 13.2 290.5 31.1 

Mice received the LDC diet for one week without ethanol, followed by one week of increasing ethanol 

concentrations: 2 days 1%, 2 days 2%, 3 days 4%. Due to unexpected spontaneous death events, the 

ethanol concentration was decreased to 4% during the feeding period. 9 animals (Table 17) were fed 

5% (v/v) LDC diet for 22/12/6 days before lowering the concentration to 4% (v/v) ethanol and feeding 

was maintained for 7/17/23 days. The remaining 23 animals in each group remained on 4% LDC diet 

for 4 weeks. Additional to the diet, animals were injected with either PBS or clodronate liposomes (i.p. 

10 µl per mg body weight). PBS-1x with pH7.2 (#9872, Cell Signaling, Danvers, MA, USA) contained 

10 mM Na2HPO4, 10 mM NaH2PO4, 150 mM NaCl. Clodronate liposomes were purchased from 

Liposoma B.V. (Amsterdam, Netherlands). The concentration of clodronate in the suspension was 5 

mg/ml and liposomes were suspended in sterile PBS (10 mM Na2HPO4, 10 mM NaH2PO4, >140 mM 

NaCl). 2 to 3 days before the onset of the control or LDC diet, injections were started and repeated 

every 5 to 7 days until mice were sacrificed at the age of 9 weeks. Total numbers of animals in the 

different diet and treatment groups are shown in Table 17. Animals (3-4) from selected treatment 

groups (wt: co+PBS, co+clodro, LDC+PBS, LDC+clodro; tg: co+PBS) were sent to the IfADo in Dortmund, 

where the isolation of hepatocytes and non-parenchymal cells (NPCs) was performed (see 6.13). 

Epigenetic profiling was performed with samples from 2 animals of each group (c.f. 6.14). 

Table 17: Number of female animals for each genotype and treatment (i.p. injection of PBS or clodronate 
liposomes) fed either normal chow (co, #1320, Altromin) or the liquid ethanol Lieber-DeCarli (LDC, #F1258SP, 
BioServ) diet. wt: wild types; tg: p62 transgenic mice; PBS: Phosphate Buffered Saline (#9872, Cell Signaling); 
clodro: clodronate liposomes (Liposoma B.V.) 

Treatment Co LDC 

Injections every 5-7 days PBS clodro PBS clodro 

Genotype wt tg wt tg wt tg wt tg 

 + normal chow 14 14 15 13         

 + 22 days 5% + 7 days 4% EtOH         1  - 1  - 

 + 12 days 5% + 17 days 4% EtOH         1 1  -  - 

 + 6 days 5% + 23 days 4% EtOH         2  - 2 1 

 + 29 days 4% EtOH         11 12 12 11 

Total each treatment and genotype 14 14 15 13 15 13 15 12 

Total number of animals 111 
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6.2.4.4 Untreated animals 

Liver tissues from C57BL/6J mice at the embryonic day E12.5 (n=5), newborns (P0, n=8), and at the age 

of 2, 10 and 85 weeks (each n=6) were obtained. 

Wild-type (wt) and p62 transgenic (tg) mice were generated and livers were examined by qPCR (wt: 

n=13, tg: n=13) and microarray analysis (n=10 each) at the age of 5 weeks (performed by Dr. S. M. 

Kessler).  

In order to induce NASH, wild-type and p62 tg mice were randomly divided into experimental groups 

at the age of 3 weeks and were fed either a methionine-choline-deficient diet (MCD, #960439, MP 

Biomedicals, Eschwege, Germany) (wt or tg: n=10) or a methionine choline supplemented control diet 

(co, #960441, MP Biomedicals, Eschwege, Germany) (wt or tg: n=12) for 4 weeks (performed by Dr. Y. 

Simon). For tumor induction, 3-week old wt (n=28) and p62 tg (n=24) mice received an MCD diet; 4 

weeks after the onset of MCD feeding animals obtained one injection of diethylnitrosamine (DEN, 5 

mg/kg BW i.p.). Mice were sacrificed at the age of 15 weeks (performed by Dr. S. M. Kessler). 

6.2.5 Serum Parameters 

Whole blood was collected in 1.1 ml Z-Gel microtubes (#41.1500.005, Sarstedt, Nümbrecht, Germany) 

incubated for one hour at room temperature and centrifuged for 10 min at 6,000 x g and 4°C. The 

supernatant was transferred into a fresh tube and stored at -80°C until measurement. Serum levels of 

alanine aminotransferase (ALT), aspartate aminotransferase (AST), cholesterol, glucose, high-density 

lipoprotein (HDL), and triglycerides (TG) were determined by the cobas®8000 modular analyzers using 

Roche® reagents. The serum was diluted with 0.9% NaCl before measurements were performed at the 

“Zentrallabor des Universitätsklinikums des Saarlandes” (Homburg, Germany). 

6.2.6 Preparation of Liver Tissue 

Livers were removed and weighed. Half of the left lateral lobe, the left medial lobe with gallbladder, 

and one-third of the right lateral lobe were fixed in biopsy embedding cassettes (#17990, Engelbrecht 

Medizin- und Labortechnik GmbH, Germering, Germany) for 24 hours in 4% (w/v) formalin (#41-5313-

00, Medite GmbH, Burgdorf, Germany) before paraffin embedding (6.12.1). The remaining liver tissue 

was snap frozen in liquid nitrogen and stored at - 80°C for further experiments (6.5, 6.7, 6.8, 6.11). 

6.3 qPCR standard plasmid generation 

PCR products of the gene of interest were generated and agarose gel electrophoresis (6.4) was 

performed. The product was cut out of the gel, cleaned up with the NucleoSpin® Gel and PCR Clean-up 

Kit (#740609, Macherey-Nagel, Düren, Germany), and the DNA concentration was measured. The 

amount of PCR product needed for ligation was calculated by the following equation: 

𝑛𝑔 𝑜𝑓 𝑖𝑛𝑠𝑒𝑟𝑡 =  
𝑛𝑔 𝑣𝑒𝑐𝑡𝑜𝑟 × 𝑘𝑏 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑖𝑛𝑠𝑒𝑟𝑡

𝑘𝑏 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟
 ×  

3 

1 
 (𝑖𝑛𝑠𝑒𝑟𝑡 𝑡𝑜 𝑣𝑒𝑐𝑡𝑜𝑟 𝑚𝑜𝑙𝑎𝑟 𝑟𝑎𝑡𝑖𝑜) 

The PCR product was ligated into the pGEM®-T-Easy Vector (3015 bp, #A137A, Promega, Madison, WI, 

USA) according to the manufacturer’s guidelines. 
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6.3.1 Bacterial culture 

The Escherichia coli (E. coli) strain TOP10 (Invitrogen, Carlsbad, CA, USA) was used as a host organism 

for plasmid amplification. Bacteria were grown in lysogeny broth (LB) medium (Luria/Miller) 

supplemented with ampicillin (100 µg/ml). For the selection of single clones, LBamp agar plates (15 g 

per 1 l LB medium, 100 µg/ml ampicillin) were used. 

6.3.2 Transformation 

The transformation was performed according to the guidelines of the manufacturer. In brief, 50 µl 

competent E. coli cells were added to 2 µl of the solution of the ligated vector obtained as described 

above. After 20 min incubation on ice, bacteria were heat-shock transformed for 45-50 sec at 42°C and 

incubated on ice for 2 min. 950 µl SOC medium (0.5% yeast extract, 2% tryptone, 10 mM NaCl, 2.5 mM 

KCl, 10mM MgCl2, 10 mM MgSO4, 20 mM glucose in water) were added to the bacteria and the mixture 

was incubated at 37°C and 150 rpm for 1.5 h. 50 µl and 100 µl of the suspension were plated on LBamp 

plates and incubated overnight at 37°C and 5% CO2. Colonies were picked and grown overnight in 7 ml 

LB with ampicillin at 37°C and 150 rpm. 

6.3.3 Plasmid purification 

Plasmid DNA was isolated from overnight cultures using High Pure Plasmid Isolation Kit (Version 9, 

Roche, Mannheim, Germany) according to the manufacturer’s instructions. The DNA concentrations 

were determined by measuring the extinction of the DNA at 260 nm, and purity was checked by 

absorption measurement at 280 nm. Measurements were performed with a BioMate UV-Vis 

spectrophotometer (Thermo Electron Corporation, Schwerte, Germany) or with the Thermo 

Scientific™ NanoDrop Lite Spectrophotometer (Wilmington, DE, USA). 

6.3.4 Sequencing of the qPCR standard plasmids 

Sequencing reactions were performed by Eurofins MWG (Ebersberg, Germany) with 75 ng/µl plasmid 

DNA in 15 µl molecular water. 

6.4 Agarose gel electrophoresis 

For the detection of DNA, 1.5% (w/v) agarose gels (in 1 x TBE: 89.2 mM Tris, 89 mM boric acid, 2 mM 

EDTA in H2O) containing 5 µg/ml ethidium bromide were used. Samples were loaded with a suitable 

volume of 10 x loading buffer (70% (v/v) glycerol, 40 mM EDTA, 0.02% bromphenol blue, 0.02% xylene 

cyanol, H20 ad 50 ml) and separated at 100 V. A 50 bp ladder (#SM0371, Thermo Fisher Scientific, 

Carlsbad, CA, USA) was used to determine the size of the DNA. Detections were carried out using a UV 

transilluminator (Biostep Dark Hood DH-40/50) and the software ArgusX1 (Biostep, Jahnsdorf, 

Germany). 
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6.5 RNA isolation and reverse transcription 

6.5.1 RNA isolation 

Total RNA was extracted in 600 µl Qiazol® lysis reagent (#79306, Qiagen, Hilden, Germany) using a high-

performance dispenser (T25 digital IKA® ULTRA-TURRAX® dispersers) for the homogenization of snap-

frozen liver tissue samples. After disruption and incubation for 5 min at room temperature, 175 µl of 

chloroform was added. The mixture was vortexed (15 s), incubated for 3 min at room temperature, 

and centrifuged at 13,523 x g at 4°C for 15 min. The supernatant was collected in a new reaction tube 

and RNA was precipitated by addition of ice-cold isopropanol 100% (1 volume) at -20°C overnight. The 

precipitate was centrifuged at 13,523 x g at 4°C for 10 min and the resulting pellet was washed with 

ice-cold ethanol 75% (v/v). The RNA was dried at 37°C and dissolved in DEPC-H2O (#T143.2, Roth, 

Karlsruhe, Germany). 

6.5.2 DNase digestion 

RNA samples were digested with DNase I using the Ambion DNA-free™ kit (#AM1906, Invitrogen by 

Thermo Fisher Scientific, Vilnius, Lithuania) to remove residual DNA according to the manufacturer’s 

instructions. 

6.5.3 RNA concentration measurement 

The RNA concentration was determined by measuring the extinction at 260 nm using the Thermo 

Scientific™ NanoDrop Lite Spectrophotometer (Wilmington, DE, USA). 

6.5.4 SINE PCR 

To confirm the absence of DNA in the isolated RNA samples, a PCR for Short Interspersed Nuclear 

Elements (SINEs) was performed using the following primers: 

Forward: 5’-3’ CTTCTGGAGTGTTTGAAGAC 

Reverse: 5’-3’ CTGGAACTCACTCTGAAGAC 

5 ng DNA isolated from mouse liver, served as a positive control. The PCR was carried out in a Thermal 

Cycler (T100™, Bio-Rad, Richmond, CA, USA) using the following reaction mixture and conditions: 

Reaction mixture:    Conditions:    
Taq-Polymerase (5 U/µl) 2.5 U  denaturation 94°C 8 min  
dNTPs (10 mM) 200 µM  denaturation 94°C 1 min 31 

cycles 10 x Taq-buffer 2,5 µl  annealing 59°C 1 min 
primers (10 μM, each) 0,2 µM  elongation 72°C 1 min 

template 1 µl  final elongation 72°C 10 min  
H2O ad 25 µl      
 

The PCR products were separated by an agarose gel electrophoresis (6.4) and were free of DNA when 

no smear was visible. 
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6.5.5 Reverse transcription 

500 – 1,000 ng of RNA was reverse transcribed into cDNA using the high-capacity cDNA reverse 

transcription kit (#4368814, Applied Biosystems by Thermo Fisher Scientific, Vilnius, Lithuania) with an 

RNase inhibitor (RNaseOUT™, #10777-019, Invitrogen by Life Technologies, Carlsbad, CA, USA) 

according to the manufacturer’s protocol. TE buffer (pH 8.0, #A0386,1000, AppliChem, Darmstadt, 

Germany) was added to the resulting cDNA to a final volume of 100 – 300 µl. 

6.6 qPCR 

6.6.1 Primer and probe sequences 

Table 18: Primer sequences with concentrations and annealing temperatures as used for qPCR. 

Gene Forward primer sequence, 5'-3’ Reverse primer sequence, 5'-3’ 
Concentration 
each Primer 

Annealing 
temp. 

Csnk2a2 GTAAAGGACCCTGTGTCAAAGA GTCAGGATCTGGTAGAGTTGCT 400 nM 60°C 

Ppia GGCCGATGACGAGCCC TGTCTTTGGAACTTTGTCTGC 250 nM 58°C 

Rn18S AGGTCTGTGATGCCCTTAGA GAATGGGGTTCAACGGGTTA 250 nM 61°C 

Afp CCAGGAAGTCTGTTTCACAGAAG CAAAAGGCTCACACCAAAGAG 250 nM 60°C 

Apoa4 TACGTATGCTGATGGGGTGC ATCATGCGGTCACGTAGGTC 200 nM 60°C 

Cd44 CAATGGGACGGTGGAAGACA CAGATTCCGGGTCTCGTCAG 200 nM 60°C 

Cdh1 CTTTTCGGAAGACTCCCGATT GCTTTAGATGCCGCTTCACTGT 200 nM 60°C 

Clec4f CTTCGGGGAAGCAACAACTC CAAGCAACTGCACCAGAGAAC 200 nM 57°C 

Elovl6 ACA ATG GAC CTG TCA GCA AA GTACCAGTGCAGGAAGATCAGT 100 nM 60°C 

F4/80 CTTTGGCTATGGGCTTCCAGTC GCAAGGAGGACAGAGTTTATCGTG 150 nM 60°C 

H19 CAGAGGTGGATGTGCCTGCC CGGACCATGTCATGTCTTTCTGTC 250 nM 60°C 

Hmgcr ATCCAGGAGCGAACCAAGAGAG CAGAAGCCCCAAGCACAAAC 250 nM 60°C 

Igf2 GGAAGTCGATGTTGGTGCTTCTC CGAACAGACAAACTGAAGCGTGT 250 nM 60°C 

Il1β GAGAGCCTGTGTTTTCCTCC GAGTGCTGCCTAATGTCCC 250 nM 60°C 

Imp2 CTGATCCCAGGGCTAAACCTC AAGGGGTGATAGGGAGGACTG 200 nM 61°C 

Krt19 AGCGTGATCAGCGGTTTTG CCTGGTTCTGGCGCTCTATG 200 nM 60°C 

Lamc1 TTTGATAGACGCGTGAACGATAA TGGCGGGAATTCTCCTTAGA 200 nM 58°C 

LxR CCGACAGAGCTTCGTCC CCCACAGACACTGCACAG 200 nM 60°C 

Sox9 CCAGCAAGAACAAGCCACAC CTTGCCCAGAGTCTTGCTGA 150 nM 60°C 

Spp1 CCGAGGTGATAGCTTGGCTTAT GACTCCTTAGACTCACCGCTC 200 nM 60°C 

Zfp36 CTTCATCCACAACCCCACC CAGGGAAGGGCCAGAAAAG 250 nM 59°C 

 

Table 19: Primer and probe sequences as used for qPCR. 

Gene Forward primer sequence, 5'-3’ Reverse primer sequence, 5'-3’ 
Probe sequence  
(5'FAM-->3'BHQ) 

hup62 GTT CCC GCA TCA TCA CTC TTA T GAA TCT CGC CAG CTG TTT GA 
TGT GAA TCT CTT CAT  
CCC AAC CCA GGC T 
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6.6.2 Standard plasmid dilution series 

The isolated plasmid DNA (6.3.3) was diluted in TE buffer to the required amount of standard plasmid 

DNA used for qPCR standards with the following equation: 

 cend (Plasmid-DNA) =
𝑐 (𝑝𝑙𝑎𝑠𝑚𝑖𝑑) (

𝜇𝑔
𝑚𝑙⁄ )

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑎𝑝𝑝𝑟𝑜𝑥.  600 
𝑔

𝑚𝑜𝑙⁄ ) × 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑙𝑎𝑠𝑚𝑖𝑑 𝑤𝑖𝑡ℎ 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑏𝑝)
 

A plasmid standard dilution was run alongside the samples to confirm qPCR efficiency and to quantify 

target mRNAs in the cDNA samples. The standard concentration curve was generated with 60 to 6 E-5 

attomole of standard when using 3 µl of the template, 80 – 8 x 10-5 attomole when using 4 µl of the 

template, or 100 – 1 x 10-4 when using 5 µl of the template. 

6.6.3 Experimental procedure 

The template cDNA and plasmid solutions were mixed with the corresponding reaction mixture in 96 

wells plates and measured in a Real-Time PCR Detection System (C1000 Touch™ Thermal cycler with a 

CFX96™ Optics Module, Bio-Rad, Richmond, CA, USA). For the measurement with the dual-labeled 

probe, the conditions in the cycler were set to “emulation mode iCycler”. 

6.6.3.1 qPCR using SYBR® Green 

The added amount of template cDNA and standard plasmid solution was 3 or 4 µl in a final volume of 

20 µl. qPCR was performed using gene-specific primers (conditions see Table 18) and 5 x HOT 

FIREPol® EvaGreen® qPCR Mix Plus (Solis BioDyne, Tartu, Estonia) according to the manufacturer’s 

instructions. All samples and standards were analyzed in triplicates using the following PCR conditions:  

Conditions:    
95°C  15 min  
94°C  15 sec  

temperature see Table 18  20 sec 39 cycles 
72°C  20 sec  

95°C  10 sec  

Melting curve: 65.0°C to 95.0°C  Increment  0.5°C 0:05 

 

The relative expression was normalized to mRNA levels of the murine housekeeping genes Rn18s, Ppia 

or Csnk2a2, respectively. For Figure 10 B, E, F, Chapter III, two independent tests to determine the best 

suitable housekeeping gene for normalization were performed: using NormFinder (Andersen et al., 

2004) and geNorm (Vandesompele et al., 2002). For both analyses, the same result was obtained, and 

the mRNA expression data of gene of interest were normalized to the most suitable housekeeping 

gene as stated in the figure legends. 

6.6.3.2 qPCR using dual-labeled probes 

Primer and probe sequences are given in Table 19. 5 µl of the template cDNA and the standard plasmid 

solution were mixed with the following reaction mixture and analyzed in triplicates using the following 

PCR conditions: 
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Reaction mixture:    Conditions:    
Taq-Polymerase (5 U/µl) 2.5 U  denaturation 95°C 8 min  
dNTPs (10 mM) 125 µM  denaturation 95°C 15 sec 45 

cycles 10 x Taq-buffer 2,5 µl  annealing 60°C 15 sec 
primers (10 μM, each) 400 nM  elongation 72°C 15 sec 

Dual –labeled probe 60 nM  final elongation 25°C 25 sec  
MgCl2 5 mM      
template 5 µl      
H2O ad 25 µl      

The relative expression was normalized to mRNA levels of the murine housekeeping genes Csnk2a2. 

6.7 Western Blot analysis 

6.7.1 Preparation of protein samples 

Livers of mice were homogenized in lysis buffer (150 mM NaCl; 50 mM Tris-HCl, pH8.0; 1% Triton X-

100; 0.1% SDS; 0.5% Natriumdesoxycholate; 5 mM EDTA) supplemented with 5 mM NaF, 2 mM 

Natriumorthovanate, and a protease inhibitor mixture (Complete® mini, #04 693 124 001, Roche 

Diagnostics GmbH, Mannheim, Germany). Samples were rotated for 30 min at 4°C, sonicated and 

centrifugated at 16,000 x g for 20 min at 4°C. The protein concentration of the supernatant was 

determined by Pierce™ BCA Protein Assay Kit (#23225, Thermo Fisher Scientific, Rockford, IL, USA) 

according to the manufacturer's protocol. The supernatant was aliquoted and stored at -80°C. 

6.7.2 SDS-polyacrylamide gel electrophoresis (PAGE) 

The samples were thawed on ice, loaded with Roti®-Load1 (4x–concentrated, #K929.1, Roth, Karlsruhe, 

Germany), and denaturated at 95°C for 5 min. A prestained protein marker (10 to 180 kDa, #26616, 

Thermo Scientific, Carlsbad, CA, USA) was used to estimate the molecular masses of the samples. Equal 

protein amounts and a suitable marker volume were loaded onto the gel and separated in 

electrophoresis buffer (24.8 mM Tris, 192 mM glycine, 0.1% SDS) for 30 min at 80 V, followed by 2 h 

at 120 V. Preparation of the polyacrylamide gels (see below) and the electrophoresis was carried out 

using the Mini-PROTEAN® system (Bio-Rad, Richmond, CA, USA).  

Composition:   resolving gel stacking gel 

 Rotiphorese® Gel 30  
(#3029.1, Roth, Karlsruhe, Germany) 

12% 5% 

 Tris 1.5 M (pH 8.8) 375 mM - 
 Tris 1 M (pH 6.8) - 125.5 mM 
 SDS (10%) 0.1% 
 APS (10%) 0.1% 

 TEMED (#1.10732, Merck,  
Darmstadt, Germany) 

0.1% 

 H20 added for the desired volume  
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6.7.3 Blotting 

The separated proteins were transferred onto a polyvinylidene fluoride (PVDF) membrane, 

Immobilon®-FL, Merck Millipore Ltd., Tullagreen, Carrigtwohill, Co. Cork, Ireland) using a Mini Trans-

Blot® Cell (Bio-Rad, Richmond, CA, USA). Prior to blotting, the membrane was activated for 30 sec in 

methanol. Sponges, blotting papers, gel, and membrane were equilibrated in transfer buffer (24.8 mM 

Tris, 192 mM glycine, 0.05% SDS, 20% methanol), followed by gel sandwich preparation. Blotting was 

carried out at 80 mA overnight. Unspecific binding sites were blocked by incubating the membrane in 

Rockland blocking buffer (#MB-070, obtained from Rockland, Gilbertsville, PA, USA) for 1.5 h. 

6.7.4 Immunodetection 

Antibodies were either diluted in PBST (0.1% (v/v) Tween20 in 1x PBS (136.89 mM NaCl, 2.68 mM KCl, 

10.14 mM Na2HPO4, 1.76 mM KH2PO4, pH 7.4)) with 5% (m/v) dried milk pouder or Rockland blocking 

buffer (RBB) according to Table 20. 

Table 20: Antibody dilutions used for immunodetection. 

antibody dilution 

anti-human p62, rabbit IgG 1:1,000 in RBB 

anti-α-tubulin, mouse IgG 1:1,000 in PBST + 5% [w/v] dried milk 

IRDye® 800CW conjugated goat anti-mouse IgG 1:10,000 in RBB 

IRDye® 680RD conjugated mouse anti-rabbit IgG 1:5,000 in RBB 

 

The membranes were incubated with the primary antibody (anti-human p62) at 4°C overnight, 

followed by 4x washing for 5 min with PBST and incubation with IRDye® 680RD conjugated secondary 

antibody for 1.5 h at room temperature. The membrane was washed twice in PBST (5 min), followed 

by two washing steps in PBS (5 min) and incubation for 1.5 h at room temperature with the anti-α-

tubulin primary antibody. After 4x washing the membrane with PBST, the incubation with IRDye®800 

conjugated secondary antibody followed for 1.5 h. Prior to detection, the membrane was washed again 

in PBST (5 min, 2x) and then in PBS (5 min, 2x). Signals were detected using an Odyssey imager (Model 

9120, LI-COR Biosciences, Lincoln, NE, USA). p62/IMP2 signal intensities were quantified using the 

Image Studio Software application (Ver 5.2, LI-COR®) and normalized to tubulin as a loading control. 

6.8 Lipid extraction 

Lipids were extracted from lyophilized liver tissue (adapted from Hara and Radin, 1978a; Laggai et al., 

2013), which was minced in liquid nitrogen with a mortar and a pestle. Freeze-dried liver tissue (15 

mg) was dispersed with 18 volumes of hexane/2-propanol (3:2 (v/v)) for 10 min and centrifuged for 10 

min at 4°C and 10,000 x g. The supernatant was transferred into a 1.5 ml glass vial (#60500-1109, 

DURATEC Analyzentechnik GmbH, Hockenheim, Germany), dried under nitrogen stream, re-dissolved 

in 200 µl chloroform-methanol (2:1 (v/v)), and stored at -20°C. 
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6.9 Colorimetric Sulfo-Phospho-Vanillin 

The colorimetric Sulfo-Phospho-Vanillin assay used to quantify total lipids was adapted from Cheng et 

al. (Cheng et al., 2011). As a standard solution olive oil was diluted in chloroform-methanol (2:1 (v/v)). 

100 µg, 75 µg, 50 µg, 25 µg, 12.5 µg and 6.25 µg olive oil were used as a standard and handled like the 

samples. 5 µl of the lipid extracts were transferred into a 1.5 ml glass vial and the solvent was 

evaporated by incubation for 2 to 5 min at 90°C in a drying closet. Samples were cooled to room 

temperature, 100 µl of sulfuric acid (95-97%, #100731.1000, Merck, Darmstadt, Germany) was added 

and the mixture incubated for an additional 20 min at 90°C. After cooling the vials down to room 

temperature, 50 µl vanillin-phosphoric acid (0.2 mg vanillin per ml 17% orthophosphoric acid (85%, 

#20624, VWR, Darmstadt, Germany) was added, followed by 10 min incubation at room temperature. 

100 µl of the colored solution was transferred to a 96 well plate and the absorption was measured at 

550 mm using the Sunrise™ absorbance microplate reader (Tecan Austria GmbH, Grödig, Austria). The 

standard curve was created using Microsoft® Excel® 2013 and the OriginPro 2015 software (OriginLab 

Corporation, Northampton, MA, USA). 

6.10 Measurement of Endotoxins 

Serum endotoxins were measured using the EndoZyme® II Recombinant Factor C (rFC) Assay (#890030, 

Lot# 18238, Hyglos GmbH, Bernried am Starnberger See, Germany). The serum of the mice was diluted 

1:500 in endotoxin-free water from the manufacturer and preheated for 15 min at 75°C, as 

recommended. For spike recovery, exogenous LPS (0.1 EU/ml) was added to the serum. The assay was 

performed according to the manufacturer’s protocol. Samples with a recovery rate lower than 50% 

were excluded from the analysis. 

6.11 Lipidomic analysis 

Lipidomic data were generated within the German epigenome program ‘DEEP’ with the project 

number [O1KU1216F] (A.K.K.) in the Lipidomics Lab Regensburg at the Institute of Clinical Chemistry 

and Laboratory Medicine at the University Hospital of Regensburg in the group of Dr. G. Liebisch. Lipid 

quantification of liver homogenates was performed using electrospray-ionization mass spectrometry 

with a hybrid quadrupole-orbitrap QExactive mass spectrometer (Thermo Fisher Scientific, Bremen, 

Germany). Detailed methods for phosphatidylcholine (PC), sphingomyelin (SM), and 

lysophosphatidylcholine (LPC) are described in Liebisch et al. (2002, 2004). Phosphatidylethanolamine 

(PE), phosphatidylserine (PS), phosphatidylglycerol (PG), and phosphatidylinositol (PI) were measured 

as published in Binder et al. (2006) and Matyash et al. (2008) and PE-based plasmalogens (PE P) were 

quantified according to the principles described by Berry and Murphy (2004). The method for the 

analysis of ceramides (CER) is described in Liebisch et al. (1999) and for cholesteryl ester (CE) and free 

cholesterol in Liebisch et al. (2006). For the detection of triglycerides, the same method was used as 

for the CE. 
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6.12 Histologic staining of paraffin-embedded tissue 

6.12.1 Fixation and paraffin embedding of tissue 

The dehydration and paraffin infiltration was performed using the robust carousel tissue processor 

MTP (SLEE medical GmbH, Mainz, Germany). The fixed liver tissue was first dehydrated through an 

ethanol gradient, incubated in xylol, and infiltrated with paraffin (Roti®-Plast, #6642.6, Roth, Karlsruhe, 

Germany). The detailed sequence is shown in Table 21. 

Table 21: Programme for paraffin infiltration of tissue. 

step solution time (min) 

1 formalin  1 
2 70% isopropanol 90 
3 70% isopropanol 90 
4 80% isopropanol 90 
5 90% isopropanol 90 
6 100% isopropanol 90 
7 100% isopropanol 90 
8 xylol 90 
9 xylol 90 
10 xylol 90 
11 paraffin 120 
12 paraffin 120 

 

After this process, the liver lobes were embedded in paraffin with the prewarming module MPS/W and 

the dispensing module MPS/P. The paraffin-embedded liver tissue from 3.2.2 and Chapter III was sent 

to Prof. Dr, Dr. J. Haybäck to the Department of Pathology at the Medical Faculty of the Otto-von-

Guericke University Magdeburg for the generation of tissue sections, HE and Sirius red stainings, and 

the histological analysis and scoring. 

6.12.2 Stainings and evaluation 

Stainings for Chapter I were performed by Dr. S. M. Kessler. Paraffin-embedded liver sections were 

stained with hematoxylin-eosin (HE). Immunohistochemical (IHC) Krt19 detection was achieved using 

Dako EnVision+ System- HRP Labelled Polymer Anti Rabbit (#K4003, Dako, Carpinteria, CA, USA) with 

the anti-Krt19 antibody (1:1000). Epitopes were demasked with citrate buffer (10 mM, pH 6.0) in a 

water bath at 95°C for 45 minutes. For Laminin detection epitopes were demasked by proteinase K (20 

µg/ml in TE buffer) incubation for 15 min at 37°C in a water bath. Anti-laminin antibody (1:200) was 

incubated for 1 h at room temperature followed by incubation with anti-rabbit Envision (Dako, 

Carpinteria, CA, USA) for 20 min at room temperature and DAB staining. Hyaluronic acid was detected 

by staining with a biotin-labeled hyaluronic acid binding protein (1:100, #AMS.HKD-BC41, Amsbio, 

Abingdon, United Kingdom) for 1 h at room temperature and detection by Streptavidin-HRP (#K3954, 

Dako, Carpinteria, CA, USA) for 20 min at room temperature and DAB staining. 

Stainings were evaluated for ductular reaction, and hepatic collagen deposition by two independent, 

blinded investigators. P-values were determined by Chi-square test. 
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6.13 Isolation of hepatocytes and non-parenchymal cells 

Isolation of primary hepatocytes and non-parenchymal cells (NPCs) from mouse livers was performed 

at the Systems Toxicology at the Leibniz research center for working environment and human factors 

(IfADo) at the TU Dortmund by Dr. K. Gianmoena, K. Rochlitz and Dr. C. Cadenas Garcia in the research 

group of Prof. Dr. med. J. G. Hengstler as described in Godoy et al. (Godoy et al., 2013). In brief, the 

liver was perfused through the vena cava with an EGTA-containing buffer to remove blood and Ca2+-

dependent adhesion factors, followed by a perfusion with collagenase buffer to digest the extracellular 

matrix and to disperse the liver cells. After the digestion, the liver was excised and the liver capsule 

was opened under sterile conditions, and the cells were released into a suspension buffer. The cell 

suspension was filtered through a 100 µm gauze to remove tissue debris and centrifuged for 5 min at 

4°C and 50 x g. After centrifugation of the cell suspension for 5 min at 4°C and 50 x g, NPCs were in the 

supernatant. The hepatocyte pellet was washed and the centrifugation step was repeated for greater 

purity. Aliquots of NPCs and hepatocytes were shipped to the genetic/epigenetic research group of 

Prof. Dr. J. Walter at Saarland University. 

6.14 Epigenetic profiling 

Sequencing data were generated within the German epigenome program ‘DEEP’ with the project 

number [O1KU1216F] (A.K.K.). 

6.14.1 RNA sequencing 

RNA sequencing was performed at the Institute of Clinical Molecular Biology (IKMB) at Kiel University 

in the group of Prof. Dr. P. Rosenstiel, statistical analysis of the results was performed by Dr. A. Sinha. 

6.14.2 Reduced representation bisulfite sequencing (RRBS) and DNaseI sequencing 

RRBS, DNaseI sequencing, and visualization by heatmaps were performed in the genetic/epigenetic 

research group of Prof. Dr. J. Walter at Saarland University by Dr. G. Gasparoni, Dr. N. Gasparoni, and 

Dr. K. Nordstöm. 

 

6.15 GO term and KEGG pathway analysis 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) enrichment 

analyses were performed using the STRING database V10.5 (http://string-db.org) (Szklarczyk et al., 

2015, 2017). For the statistics, the STRING database uses a Fisher's exact test, followed by a correction 

for multiple testing, the Benjamini-Hochberg False Discovery Rate (FDR) (Benjamini et al., 1995; Rivals 

et al., 2007). GO terms were categorized using semantic clustering to identify similar GO terms among 

the enriched terms with the web server REVIGO (http://revigo.irb.hr/.) (Supek et al., 2011). 
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6.16 Cirrhotic HCC (human) 

GEO dataset (GSE14323) was analyzed for differential gene expression between human cirrhotic 

(n=41), HCC-cirrhotic (n=17), and healthy (n=19) liver samples. The analysis was done by Dr. A. 

Barghash (School for Computer Engineering and Information Technology, German Jordanian 

University, Amman, Jordan). 

6.17 Statistics 

For illustration and statistical analyses the OriginPro 2015G software (OriginLab Corporation, 

Northampton, MA, USA) was used. Results are shown as means ± SEM or box plots with 25th/75th 

percentile boxes, geometric medians (line), means (square), and 10th/90th percentile as whiskers. 

Statistical significance was determined by t-test, one-way ANOVA or Mann-Whitney U test (with 

Bonferroni correction when comparing more than two groups) depending on normal distribution.
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7 SUPPLEMENT 

7.1 Lipidomic analysis: wild-type and p62 transgenic high-fat diet-fed 

animals (3.2.1) 

 

Supplemental table 7-1: Simplified table of significantly increased or decreased lipid classes in livers of high-fat diet (HFD) fed 
wild-type (wt) or p62 transgenic mice (tg) compared to the control diet (co) (n=18-21 per group). Increased levels of lipid 
classes are highlighted in dark grey and decreased levels in light grey color. Corresponding figures are shown in Supplemental 
figure 7-1 Supplemental figure 7-3. CE: cholesteryl ester, CER: ceramide, SM: sphingomyelin, PC: phosphatidylcholine, PE: 
phosphatidylethanolamine, PE P: PE based plasmalogens, PS: phosphatidylserine, PG: phosphatidylglycerol, PI: 
phosphatidylinositol, LPC: lysophosphatidylcholine, sat: saturated species, mono: monounsaturated species, poly: 
polyunsaturated species, total: all species. 

   
HFD wt 

compared to  
co wt 

HFD tg 
compared to 

co tg 

co tg 
compared to  

co wt 

HFD tg 
compared to  

HFD wt 

Sterol lipids CE 
sat   ↑  

poly ↑    

Sphingolipids 

CER 

sat  ↓ ↑  

unsat ↓ ↓ ↑  

total ↓ ↓ ↑  

SM 

mono ↓ ↓   

poly  ↑   

unsat ↓ ↓   

Glycero- 
phospholipids 

PC mono ↓ ↓   

PE 

mono ↓ ↓   

poly  ↓   

unsat  ↓   

total  ↓   

PE P 
PE P-16:0    ↑ 

PE P-18:0 ↑  ↑  

PS mono ↓ ↓   

PG total  ↓   

PI mono ↓ ↓   

LPC 

sat ↓ ↓   

mono ↓ ↓   

poly ↓ ↓ ↑  

unsat ↓ ↓   

total ↓ ↓   

All 

sat   ↑  

unsat  ↓   

sat/unsat   ↑  
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Supplemental figure 7-1: Lipidomic analysis via ESI-MS/MS of wild-type (wt) and p62 transgenic (tg) animals fed a control 
(co) or high-fat diet (HFD) (n=18-21 each). A: All saturated, unsaturated species and the saturated to unsaturated ratio. B: 
Cholesteryl ester (CE) and free cholesterol (FC). C: Ceramide (CER) and hexosyl ceramide (HexCER). D: Sphingomyelin (SM) and 
dihydrosphingomyelin. P-values were calculated by Mann Whitney U test with Bonferroni correction (significance level set at 
p≤1.25E-2). One-way ANOVA for determination of statistical significance was used for the following species: CER saturated; 
SM saturated, monounsaturated, unsaturated, total. Results are shown as box plots with 25th/75th percentile boxes, 
geometric medians (line), means (square), and 10th/90th percentile as whiskers. 
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Supplemental figure 7-2: Lipidomic analysis via ESI-MS/MS of wild-type (wt) and p62 transgenic (tg) animals fed a control 
(co) or high-fat diet (HFD) (n=18-21). A: Phosphatidylcholine (PC). B: Phosphatidylethanolamine (PE). C: PE based 
plasmalogens (PE P). D: Phosphatidylserine (PS). P-values were calculated by Mann Whitney U test with Bonferroni correction 
(significance level set at p≤1.25E-2). One-way ANOVA for determination of statistical significance was used for the following 
species: PC saturated; PE saturated, polyunsaturated, total unsaturated, total; PS monounsaturated. Results are shown as box 
plots with 25th/75th percentile boxes, geometric medians (line), means (square), and 10th/90th percentile as whiskers. 
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Supplemental figure 7-3: Lipidomic analysis via ESI-MS/MS of wild-type (wt) and p62 transgenic (tg) animals fed a control 
(co) or high-fat diet (HFD) (n=18-21). A: Phosphatidylglycerol (PG). B: Phosphatidylinositol (PI). C: Lysophosphatidylcholine 
(LPC). P-values were calculated by Mann Whitney U test with Bonferroni correction (significance level set at p≤1.25E-2). One-
way ANOVA for determination of statistical significance was used for the following species: PI polyunsaturated, total 
unsaturated, total; LPC polyunsaturated. Results are shown as box plots with 25th/75th percentile boxes, geometric medians 
(line), means (square), and 10th/90th percentile as whiskers.  
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7.2 Lipidomic analysis: livers from animals on control or LDC diet with or 

without Kupffer cell depletion (Chapter III-1) 

Supplemental table 7-2: Simplified table of significantly increased or decreased lipid classes in livers of animals fed a control 
(co) or Lieber-DeCarli (LDC) diet in the absence (clo) or presence (PBS) of Kupffer cells. (n=10-13 per group). Increased levels of 
lipid classes are highlighted in dark grey and decreased levels in light grey color. Corresponding figures are shown in 
Supplemental figure 7-4 - Supplemental figure 7-6. CE: cholesteryl ester, CER: ceramide, SM: sphingomyelin, PC: 
phosphatidylcholine, PE: phosphatidylethanolamine, PE P: PE based plasmalogens, PS: phosphatidylserine, PG: 
phosphatidylglycerol, PI: phosphatidylinositol, LPC: lysophosphatidylcholine, sat: saturated species, mono: monounsaturated 
species, poly: polyunsaturated species, total: all species. Clo: clodronate liposomes. 

   LDC+PBS LDC+clo co+clo LDC+clo 

   compared to 
co+PBS 

compared to  
co+clo 

compared to 
co+PBS 

compared to 
LDC+PBS 

Sterol lipids 
CE 

sat ↑ ↑   

mono ↑ ↑   

poly ↑ ↑   

unsat ↑ ↑   

total ↑ ↑   

FC total ↑ ↑  ↑ 

Sphingolipids 

CER 

sat ↑ ↓ ↑  

unsat ↓ ↓ ↑ ↑ 

total   ↑  

HexCer ↑    

SM 

sat ↑ ↑   

mono ↓ ↓   

poly ↓    

unsat ↓ ↓   

total ↑    

dihydro ↑ ↑   

Glycero- 
phospholipids 

PC 

mono ↑ ↑   

poly    ↓ 

unsat ↑   ↓ 

alkyl     

total ↑   ↓ 

PE 

mono ↑ ↑   

poly ↑    

unsat ↑    

total ↑    

PE P 
PE P-16:0 ↓    

PE P-18:1 ↑ ↑   

PS 
mono ↑ ↑   

poly  ↓   

PI 

mono ↑ ↑   

poly ↑   ↓ 

unsat ↑   ↓ 

total ↑   ↓ 

LPC 

sat ↑ ↑   

mono ↑ ↑   

total  ↑   

all 

sat ↑ ↑   

unsat ↑   ↓ 

sat/unsat ↑ ↑  ↑ 
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Supplemental figure 7-4: Lipidomic analysis of whole livers from animals fed a Lieber-DeCarli (LDC) or control diet (co) and 
treated with PBS or clodronate liposomes (clo) for 5 weeks (n=10-13 each). A: All saturated, unsaturated species and the 
saturated to unsaturated ratio. B: Cholesteryl ester (CE) and free cholesterol (FC). C: ceramide (CER) and hexosyl ceramide 
(HexCER). D: Sphingomyelin (SM) and dihydrosphingomyelin. P-values were calculated by one-way ANOVA. Mann Whitney U 
test with Bonferroni correction was used for the following species: ratio saturated to unsaturated; CE: mono- and 
polyunsaturated; CER saturated, total and hexosyl ceramide; SM: polyunsaturated and dihydrosphingomyelin. Results are 
shown as box plots with 25th/75th percentile boxes, geometric medians (line), means (square), and 10th/90th percentile as 
whiskers. 
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Supplemental figure 7-5: Lipidomic analysis via ESI-MS/MS of whole livers from animals fed a Lieber-DeCarli (LDC) or control 
(co) diet and treated with PBS or clodronate liposomes (clo) for 5 weeks (n=10-13 per group). A: Phosphatidylcholine (PC). B: 
Phosphatidylethanolamine (PE). C: PE based plasmalogens (PE P). D: Phosphatidylserine (PS). P-values were calculated by one-
way ANOVA. Mann Whitney U test with Bonferroni correction (significance level set at p≤1.25E-2) for determining statistical 
significance was used for the following species: PC polyunsaturated, alkyl species and total; PE monounsaturated; PE P; PS 
monounsaturated. Results are shown as box plots with 25th/75th percentile boxes, geometric medians (line), means (square), 
and 10th/90th percentile as whiskers. 
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Supplemental figure 7-6: Lipidomic analysis via ESI-MS/MS of whole livers from animals fed a Lieber-DeCarli (LDC) or control 
(co) diet and treated with PBS or clodronate liposomes (clo) for 5weeks (n=10-13). A: Phosphatidylglycerol (PG). B: 
Phosphatidylinositol (PI). C: Lysophosphatidylcholine (LPC). P-values were calculated by one-way ANOVA. Mann Whitney U 
test with Bonferroni correction (statistical significance was set at p≤1.25E-2) was calculated for the following species: PG; PI 
saturated, monounsaturated; LPC monounsaturated. Results are shown as box plots with 25th/75th percentile boxes, 
geometric medians (line), means (square), and 10th/90th percentile as whiskers. 
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7.3 GO enrichment analysis and heatmaps of DEGs associated with 

epigenetic changes (Chapter III-1) 

7.3.1 Hepatocytes: co+clo compared to co+PBS 

 

Supplemental figure 7-7: GO enrichment analysis of upregulated (A) and downregulated (B) genes of hepatocytes 
from clodronate-treated animals. GO terms for biological processes were categorized using semantic clustering 
and plotted by the REVIGO tool to identify similar GO terms among the enriched terms. Semantically similar GO 
terms remain closer together. Examples of genes included in the GO terms are shown in brackets. The circles 
represent individual GO terms or cluster of GO terms related to similar processes. The circle size corresponds to 
the percentage of genes annotated with the term in the reference database (UniProt for mus musculus) (larger 
means more general and smaller more specific GO term). The circle color illustrates the false discovery rate (in 
log10 FDR) of the GO enrichment analysis: red indicates the lowest and blue the highest significance. 

 

Supplemental figure 7-8: Simplified heatmap of the 58 differentially expressed genes (DEGs) associated with 
differentially methylated regions (DMRs) and/or differentially open chromatin regions (DORs) for the comparison 
of hepatocytes isolated from animals treated with clodronate to animals treated with PBS as a control. DEGs were 
determined by RNA-sequencing, DMRs by RRBS, and DORs by DNaseI-sequencing. 
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7.3.2 Hepatocytes: LDC+clo compared to LDC+PBS 

 

 

Supplemental figure 7-9: GO enrichment analysis of upregulated (A) and downregulated (B) genes in hepatocytes 
isolated from Kupffer cell-depleted animals fed an LDC diet compared to the LDC-fed control. GO terms for 
biological processes were categorized using semantic clustering and plotted by the REVIGO tool to identify similar 
GO terms among the enriched terms. Semantically similar GO terms remain closer together. The circles represent 
individual GO terms or cluster of GO terms related to similar processes. The circle size corresponds to the 
percentage of genes annotated with the term in the reference database (UniProt for mus musculus) (larger means 
more general and smaller more specific GO term). The circle color illustrates the false discovery rate (in log10 
FDR) of the GO enrichment analysis: red indicates the lowest and blue the highest significance. 

 

Supplemental figure 7-10: Differentially expressed genes (DEG) associated with epigenetic changes in clodronate-
treated LCD-fed mice compared to control LDC-fed mice. DEGs were determined by RNA-sequencing, differentially 
methylated regions (DMRs) by reduced representative bisulfite sequencing, and differentially open chromatin 
regions (DORs) by DNaseI-sequencing. 
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7.3.3 Hepatocytes: LDC+clo compared to co+clo 

 

Supplemental figure 7-11: GO enrichment analysis of downregulated genes in hepatocytes isolated from Kupffer 
cell-depleted LDC-fed mice compared to the control diet. GO terms for biological processes were categorized using 
semantic clustering and plotted by the REVIGO tool to identify similarities among the enriched terms. Semantically 
similar GO terms remain closer together. The circles represent individual GO terms or cluster of GO terms related 
to similar processes. The circle size corresponds to the percentage of genes annotated with the term in the 
reference database (UniProt) (larger means more general and smaller more specific GO term). The color illustrates 
the false discovery rate (in log10 FDR) of the GO enrichment analysis (red: lowest, blue: highest significance). 

 

Supplemental figure 7-12: Differentially expressed genes (DEG) associated with epigenetic changes in clodronate-
treated LCD-fed mice compared to clodronate-treated mice on control diet. DEGs were determined by RNA-
sequencing, differentially methylated regions (DMRs) by reduced representative bisulfite sequencing, and 
differentially open chromatin regions (DORs) by DNaseI-sequencing. 
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7.3.4 NPCs: LDC+PBS compared to co+PBS 

 

Supplemental figure 7-13: Simplified heatmap of the 337 differentially expressed genes (DEGs) associated with 
differentially methylated regions (DMRs) and/or differentially open chromatin regions (DORs) for the comparison 
of non-parenchymal cells isolated from LDC fed animals to the control. DEGs were determined by RNA-
sequencing, DMRs by reduced representative bisulfite sequencing and DORs by DNaseI-sequencing. 
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Supplemental figure 7-14: GO enrichment analysis of upregulated (A) and downregulated (B) genes in non-
parenchymal cells isolated from LDC-fed mice compared to the control. GO terms for biological processes were 
categorized using semantic clustering and plotted by the REVIGO tool to identify similar GO terms among the 
enriched terms. Semantically similar GO terms remain closer together. The circles represent individual GO terms 
or cluster of GO terms related to similar processes. The circle size corresponds to the percentage of genes 
annotated with the term in the reference database (UniProt for mus musculus) (larger means more general and 
smaller more specific GO term). The circle color illustrates the false discovery rate (in log10 FDR) of the GO 
enrichment analysis: red indicates the lowest and blue the highest significance. 

7.3.5 NPCs: LDC+clo compared to LDC+PBS 

 
Supplemental figure 7-15: GO enrichment analysis of upregulated (A) and downregulated (B) genes in NPCs 
isolated from clodronate-treated LDC-fed mice with PBS-treated LDC-fed mice. GO terms for biological processes 
were categorized using semantic clustering and plotted by the REVIGO tool to identify similar GO terms among 
the enriched terms. The circles represent individual GO terms or cluster of GO terms related to similar processes. 
The circle size corresponds to the percentage of genes annotated with the term in the reference database (UniProt 
for mus musculus) (larger means more general and smaller more specific GO term). The circle color illustrates the 
false discovery rate (in log10 FDR) of the GO enrichment analysis (red: lowest, blue: highest significance).  
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Supplemental figure 7-16: Simplified heatmap of the differentially expressed genes (DEGs) in fractions of non-
parenchymal cells of Kupffer cell-depleted animals fed an LDC diet (n=2) compared to animals fed the same diet 
in the presence of Kupffer cells (n=2). A: DEGs associated with differentially methylated regions (DMRs) and/or 
differentially open chromatin regions (DORs). B: Differentially expressed immunoglobulin genes. 

7.4 Serum analysis: wild-type and p62 transgenic animals on control or 

LDC diet with or without Kupffer cells (Chapter III-2) 

Supplemental table 7-3: Serum levels of wildtype (wt) and p62 transgenic (tg) animals fed a normal chow (co) or a 
Lieber-DeCarli (LDC) diet in combination with PBS or clodronate liposome (clo) injections. Data are shown as mean 
± SEM. P-values of were determined by Mann Whitney U test: **p<1.66E-3 compared to co+PBS wt; ††<1.66E-3 
compared to co+PBS tg; ‡p<8.33E-3, ‡‡p<1.66E-3 compared to LDC+PBS tg. 

 wt   tg   tg 

 PBS clo   PBS clo   PBS clo 

  co   co   LDC 

number animals (n) 10 12  10 13  12 12 

serum ALT  
[U/l] 

49.5 ± 5.60 102 ± 20.6 ** 
  

50.0 ± 5.11 280 ± 107 †† 
  

55.3 ± 6.69 99.6 ± 14.6 ** †† ‡ 

serum AST  
[U/l] 

325 ± 42.3 555 ± 70.7 
  

349 ± 43.8 1002 ± 228 
  

345 ± 33.7 694 ± 72.6 ** †† ‡‡ 

serum cholesterol 
[mg/dl] 

70.0 ± 4.65 77.9 ± 4.98 
  

73.0 ± 3.51 76.5 ± 3.60 
  

82.1 ± 4.86 86.7 ± 5.09 

serum glucose 
[mg/dl] 

381 ± 30.9 328 ± 36.2 
  

331 ± 19.2 287 ± 10.3 
  

343 ± 28.5 323 ± 17.3 

serum triglycerides 
[mg/dl] 

131 ± 11.9 131 ± 13.7 
  

123 ± 12.1 130 ± 7.73 
  

122 ± 10.3 125 ± 9.22 

serum HDL  
[mg/dl] 

60.5 ± 4.04 64.2 ± 4.76 
  

62.5 ± 2.81 62.7 ± 2.63 
  

77.5 ± 6.29 76.3 ± 5.68 
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7.5 Lipidomic analysis: wild-type and p62 transgenic animals on control 

or LDC diet with or without Kupffer cells (Chapter III-2) 

Supplemental table 7-4: Simplified table of significantly increased or decreased lipid classes in livers of wild-type (wt) or p62 
transgenic (tg) animals fed a control or Lieber-DeCarli (LDC) diet in the absence (clo) or presence (PBS) of Kupffer cells (n=10-
13). Increased levels of lipid classes are highlighted in dark grey and decreased levels in light grey color. Corresponding figures 
are shown in Supplemental figure 7-17 - Supplemental figure 7-20. CE: cholesteryl ester, CER: ceramide, SM: sphingomyelin, 
PC: phosphatidylcholine, PE: phosphatidylethanolamine, PE P: PE based plasmalogens, PS: phosphatidylserine, PG: 
phosphatidylglycerol, PI: phosphatidylinositol, LPC: lysophosphatidylcholine, sat: saturated species, mono: monounsaturated 
species, poly: polyunsaturated species, total: all species. Clo: clodronate liposomes. 

 
  LDC+PBS tg co+PBS tg co+clo tg co+clo tg LDC+clo tg LDC+clo tg 

 
  compared to  compared to  compared to  compared to  compared to  compared to  

 
  co+PBS tg  co+PBS wt co+clo wt co+PBS tg  co+clo tg LDC+PBS tg 

Sterol 
lipids 

CE  
and 
FC 

sat ↑    ↑  

mono ↑   ↓ ↑  

poly ↑    ↑  

unsat ↑    ↑  

total ↑    ↑  

FC ↑    ↑  

Sphingo-
lipids 

CER 

sat  ↑     

unsat ↓ ↑   ↓  

total ↓ ↑     

HexCer  ↑     

SM 

sat ↑      

mono     ↓  

poly ↓    ↓  

unsat     ↓  

total ↑      

dihydro     ↑  

Glycero- 
phospho-

lipids 

PC 

sat    ↓   

mono ↑    ↑  

alkyl     ↓  

PE 

mono   ↑    

poly ↑      

unsat ↑      

total ↑      

PE P 

PE P-16:0 ↓    ↓ ↓ 

PE P-18:1 ↑    ↓ ↓ 

PE P-18:0     ↓ ↓ 

Total     ↓ ↓ 

PS 

mono ↑    ↑  

poly     ↓ ↓ 

unsat     ↓ ↓ 

total     ↓ ↓ 

PI mono   ↑    

LPC 

sat ↑    ↑  

mono ↑    ↑ ↑ 

poly ↓    ↑ ↑ 

unsat     ↑ ↑ 

total     ↑ ↑ 

All 

sat ↑      

unsat ↑      

sat/unsat ↑    ↑  
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Supplemental figure 7-17: Lipidomic analysis of whole livers from wild-type (wt) or p62 transgenic (tg) animals fed a Lieber-
DeCarli (LDC) or control diet (co) and treated with PBS or clodronate liposomes (clo) for 5 weeks (n=10-13). A: All saturated, 
unsaturated species and the saturated to unsaturated ratio. B: Cholesteryl ester (CE) and free cholesterol (FC). C: ceramide 
(CER) and hexosyl ceramide (HexCER). P-values were calculated by Mann Whitney U test with Bonferroni correction 
(significance level set at p≤8.33E-3). One-way ANOVA was used for the following species: all unsaturated; FC. Results are 
shown as box plots with 25th/75th percentile boxes, geometric medians (line), means (square), and 10th/90th percentile as 
whiskers. 
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Supplemental figure 7-18: Lipidomic analysis via ESI-MS/MS of whole livers from wild-type (wt) or p62 transgenic (tg) animals 
fed a Lieber-DeCarli (LDC) or control diet (co) and treated with PBS or clodronate liposomes (clo) for 5 weeks (n=10-13). A: 
Sphingomyelin (SM) and dihydrosphingomyelin B: Phosphatidylcholine (PC). P-values were calculated by Mann Whitney U test 
with Bonferroni correction (significance level set at p≤8.33E-3). P-values were determined by one-way ANOVA for the following 
species: SM polyunsaturated, dihydrosphingomyelin; PC saturated, polyunsaturated. Results are shown as box plots with 
25th/75th percentile boxes, geometric medians (line), means (square), and 10th/90th percentile as whiskers. 
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Supplemental figure 7-19: Lipidomic analysis via ESI-MS/MS of whole livers from wild-type (wt) or p62 transgenic (tg) animals 
fed a Lieber-DeCarli (LDC) or control diet (co) and treated with PBS or clodronate liposomes (clo) for 5 weeks (n=10-13). A: 
Phosphatidylethanolamine (PE). B: PE based plasmalogens (PE P). C: Phosphatidylserine (PS). P-values were calculated by 
Mann Whitney U test with Bonferroni correction (significance level set at p≤8.33E-3). One-way ANOVA was used for the 
following species: PE saturated; PE P 16:0, and total; PS polyunsaturated, total unsaturated and total. Results are shown as 
box plots with 25th/75th percentile boxes, geometric medians (line), means (square), and 10th/90th percentile as whiskers. 
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Supplemental figure 7-20: Lipidomic analysis via ESI-MS/MS of whole livers from wild-type (wt) or p62 transgenic (tg) animals 
fed a Lieber-DeCarli (LDC) or control diet (co) and treated with PBS or clodronate liposomes (clo) for 5 weeks (n=10-13). A: 
Phosphatidylglycerol (PG). B: Phosphatidylinositol (PI). C: Lysophosphatidylcholine (LPC). P-values were calculated by one-way 
ANOVA. Or by Mann Whitney U test with Bonferroni correction (significance level set at p≤8.33E-3) for the following species: 
PI saturated, monounsaturated; LPC monounsaturated, polyunsaturated and total unsaturated. Results are shown as box 
plots with 25th/75th percentile boxes, geometric medians (line), means (square), and 10th/90th percentile as whiskers. 
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7.6  Expression analysis in H19ko and H19wt mice 

 
Supplemental figure 7-21: Expression analysis of F4/80(A), Igf2(B), HUR(C), and TTP(D) in livers of female, male, and all 
(female + male) control (co) and DEN treated (DEN) mice, having a H19 knockout (H19ko), expressing p62 (p62 tg) or the 
respective wild-type (wt). Injection (i.p.) of NaCl or DEN with 5mg/kg body weight at the age of 2 weeks and sacrificed 24 
weeks after injection (see Schultheiss et al., 2017). Left + middle: impact of p62 expression in H19wt and H19ko mice. Right: 
H19ko or H19wt mice in p62wt treated with control (co) or DEN. Data are shown as the ratio of mRNA expression of the gene 
of interest to the reference gene Csnk2a2. Results are shown as box plots with 25th/75th percentile boxes, geometric medians 
(line), means (square), and 10th/90th percentile as whiskers. Statistical significance was determined by t-test, one-way 
ANOVA or Mann-Whitney U test (with Bonferroni correction when comparing more than two groups) depending on normal 
distribution (all: co – H19wt p62wt n=24, co – H19wt p62tg n=30, co – H19ko p62wt n=41, co – H19ko p62tg n=37, DEN – 
H19wt p62wt n=47, DEN – H19ko p62wt n=45; male: co – H19wt p62wt n=13, co – H19wt p62tg n=10, co – H19ko p62wt 
n=18, co – H19ko p62tg n=18, DEN – H19wt p62wt n=25, DEN – H19ko p62wt n=20; female: co – H19wt p62wt n=11, co – 
H19wt p62tg n=20, co – H19ko p62wt n=23, co – H19ko p62tg n=19, DEN – H19wt p62wt n=22, DEN – H19ko p62wt n=25).
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