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Abstract

There is a wealth of schema-free tables on the web, arranging valuable information about
quantities on sales and costs, the environmental footprint of cars, health data, and more.
The text accompanying these tables explains and qualifies the numerical quantities given
in the tables. Despite this ubiquity of tabular data, there is little research that harnesses
this wealth of data by semantically understanding the information that is conveyed rather
ambiguously in these tables. This information can be disambiguated only by the help
of the accompanying text. Understanding quantities in tables and text would provide
opportunities for answering queries about numerical quantities like “Internet companies
with annual income above 5 Mio. USD”, “electric cars with energy consumption below
100 MPGe”, or “clinical trials with a daily anti-coagulant dosage above 30 mg”.

In the process of understanding quantity mentions in tables and text, we are faced with
the following challenges; First, there is no comprehensive knowledge base for anchoring
quantity mentions. Second, tables are created ad-hoc without a standard schema and
with ambiguous header names; also table cells usually contain abbreviations. Third,
quantities can be written in multiple forms and units of measures–for example “48 km/h”
is equivalent to “30 mph”. Fourth, the text usually refers to the quantities in tables using
aggregation, approximation, and different scales.

In this thesis, we target these challenges through the following contributions:

• We present the Quantity Knowledge Base (QKB), a knowledge base for represent-
ing Quantity mentions. We construct the QKB by importing information from
Freebase, Wikipedia, and other online sources. In the QKB, we organize quanti-
ties in a simple four-level taxonomy of dimensions, units, measures, and thematic
domains. The QKB enables the canonicalization of quantity mentions into a triple
of the form <measure, value, unit>.

• We propose Equity: a system for automatically canonicalizing header names and
cell values onto concepts, classes, entities, and uniquely represented quantities
registered in a knowledge base. We devise a probabilistic graphical model that
captures coherence dependencies between cells in tables and candidate items in the
space of concepts, entities, and quantities. Then, we cast the inference problem
into an efficient algorithm based on random walks over weighted graphs. We
give specific consideration to quantities, which we map to a <measure, value,
unit> triple over a taxonomy of physical, monetary, temporal, and dimensionless
measures. Our experiments with web tables from diverse domains demonstrate the
viability of our method and its benefits over baselines.

• We introduce the quantity alignment problem: computing bidirectional links be-
tween textual mentions of quantities and the corresponding table cells. We propose
BriQ: a system for computing such alignments. It supports navigation between ex-
planations in text and details in tables. In addition, it enables advanced content
summarization. BriQ copes with the specific challenges of approximate quanti-
ties, aggregated quantities, and calculated quantities. In these cases, the align-
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ment is more complex than a mere surface form match. We judiciously combine
feature-based classification with joint inference using random walks over candidate
alignment graphs. Experiments with a large collection of tables from the Common
Crawl project demonstrate the viability of our methods.

• We design ExQuisiTe: a web application that identifies mentions of quantities in
text and tables, aligns quantity mentions in the text with related quantity men-
tions in tables, and generates salient suggestions for extractive text summarization
systems. ExQuisiTe handles exact single-cell references as well as rounded or trun-
cated numbers and aggregations such as a row or a column totals, and supports
user-friendly exploration.
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Kurzfassung

Schemalose Tabellen sind im Internet allgegenwärtig. Dargestellt werden beispielsweise
Finanzdaten von Unternehmen, Gesundheitsdaten oder Angaben zur Umweltbelastung
durch verschiedene Automodelle. Texte, in denen solche Tabellen eingebettet sind, er-
klären und beschreiben wichtige Quantitäten in den Tabellen. Obwohl tabellarische Da-
ten weit verbreitet sind, ist weitgehend unerforscht wie diese reichhaltige Datensamm-
lung automatisiert semantisch interpretiert werden kann. Hierzu ist es unerlässlich den
Begleittext zu verstehen und die relevanten Informationen zu extrahieren. Dies würde
auch die Möglichkeit eröffnen, Fragen zu Quantitäten zu beantworten, zum Beispiel nach
,,Internetfirmen mit einem jährlichen Umsatz von mehr als 5 Millionen US-Dollar” oder
,,elektrischen Autos mit einem Energieverbrauch unter 14 kWh/100km” oder ,,klinischen
Studien mit einer Gabe von mehr als 30 mg Gerinnungshemmer täglich”.

Um Quantitäten in Tabellen und Text zu verstehen, müssen einige Herausforderun-
gen gemeistert werden. Erstens existiert keine allgemeine Wissensbank über Quantitäten.
Zweitens werden Tabellen üblicherweise ohne die Anwendung standardisierter Schemata
für den jeweiligen Einzelfall erstellt. Dies betrifft insbesondere die Ausdrucksweise in
Kopfzeilen sowie die verwendeten Abkürzungen innerhalb der einzelnen Zellen. Drittens
können dieselben Quantitäten auf unterschiedliche Weise, unter Verwendung verschie-
dener Maßeinheiten, ausgedrückt werden. So sind ,,48 km/h” beispielsweise äquivalent
zu ,,30 mph”. Und viertens wird bei der Erklärung einer Tabelle im begleitenden Text
häufig gerundet oder zusammengefasst, oder auch mit anderen Maßeinheiten gearbeitet.

In dieser Dissertation begegnen wir den beschriebenen Herausforderungen mit folgen-
den Beiträgen:

• Wir präsentieren die Quantity Knowledge Base (QKB), eine Wissensbank für
Quantitäten. Die QKB wird durch den Import von Quellen wie Freebase und Wi-
kipedia konstruiert. In ihr organisieren wir Quantitäten mit Hilfe einer vierstufigen
Taxonomie: Dimensionen, Einheiten, Maßangaben und Themenbereiche. QKB er-
laubt somit die vereinheitlichte Darstellung von Quantitäten in Form von Tripeln
<Maßangabe, Wert, Einheit>.

• Wir stellen Equity vor, ein System zur automatischen Vereinheitlichung der Kopf-
zeilen und Zellen von Tabellen. Der Tabelleninhalt wird durch Konzepte, Klas-
sen, Entitäten und eindeutige Quantitäten in einer Wissensbank repräsentiert.
Hierzu entwickeln wir ein probabilistisches grafisches Modell zur Darstellung der
Abhängigkeiten der Tabellenzellen untereinander sowie der Tabellenzellen und der
möglichen Objekte im Raum der Konzepte, Entitäten und Quantitäten. Für die
Inferenz auf diesem Modell entwickeln wir einen effizienten Algorithmus, der auf
Random Walks über gewichteten Graphen basiert. Dabei achten wir besonders auf
Quantitäten, die wir als <Maßangabe, Wert, Einheit> Tripel von physikalischen,
monetären, zeitlichen und räumlichen Maßen repräsentieren. Unsere Experimente
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mit Webtabellen aus verschiedenen Bereichen belegen die Leistungsfähigkeit unse-
rer Methode sowie ihre Vorzüge gegenüber anderen Vergleichsmethoden.

• Wir führen das Quantitätenzuordnungsproblem ein, bei dem bidirektionale Links
zwischen Quantitäten im Text und Quantitäten in entsprechenden Tabellenzellen
ermittelt werden. Zur Berechnung der Links schlagen wir BriQ vor. Dieses System
erlaubt es zwischen den Erklärungen im Text und den Details in den Tabellen zu
navigieren und ermöglicht potentiell das Generieren von Zusammenfassungen. BriQ
kann mit approximativen, aggregierten und umgerechneten Quantitäten umgehen.
Die Methode kombiniert maschinelles Lernen für merkmalsbasierte Klassifikation
mit unüberwachter algorithmischer Inferenz mittels Random Walks auf geeignet
konstruierten Kandidatengraphen. Experimente mit einer großen Sammlung an
Tabellen aus dem Common Crawl Projekt demonstrieren die Leistungsfähigkeit
unserer Methode.

• Als letzten Beitrag entwickeln wir ExQuisiTe: eine Webapplikation, die Quan-
titäten in Texten und Tabellen identifiziert, sie im Text mit den dazugehörigen
Zellen in Tabellen verbindet und daraus Vorschläge für extrahierende Textzusam-
menfassung generiert. ExQuisiTe beherrscht zusätzlich zu Quantitäten in einzelnen
Zellen auch Aggregationen wie beispielsweise Zeilen- und Spaltensummen oder Dif-
ferenzen und Verhältnisse zwischen den Werten zweier Tabellenzellen.
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1 Introduction

Numbers are an integral part of language, though they are often overlooked by Nat-
ural Language Understanding (NLU) and Information Extraction research. Numerical
quantities appear in scientific research results, financial reports, and medical records,
among others. They are arranged in tabular formats or infused in natural text. The
web contains more than 150 million tables [CHW+08, CHZ+08], and it is estimated that
over 40% of columns in web tables contain numerical quantities [SC14]. Tapping into
this wealth of resources by understanding quantities in web tables and text surrounding
them can lay the first brick in building next-generation Information Retrieval systems
that are capable of answering complex queries about quantities. To this end, we pursue
answers to the following questions:

• How can we semantically represent quantities?

• How can we disambiguate quantities in web tables and their surrounding text?

• How can we identify relations between mentions of quantities in text and tables?

1.1 Motivation

There is a wealth of under-utilized resources on the web including millions of tables
[CHW+08, CHZ+08]. These tables hold valuable information about quantities on rev-
enues and costs, the environmental footprint of cars, drug trials and more. Unlike text,
tables have a structure and their structure implies certain relations. For example, a
row in a table can hold a single entity record, and each column can represent a specific
measure of that entity.

Example 1.1. Table with ambiguous column headers, abbreviated names, and un-
specified units. Each row specifies within-town and motorway speed-limits for a coun-
try.

Within towns Expressways/motorways
Germany 50 (30 residential areas) No limit (130 advisory)
UAE 50–60 100–160
UK 48 (30 mph) 113 (70 mph)
US 40–120 (25–75 mph) 97–129 (60–80 mph)
Uruguay 50 90–110
Uzbekistan 70 100

1



1 Introduction

Despite the structured nature of web tables they poses a great challenge for interpreta-
tion. Web tables are often created in an ad-hoc manner without proper schema design
and with highly heterogeneous formats and attribute values. In Example 1.1, the first
column has a missing header and abbreviated names; and the second and third columns
hold ambiguous quantities without specified units.

This ambiguity limits the reuse of such tables and creates a huge heterogeneity problem
when comparing or aggregating multiple tables. It also implies that table contents can
be properly interpreted only in conjunction with the textual explanation surrounding
them. Hence, it is important to devise algorithms for: (i) canonicalizing table cells to a
Knowledge Base; (ii) understanding table contents in the light of their surrounding text
and vice versa.

Though some prior work has touched upon entity canonicalization for tables [LSC10,
BND15], none handles the canonicalization of quantity mentions. Sarawagi et al. [SC14]
addressed quantities, but focused on the specific tasks of searching with numerical values
and extracting numerical relations from text [MMM+16].

Long documents with multiple tables are hard to read and navigate. For example,
financial documents and environmental reports sometimes span hundreds of pages; with
tables spread across the pages or assembled at the end. A user might want to understand
quantity mentions in a table by reading the corresponding textual explanation. Also,
she might need to drill down into more details about a quantity in the text by looking
at the corresponding table(s). Both of these tasks demand the alignment of quantity
mentions in text and tables.

Prior work has focused on linking mentions of entities in text [SWH15] and ta-
bles [LSC10, BND15, RLB15] to a knowledge base. However, the focus has been names
rather than quantities, and those works heavily depend on the availability of a knowledge
base. None of the prior work focused on aligning mentions of quantities within the same
document.

Example 1.2 illustrates the type of possible alignments between mentions of quantities
in text and tables. A quantity mention in text can reference two types of quantity
mentions in tables:

• explicit quantities or single-cell quantity mentions such as “204.3” and “121.9”.

• implicit quantities or composite quantity mentions computed as an aggregation of
one or more table cells such as “20%”, meaning “percentage(204.3

587.8
)”

In addition, a quantity mention in the text can be:

• an exact mention of a quantity in the table,

• an approximation of a quantity mention in the table.

In Example 1.2, the quantity “204.3 million tonnes” is an exact mention and “122
million tonnes” is an approximate mention.

2



1.1 Motivation

Example 1.2. A text snippet accompanied with its related table. The text contains
explicit and implicit quantity mentions from the table. The table encloses ambiguous
quantities with undefined units and measures. The units are specified in text: “tonnes
of CO2 equivalent”, “%”, and “tonnes”, while the measures are specified in the table
caption and the last column’s header: “Greenhouse Gas Emission by Sector” and “%
change”.

Generating energy is responsible for the biggest single wedge of UK carbon emissions-
204.3 million tonnes of CO2 equivalent, or 35% of the total for 2010. Transport is
not far behind though- 122 million tonnes of CO2 equivalent, or 20% of the total.
The biggest part of that? Passenger cars, which generated 68 million tonnes in
2010.

1990 2000 2010 % change,
2000 to 2010
Energy Supply 273.4 220.1 204.3 -7.1
Business 113.2 111.3 89.0 -20.0
Transport 121.5 126.7 121.9 -3.8
Public sector 13.1 11.6 8.5 -26.7
Residential 80.8 90.1 89.9 -0.3
Agriculture 63.1 58.0 50.7 -12.7
Industrial Process 54.4 24.6 10.9 -55.7
Land use 3.9 0.4 -3.8 -1129.5
Waste Management 45.9 29.3 16.5 -43.7
Grand Total 769.4 672.0 587.8 -12.5

Greenhouse Gas Emission by Sector

Identifying mentions of implicit and approximate table-quantities in the text is chal-
lenging. A simple surface form match will not work in such cases. In addition the search
space for composite quantity mentions can become exponential in the table size. All of
these challenges highlight the need for efficient algorithms for canonicalizing and aligning
quantity mentions in text and tables.

Our work on canonicalizing quantity mentions can facilitate comparing multiple tables
and fusing their data towards analytic insights. Also, it can support a new generation of
search engines capable of answering complex queries such as “Internet companies with
annual income above 5 Mio. USD” and “electric cars with energy consumption below
100 MPGe”. Aligning quantity mentions in text and tables can support faster navigation
between explanations in text and numerical figures in tables. In addition, it can aid in
summarizing long and complex documents.
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1.2 Challenges

Absence of Knowledge Base Support for Quantities: Grounding quantity mentions
requires a specialized knowledge base for quantities. Entity knowledge bases such as
Yago1 do not support quantity-specific concepts such as units and measures. Other
knowledge bases, such as Wikipedia2, DBpedia3, and Freebase4 have limited support
for units and measures. They have good coverage of simple units such as “meters”
and “miles”, but low coverage for complex units such as “miles per gallon (mpg)”.
More complex ontologies such as QUDT5 are hard to use and integrate. Therefore, we
construct a specialized knowledge base for quantities with high coverage of units and
measures and less complex ontology.

Heterogeneity of Web Tables Web tables are typically created in an ad-hoc manner
with human users in mind. Thus, they pose a variety of challenges regarding hetero-
geneity and incompleteness as follows:

• Tables do not follow a predefined schema and contain heterogeneous attributes and
values.

• Column headers are sometimes missing or abbreviated such as the header of the
first column in Example 1.2.

• Table cells contain abbreviated names, such as “UAE” and “US” in the first column
in Example 1.1.

• Tables sometimes have underspecified quantity mentions with missing units or
measures.

Ambiguity of Quantity Mentions: We can write a single quantity in multiple forms
and units of measures. For example, one can express the in-town speed limit in the UK
as “48 km/h” or “30 mph” as in Example 1.1. Though both quantities are equivalent,
their surface forms are different. A mention like “120m” can represent the height of a
building in meters, the duration of a movie in minutes, or even 120 million monetary
value with missing currency (unit). Though these quantities are different, their surface
forms are the same. The following points characterize the challenges of quantity mention
ambiguity:

• Abbreviating units and measures in quantity mentions.

• Varying precision points and scales in quantity mentions’ value.

• Expressing quantity mentions in different unit systems.

1http://yago-knowledge.org
2http://wikipedia.org
3https://wiki.dbpedia.org
4http://freebase.com
5http://www.qudt.org
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1.3 Contributions

This renders quantity mentions ambiguous, and it urges the need for grounding quantity
mentions in a knowledge base.

Quantity Alignment: Aligning quantity mentions in text and tables is more complex
than a mere surface form match. The alignment problem poses the following challenges:

• The use of approximations when referencing table-quantities in text, such as“122
million tonnes” in Example 1.2.

• Quantity mentions in the text can use a different scale from the table, such as
“200,000” vs “0.2 million”.

• The use of aggregate quantity mentions in text, such as “35%” in Example 1.2.

• The search space of the possible alignments is exponential in the size of the table
and as large as the number of possible subsets of cells.

Hence, one needs to employ more sophisticated techniques to align quantity mentions in
the text to their corresponding quantities in tables.

1.3 Contributions

1.3.1 QKB: A Knowledge Base for Quantity Mentions

We construct a Quantity Knowledge Base (QKB) to counter the absence of knowledge
base support for quantities. QKB provides the semantic space to ground quantity men-
tions in tables and text. QKB is constructed by importing and combining data from
Freebase and other sources. This data is restructured into a light-weight taxonomy that
supports the representation of quantity as a triple 〈measure, value, unit〉 where

• The measure is a name referring to a certain quantifiable aspect of an object or
process (e.g., the height of a building, the power of a car’s engine).

• The value is a numerical literal.

• The unit is a defined and widely used magnitude of a quantity, such as meter, kg,
Watt, kWh, USD, EURO, etc.

For each quantity, QKB also keeps a set of alias names for the measure, a regular
expression for feasible surface forms of value and unit, and conversion rules for units.
Our light-weight taxonomy covers physical, monetary and temporal measures and also
unit-less numbers like ratios, rates, counts, and scores. The QKB is publicly available
and Equity – our web tables disambiguation framework that is presented in the following
section – relies on it for grounding quantity mentions.
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1.3.2 Equity: Disambiguation of Entities and Quantities in Web Tables and
Surrounding Context

To overcome the heterogeneity of web tables and the ambiguity of quantity mentions, we
propose Equity: a framework to fully canonicalize mentions in ad-hoc tables and their
surrounding contexts to a knowledge base. It exploits the textual context surrounding
a table to jointly link names and numerical quantities from both tables and text. It
canonicalizes mentions of entities, classes, concepts, and quantities as follows:

• Quantity mentions are linked to a specialized knowledge base, the QKB.

• Entity mentions are linked to entities in Yago.

• Class mentions in table headers are linked to classes of entities in Yago.

• Concepts mentions in table headers are linked to concepts in Wikipedia, because
Yago does not support a notion of concepts.

Equity employs a Markov Random Field (MRF) model, distantly supervised by re-
latedness measures from a KB. Then, it drives a reduced acyclic MRF model, for which
it casts the inference into an efficient algorithm based on random walks over normal
weighted graphs. Equity results were presented at CIKM 2016 [IRW16].

1.3.3 BriQ: Understanding the Relation Between Quantity Mentions in
Text and Tables.

To align quantity mentions in text and tables, we introduce BriQ : a framework that com-
putes bidirectional linking between textual mentions of quantities and the corresponding
table cells. BriQ is designed to cope with the specific challenges of approximate quan-
tities, aggregated quantities, and calculated quantities in the text that are common but
cannot be directly matched in table cells.

The BriQ algorithm consists of two main stages: local resolution and global resolution.
The local resolution assigns a confidence score for each candidate alignment in isolation
without considering other neighboring alignments. The global resolution then takes as
input the candidate alignments from the previous stage and outputs the final alignment
of quantities between text and tables. It uses the local resolution’s confidence score
as prior weights and employs a global inference algorithm based on random walks over
graphs to resolve the alignments.

BriQ can handle a broad range of aggregation functions, such as sum, average, differ-
ence, percentage, and change ratio. Thus, it can support advanced content summariza-
tion and faster navigation between explanations in text and details in tables.

We conducted an extensive user study for annotating web pages to train BriQ. The an-
notated dataset is publicly available; we presented it along with BriQ at ICDE 2019 [IR+19].
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1.3.4 ExQuisiTe: A Tool for Explaining Quantities in Text

To prove the viability of our proposed models we introduce ExQuisiTe, a tool that
applies our proposed algorithms to help users perform the following:

• identifies mentions of quantities in text and tables,

• aligns quantities in the text to their relevant quantities in tables,

• and generates salient suggestions for Extractive Text Summarization (ETS) sys-
tems.

The ExQuisiTe allows users to perform these task through an easy to use web interface.
We presented ExQuisiTe at WWW 2019, and the source code is publicly available at
https://www.mpi-inf.mpg.de/briq/ .

1.4 Publications

Preliminary results from this work, for which I’m the main author, have been published
in :

• CIKM 2016 [IRW16]

• ICDE 2019 [IR+19]

• WWW 2019 [IW19]

1.5 Organization

This thesis is organized as follows: in Chapter 2 we lay the thesis background and
discuss the related work. Chapter 3 discusses the QKB and its hierarchy. Then, in
Chapter 4 we explain the Equity system for disambiguating entities and quantities in
web tables and its surrounding context. In Chapter 5 we explain the BriQ system
for the alignment of quantity mentions in tables and text. In Chapter 6 we present
the ExQuisiTe application for smart navigation of documents and enabling extractive
summarization that considers table contents. Finally, Chapter 7 concludes the thesis
and emphasizes the future research directions.
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2 Background & Related Work

This chapter provides the basics for this thesis. It presents the main concepts and
algorithms we build on and discusses the related research areas and the current state-of-
the-art techniques. The aim of this chapter is to position this thesis within the relevant
research areas.

2.1 Knowledge Bases

In our context, a Knowledge Base (KB) is a repository of structured data about factual
knowledge that computers can consume. A knowledge base can cover a general or a
specific domain. General knowledge bases focus on the breadth of knowledge by modeling
a broad range of world knowledge. Specialized knowledge bases focus on the depth of
knowledge by modeling specific domain knowledge, such as the biomedical, the financial,
or the enterprise domains.

General knowledge bases model facts about real-world entities and concepts along
with their attributes, classes, and relations. These terms are defined as follows:

Definition 2.1 (Entity). An entity E is a thing that exists and can be uniquely
identified and distinguished.

Examples of entities are Angela Merkel (Person), Google LLC (Company), The Nile
(River), and La Tour Eiffel (Monument).

Definition 2.2 (Concept). A concept C is a term that coins an abstract notion.

Example concepts are Knowledge Base, Programming Language, and Physical Dimen-
sions: Length, Height, and Width.

Definition 2.3 (Attribute). An attributeA is a property of an entity E or a concept
C and it takes a value from a defined range ΣA.

Example attributes of a Person entity are Name, Date of Birth, and Salary. Example
attributes of a Dimension concept are Unit of Measure (e.g., kilogram and meter ) and
Thematic Domain (e.g., physical and financial).

Definition 2.4 (Class). A class C is a set of entities with common attributes. Classes
of entities are organized into a hierarchy exhibiting that each class inherits all of the
attributes of its ancestor(s).

Example classes of entities are Companies, Actors, and Mammals.

Definition 2.5 (Relation). A relation connects two entities and it can have a di-
rection, such as Parent-of, or be bidirectional, such as Spouse.
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Figure 2.1: A snippet of a Knowledge Base represented as a Knowledge Graph

2.1.1 Knowledge Base Representation

Knowledge bases model world knowledge in a format that is consumable by computers.
Therefore it can automate several applications, such as semantic annotation [HYB+11],
question answering [YBE+12], inference and reasoning about data [NMTG16].

Facts in knowledge bases are stored as triples of subject, predict, and object (SPO). For
example, {S: Sundar Pichai, P: CEO of, O: Google} and {S: Daniel Radcliffe, P:
Acted in, O: Harry Potter and the Philosopher’s Stone}. These facts are usually
cast into a Knowledge Graph (KG), in which each entity or concept is represented by a
node in the graph; and each relation is represented by a directed edge between entities
or concepts.

Example 2.1. Figure 2.1 shows a snippet of a knowledge graph with:

• Entities: Satya Nadella, Microsoft, Starbucks Coffee, India, and United

States.

• Attributes: Salary, Born

• Classes, such as Companies, Countries, and People.

• Relations: CEO of, Born in, Board Member of, and Citizen of.

Some of the triples in the KG in Figure 2.1 are as follows:

• {S: Satya Nadella, P: Born in, O: India},
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• {S: Satya Nadella, P: CEO of, O: Microsoft},

• {S: Satya Nadella, P: Board Member of, O: Starbucks Coffee}.

2.1.2 Knowledge Base Construction

A knowledge base can be automatically constructed or manually curated by experts. Au-
tomatically constructed knowledge bases employ Information Extraction(IE) techniques,
which we will introduce in the next section, to extract high confidence factual knowledge.
Hence, the quality of the facts in automatically constructed knowledge bases heavily de-
pends on the extraction method. Examples of automatically constructed knowledge
bases are: DBpedia [ABK+07], Freebase [BEP+08], and Yago [SKW07]. Manually cu-
rated knowledge bases require domain experts to model and represent knowledge. Hence,
the manually curated facts in these knowledge bases tend to be accurate and have high
confidence. Examples of manually curated knowledge bases are WordNet [Mil98] and
Cyc [Len95]. Though manually curated knowledge is more accurate than automatically
constructed knowledge, it has less coverage and requires tremendous manual effort.

2.1.3 Numerical Values in Knowledge Bases

A KB entity can have numerical attributes, such as age and salary for a person; or
height for a building. Nevertheless, KB numerical attributes are limited in coverage
and lack the semantic modeling of measures and unit systems. In Example 2.1, the
salary attribute has a value of “20.0 million”; however, this value is a string that has no
associated semantics.

On the other hand, complex ontologies of quantities and measures, such as QUDT 1,
are impractical to integrate into real-life applications. Hence, there is a need to construct
a simple quantity knowledge base with high coverage that can be easily integrated into
real-life applications. Chapter 3 discusses how to overcome the absence of semantic rep-
resentation of numerical values by developing a simple Quantity Knowledge Base(QKB).
The QKB captures the semantics of units of measures and is aware of their various rep-
resentation in text.

Example 2.2. Figure 2.2 illustrates the semantic representation of the quantity salary
with value $20.0 million using QKB.

2.2 Information Extraction

Constructing a knowledge base is only realized through efficient Information Extraction
techniques. The advance in IE has a direct influence on the quality and coverage of
knowledge bases. This section presents an overview of the IE research field and its
recent progress.

1http://www.qudt.org/
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dimension

Figure 2.2: A snippet of Quantity Knowledge Base represented as a graph.

Information Extraction aims at extracting structured knowledge from unstructured
data. It harnesses non-structured or semi-structured resources, such as Wikipedia in-
foboxes or article texts, to extract high confidence factual knowledge and represent it
in a structured form that is machine-readable. It exploits Natural Language Processing
(NLP) techniques to process unstructured textual resources. Information Extraction
can be classified under the following main dimensions (a more fine grained taxonomy
is given in [Sar08]): sources of extraction, target of extraction, and the methodology of
extraction.

2.2.1 Sources of Extraction

The source of extraction differentiates between the type of resources the IE techniques
exploit to harvest structured information. In this thesis, we differentiate between two
main sources of data:

• Non-structured sources, such as natural language text in web pages or enterprise
documents. These sources are difficult as they are often ambiguous and lack struc-
ture cues.

• Semi-structured sources, such as web forms, Wikipedia infoboxes, and web tables.
These sources have a structure that implies certain relations between the content.
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However, they do not follow a standard schema and contain abbreviations and
incomplete snippets.

2.2.2 The Target of Extraction

The target of extraction differentiates IE systems based on their end goal. The following
are the common extraction tasks as defined by [JM09]:

• Entity Extraction, also known as Named Entity Recognition (NER), aims at finding
mentions of named entities in text and labeling them with their corresponding
classes. The classes of named entities are application specific. Examples of entity
classes are persons, organizations, financial assets, genes or protein names.

The challenges in NER are to find the span of the entity mention and to iden-
tify its type. Conditional Random Field (CRF) models have proven effectivness
in NER; see for example the work of [ML03] and the widely used Stanford NER
Tagger [FGM05]. Recently, neural sequence tagging models using Bidirectional
Long Short-Term Memory (BiLSTM) prove effectiveness in recognizing entity men-
tions [LBS+16].

Once the mentions of entities have been recognized, they can be grouped in sets
corresponding to real-world entities. Named Entity Disambiguation and Corefer-
ence Resolution, which we will introduce in Section 2.3, are the tasks responsible
for linking mentions of entities to real-world entities. For example, the mentions
“Barack Obama” and “Obama” will be linked together to the set corresponding
to the entity Barack Obama

• Relation Extraction aims at finding and classifying semantic relations between
entities or concepts. The most common type of relations is binary relations, such
as parent-of, citizen, employer, and president. These relations are represented
as SPO triples of subject, predicate, and object; for example {S: Microsoft, P:
employer of, O: Satya Nadella} and {S: Satya Nadella, P: citizen of, O:
United States}. Recent relation extraction systems have also addressed higher-
arity relations [MSB+12, MSB13, DCG13, ESW18].

Numerical relation extraction received attention from the research community as
well [MMM+16, SPM17]. This research direction has focused on extracting SPO
triples at which the object is a numerical value, such as {Germany, population,
83 million} and {China, Inflation Rate, 2.5%}.

• Event Extraction aims at finding events in which entities of interest participate.
Most event mentions correspond to verbs, such as: took a flight, conducted a
concert, played in the Olympic Games.

• Temporal Expression Extraction aims at finding when an event took place [SG16].
Temporal expressions have different levels of granularity, such as decades, years,
weekdays, times, and dates. Temporal expressions can be absolute, such as 1 April
2019 and the 4th quarter of 2018; or relative, such as tomorrow, last week, or two
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years ago. Moreover, they can represent a duration, such as 1 hour, 2 weeks, or
5 years. Thus, temporal expressions are different from numerical quantities and
have different semantic attributes.

HeidelTime [SG15] and SUTime [CM12] are examples of systems for temporal
expressions extraction. They recognize and normalize temporal expressions in
textual documents; then they annotate documents with TIMEX3 standards 2.

2.2.3 The Methodology of Extraction

The methodology of extraction differentiates IE systems based on the algorithmic tech-
nique of extraction. The two main dimensions, presented in [Sar08], under which the
method of extraction falls are:

• Hand Crafted vs. Learned Rules: Domain experts can define a set of extraction
heuristics that the IE system follows to extract structured information. In this case,
the extraction is limited to the set of handcrafted rules and the IE system requires
a significant amount of manual labor to define and maintain these rules [Ril93,
ARHB+93].

On the other hand, rules can be learned automatically from a manually annotated
corpus. In this case, domain experts are also needed; to first build the machine
learning model for learning the rules, and second to annotate the corpus [CM99,
Sod99, Ait02]. In both cases, human experts are needed to craft extraction rules,
design and model the learning space, or annotate data.

• Rule-based vs. Statistical: Rule-based extraction relies on logical rules to ex-
tract information, whereas statistical extraction relies on the assertion signal from
repeated predicates. Rule-based systems are easier to interpret and are best
suited for closed domains at which human experts are available to define the
rules [CMBT02, SDNR07]. On the other hand, statistical methods are good for
open-ended domains, such as web extraction [BCS+07, CBK+10, NZRS12].

2.3 Related Tasks

In this section we will discuss the tasks most closely related to this thesis and their
state-of-the-art techniques. In the following part we will discuss Named Entity Disam-
biguation, Coreference Resolution, and Table Canonicalization.

2.3.1 Named Entity Disambiguation

After recognizing mentions of entities in the text we can map them to real-world entities
in a KB. This task is known as Named Entity Disambiguation (NED), and it aims at
resolving ambiguous mentions of entities to a standard representation in the KB. NED
systems can link textual mentions of entities in the text to Wikipedia pages (in this case,

2http://www.timeml.org
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it is called Wikification which was first coined by [MC07]) or to a knowledge base such
as Yago, DBpedia, and Freebase.

Definition 2.6 (A Surface Form or A Mention). A surface form or a mention is
a single word or a sequence of words that corresponds to an entity in the knowledge
base.

Definition 2.7 (Candidate Entity). For a given surface form, a candidate entity
is a knowledge base entity that has a similar surface form.

Definition 2.8 (Anchor Text). In hypertext, an anchor text is the visible word or
sequence of words representing a hyperlink.

Example 2.3. A sentence taken from a news article about Michelle Obama’s new
book “Becoming”.

Obama emphasizes how important role models are, especially for young women of
color in a culture that isn’t changing fast enough.

Example 2.3 shows an ambiguous surface form “Obama”. It can refer to the candidate
entity Barack Obama or the candidate entity Michelle Obama. This ambiguity can be
resolved using contextual cues from the text.

NED Dictionaries

NED systems rely on dictionaries of entities to find candidate entities for the surface
forms in the text. These dictionaries map entities to possible surface forms with associ-
ated weights which score the confidence of the mapping. The quality and completeness
of surface-form/entity pairs in a dictionary directly affect the quality of NED algorithms.
Too noisy dictionaries result in spurious matches and low precision; incomplete dictio-
naries result in more misses and low recall. Thus, it is crucial to construct high-quality
high-coverage dictionaries. Wikipedia is the primary source for constructing NED dic-
tionaries because of its high-quality manually curated content.

In most NED dictionaries [CSMA16], entities correspond to Wikipedia pages and their
surface forms are collected from the following sources:

Wikipedia Page Title: the title of the Wikipedia page corresponding to the entity is a
possible surface form, such as “United States”.

Redirect Pages’ Title: in Wikipedia, a redirect page is solely created to point to the
original Wikipedia page. The titles of redirect pages are common noun phrase(NPs)
used to refer to an entity, such as “United States of America”

Disambiguation Pages: in Wikipedia, a disambiguation page is created to list all the
entities having the same ambiguous surface form. For example, the disambiguation
page for the surface form “America” contains the following Wikipedia pages: The

Americas, America (Julio Iglesias album), and America, Illinois, U.S.
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Anchor Text: Wikipedia href anchors that link to other Wikipedia pages are common
surface forms of the entity represented by this page, such as the “US” and “U.S.”.

Each surface-form/entity pair is weighted by the number of times the surface form is
used to refer to the entity.

NED Input Type

NED algorithms differ according to their types of input. NED algorithms have been
designed for long textual documents, short text or social media text, and web tables.

Long documents, such as news articles and Wikipedia pages, received the most at-
tention from the research community [Cuc07, MW08, HYB+11, KSRC09, RRDA11,
SWH15]. These documents tends to be long, well-formed, and with sufficient context.
[BP06] was the first to introduce a system to disambiguate mentions of entities in a
document to Wikipedia entities. [Cuc07] was the first system to perform both entity
recognition and disambiguation. It employs a joint disambiguation algorithm that ac-
counts for the category agreement of entities in the same document.

With the rise of social media, it was important to design NED algorithms that han-
dle this type of input. Social media text is more challenging than news articles and
Wikipedia pages, as it is short, informal, and has insufficient context. Entity mentions
in social media are cryptic and difficult to disambiguate. Hence, there was a need to
design NED algorithms for social media and short text, such as [GCK13, IAYW].

The algorithm in [GCK13] jointly solves the recognition and disambiguation tasks on
tweets. It starts with extracting all the possible k-grams matching the surface form of at
least one entity. These k-grams designate the set of candidate entity mentions. Then, for
each candidate mention the method generates a set of candidate entities including the
“NIL” entity, where a candidate mention mapped to “NIL” indicates an out of knowledge
base entity.

The algorithm in [IAYW] includes cues from user profiles, hash-tags, other similar
tweets, and external web pages to enrich the context of the tweet. It starts with nor-
malizing the mentions in tweets to an intermediate normal from, then finding candidate
entities for each normalized mention. It uses a notion of temporal importance in addition
to other features to find the best matching entities.

For web tables, several algorithms have been proposed to canonicalize table cells to a
KB which we will discuss in Section 2.3.3.

NED Features

The most widely used features in NED are as follows:

Surface Form Similarity: is a string-based similarity between the mention in text and
the possible surface form of a candidate entity.

Context Similarity is the similarity between the context of the mention in a document
and the context of the KB entity. In [HYB+11], the context of the entity is the
set of keyphrases extracted from the corresponding Wikipedia page. The context
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similarity between the mention and the candidate entity is then computed using
an aggregated weighted score.

Coherence Measures: are used to estimate the homogeneity of entity mentions in a doc-
ument. It is usually computed using pair-wise entity relatedness measures between
candidate entities. For example, Wikipedia link structure is used in [HYB+11]
to estimate the pair-wise relatedness of entities. Recently, Vector Space Similarity
is used to estimate the relatedness between entities using their entity-embedding
vectors as in [ZSG16].

Importance Measures: are used to estimate the prior importance of an entity. For ex-
ample, in [RRDA11] entity importance is estimated using the fraction of Wikipedia
pages referring to this entity, and in [IAYW] a temporal entity importance measure
is proposed.

NED Algorithms

Named Entity Disambiguation can be jointly performed with Named Entity Recognition
as in [DK14, NTW16], which use a CRF model for the recognition and the disambigua-
tion tasks.

Otherwise, NED exploits existing NER systems’ output to identify mentions of entities
as in [HYB+11, RRDA11, KSRC09]. These algorithms disambiguate entities using sim-
ilarity measures between mentions in text and entities in a knowledge base, in addition
to the coherence between all entity mentions in a document. They employ joint dis-
ambiguation algorithms that collectively resolve all mentions of entities in a document.
For example the AIDA system, [HYB+11] uses a combination of the prior probability
of an entity mention, the context similarity between mentions and KB entities, and
the overall coherence of entity mentions to disambiguate mentions of entities to their
canonical entities in the Yago KB. This method casts the disambiguation problem into a
weighted graph model and solves it by finding a dense subgraph with the best mapping
of mentions to KB entities. [KSRC09] casts the joint disambiguation problem into an
Integer Linear Program (ILP) objective function and then relaxes it to an LP problem.
[RRDA11] uses local and global features to train two Support Vector Machine (SVM)
models; the first model is a Ranking Linear SVM to estimate the coefficients of the
features to rank candidate entities; and the second model is a Linear SVM Classifier to
decide if linking the mention to “NIL” improves the objective function or not.

Graph algorithms, such as Random Walks with Restarts (RWR), fit nicely with the
nature of the joint disambiguation problem. Hence, several NED algorithms exploit
graph algorithms [HYB+11, GB14, PHG15, ZSG16]. These algorithms transform the
disambiguation problem into the graph-space, at which the candidate entities are nodes
in the graph. Pair-wise entity relatedness edges connect entity nodes in the graph,
such that the resulting set of entity-mappings is coherent. The weight of the edges is
computed using several similarity measures, and recently vector space similarity between
entity-embedding vectors is used to estimate pair-wise entity relatedness as in [ZSG16].
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2.3.2 Coreference Resolution

When noun phrases (NPs) refer to the same entity, they are called coreferent. Corefer-
ence Resolution is the task of finding NPs that refer to the same entity and constructing
coreference chains.

Example 2.4. A sentence taken from a news article about Michelle Obama’s new
book “Becoming”.

In her new memoir, “Becoming” — a book whose reportedly enormous advance
rendered its contents almost as closely guarded as the bullion at Fort Knox —
Michelle Obama puts to rest any speculation about her political ambitions.

A NP referring back to a preceding NP is called an anaphora; the referring NP is called
an anaphor, and the preceding NP is called the antecedent. In Example 2.4 the second
“her” is an anaphor and its antecedent is Michelle Obama. A NP referring forward
to a succeeding NP is called cataphor, the referring NP is called the cataphor, and the
subsequent NP is called the postcedent. In Example 2.4 the first “her” is a cataphor
and its postcedent is Michelle Obama. Hence, the first “her”,Michelle Obama, and the
second “her” compose a coreference chain.

Coreference resolution is well studied in computational linguistics and discourse anal-
ysis, and it can be categorized according to the learning algorithm into Supervised,
Unsupervised or Semi-supervised [Ng10]. There are three main coreference resolution
models: mention-pair model, entity-mention model, and ranking model.

Mention-pair Model

This model trains a binary classifier to decide whether a pair of Noun Phrases (NP) are
coreferent or not. The model was first introduced in [AB95] and [ML95]; both use a
decision tree classifier. The model falls short of identifying coreferential chains as the
transitivity rule is not enforced. For example, if np1 is coreferent with np2 and np2 is
coreferent with np3, then np1 should be coreferent with np3; and hence a coreference
chain (np1,np2,np3) exists. Therefore, a partitioning algorithm has to be employed to
identify such coreference chains.

Entity-Mention Model

This model represents each entity as a cluster and the features of the cluster are that of
the entity it represents and all the NPs in the cluster. Hence, the decision made in this
model is whether a NP is coreferent with another entity (cluster) or not. In this case, a
training example consists of a preceding cluster c and a NP n with a binary label indi-
cating the coreference relation. These models did not show significant improvement over
the mention-pair models. For example, in [LIJ+04] it does not achieve any improvement
over the mention-pair models. Also, in [YSZT04, YSL+08] the entity-mention models
introduced only a slight improvement over the mention-pair models.
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Ranking Model

This model selects the most probable antecedent for a given anaphor. Ranking algo-
rithms were first used in [CBD94] with a binary classifier. Recent work applied more
advanced ranking techniques to rank more than two candidates at a time. Also, other
ranking techniques were proposed to rank clusters (entities) rather than a single mention
as in [RN09].

Rule-based Coreference Resolution

Rule-based methods are more effective than supervised algorithms. Stanford coreference
resolution system presented in [RLR+10] is a rule-based system for clustering entities.
The model uses carefully-engineered features in successive stages starting from high
to low confidence features. The algorithm consists of seven phases, where each phase
resolves coreferent mentions based on a set of rules. Surprisingly, this simple algorithm
outperforms the state-of-the-art supervised algorithms, which suggests that coreference
resolution can be targeted with simple algorithms and well engineered features and
rules [HK09, NC02].

Neural Coreference Resolution

This model is competitive with the current state-of-the-art coreference resolution algo-
rithms. Clark and Manning [CM15, CM16b, CM16a] successfully applied deep learning
in coreference resolution. They split the problem into three main parts: mention-pair
classification, mention-pair ranking and cluster ranking (entity-centric). They proposed
three different algorithms. Two of them are based on deep learning [CM16a, CM16b]
and the third is based on agglomerative clustering [CM15].

2.3.3 Web Table Search and Canonicalization

Recently, the research community has paid attention to web tables, and several algo-
rithms have been proposed to: process tables for search purposes and schema com-
pletion [CHW+08, CHM11, MAAH09, PS12, SC14], fusing tables for data augmenta-
tion [YGCC12, ZC13, GS09, CHK09], and canonicalizing table contents to a KB [LSC10,
BND15, RLB15].

Table Search

Cafarella et al. were the first to bring attention to web tables in the seminal work pre-
sented in [CHW+08, CHM11]. They explored the problem of searching a huge corpus
of tables encompassing 14.1 billion HTML tables extracted from English documents.
They used an extraction filter based on [CHZ+08] with low-recall and high-precision to
extract 125 million high-quality relational tables. Then, they computed attribute corre-
lation statistics from table headers and populated attribute statistics database (ACSDb)
which they used later for schema auto-completion.
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Sarawagi et al. explored table search in [PS12, SC14]. In [PS12] a 25 million tables
corpus was crawled from the web and for each table, the header and a set of weighted
phrases from its web page was extracted. The weights of these phrases are computed
using the DOM tree of the web page and the frequency of the HTML tags. Then, for
a given query the algorithm finds all matching tables, extracts table columns that are
relevant to the query, and consolidates these columns into a single answer table. It uses
a probabilistic graphical model to jointly match query terms to relevant columns and
map these columns to an answer table. The main contribution is the graphical model
for mapping query terms to relevant table columns.

The model presented in [SC14] focuses on quantity queries on web tables. To this
end, it annotates the table columns with units using a probabilistic context-free gram-
mar (PCFG). For a given query, it infers the type of the requested quantity aq and its
associated entity eq and retrieves a set of candidate tables for the query. Then, the
algorithm extracts relevant snippets from the candidate tables based on the quantity
type aq and the entity eq. The answer to the quantity query is a distribution of val-
ues or a single ranked point value. In this model, the semantic annotation of table
columns is solely driven by the search query, that no “hard” labels are assigned to table
columns. This serves the purpose of the search framework, but it does not resolve the
table canonicalization problem.

Table Fusion

Aggregating data across multiple tables is explored in [YGCC12, ZC13]. The target of
these research is to build a table augmentation framework that is capable of finding direct
and holistic matching tables for a given query table. First, the framework finds direct
matching tables to the given query table using traditional schema matching techniques
and content overlap. Then, it constructs a graph with nodes representing individual
tables and edges connecting directly matching tables with a weight corresponding to the
matching score. It employs Topic Sensitive Page Rank (TSP) algorithm [Hav02], to find
holistic matching tables for the query table. [ZC13] complements the work in [YGCC12]
by labeling table columns with unit, scale, and timestamps. This work is driven by table
search and data augmentation and is not concerned with table cells’ canonicalization.
On the other end of the spectrum, [GS09] employs a CRF model to augment a query
table with semi-structured lists on the web.

Table Canonicalization

Canonicalizing table columns and cells to a KB is explored in [LSC10, BND15, RLB15].
[LSC10] maps table rows to entities, columns to attributes, and column-pairs to relations
in a KB. It models the problem with a probabilistic graphical model and perform message
passing algorithm to make the inference. However, it did not consider quantities and
their related concepts. [BND15] also uses a probabilistic graphical model to canonicalize
table cells, but it only considers linking entity mentions in table cells with KB entities.
On the other hand, [RLB15] canonicalizes table headers and rows to concepts and entities
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in DBPedia, but it only focuses on a small subset of relational tables.
The algorithm introduced in [RMKS15] assigns semantic labels, i.e. attribute names,

to table columns based on both the column headers and contents. It learns a semantic
labeling function using a labeled corpus from which it extracts attribute names and their
corresponding set of values. It considers attributes with string and numerical values. In
the case of string columns, the algorithm finds the target attribute using a bag-of-
words model. In the case of numerical columns, it uses statistical hypothesis testing
to determine if the set of values in the column and the candidate attribute come from
the same distribution. However, it considers the whole column and does not consider
canonicalizing individual table cells. Thus, this method will fail in handling columns
with heterogeneous content.

2.4 Related Algorithms

2.4.1 Random Walks on Graphs

Random Walks(RW) on graphs can measure the similarity between two vertices based on
their connectivity. A random walk operates on a directed weighted graph G = {V,E},
where V is the set of vertices and E is the set of edges in G; each edge eij ∈ E connects
two vertices (vi, vj) with a weight wij . The weights on the graphs are normalized such
that for each vi ∈ V the sum of the outgoing edge weights is equal to one:

∑
j wij = 1.

A random walk starts at a vertex vi0 ∈ G and randomly moves to another vertex vi1
in the neighborhood of vi0 with a probability equal to the weight of the edge wi0,i1 . This
random process is repeated at each vertex, generating a path of random visits. This
path connects the start vertex vi0 with all the vertices on the path and hence it can
measure the similarity between vi and other vertices in G.

Random walks can be modeled as a Markov chain [Nor98] with state-space I = {V }
and transition probabilities:

P (St+1 = j | St = i) = pi,j = wi,j

For simplicity we refer to a vertex vi in the graph by its index i.
The transition matrix P ∈ Rn×n, where n is the number of vertices, is called a stochas-

tic matrix; meaning that pi,j ≥ 0 and for all i, j ∈ I, we have
∑

j∈I pij = 1.
A Markov chain has an initial distribution λ over the state-space I, where λ is a row

vector λ = (λi : i ∈ I) , 0 ≤ λi ≤ 1 and
∑

i λi = 1.
We call St a Markov chain with initial probability distribution λ and transition matrix

P if for all t ≥ 0 and i0, i1, .., it, it+1 ∈ I,

(i)P (S0 = i0) = λi0 ;

(ii)P (St+1 = it+1 | S0 = i0, S1 = i1, .., St = it) = P (St+1 = it+1 | St = it) = pit,it+1

Then, the probability of a certain state transition sequence St (path) is given by:

P (S0 = i0, S1 = i1, .., St = it) = λi0pi0,i1pi1,i2 ...pit−1,it
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Definition 2.9. A Markov chain or a transition matrix P is called irreducible, if for
every two distinct states i, j ∈ I: j is reachable from i, written as i → j, and i is
reachable from j, written as j → i.

Definition 2.10. A state i is aperiodic if p
(n)
ii > 0 for all sufficiently large n.

Lemma 2.1. Suppose P is irreducible and has an aperiodic state i. Then, for all states

j and k p
(n)
jk > 0 for all sufficiently large n. In particular, all states are aperiodic.

Theorem 2.1 (Stationary Distribution [Nor98]). Let I be finite. Suppose for
some i ∈ I that

p
(n)
ij → πj as n→∞ for all j ∈ I.

. Then π = (πj : j ∈ I) is a stationary distribution

Theorem 2.2 (Convergence to equilibrium [Nor98]). Let P be irreducible and
aperiodic, and suppose that P has a stationary distribution π. Let λ be any initial
distribution over the state-space I. Suppose that (Xn)n≥0 is Markov(λ, P ). Then

P(Xn = j)→ πj as n→∞ for all j.

In particular,

p
(n)
ij → πj as n→∞ for all j.

Such a Markov chain is called ergodic.
This Markov chain will converge to an equilibrium state with a stationary distribution
π, such that πP = π [Nor98]. The stationary distribution π is independent of the initial
state λ.
Random walks have many variants, most notably Random Walks with Restart (RWR)
[PBMW99] where the random surfer can choose to move to a vertex in the neighbor-
hood of the current vertex with probability α or jump back to the start vertex (teleport)
with probability (1 − α). In this case the restarts are limited to specific states and the
Markov chain is not necessarily ergodic. The probability of a node’s reachability serves
as a measure of the similarity between the teleport vertex and the other vertices in the
graph.

Random-walk similarity measures are related to similarity measures used for semi-
supervised learning [ZLR05] and spectral clustering [MS01], hence it provides an elegant
measure of similarity between vertices in a graph. Chapter 4 discusses how we efficiently
employ RWR to solve the inference problem in Equity.

Random walks have been adopted in numerous domains such as: information re-
trieval [PBMW99, Hav02], schema matching [MGMR02], image segmentation [Gra06],
named entity and word-sense disambiguation [TMN04, GB14, MRN14]. Multiple tech-
niques have been proposed to efficiently measure similarities in large graphs using ran-
dom walks [TFP06, Cha07]. Page et al. [PBMW99] proposed an efficient algorithm to
compute Page Rank on web-scale link graphs comprising millions of pages.
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2.4.2 Probabilistic Graphical Models and Markov Random Fields

Probabilistic Graphical Models (PGM) are a family of stochastic models that account for
uncertainty and structure. It aims at efficiently modeling a joint probability distribution
P over a set of random variables X = {X1, X2, .., Xn}. The domain of this joint probabil-
ity distribution grows exponentially with the size of the random variables. For example,
given binary-valued random variables, there will be 2n different possible assignments to
P . Therefore, finding the joint probability distribution P for these random variables
becomes computationally intractable as the number of the random variables grows large
or as their domain of values expands. PGM enables the estimation of these intractable
joint probability distributions through a simplified representation. PGM relies on the
conditional independence properties between the random variables to factorize the joint
probability distribution into modular components [KFB09].

Definition 2.11. Let X,Y and Z be random variables. Then, X is conditionally
independent of Y given Z in a distribution P if:

P (X = x, Y = y | Z = z) = P (X = x | Z = z)P (Y = y | Z = z)

for all the values of x ∈ dom(X), y ∈ dom(Y ), z ∈ dom(Z).

There are two common types of PGMs: Bayesian Networks and Markov Networks.
Bayesian Networks are directed PGMs, and Markov Networks are undirected PGMs.
Bayesian Networks are represented as a directed acyclic graph (DAG). The vertices in
the graph correspond to the random variables in the model, and the edges indicate
the dependencies between these random variables. The direction of the dependency
determines the direction of the edge. The joint probability distribution of the variables in
Bayesian Networks can be deduced from the DAG. For more information about Bayesian
Networks, refer to [KFB09].

Markov Random Fields

Markov Networks, also known as Markov Random Fields (MRF), are useful in modeling
domains at which the direction of the dependencies is unknown. MRFs often offer a
simpler perspective over directed models in terms of the independence structure and the
inference [KFB09]. The joint probability distributions of an MRF is modeled using an
undirected graph Gm, where vertices are random variables, and edges indicate a direct
probabilistic relation between random variables. The joint probability distribution is
factorized over the graph using potential functions or factors over maximal cliques in
the graph [KFB09],

Parameterization MRFs are represented by a joint probability distribution. This dis-
tribution is parametrized over the graph structure. The parameters of MRF do not
correspond to probabilities or conditional probabilities as in the case of Bayesian Net-
works. Thus, they are less intuitive and harder to estimate from the data.

Given an MRF with a set of random variables X, we define the joint probability
distribution of the MRF using the notion of factors.
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Definition 2.12. A factor π(X) is a function that maps a configuration of values of
the variables X to a real positive number in R+.

The joint probability distribution of an MRF is represented as a product of local
models. These local models are defined over a subset of variables in the graphs, such
that each local model i corresponds to a factor πi. MRFs simplify the parameterization
of the joint probability distribution by assigning factors to maximal cliques in the graph.

Definition 2.13 (clique). A clique Ci is a subset of vertices in a graph such that
every two vertices are directly connected. A clique is a complete graph, and a maximal
clique is a clique that cannot be extended by including any additional vertex.

Definition 2.14. Given an MRF graph Gm, a distribution P factorizes over Gm if it
is associated with:
(i) a set of maximal cliques C1, C2, .., Ck in Gm;
(ii) a set of factors associated with each clique: π1(C1), π2(C2), ..., πk(Ck), such that

P (X1, X2, .., Xn) =
1

Z
∗ π1(C1)× π2(C2)× ...× πk(Ck)

where Z is a normalization constant called the partition function.

MRFs assign factors to maximal cliques inGm. The set of factors π1(C1), π2(C2), ..., πk(Ck)
are known as the clique potentials. The distribution P that factorizes over Gm is called
Gibbs Distribution. The clique potentials can be represented by a logarithmic function,

π(C) = exp(−ε(C)),

where ε(C) = −lnπ(C) is called the energy function. The joint distribution now corre-
sponds to:

P (X1, .., Xn) ∝ exp(−
k∑
i=1

εi(Ci))

Any positive distribution whose conditional independence properties can be repre-
sented by an undirected graphical model can be represented as a product of clique
potentials [Mur12].

Theorem 2.3 (Hammersley-Clifford [Bre01]). A positive distribution P (X) > 0
satisfies the conditional independence properties of an undirected graph Gm iff P can
be represented as a product of factors where each factor corresponds to a maximal
clique in the graph.

A special class of MRF is pairwise MRF where all the factors are defined over a single
variable or a pair of variables. Thus, the parameterization is restricted to the edges
of the graph. Pairwise MRF are attractive due to their simplicity and their ability to
model a broad range of domains [KFB09]. Conditional Random Fields (CRF) [LMP01]
is another variant of MRF at which clique potentials are conditioned on input features.
CRF models have been proposed for various NLP and IE problems such as noun-phrase
chunking [SP03], part of speech tagging [LMP01], and named entity recognition [SC05].
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Inference

The joint probability distribution of a PGM allows us to answer three types of queries,
which are listed in [KFB09]:

• Probability Queries
A probability query is the most common query type. It consists of two parts:
(i) the evidence, a subset E of observed random variables in the model and its
observed values e; and (ii) the query variables, a subset Y of unobserved variables
in the model. The probability query is the posterior probability distribution over
the values y of Y , conditioned on the evidence E = e, and defined as follows:

P (Y | E = e)

It is also defined as the marginal over Y of the joint probability distribution con-
ditioned on E = e.

• Maximum a Posterior (MAP) Queries
A MAP query, also known as the most probable explanation (MPE), finds the most
likely assignment to all of the random variables in the model except for the evidence
E. Let W = X − E, then the MAP query finds the most probable assignment of
W , given the observed evidence E = e:

MAP (W | e) = arg max
W

P (w, e)

, where arg maxx f(x) gives the value of x at which f(x) is maximum. The differ-
ence between the MAP and the probability query is that in MAP query we find the
most likely joint assignment to W . To find the most likely assignment to a single
variable A, we can compute the conditional probability distribution P (A | E = e),
and then pick the assignment with the highest value. However, the most likely
joint assignment of a subset of random variables is different from the assignment
at which each variable is selected separately.

• Marginal MAP Queries
In the case of rare events such as rare diseases, the MAP assignment might not be
able to find the desirable answer. For example, in a medical diagnostic problem,
where the most likely disease has multiple possible symptoms, each of them occurs
with low probability. In contrast, there exists a rare disease with a small number
of symptoms, each of them occurs with a high probability given the disease. The
MAP joint assignment for the disease and the symptoms might be higher for the
second disease, but not for the first one. Hence, It is more desirable to find the most
likely assignment of the disease variable only, given the symptoms. The marginal
MAP answers this type of queries, given a subset Y of random variables (disease),
and an evidence E = e (symptoms):

MAP (Y | e) = arg max
y

P (y | e)
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. Let Z = X− Y − E, the marginal MAP computes the following:

MAP (Y | e) = arg max
y

∑
Z
P (Y,Z | e)

. Thus, the marginal MAP contains both the elements of a probability query and
a MAP query.

Inferring answers for these queries is NP-hard in the worst case [KFB09]. Exact
inference is possible for some cases of graphical models. However, for a large number
of graphical models, exact inference is intractable, and only approximate inferencing is
possible.

Learning graphical models involve two tasks: (i) parameter estimation and (ii) struc-
ture learning. For parameter estimation, Maximum Likelihood Estimation can estimate
the values of the parameters θG of the joint probability distribution. It maximizes the
likelihood function L(θG | D), and finds the best parameters that can generate the data
given the graphical model. However, maximum likelihood estimation usually overfits the
data. Bayesian Parameter Estimation is another parameter estimation approach that
defines a prior distribution over the parameters to prevent overfitting [KFB09]. Learning
the structure of the graphical models is explained in [KFB09].
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This chapter discusses the construction and the organization of the Quantity Knowledge
Base (QKB).

3.1 Introduction

The QKB is the semantic space to which we aim to map mentions of quantities. We
constructed the QKB by importing information from freebase, Wikipedia, and other
online sources. The QKB is organized into a simple four-level taxonomy of dimensions,
units, measures, and thematic domains. It supports the mapping of quantity mentions
into triples of 〈measure, value, unit〉. QKB keeps a set of alias names for each measure
as well as conversion rules for each unit to the International System of Units (SI). It
covers different quantities including physical, monetary and also dimensionless quantities
such as ratios, proportions, counts, and scores.

3.2 The QKB Taxonomy

The QKB has a lightweight taxonomy with four types of objects:

Definition 3.1 (Unit). A unit is a quantity of a specific magnitude that serves as a
reference for measuring and comparing similar quantities. In the SI, there are seven
base units: meter, kilogram, seconds, ampere, kelvin, candela, mole; all the other
units are derived from these units.

Definition 3.2 (Dimension). A dimension is a physical measurement of an object.
The primary seven dimensions corresponding to the base units in the SI are length,
mass, time, electric current, temperature, luminous intensity, and amount of sub-
stance. Dimensions have a one-to-one correspondence with units.

Definition 3.3 (Measure). A measure is a concept referring to a certain quantifi-
able aspect of an object or process (e.g., the height of a building, the inflation rate).
A measure can have a physical dimension such as fuel consumption and greenhouse
gas emission or can have dimensionless quantity such as inflation rate and population.

Definition 3.4 (Thematic Domain). A domain is a group of dimensions commonly
used for measuring objects in a certain field such as Mechanics, Heat, Electricity &
Magnetism, Acoustics.

The QKB represents dimensionless quantities with a unit of 1, such as ratios and
counts. In the following sections, we explain the construction of the QKB and describe
its taxonomy.
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3.3 QKB Construction

We automatically import and merge units from different sources. Then, we manually
refine the processed information to remove incorrect objects, merge similar objects, or
add missing information. Hence, the QKB is a high-quality knowledge base for quantity
alignment.

3.3.1 Sources of Information

The lack of a quantity knowledge base to serve our need for mapping quantity mentions
motivated us to combine information from multiple sources. Each of the sources we
consider complements the deficiencies of the other sources. The result is a QKB which
represents the semantic space for mapping quantity mentions. We use the following
sources of information:

Wikipedia

Wikipedia is a free collaborative encyclopedia constructed by the community. In Wikipedia,
the encyclopedic knowledge is arranged into pages, such that each page corresponds to a
single entity. Wikipedia covers physical entities such as persons, locations, organization
as well as concepts such as speed, renewable energy, greenhouse gas. Wikipedia is a
general textual encyclopedia, and therefore, it is insufficient for representing specialized
objects like quantities. At the time of this work, Wikipedia covered the SI base units
such as meter, kilogram, second. However, it had low coverage for the complex units
such as miles per gallon (MPG), cubic meter per kilogram, kilogram per second. Now
Wikipedia contains lists of SI derived units accompanied by their measure and conversion
rules to SI base units. In both cases, the unit information is specified in the text or in
tables. Thus, extraction requires extra effort. For each unit in Wikipedia we extracted
its page title, such as “Kilogram” and “Joule”, as well as its article numerical id.

Freebase1

Freebase is a collaborative knowledge base constructed by the community. It consists
of triples of 〈subject, predict, object〉 (SPO). The objects in freebase are linked to their
corresponding Wikipedia pages through Wikipedia page URL and a title. freebase has
better coverage for units than Wikipedia, but it has lower quality. For each unit, we
extract the following information from freebase: the unit names, abbreviations, freebase
identifier, dimension, the corresponding Wikipedia page title and identifier. Figure 3.1
shows freebase triples for the Gram unit, and the information we extracted from these
triples. Figure 3.2 gives examples of units extracted from freebase.

1freebase.com
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@prefix key: <http://rdf.freebase.com/key/>.
@prefix ns: <http://rdf.freebase.com/ns/>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

ns:m.01x32j1
    ns:common.topic.alias    "Gram (eenheid)"@nl;
    ns:common.topic.alias    "Gramo"@eo;
    ns:common.topic.alias    "Gram (enhed)"@da;
    ns:common.topic.alias    "g"@vi;
    ns:common.topic.alias    "gram"@vi;
    ns:common.topic.alias    "\u0433"@uk;
    ns:common.topic.alias    "g"@uk;
    ns:common.topic.description    "A Gram is a unit of measurement for mass (or weight).  It is 1/1000th  of a 
Kilogram."@en;
    ns:type.object.name    "Gram"@en;
    ns:rdf:type    ns:measurement_unit.mass_unit;
    ns:measurement_unit.mass_unit.measurement_system    ns:m.0c13h;
    ns:measurement_unit.mass_unit.weightmass_in_kilograms    ns:0.001;
    ns:freebase.unit_profile.abbreviation    ns:g;
    ns:freebase.unit_profile.dimension    ns:m.04t9l;
    ns:type.object.key    ns:en.gram;
    ns:type.object.key    ns:wikipedia.en_id.146839;
    key:wikipedia.en    "Grams";
    key:wikipedia.en    "Gramme";
    key:wikipedia.en    "$338D";
    key:wikipedia.en    "Gram";
    key:wikipedia.en    "Grammes";
    ns:common.topic.topic_equivalent_webpage    <http://en.wikipedia.org/wiki/Gram>;

Gram:
    id 01x32j1
    alias    "g", "Grams",                           

"Gramme","Grammes"
    name    "Gram"
    dimension  Mass
    Wiki id   146839
    Wiki title  Gram
    description "A Gram is a unit of ..."
    si_conversion 0.001
    symbol g

Figure 3.1: Example of triples associated with the Gram unit from freebase. The infor-
mation extracted from these triples is shown in the top right corner.

Kilometer Distance In Meters "1000.0"^^<http://www.w3.org/2001/XMLSchema#float> .
Kilometer Measurement SystemInternational System of Units.
Kilometer is-a Unit .
Kilometer is-a Unit of Length .

Bar (Unit Of Pressure)  Pressure in pascals  "100000.0"^^<http://www.w3.org/2001/XMLSchema#float> .
Bar (Unit Of Pressure)  Measurement System  Non-SI units mentioned in the SI .
Bar (Unit Of Pressure)  is-a  Unit .
Bar (Unit Of Pressure)  is-a  Unit of Pressure .

Joule per cubic metre  is-a  Unit .
Joule per cubic metre  is-a  Unit of Energy Density  .

Figure 3.2: Example of units extracted from freebase

United Nations Economic Commission for Europe (UNECE)

We import information from the Codes for Trade published by the UNECE. We im-
port the ISO Country and Currency Codes for monetary quantities, and the Codes for
Units of Measurement used in the international trade for other quantities. For each unit,
we extract the following information: sector (i.e. mechanics and acoustics), dimension,
name, symbol (i.e kg and m2), synonyms, conversion factor to SI units, UNECE code.
Figure 3.3 shows an example of unit information organized in an excel sheet from UN-
ECE. We extract the dimension(s) from the “Quantity” column, and the name of the
unit from the “Name” column. We extract the synonyms from the description column
when it is given.
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Sector Quantity Common Code Name Conversion Factor Symbol Description

Space and Time length, breadth, height, 
thickness, radius, radius 
of curvature, cartesian 
coordinates, diameter, 
length of path, distance

MMT millimetre 10⁻³ m mm

Mechanics mass KGM kilogram kg kg A unit of 
mass 
equal to 
one 
thousand 
grams.

Mechanics pressure, normal stress, 
shear stress, modulus of 
elasticity,shear modulus, 
modulus of rigidity, bulk 
modulus, modulus of 
compression

BAR bar [unit of 
pressure]

10⁵ Pa bar

Nuclear 
Reactions and 
Ionizing 
Radiations

energy fluence 1 joule per 
square metre

J/m² J/m² Synonym: 
joule per 
metre 
squared

Figure 3.3: Example unit facts from UNECE: Revision 12 Recommendation 20 for 2016

3.3.2 Data Integration

We extract the units from freebase and UNECE codes for trades. We combine the units
from both sources using exact string matching of the units’ name(s). Then, we used
the Wikipedia identifier in freebase to link each unit with the corresponding Wikipedia

page. We aggregate the information from these sources and create a single record for
each unit, dimension, measure, and domain. After that, we extract from Wikipedia all
the concepts related to each unit as follows:

• Concepts: We extract all pages corresponding to non-entities from Wikipedia. We
identify these concepts as the Wikipedia pages that are not included in the Yago

knowledge base, because Yago only contains physical entities. Then, we filter non-
concept pages, using the category of the page; First, we identify the category of the
page; Second, we extract its parent category from Yago simple taxonomy; Third,
we filter out pages under certain categories, such as physical entities and artifacts.
Finally, we manually inspect the concepts and remove pages that follows a certain
pattern, such as page titles containing “book” or “album”.

• Table Headers: We identify columns with numerical content from Wikipedia tables.
Then, for each column, we extract its header and hyperlinks to other Wikipedia

pages. Each Wikipedia table has a unique identifier and is attached with a specific
Wikipedia page. We identify each header and hyperlink by its table, row, and
column.

• Column Content: We extract hyperlinks to other Wikipedia pages form numerical
columns’ content. We identify each hyperlink with its table, row, and column.
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3.3 QKB Construction

• Co-occurrence: We collect co-occurrence statistics of pages from the hyperlinks we
obtained from the tables. We collect three types of co-occurrence statistics: (i)
same-table, for pages co-occurring on the same table, (ii) same-column, for pages
co-occurring on the same column, and (iii) same-row, for pages co-occurring in the
same row.

• Unit-Concepts Co-occurrence: We identify the subset of co-occurrence statistics
corresponding to a unit-concept relation.

As a final step we merge a list of currencies from the UNECE codes for trades to the
QKB.
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4 Equity: Semantically Annotating Web
Tables and Surrounding Context

4.1 Introduction

4.1.1 Motivation

The Web contains a wealth of structured but schema-free data in the form of HTML ta-
bles. These are manually created by knowledgeable users who want to share information—
about music, food, car companies, renewable energy, traffic statistics etc. The advent
of cloud-based editing and publishing tools (e.g., Google Sheets and Fusion Tables, Mi-
crosoft Excel Online) makes it even easier for users to post such content on the Internet.
Likewise, a huge amount of tabular data exists within enterprise intranets, typically
created with spreadsheet software.

There is a great opportunity in comparing and combining multiple tables, towards
analytic insight. However, these tables are typically created in an ad-hoc manner, to be
shared with human users. And the absence of schemas and, even more, the diversity and
potential inconsistency of terminologies among different tables (by different users) makes
such data fusion steps impossible—if desired to be automatic—or extremely tedious—if
carried out manually. The vocabulary mismatch across tables has several dimensions:

• Names in table headers typically denote classes (e.g., car model) or general concepts
(e.g., CO2 emission), but are chosen ad-hoc on a per-table basis.

• Names in cells of the table body often denote individual entities (e.g., Tesla—the
car maker, Musk—its CEO, Model S—one of Tesla’s models), but the entity names
are highly ambiguous.

• Other cells contain quantities such as financial measures (e.g., revenue in USD),
physical measures (e.g., power in kW or energy consumption per 100 km in kWh),
or plain numbers denoting ratios, temporal changes, ratings, etc. The encodings of
values and their units can vary heavily across tables (e.g., $1 bn vs. 1000m USD
for revenue, MPG vs. l/100 km for fuel consumption).

Example: Table 4.1 shows a typical example of a Web table, about environment-
friendly cars in the U.S. If we want to compare this data to a table about these (and
other) cars in Europe, we face huge heterogeneity issues regarding headers (Manufacturer
vs. Company), entities in cells (Toyota Prius Eco vs. Prius Model 2016) and quantities
in cells (MPGe vs. kWh/100km). This table is taken from a Wikipedia article; tables
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Table 4.1: Example Table: Green Vehicles Comparison
Vehicle Manu- Class GHG Tailpipe EPA Fuel Annual

facturer emissions (1) emissions Economy Fuel
(g/mi
of CO2)

combined (MPG) Cost

Toyota Prius phev Toyota Hybrid electric 61 lb CO2 133 95 MPGe
( [29kWh+0.2 gal]
/ 100 mi)

$600.00

Toyota Prius Eco
All years, gasoline
fuel

Toyota Hybrid electric 51 lb CO2 178 50 ( 21.25 km/li ) $600.00

BMW i3 All years,
all fuels BMW Electric car 54 lb CO2 0 124 MPGe

( 27kWH/100mi )
<550$

Tesla Model S
( 60/85 kWh bat-
tery )2013 Award

Tesla Electric car 54 lb CO2 0 95 MPGe
( 35kWH/100mi )

$700.00

Chevrolet Volt
2011 Award GM Plug-in Hybrid 61 lb CO2 81 98 MPGe

( 35kWh/100mi )
$800.00

Bolloré Bluecar
Cecomp Electric car 15.2

kg/100km
0 NA 80 e/mo

(1) measured per 100 mile.

“from the wild”, appearing in user’s homepages or posted to social media, are an even
greater challenge for proper interpretation.

4.1.2 Problem Statement

In order to make better sense and enable re-use of ad-hoc tables, we want to canonicalize
their headers and cells: link classes and concepts to a taxonomic catalog or simply to
Wikipedia articles, disambiguate entity names onto uniquely identified entities registered
in a knowledge base (KB), and map quantities into a complete and normalized represen-
tation with easily interpretable value and unit. This chapter addresses the problem of
linking tables and surrounding text to a KB, with emphasis on making sense of entities
and quantities.

Prior work and its limitations: While entity linking (and so-called Wikification) from
text to knowledge bases has received wide attention (see [ERD, SWH15, URNN+15] and
references given there), there is fairly little work on semantic annotation and linkage of
Web tables. The first work on lifting Web tables to “first-class citizens” for search
engines, by Halevy et al. [CHM11], solely aimed at indexing for searchability and did
not pursue any form of canonicalization. The seminal work on semantic linking for
table cells by Sarawagi et al. [LSC10] devised a probabilistic graphical model to map
classes, relations and entities to a knowledge base. The resulting accuracy was in the
order of 80%, and the method has high computational complexity. The recent work of
Bhagavatula et al. [BND15] improved accuracy above 95%.

None of these prior works considered quantities in tables.

Sarawagi et al. [SC14] addressed quantities, but focused on the specific tasks of
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searching with numerical values and extracting numerical relations from text [MMM+16].
Fully canonicalizing tables so that they can be compared and joined has been out-of-
scope. The work by Chakrabarti et al. [YGCC12] developed table-to-table matching
methods, based on entity augmentation, for the purpose of searching Web tables. In
their follow-up work [ZC13] the matching problem for a table corpus is extended to
consider also numeric attributes. Although this work supports some form of comparing
and combining tables, full canonicalization where all cells are mapped to semantic items
in a knowledge base has not been considered.

4.1.3 Proposed Solution

Our approach is inspired by this prior work, but goes beyond their settings in several
ways:

• We completely canonicalize entities and quantities (as well as classes and concepts).

• We exploit the textual context that usually surrounds a table and jointly link
names and values from both table and text. For example, Table 4.1 appears in
a page with the text shown in Figure 4.1. This allows us to harness semantic
redundancy and richer features.

• We devise an efficient algorithm for fast processing of input tables, with the goal
of supporting analysts in a responsive manner.

Our Approach: Probabilistic graphical models like Markov Random Fields (MRF’s,
aka. CRF’s when inference is focused on conditional probabilities) are a most natural
candidate for capturing the interdependencies in the potential linking targets of different
entities, quantities, classes and concepts. Therefore, we conceptually start with a judi-
ciously designed MRF model. To avoid the bottleneck of explicitly labeled training data,
we employ distant supervision by drawing semantic relatedness weights from a knowl-
edge base (with weights mined from Wikipedia links, unrelated to tables). We merely
need a small set of annotated tables for tuning six hyper-parameters. To escape the
high complexity of MRF/CRF inference (typically via MCMC sampling), we harness a
theorem from [Coh10] and construct a regular weighted graph from the MRF such that,
under certain conditions, random walk (RW) algorithms closely approximate marginal
probabilities for the MRF. Random walks can be implemented very efficiently. Working
out the details of this MRF-to-RW reduction is one of our key contributions. Our end-
to-end solution for the table canonicalization problem is implemented in a system called
Equity (Entity and quantity in tables).1

Contributions: We present in this chapter the following contributions:

• a comprehensive, distantly supervised MRF model for canonicalizing ad-hoc ta-
bles, handling classes, concepts, entities and quantities in both table cells and
surrounding text;

1 More on this project, including code and experimental data, can be found at
www.mpi-inf.mpg.de/equity.
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• an efficient algorithm, based on random walks, for computing high-quality solu-
tions;

• experimental results with a diverse set of Web tables that demonstrate the high
accuracy of our method.

The most efficient cars on the market are all electric cars. In fact, every electric car on the market is
more efficient than even the most efficient conventional hybrid car (the Toyota Prius). Some of them
are more than twice as efficient. As you scroll through the list below, note that the Prius has a MPG
rating of 50 while Model S has a MPGe of 95. If you are not familiar with MPGe, it is a rating created
by the EPA to determine the relative efficiency of an electric car compared to a gasoline car. MPGe
is generally good for comparing electric cars to conventional gasmobiles and hybrids.

Figure 4.1: Text Snippet from context of Table 4.1

4.2 Related Work

4.2.1 Entity Linking:

There is ample work on detecting and disambiguating entities that appear in text doc-
uments; [SWH15] is a recent survey on this topic. Some of the prominent approaches
map to Wikipedia (e.g., [MW08, RRDA11]), thus covering also classes and concepts,
whereas others strictly focus on individual entities with DBpedia, Yago or Freebase as
their point of reference (e.g., [HYB+11, MJGSB11]). The best-performing methods typ-
ically combine a variety of signals and techniques like pair-wise relatedness of entities
[Cuc14, PF14], refined context models [LSRP15], graph algorithms [HYB+11], and ran-
dom walks [GB14]. The Equity system adopts some of these techniques, embedding
them into its generalized framework for linking mentions in tables to both entities and
quantities.

Quantity Extraction

Numeric attribute values and numeric expressions in natural-language text have
been considered by work on information extraction and knowledge fusion [DGH+14,
MMM+16, RVR15, SA15]. This line of research is related to our stage of quantity
mention detection, but does not address the issue of canonicalizing quantities.

Table Search and Matching

Starting with the seminal work of [CHW+08, CHM11, MAAH09], there is growing re-
search on Web tables and spreadsheets, with the goal of searching table contents, match-
ing tables against each other and inferring table header semantics [SC14, VHM+11,
YGCC12, ZC13]. Linking table cells to a KB is of no or minor concern in these works.
Sarawagi et al. [SC14] and Zhang et al. [ZC13] deal with quantities in tables, using com-
putational expensive techniques like MCMC inference for probabilistic graphical models.
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Table Canonicalization

Closest to our work is the prior research of table canonicalization and quantity
Queries [LSC10, SC14, MFJ13, BND15]. Limaye et al. [LSC10], Mulwad et al. [MFJ13]
and Bhagavatula et al. [BND15] pursued the same goal as our work, but did not consider
quantities at all. Also, these methods use expensive inference algorithms and partly rely
on extensive training data; our work avoids both of these potential bottlenecks. Ritze
et al. [RLB15] addresses the linking of table headers and rows to concepts and entities
in DBpedia, but focuses on small and narrow HTML tables.
Sarawagi et al. [SC14] specifically addressed quantities in tables. It developed a
grammar-based technique for column annotation and a supervised classifier for inferring
units of columns with numeric values. However, this was driven by the task of searching
a heterogeneous table corpus, without resolving the heterogeneity—thus leaving out the
task of linkage to a comprehensive KB.

MRF/CRF and Random Walks

Our approach builds on insights from the work of W. Cohen [Coh10] about the connec-
tions between MRF inference and random walk algorithms. Cohen has developed this
further into a general framework for reasoning with random walks [WMLC15].

4.3 Model and System Overview

This section presents the formal problem definition and introduces important notation.

4.3.1 Problem Input

The input to the Equity system is:

• A table T with m+1 rows, numbered 0 . . .m, and n+1 columns, numbered 0 . . . n;
where row 0 is the header row. We use mij to refer to the mention in table cell
(i, j), i.e., in row i and column j. The set of all mentions in table T is denoted as
MT.

• A surrounding context with ν mentions mk (k = 1, . . . , ν). The context is extracted
from the web document’s title and the table’s surrounding text and caption. The
set of all mentions in the context is denoted as MX.

We use M = MT∪MX to refer to the set of all mentions in both table and context. We
distinguish between two types of mentions. A numerical mention is a number, possibly
accompanied by a unit. It represents a quantitative measure such as ’27 kWh/mi’. All
other mentions are referred to as string mentions. They are likely to refer to entities
(e.g., GM or General Motors), classes (e.g., car manufacturers), or concepts (e.g., GHG
emission).
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Equity currently focuses on tables with the following common structural properties: The
table header contains string mentions for classes and concepts. If the header is a class,
then the non-header cells in the same column contain instances of the class, i.e., entities,
as illustrated by the Manufacturer column in Table 4.1. If the header is a concept, then
the non-header cells in the column contain quantitative measures, e.g., the Annual Fuel
Cost in the example. As a result, Equity distinguishes between the following six sorts of
mentions based on mention type and location: string/cell, string/header, string/context,
numeric/cell, numeric/header, numeric/context.
Note that Equity can easily handle “transposed” tables where the header is not in row
0, but column 0, by working with the transpose of T .

4.3.2 Knowledge Base

The space of semantic targets to which we aim to map mentions in a table and its
context is given by one or more knowledge bases (KB’s). For individual entities and
for classes (i.e., semantic types), we use Yago (yago-knowledge.org), which is one-to-
one interlinked with Wikipedia for entities, and also connects Wikipedia categories with
WordNet synsets for its extensive class hierarchy. For general concepts—abstractions
that are neither classes nor entities (e.g., love, universe, number theory)—Yago is less
suitable. In that case targets are Wikipedia articles (which do not have counterparts in
Yago).
For quantities—the most challenging kind of targets— we use our QKB introduced in
Chapter 3.

4.3.3 Algorithm Objective and Output

We are interested in a (potentially partial) mapping Ψ from the set M of mentions to the
set S of semantic items. Among all possible mappings, we aim to find one where (i) each
mention is mapped to the “best” semantic target and (ii) the mapping is “consistent”
with constraints implied by the table structure. These intuitive ideas will be formalized
in the next sections. Clearly, there can be tension between the two goals that Equity
has to address. For instance, given only the string “Tesla”, the best match might be the
KB entry for the person Nikola Tesla. However, in the context of Table 4.1, the location
of this mention in a column of car manufacturers suggests a reference to the car maker.
Similar to the mentions, Equity also distinguishes between different sorts of semantic
items: entities, classes, concepts and quantities.
Equity should produce the following mappings for sample mentions in Table 4.1:

• Mention m03=“GHG emission” is mapped to concept Greenhouse gas.

• Mention m11=“Toyota” is mapped to entity Toyota (the company).

• Mention m25=“50” is mapped to the physical measure EPA Fuel Economy with
value 50 and unit Miles Per Gallon.

If a mention has no proper item in the KB, Equity should map it to Null.
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Candidate Graph
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KB with entities, quantities, classes, concepts and relatedness statistics

Figure 4.2: System Architecture of Equity

4.3.4 System Architecture

Figure 4.2 depicts the major components of the Equity system. We employ standard
preprocessing for extracting a table and its context from a web page, and for shallow
NLP such as part-of-speech tagging and coarse-grained typing of names—both via the
Stanford NLP tools based on trained CRF’s [FGM05]. Note that the typing by the
Stanford NER tagger merely produces labels like Person, Location, Organization, Date,
Money and Misc, for text spans that likely denote entities or values of these kinds.
Equity first detects mentions in both table cells and context. This was partly done by
the Stanford NER tagger already, but we apply additional regular expressions over token
types to detect more mentions. Especially for quantities this is often decisive to ensure
high recall.
To identify semantic item candidates, we run a light-weight form of Named Entity Dis-
ambiguation. This is a specifically configured variant of AIDA [HYB+11] using a simple
popularity-based prior only and giving it only the mention itself (without any context).
As the mention boundaries from the previous stage are not necessarily correct, we re-run
AIDA with different choices of mention substrings as input. From the output, Equity
keeps the top candidate entities based on AIDA’s confidence. For classes and concepts,
which are not supported by AIDA, we perform simple string lookups against Yago and
Wikipedia to generate candidates. For quantities, we match the input mentions against
the alias names and, when applicable, regular expressions, for the measures in our QKB.
The point of all this is to generate sufficiently many reasonable candidates. Hence this
step does not have to be highly precise.
From the identified semantic items, we construct a candidate graph. This graph is
constructed so as to approximate a full-fledged MRF with joint inference (see next
section). Here we harness the KB for distant supervision, by using its precomputed
relatedness scores as input for setting edge weights. These relatedness (aka. coherence)
values are precomputed from Wikipedia links. We also apply some heuristic pruning
when edge weights are negligibly small.
Finally, we perform random walks over the graph and identify, for each mention, the
semantic item that has the highest stationary probability.
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4.4 Probabilistic Graphical Model

We start with a very natural approach and cast the problem of determining the semantic
targets for the given table mentions into a probabilistic model with the following random
variables:

• Xi,j : the observed surface form of a mention in table cell (i,j).

• Xk: the observed surface form of the k-th mention in the context of the table.

• Yi,j : hidden variable for the semantic target corresponding to the mention in cell
(i,j).

• Yk: hidden variable for the semantic target corresponding to the k-th mention in
the table context.

The X-variables range over the set of all possible strings, while the Y -variables range
over the set of possible semantic targets S in the KB.
The desired mapping Ψ from the set of mentions M to the set of semantic items
S is determined by inferring the Y -variables from the given X-variables. We pro-
pose to use Markov Random Fields (MRF), which have been successfully employed
for identifying entities and types in tables [LSC10] and for inference problems in
image processing [BKR11] due to their ability to efficiently represent spatial coher-
ence relationships between pixels. Tables are similar to images in the sense that ta-
ble structure implies implicit coherence relationships. For convenience, we introduce
H = 〈X0,0, . . . , Xm,n, X1, . . . , Xν , Y0,0, . . . , Ym,n, Y1, . . . , Yν〉 to refer to the vector of all
random variables. Let Hi refer to the i-th entry in H, i ∈ {0, 1, . . . , 2(m+1)(n+1)+2ν)}.
In addition to H, the MRF is defined by a set of potential functions Φ, which capture
relationships between the random variables. A pairwise relationship between Hu and
Hv is modeled by function Φu,v, which maps each pair of values from the domains of
Hu and Hv, respectively, to a real number. For the sake of readability, we will also use
Φ(Hu, Hv) to refer to Φu,v. Similarly, the relationship between three random variables
Hu, Hv, and Hw would be modeled by potential function Φu,v,w, mapping a 3-tuple of
values from the respective domains of the three random variables to a real number, and
so on. Let EΦ denote the set of sub-vectors of H over which Φ is defined. Then the
MRF represents joint probability distribution

Pr(H) =
1

Z

∏
e∈EΦ

Φe,

where Z serves to scale the values so that they are true probabilities. A crucial design
decision for an MRF is to determine EΦ, i.e., which random variables to connect through
a potential function.

4.4.1 Potential Functions

We limit all potential functions to be “pairwise”. In addition to tractability of infer-
ence, this simplifies specifying the functions themselves. Intuitively, a pairwise potential
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Figure 4.3: MRF model for a hypothetical table with 3 rows and 3 columns, whose
context contains 2 mentions. For the Y -variables, not all edges of the fully
connected subgraph are shown to reduce clutter.

function couples two random variables from H based on a relationship induced by table
structure and content. The first family of potential functions captures the generic prop-
erty that the surface form of the mention is closely related to the underlying semantic
meaning.
Mention-target coupling: This dependency is represented by the blue dashed line in
Figure 4.3. The corresponding family of potential functions is defined as φ1(Xi,j , Yi,j),
for all 0 ≤ i ≤ m and 0 ≤ j ≤ n. Note that the individual functions in this family will
differ depending on the sort of the mention and the semantic target (see Section 4.5.3).
Similarly, the relationship between surface form and corresponding semantic target for
the table context is captured by potential functions φ2(Xk, Yk), for 1 ≤ k ≤ ν. The next
families of potential functions capture relationships induced by the table structure.
Header-cell coupling: This dependency is represented by the vertical black dotted
line in Figure 4.3. It reflects that the header determines the information stored in a
column. Equity captures this with a family of potential functions between the random
variable for a header mention and the cell mentions in the same column: φ3(X0,j , Xi,j),
for i > 0.
Same-row coupling: This dependency is represented by the horizontal orange solid
lines in Figure 4.3. It models that the cells in a row contain data for a certain object
represented by the row, hence are closely related. Formally this is encoded with potential
functions for each pair of random variables for mentions in a row: φ4(Xi,j , Xi,k), for i > 0
and j 6= k.
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Same-column coupling: This dependency is represented by the vertical green solid
lines in Figure 4.3. Since all entries refer to the same “type” of information determined
by the header, each cell’s mention is closely related to the others in the same column.
The corresponding family of potential functions is φ5(Xi,j , Xk,j), for i > 0, k > 0, i 6= k.
The last potential function families model global coherence properties.
Same-value coupling: This dependency is represented by the yellow long-dashed line
in Figure 4.3. It captures the notion that given the specialized nature of a table and its
context, occurrences of the same surface form are likely to refer to the same semantic
target. This is modeled by potential functions that connect the random variables for
all pairs of mentions that share the same surface form. One connects context mentions
to table mentions: φ6(Xi,j , Xk), for all mij = mk. The other connects table mentions
with each other: φ7(Xi,j , Xa,b), for all mij = mab. This could easily be relaxed to
a coupling based on “similar”, instead of identical, surface forms, e.g., to match ’MS
Research’ with ’Microsoft Research’ or numbers such as ’1.1 million’ and ’1,101,925’.
Candidate-candidate coupling: This dependency is represented by the blue solid
line in Figure 4.3. It is motivated by the fact that all semantic targets for mentions in
table and context should refer to a common topic, hence should be coherent. The cor-
responding families of potential functions are φ8(Yi,j , Ya,b), φ9(Yi,j , Yk), and φ10(Yc, Yk),
for all (i 6= a) ∨ (j 6= b), c 6= k.

4.5 MRF and Random Walks

Cohen [Coh10] proved that marginal probabilities in an acyclic “pairwise”2 MRF can be
computed (almost) exactly through random walks followed by minimal post-processing.
The proof includes the construction of an ordinary-graph analog of a given MRF, on
which the random walks are performed. Even though the MRF for a table will usually
contain cycles, Cohen’s construction can still be applied to it. Cycles merely imply that
equivalence between marginal probabilities in the MRF and the result of the random
walk computation in the ordinary-graph analog might not hold any more. However, we
argue—and confirm empirically—that the ordinary-graph analog still provides a good
starting point for a random-walk based approach.
We now provide a summary of Cohen’s approach, emphasizing intuition over detailed
formalisms (for details, see [Coh10]). Given an MRF, its ordinary-graph analog is con-
structed as follows:

• For each random variable V and each possible value v ∈ V , create a node nv.

• Two nodes nv and nw, v ∈ V , w ∈ W , V 6= W , are connected by an undirected
edge of weight φV,W (v, w), if and only if V and W are connected by an edge in the
MRF.

• For each leaf variable L, i.e., variable that is connected to only one other variable in
the MRF, there is an additional anchor node aL. It is connected by an undirected
edge of weight 1 to each node nl, l ∈ L.

2This is an MRF where all potential functions are defined over pairs of random variables.
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Figure 4.4: Ordinary-graph analog for a fragment of the MRF in Figure 4.3. For each
connection of two random variables in the MRF, all values of the first are
connected to all values of the second in the ordinary-graph analog. In the
example, Y0,0 ranges over three values; Y1,0 and Y2,0 each range over two
possible values; and for the X-variables the only value is the mention given
in the table.
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• There are no other nodes or edges.

Figure 4.4 illustrates this construction for a fragment of the MRF in Figure 4.3. To
simplify notation, we will simply say “node v” to refer to “the node in the ordinary-
graph analog that corresponds to value v”.
In the case of an acyclic MRF, the marginal probability Pr(V = v) for random variable
V can then be computed (almost) exactly using Personalized PageRank [Hav03, LM06].
This is a random walk algorithm with random restarts from a single designated start
node. Let {v1, v2, . . . , v|V |} be the set of possible values for random variable V . Cohen’s
proposed approach is to execute Personalized PageRank |V | times, each time for a differ-
ent vi ∈ V as the start node. Let αs be the product of the PageRank values of all anchor
nodes for the personalized PageRank execution with start node vs. Then Pr(V = vs) is
obtained as αs∑|V |

i=1 αi

.

4.5.1 Reduced Acyclic MRF

We create a reduced version of the MRF by removing edges until the remaining graphical
model is acyclic. For clarity, we will refer to the MRF as defined in Section 4.4.1 as
full-MRF ; and to its acyclic version as reduced-MRF. More formally, reduced-MRF is
the maximum spanning tree of the full-MRF, which Equity computes using Kruskal’s
algorithm. Ideally we would like to remove edges that have little impact on the marginal
probabilities of the Y -variables. This impact is determined by the potential functions,
which are difficult to learn due to lack of labeled training data. We therefore resort to
a heuristic based on priorities of edge types.
Edge types are defined as in Section 4.4.1. Since surface form has a strong impact on
the choice of semantic target, all mention-target edges have highest priority and will
never be removed. For the other five edge types, Equity explores all 5! = 120 possible
sort orders of their priorities. Edges of the same type are prioritized based on the sum
of the individual weights of the corresponding edges in the ordinary-graph analog (see
Section 4.5.3). The winner is selected based on performance on a small validation set of
labeled tables.
This approach removes a large fraction of edges. We also explore an alternative that
does not remove edges from full-MRF, but is computationally more expensive.

4.5.2 Modified Construction for Full-MRF

Depending on table structure and content, full-MRF might not have any leaf variables.
This in turn implies that the corresponding ordinary-graph analog might have no anchor
nodes, and therefore the computation using PageRank values of anchor nodes would be
undefined. (Cohen did not encounter this problem as he only considered acyclic MRF,
which are guaranteed to have leaf variables.) Even if there are leaf variables, as in the
case of reduced-MRF, the meaning of the product of the PageRank values of the anchor
nodes is not clear. Hence we have to re-think (1) the choice of start nodes for personalized
PageRank and (2) how to use the PageRank values to select the best semantic target
for each Y -variable.

44



4.5 MRF and Random Walks

Due to their unclear role for MRF with cycles, Equity works with a slightly modified
ordinary-graph analog where all anchor nodes and their adjacent edges are removed. On
the resulting graph, the best semantic target for a random variable Yi,j with candidate
set {y1, y2, . . . , y|Yi,j |} is determined by executing personalized PageRank with start node
mij , i.e., the node for the mention in table cell (i, j). Let βk refer to the PageRank value
of node yk. Equity returns the candidate yw with the largest β-value and estimates its
probability of being the right answer as βw∑|Yi,j |

k=1 βk
. In general, the semantic candidate

for table cell (i, j) is determined by (1) running personalized PageRank with starting
node mij and (2) selecting that node yi,j ∈ Yi,j with the highest PageRank among all
semantic target candidates for cell (i, j).
The approach is motivated by the following intuition. Since mention node mij is directly
connected to all semantic candidates for Yi,j , starting there corresponds to a prior :
greater edge weight results in correspondingly greater PageRank mass. The remainder
of the graph then accounts for the effect of the table context. As closely related values of
connected random variables will have edges of greater weight, the candidate that is well-
connected to, and hence more coherent with, this context receives a greater PageRank
value from those other edges.

4.5.3 Edge Weights

So far we have only specified the graph structure for personalized PageRank computa-
tion. Now we turn our attention to the edge weights. Instead of attempting to first
learn the potential functions and then convert them to edge weights, we apply distant
supervision using the KB and co-occurrence patterns in Wikipedia to determine those
weights directly. Edge weights are defined by edge type. Each is the product of a type-
specific weight vector and a feature vector, i.e., for an edge of type i connecting values
u ∈ U and v ∈ V of random variables U and V , it is defined as

wT
i fi(u, v).

Due to the small number of labeled training cases, the number of parameters learned from
these data has to be small. Hence for most edge types, the vectors are one-dimensional.
We constrain all multi-dimensional weight vectors to only contain equal values. As a
result, we only have a single hyper-parameter for each edge type. The hyper-parameters,
each with a value between 0 and 1, are learned from a separately withheld and randomly
selected validation set of labeled training tables. Equity performs a grid search to find
the parameter combination with the best performance on the validation data. In the
following, we introduce the edge weight features.
Mention-target edges connect a surface form to a semantic candidate item. For string
mentions, we build on previous work and use features based on string similarity [LSC10]
and popularity statistics from Wikipedia links [HYB+11]. However, no previous work
considered the relationship between surface form and semantic target for quantities.
Depending on the sort of mention and semantic candidate, we use the following 1-
dimensional feature vectors:
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• mij is a string mention; Yi,j = c, where c is a concept or class: Based on the
intuition that surface form and semantic target are often textually similar for
concepts and classes, we use the Jaro-Winkler distance between mij and c.

• mij is a string mention; Yi,j = e, where e is an entity: We use the popularity-based
prior that was found most effective for named entity disambiguation by Hoffart
et al. [HYB+11]. For string mention mij and candidate entity e, it is defined as
the number of Wikipedia links with anchor text mij that refer to e, divided by the
total number of Wikipedia links with this anchor text.

• mij is a numerical mention; Yi,j = q, where q is a quantity: We propose a new
feature based on links in Wikipedia tables that refer to Wikipedia articles about
units of measurement. Let m′ij be the unit component of mij , i.e., the leftover after
removing the magnitude. Then the feature is defined as the number of links in
Wikipedia tables that have anchor text m′ij and refer to a unit that is associated
with quantity q, divided by the total number of links in Wikipedia tables with this
anchor text and referring to any unit of measurement.

Header-cell edges: Given header and cell mentions m0j and mij , the 1-dimensional
feature vector contains the number of Wikipedia tables where these surface forms co-
occur in header and non-header cell, respectively, of a column.
Same-row edges: Given same-row mentions mij and mik, the 1-dimensional feature
vector contains the number of Wikipedia tables where these surface forms co-occur in
any row.
Same-column edges: Given same-column mentions mij and mkj , the 1-dimensional
feature vector contains the number of Wikipedia tables where these surface forms co-
occur in any column (excluding the header).
Same-value edges: We use a 1-dimensional feature vector with value equal to the
Jaro-Winkler distance between the two surface forms.
Candidate-candidate edges: Equity uses a relatedness feature based on Wikipedia
link co-occurrences. The relatedness of two semantic items is computed as the number of
Wikipedia pages in which they co-occur, normalized so that the maximum value is equal
to 1. In case of edges connecting a class and entity semantic targets in the same column,
the weight of the edge is updated by the relation between the class and the entity’s
classes. That is, the edge is weighted using a mixture of the candidates’ relatedness and
the classes overlap measures.

4.6 Implementation

4.6.1 Mention Recognition

For detecting mentions in tables and their contexts, we use the state-of-the-art Stanford
NER tagger [FGM05]. However, this tool was designed for natural-language sentences
as input and shows low recall on tables. Hence we developed an extended mention
recognition system as part of the Equity system. Our tool is centered on a rule-based
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4.6 Implementation

classifier that uses regular expressions to detect occurrences of classes, concepts, entities
and quantities in tables and their surrounding text. The major steps are as follows.
Classify columns: A column can be classified as numerical, textual or mixed. We

run our regular expression classifier on each cell of the column, and then use majority
voting.
Detect concepts and classes: We annotate the headers of numerical columns as

mentions of concepts, and the headers of textual columns as mentions of classes. For
mixed columns we base the decision on the majority of their cells.
Detect quantities: We use regular expressions to identify mentions of quantities, and

to decompose them into value and unit.
Detect entities: We use the Stanford NLP parser to detect all possible noun phrases

in a textual cell and mark them as entity mentions.
Enrich mentions: We further augment mentions in a cell with all sub-strings of

the detected noun phrases. We repeatedly call the text-based entity-linking tool AIDA
[HYB+11] with each sub-string as the sole input, to determine candidate entities. Then
we filter the mention candidates, to select the maximum-length non-overlapping men-
tions with non-null candidates.

4.6.2 Candidate Search

Quantity Candidates: We start by finding candidates from our QKB for the unit part
of the quantity mention. However, the unit is not always included in the cell. Therefore,
we perform an expansion search for quantity candidates. We look for possible units, first
in the cell, then in the column header, and eventually in the table context. Moreover,
for quantities that do not have units, such as votes or scores, we use the column header
to identify the measure.
Entity Candidates: We use the AIDA web service3, to retrieve a set of candidate

entities for each mention. The input is a set of possible mentions, and the output is a
set of top-k candidate entities based on a simple popularity prior.
Class Candidates: We use Locality Sensitive Hashing (LSH) to retrieve candidate

classes for mentions; then we filter them based on Jaro-Winkler distance between class
name and mention.
Concept Candidates: Similar to the previous case, we use LSH followed by a filtering

step using Jaro-Winkler distance. Furthermore, we add candidate measures from the
QKB as candidates, as some column headers have labels like frequency, width or height.
We ensure that the candidate units for the column cells are compatible with the candidate
measure for the column header when we perform the final inference over the graph.

4.6.3 Random Walk Algorithm

As explained in section 4.5, we construct 2 types of graphs: one for the full-MRF and
one for the reduced-MRF. We re-scale all edge weights by multiplying them with the
hyper-parameters for the respective edge type. We use the power-iteration technique to

3https://gate.d5.mpi-inf.mpg.de/aida/service/disambiguate
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compute the stationary vector of random walks with restart on the graph as described in
Section 4.5. We check convergence based on the relative ordering of the semantic items,
following [Hav03].

4.7 Experimental Results

We evaluated the effectiveness of the Equity system on a systematically sampled and
fully annotated collection of 69 Web tables (with context). Equity is also compared to
previous work on three larger collections with up to 6,085 tables.

4.7.1 Setup

Dataset: We build a corpus of web tables from two different sources: the Google Tables
API4 and the Wikipedia tables corpus from [BND15]5. Note that fully annotating a
table with the ground-truth for all mentions is a labor-intensive task requiring specialist
knowledge. Hence we opted for annotators from our lab and aimed for a sampled and
relatively small, but fully annotated collection. We wanted to cover a variety of domains:
environment, finance, sport, health and politics. To get this diversity, we used a handful
of keywords per domain to search for tables from the two sources and then randomly
sampled medium-sized tables from the search results. In total, we obtained 69 tables
this way: 63 from Wikipedia articles and 6 from various web sites. Table 4.2 shows
statistics about the test dataset.

Table 4.2: Statistics for Test Data Collection

Average Number per Table Various Websites Wikpedia

# rows 13.57 10.86
# columns 5.00 6.00
# numerical columns 1.57 3.02
# entity mentions 17.38 30.28
# quantity mentions 23.34 29.29
# class & concept mentions 2.28 4.29

Hyper-Parameter Tuning: We used a withheld set of 7 tables (disjoint from the
test data) from a variety of domains (health, finance, etc.), in order to tune the hyper-
parameters of Equity: six weights for different kinds of edges (see Section 4.5.3). We
performed a grid search over 1000 combinations to obtain the best hyper-parameters for
the full-MRF model and, separately, for the reduced-MRF.

4https://research.google.com/tables
5http://websail-fe.cs.northwestern.edu/TabEL/
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Table 4.3: Micro-averaged Precision of Mention Detection

Number of Mentions Micro-average Precision %
Type Table Cxt. All Table Cxt. All

class 109 0 109 62.4 - 62.4
concept 284 0 284 70.1 - 70.1
date 160 165 325 100.0 97.0 98.5
entity 1628 0 1628 49.7 - 49.7
location 221 188 409 98.2 94.7 96.6
money 0 7 7 - 100.0 100.0
organization 116 225 341 85.3 60.9 69.2
percent 19 35 54 100.0 100.0 100.0
person 86 55 141 89.5 56.4 76.6
quantity 2011 272 2283 82.7 58.1 79.8

Total 4634 947 5581 71.5 74.6 72.0

4.7.2 Results

We report and discuss the effectiveness of Equity for mention detection and for mention
linking. Our performance measure is precision, micro-averaged over all mentions of all
62 tables of the test collection. The total number of mentions evaluated is 5,581.

Mention Detection

Table 4.3 shows the precision of the mention recognition stage, broken down into men-
tions in tables and mentions in the contexts (Cxt.) and the total over both.
The Stanford NER Tagger alone was able to detect 1,277 mentions (out of which 1,120
are correct mentions) of the following types: date, location, money, organization, percent
and person—mainly in the context. The Equity mention detector additionally identified
4,304 mentions (out of which 2,898 are correct mentions) of the following types: class,
concept, entity, and quantity. In total, our method discovered 5,581 mentions in tables
and their contexts. The micro-averaged precision is about 72%. Table 4.3 breaks this
down onto the different kinds of mentions. The weak points are mentions of classes and
mentions of entities other than location, organization and person (i.e., the row “entity”
in the table)—mostly products or other artifacts (e.g., movies). On the other hand, we
achieve almost 80% precision for quantities, which is the main target of this research.

Mention Linking

Table 4.4 gives the micro-averaged precision that Equity (in its reduced-MRF configu-
ration) achieves for mapping mentions to semantic items in the KB. We consider only
correctly recognized mentions here, as the errors from the previous stage of mention
detection would lead to trivial follow-up errors. In total, we evaluated 4,018 mentions
at this mention linking stage. Overall, we obtain around 92% precision in linking quan-
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Table 4.4: Micro-averaged Precision of Mention Linking, Considering all Mentions (En-
tities, Concepts, Classes, Quantities) in Table and Context

Number of Mentions Micro-average Precision %
Type Table Cxt. All Table Cxt. All

class 68 0 68 82.4 - 82.4
concept 199 0 199 84.9 - 84.9
date 160 160 320 100.0 100.0 100.0
entity 809 0 809 81.0 - 81.0
location 217 178 395 94.9 96.6 95.7
money 0 7 7 - 100.0 100.0
organization 99 137 236 89.9 95.6 93.2
percent 19 35 54 100.0 100.0 100.0
person 77 31 108 98.7 96.8 98.1
quantity 1664 158 1822 97.5 60.8 94.3

Total 3312 706 4018 92.2 89.4 91.7

tities, entities, classes and concepts. For entities alone we achieved 88%, and for all
kinds of quantities 93%. Table 4.4 shows the break-down for the different kinds of input
mentions. Here, the row “quantity” refers to all numeric mentions excluding those of
type date and money. The latter two are mostly detected by the Stanford NER tagger,
whereas most of the remaining quantity mentions are only detected by our method. The
numbers show that the quantities detected by the Equity-specific method exhibit even
higher precision for mention linking, around 94%. As dealing with quantities has been
the main target of this work, we consider the observed performance as very good. For
linking entity mentions, the precision is well above 90% for location, organization and
person. Similar to the mention detection stage, the remaining kinds of entities—for ex-
ample, products such as car models—are a somewhat weaker point. Precision for these
is around 81% (“entity” row in Table 4.4).

Comparison with Other Systems

Although the specific focus of our work is on quantities in tables, we also performed
comparisons to prior work on entity linking in tables, using various annotated datasets
from these works. We compare two configurations of our Equity system against the
systems proposed in [LSC10] and [BND15], restricting all inputs to entity mentions in
table cells (i.e., no context, no quantities).
Table 4.5 shows the results, for the following datasets, with results for baselines as
reported in the literature:

• web manual [LSC10], a set of 371 web tables with a total of 9,239 mentions,

• wiki links [LSC10] with 6,085 Wikipedia tables containing a total of 131,807 men-
tions, and
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Table 4.5: Entity Linking for Different Datasets, Considering only Entity Mentions in
Tables, but not in the Context.

Micro-average Precision %
Data Set Equity Limaye et al. TabEL

full-MRF red-MRF [LSC10] [BND15]

web manual 86.11 85.11 81.37 89.41
wiki links 96.39 96.24 84.28 97.16
wiki random 83.04 82.98 – 96.17
Equity corpus 84.11 85.36 – –

• wiki random [BND15] with 3,000 randomly selected Wikipedia tables and about
40,000 mentions.

Equity outperforms [LSC10] on all datasets. In comparison to TabEL [BND15], Equity
performs nearly as well on the larger wiki links collection, which has many tables from
prominent Wikipedia articles. On wiki random, on the other hand, Equity is substan-
tially outperformed by TabEL.
The reason is that this dataset contains many tables from the long tail of Wikipedia
with lower curation quality. In particular, these tables contain a substantial fraction
of misleading anchor texts. For example, the mention ‘Oslo’ appears with a link to
‘Bislett Stadium’, and ‘BMW’ is linked to ‘BMW in Formula One’. A supervised learn-
ing method like TabEL can handle such peculiar instances better. Recall that Equity
is designed for coping with quantities and entities together, as opposed to focusing on
entities alone.

4.7.3 Ablation Study

To study the importance of the different edge types in the graph models, we performed
an ablation study where we selectively disabled some of them in both full-MRF and
reduced-MRF. Table 4.6 shows the results on mention linking, limited to entities because
quantities are only annotated in the Equity corpus.
We observe that the reduced-MRF and the full-MRF have almost the same precision
in all configurations. However, the reduced-MRF variant of Equity is much faster (see
below). The results on leaving out specific types of edges show that our methods are
robust. Missing certain cues affects the output quality only slightly. On the other hand,
this also shows that the wiki links corpus, the by far largest of the datasets, is a fairly
easy test case. The other two corpora are rather small; hence there is no final conclusion
yet on the importance of edge types.

4.7.4 Error Analysis

Many of the linking errors we observed are due to the absence of specific measures or units
in our QKB, or caused by very ambiguous column headers. Examples for the latter are
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Table 4.6: Ablation Study on Mention Linking, Considering only Entity Mentions in
Table and Context

Micro-average Precision %
web manual wiki links Equity corpus

full-MRF 86.11 96.39 86.69
red-MRF 85.11 96.24 87.79
full-MRF w/o cand-cand 84.81 96.17 86.63
red-MRF w/o cand-cand 84.81 96.17 87.92
full-MRF w/o table-struct. 84.92 96.22 86.37
red-MRF w/o table-struct. 85.09 96.25 87.86
full-MRF w/o same-value 86.11 96.39 86.69
red-MRF w/o same-value 85.11 96.24 87.79

“η(Observed)” for measuring the thermal efficiency of a heat engine and “Nat.” referring
to nationalities with abbreviations of countries such as “GRE” (for Greece, presumably).
We also observed cases where the column header gives misleading information such as
“Density (area/km2)” while the values in that column indicate population densities in
people/km2. Also, Equity sometimes misclassifies a column as numeric; an example is the
column “Pollutant” with values like “CO2”, “PM10” etc. Conversely, we occasionally
miss out on a numeric column; an example is “Govt.” with numbers referring to a
country’s governments at different periods.

4.7.5 Run-Time Analysis

We implemented the Equity system in Java using a Postgres database as a KB repos-
itory, and measured its run-time on a server with 4×4 Intel Xeon CPU E5-2667 v3 @
3.20GHz cores, setting the maximum memory allocation pool for Equity to 40GB. The
run-times for the reduced-MRF variant of Equity are 15 times faster than those for the
full-MRF. Further analyzing the time spent in different components shows that the dom-
inant factors are (i) SQL calls to fetch candidates and associated statistics from the KB
and (ii) web service calls to obtain auxiliary information from AIDA. Discounting these
components, which could be re-implemented in a much more light-weight manner, the
time to process one table is about 2 seconds on average for the reduced-MRF variant of
Equity. With some code tuning, this could be further optimized.

4.8 Summary

This chapter addressed the task of fully canonicalizing mentions in ad-hoc tables and
their surrounding contexts, by linking mentions of entities, classes, concepts and quan-
tities to a knowledge base. To this end, we devised an MRF model, distantly supervised
by relatedness measures from a KB, then derived a reduced acyclic MRF, and finally
cast the inference over this light-weight model into an efficient algorithm based on ran-
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4.8 Summary

dom walks over normal weighted graphs. Our experiments with a collection of Web and
Wikipedia tables demonstrate that particularly the detection and linking of quantities—
our main target—works very well. The reduced-MRF method achieves an overall linking
precision of about 92%, and even 93% for quantity mentions. The Equity system intro-
duced in this chapter is a first building block in our longer-term research towards making
sense of Web tables and spreadsheets in enterprises.

53





5 BriQ: Understanding the Relation
Between Quantity Mentions in Text and
Tables.

5.1 Introduction

5.1.1 Motivation

Tables not just epitomize relational databases, but are also widely used to represent
data on the Web (embedded in HTML pages) and in enterprises (in spreadsheets).
Unlike in databases, these tables are often created in an ad-hoc manner, without proper
schema design and with highly heterogeneous formats of attribute values. Therefore, the
interpretation of tables, by human analysts and other users, often hinges on additional
text that discusses the table content.
Figure 5.1 shows excerpts of Web pages from the domains of health, environment and
finance. The currency of the financial numbers in Figure 5.1c becomes clear only when
reading the text. Likewise, it is the text of Figure 5.1b that points the user to the most
expensive of the three cars.
To make sense of tables, it is thus crucial that table rows, columns and individual
cells are connected with relevant snippets in the surrounding text. For entire rows
and for cells with names of products, companies, locations, etc., this is the problem
of entity linking [SWH15]. Specific methods for tables as input have been developed
[BND15, LB17, LSC10]. However, this does not capture the quantities in individual
cells. Linking quantities has been addressed in [IRW16, SC14], but these works assume
that a knowledge base or reference system of canonicalized quantities (with standardized
measures, proper units, etc.) is available. In practice, knowledge bases for quantities are
merely small and limited to special domains.
In this paper, we aim to link quantities without making such assumptions. We do so
by linking table cells with relevant pieces of the text that accompanies a table. This
supports users in two ways. First, in going from tables to text, they obtain explanations
of the mere numbers in cells and their relevance for the topic at hand. Second, in going
from text to tables, the user can drill down on statements in terms of detailed numbers.
Figure 5.1 illustrates these benefits by the overlaid bidirectional edges. Quantity align-
ment links the text to data from the tables, and vice versa. Hence, it can be combined
with entity linking techniques to augment knowledge bases. Furthermore, quantity align-
ment creates an opportunity for advanced automatic text summarization [NM12, GG17],
which currently does not include table data. Once our system identifies aligned quanti-

55



5 BriQ: Understanding the Relation Between Quantity Mentions in Text and Tables.

A total of 123  patients who undergo 
the drug trials reported side effects, of 
which there were 69 female patients 
and 54 male patients. The most 
common side affect is depression, 
reported by 38 patients; and the least 
common side affect is eye disorder, 
reported by 5 patients. 

side effects male female total
Rash 15 20 35 
Depression 13 25 38
Hypertension 19 15 34
Nausea 5 6 11 
Eye Disorders 2 3 5 

a) Example about Health

The final ratings are dominated by the 
PHEV from Audi (2.67) and ICE from 
Volkswagen (2.67). Audi A3 e-tron is the 
least affordable option with 37K EUR in 
Germany and 39K USD in the US. The 
Ford Focus Electric, lowest rating (1.33), 
is a 2K EUR (2.3K USD) cheaper 
alternative with 0 CO2 emission and 
105 MPGe fuel consumption.

BEV PHEV ICE
Focus E A3 VW Golf

German MSRP 34900 36900 33800 
American MSRP 29120 38900 29915 
Emission (g/km) 0 105 122 
Fuel Economy 105 70.6 61.4
Final rating 1.33 2.67 2.67 

b) Example about Environment c) Example about Finance

In 2013 revenue of $3.26 billion CDN
was up $70 million CDN or 2% 

from the previous year. The net 
income of 2013 was $0.9 billion CDN. 
Compared to the revenue of 2012, 
it increased by 1.5%.

Income gains (in Mio)
2013 2012 2011

Total Revenue 3,263 3,193 2,911
Gross income 1,069 1,053 0,877
Income taxes 179 177 160
Income 890 876 849

Figure 5.1: Examples of Web Tables with Explanatory Texts

ties, it is possible to determine which table rows, columns, and individual cells are ref-
erenced by the text summary—so that they can be added to it. And since our approach
distinguishes between simple single-cell references and aggregates, it can provide hints
to an automatic text summarizer. For instance, knowing that one sentence references a
row sum, while another discusses individual values in the same row, the summarization
algorithm could decide to include the former in the summary, but not the latter.

5.1.2 Problem Statement

We formalize the problem of bridging quantities in tables and text as a quantity alignment
problem: For a text document with one or more tables,

• detect quantity mentions in text that refer to table cells

• and map these mentions to their proper cells.

Here, quantity mentions are textual expressions that contain numbers, but also include
phrases that refer to aggregation, ranking and change rates. For example, in Figure 5.1a,
the phrase “total of 123 patients” refers to an aggregate value, namely, the sum of the
values in the sales column. In Figure 5.1b, “the least affordable option” refers to the
maximum price in a column, and in Figure 5.1c, “increased by 1.5%” refers to the rate
of change.
Although the problem resembles that of entity linking, it is more challenging (and un-
explored) for several reasons:

• There is no explicit knowledge base that contains all targets (namely, entities) of
the desired mapping. In our setting, the targets of the alignment are the values
in table cells (often in incomplete or noisy formats), and the number of possible
mention-cell pairs that could be aligned is huge.

• Quantity mentions in text often differ in their formats from their counterparts
in table cells. For example, “37K EUR” (in Figure 5.1b) refers to “36900” in a
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cell with row header “German MSRP” (in a rotated table). Such approximate
mentions are frequent.

• Aggregate quantities that appear in text in forms such as “total of 123 patients”
(Figure 5.1a) are not necessarily present in any table cell, but simply correspond
to a column total. In such cases, the text mention should be aligned with all cells
of the respective column to be summed up.

• Other forms of calculated quantities like maximum values, differences, change rates,
etc., require alignments of text phrases like “least affordable” (Figure 5.1b), “up
$70 million Cdn” (Figure 5.1c), “increased by 1.5%” (Figure 5.1c) etc. with a set
of cells, typically in the same row or column.

5.1.3 Proposed Solution

Our Approach: For aligning quantity mentions in text with cells in tables, we have de-
veloped a full-fledged system called BriQ (for “Bridging Quantities in tables and text”).
The core of BriQ is a hybrid algorithm for mapping mentions onto cells, by first learning
a supervised classifier that accepts or drops mention-cell candidate pairs. The classifier
not only serves to prune the search space, but also yields a prior for additional unsuper-
vised steps based on random walks over appropriately weighted candidate graphs. The
latter steps harness joint inference over the full alignment of all mentions in a document
and all candidate cells in one or more tables within the document. To minimize depen-
dence on hard-to-obtain training data and to cope with larger scale, the joint inference
is unsupervised.
Our methods pay particular attention to the challenges of aggregated (e.g., column
totals) and calculated quantities (e.g., change rates). We do this by carefully generating
candidates in the form of “virtual cells,” standing for cell combinations such as table
columns or same-row cell pairs. For example, a virtual cell is generated for a column total
even if the table itself does not explicitly show the total. We devise various techniques
to prune the number of such virtual candidate cells, to ensure computational tractability
and to control spurious matches.
Contributions: Salient points of this paper are:

• We introduce and formalize the novel problem of quantity alignment for Web pages
that contain text and one or more ad-hoc tables.

• We present the BriQ system1, including a two-stage algorithm for computing align-
ments, with a trained classifier as a prior and unsupervised, random-walk-based,
techniques for global inference.

• Comprehensive experiments, with a large collection of Web tables and high-quality
ground-truth annotations, demonstrate the practical viability of the BriQ method
and its superior performance over two baselines.

1code and dataset available at:
https://www.mpi-inf.mpg.de/briq/
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5.2 Related Work

Web Tables: Schema-less ad-hoc tables embedded in Web pages have first been brought
to the database research agenda by the seminal work of [CHW+08, CHM11, MAAH09].
The focus of this work was on enabling search engines to include tables as results
of keyword queries. Follow-up work tackled various forms of light-weight data
integration, like matching names in table headers against queries, matching at-
tributes of different tables with each other, and inferring approximate schemas (e.g.,
[LSC10, PS12, VHM+11, LB17]).

Entity Linking: Mapping names of people, places, products, etc. onto canonicalized
entities in a knowledge base has received great attention in the literature; a recent survey
is given by [SWH15]. This work has mostly focused on surface names in text documents.
The most notable exceptions that addressed names in tables (in combination with
mapping column headers) are [LSC10, BND15, RLB15]. Their methods for entity
linking vary from context-similarity-based rankings and simple classifiers to advanced
forms of probabilistic graphical models for joint inference over a set of mentions.

Quantity Extraction: Recent work has addressed the task of recognizing quantities
in text and extracting them as proper mentions (including units, reference range, etc.)
[SC14, SA15, NUPP16, IRW16, MMM+16, RVR15, SPM17, AS18]. These methods are
based on pattern matching and/or machine learning models like Conditional Random
Fields. However, only [SC14, IRW16] go beyond mere extraction and aim to canonicalize
quantity mentions by linking them to a knowledge base of measures and units. In doing
this, they rely on an explicit – in their cases small and manually crafted – knowledge
base, though. This approach is limited in scope and does not scale to the wide diversity
of quantities in large collections of Web tables. The BriQ approach, on the other hand,
does not require an explicit knowledge base and copes with the full scope of possible
inputs.

Coreference Resolution in NLP: A very different domain with resemblance to our
problem of quantity alignment is the task of coreference resolution in natural language
processing (NLP). Given a text document with entity names as well as underspecified
expressions like pronouns (“he”, “she”, “her” etc.) and common noun phrases (e.g., “the
lead singer”, “the founder of Apple” etc.), the task is to compute equivalence classes of
coreferences. For example, pronouns should be linked to a name in the same or a
preceding sentence. State-of-the-art methods for this problem are mostly based on rules
and/or machine-learning techniques for clustering or classification (e.g., [HK09, LCP+13,
DK14, CM16b, Ng17]). None of these considers mentions of quantities, though.
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Figure 5.2: BriQ System Architecture

5.3 System Overview

5.3.1 Computational Model

The BriQ method takes the following inputs:

• A piece of text, like a (part of a) web page, with a set of m text mentions of
quantities X = {xi : i = 1, . . . ,m}.

• A table q with r rows and c columns and a set of n mentions of quantities T =
{tj : j = 1, . . . , n}.

Text mentions include terms containing numbers or numerals such as “123 patients”,
“37K EUR”, “1.5%” or “twenty pounds”. To focus on informative quantities, we elim-
inate date/time, headings (such as “Section 1.1”), phone numbers and references (such
as “[2]”, “Win10”).
Table mentions include two types of quantities. The first are explicit single-cell
mentions, such as ‘36900’ in Table 5.1c, second row, third column. Given a table with
r rows and c columns we have at most r · c single-cell quantity mentions. The second
type of are composite quantity mentions (or virtual-cell mentions), computed as an
aggregation of one or more table cells, such as ‘123’, the sum for the fourth column in
Table 5.1a.
We consider a broad range of aggregate functions that take two or more table cells
as input and produce a single quantity:

• Sum: given q quantities, sum(y1, .., yq) =
∑q

i=1 yi

• Difference: given 2 quantities, diff(a, b) = a− b

• Percentage: given 2 quantities, pct(a, b) = a
b · 100%

• Change Ratio: given 2 quantities, ratio(a, b) = a−b
a

• Average: given q quantities, avg(y1, ..., yq) =
∑q

i=1 yi
q

• Max or Min: given q quantities, maxqi=1 yi or minqi=1 yi

These composite quantities may be present in a table already, but we also consider them
if they are not explicit as the surrounding text may still refer to totals, diffs, etc. Hence
the notion of virtual-cell mentions. In our experience, aggregates almost always refer
to cells in the same row or column. More precisely, sum, average, min, and max tend
to be computed for an entire row or column, resulting in O(r + c) composite quantity
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5 BriQ: Understanding the Relation Between Quantity Mentions in Text and Tables.

candidates in the table. Since difference, percentage, and change ratio aggregate two
values in a row or column, there are O(

(
r
2

)
+
(
c
2

)
) candidates for them. This leads to a

quadratic (in table size) search space for the alignments, which is prohibitive for large
tables. We will present adaptive filtering techniques for carefully pruning this search
space.
Note that this model can be generalized by considering aggregations over other subsets
of table cells, and even cells in different tables. For example, the text in Figure 5.1c could
possibly refer to “the total income of the last two years,” which is the sum of two cells (in
the 2013 and 2012 columns) rather than a row total. With this generalization, the search
space of the alignment problem would further increase, becoming exponential in table
size already when arbitrary subsets of cells in a row or column are considered. The BriQ
framework can handle this extended setting as well, and we studied it experimentally.
It turned out, however, that such sophisticated cases are very rare, and hence did not
have any impact on the overall quality of the BriQ outputs. For run-time efficiency, we
consider only the case where sums and averages are restricted to entire rows or entire
columns or two cells in the same row or same column, leaving the rare cases for future
work.
The BriQ framework can handle a broad range of aggregation functions. However, in our
experiments we only consider aggregations that appeared in at least 5% of the tables,
because we need a sufficient number of examples to train and evaluate our models.
Therefore, we only consider the following four aggregations in our experiments: sum,
difference, percentage and change ratio.
For aligning quantity mentions between text and table, we aim to compute as output
a subset of mention pairs 〈xi, tj〉 where xi ∈ X is a text mention and tj ∈ T is a table
mention, including virtual cells for composite quantities. These pairs should denote
the same quantity with high confidence. For the examples in Figure 5.1, the algorithm
output should include the following pairs:

• 〈 “total of 123”, sum(‘35’,‘38’,‘34’,‘11’,‘5’) 〉,

• 〈 “least affordable option with 37K EUR”, ‘36900’ 〉 ,

• 〈 “increased by 1.5%”, ratio(‘890’,‘876’) 〉.

BriQ also returns the locations of the mentions, which we omitted here for the sake of
presentation. Note that alignments include approximate values such as “37K EUR”
and composite quantities that are not explicitly present in the table, such as ‘ra-
tio(‘890’,‘876’).’ The alignment would ideally be a total mapping, covering all text
mentions in the input. However, realistic cases may contain numbers in text that do not
refer to any table—so we compute a partial mapping.

5.3.2 BriQ Architecture

Figure 5.2 gives a pictorial overview of the BriQ system architecture. In the following,
we outline each of the shown components.
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Table-Text Extraction

This module takes as input a web page and splits it into coherent segments, which we
refer to as documents. Each document consists of a sequence of paragraphs and one or
more tables to which the text refers. For each document, quantity mentions are extracted
from the text and the tables, using regular expressions. Virtual cells—for aggregated
quantities—are automatically generated by considering: (i) all rows and columns for
totals; and (ii) all pairs of cells in the same row or column for difference, percentage,
and change ratio.

Mention-Cell Pair Classification

This module first computes features for each text mention and each table mention by
analyzing surrounding context. Also, similarity-based features are computed for each
pair of text mention and table cell that could be a candidate pair for alignment. We use
manually annotated web pages with ground-truth alignment to train a binary classifier
that accepts or rejects candidate pairs.
The classifier operates locally in the sense that it predicts the alignment confidence for
each mention-cell pair in isolation, i.e., it does not consider several mention-cell pairs
together for joint inference. It serves two purposes: First, it enables the subsequent
filtering step, which significantly reduces the number of candidate pairs. This is essen-
tial for achieving acceptable running time in the more expensive global resolution step.
Second, it provides a prior for that global resolution step.

Adaptive Filtering

This stage filters the classifier’s output to arrive at a sufficiently small set of candidate
pairs that the subsequent global resolution can handle. The filtering uses the confidence
scores of the classifier, but also considers more sophisticated measures to adapt to the
specifics of different situations.

Global Resolution

This module takes as input the candidate mention-pairs from the classifier and outputs
the final alignment of quantities between text and tables. It uses the classifier confidence
values as prior weights, and employs global inference methods such as random walks over
graphs to resolve the alignments.

5.4 Table-Text Extraction

Web pages, such as Wikipedia articles or product test reports, can be very long and
cover a variety of thematic aspects, along with several tables. We therefore pre-process
and split them into coherent documents. Since paragraphs form a natural unit in text for
discussing a specific aspect, we use them as atomic building blocks. More precisely, we
define a coherent document to be a paragraph together with all “related” tables from the
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same Web page. Related tables are identified by computing pairwise similarities between
all paragraphs and all tables in the page, and then selecting those with similarity above
a threshold. We consider tokens in the entire content of the table including column
headers and captions. Note that a paragraph may have more than one related table,
and a table might be related to multiple paragraphs.
For each document, we extract all quantity mentions from both text and tables, using
regular expression matching (e.g., ‘\d+\s*\p{Currency_Symbol}’ for monetary values).
Quantities are extracted from text as follows: first we identify and remove complex
quantities that involve multiple parts, such as ‘5 ± 1 km per hour’. Then, we extract
simple quantities, such as ‘$500 million’ and ‘1.34%’. This order ensures that complex
quantities are not erroneously split into several matches. For tables, we employ the same
procedure and attempt to extract a single quantity mention per cell, together with its
unit (if present). In addition, we also attempt to extract information about the unit from
each row and column header, footer, and the caption. We normalize quantity mentions;
for example ‘0.5 million’ transformed to ‘500 000’.

5.5 Mention-Pair Classification

This stage of the BriQ system applies supervised learning to predict if a text mention does
refer to a table mention so that they should be aligned. This binary classifier performs
local resolution in the sense that it makes a prediction for an individual mention-pair,
not taking into account dependencies between predictions made for different mention-
pairs. Such couplings will be considered by the global resolution later, at much higher
computational costs, however. The confidence scores of the classifier serve as prior
weights for the joint inference at the global resolution stage.

5.5.1 Classification Algorithms

We use a Random Forest (RF) classifier for this purpose. RFs are among the most
powerful classifiers that are not prone to overfitting. An RF classifier consists of an
ensemble of decision trees, each trained on an independent bootstrap sample of the
training data. The final prediction for an input is obtained based on the majority
vote of the individual trees, returning the fraction of votes for the “related” class as
the probability of the mention-pair being related. It has been shown that RFs yield
well calibrated probabilities [NMC05, CNM06], which is important for our usage of RF
outputs fed into the global resolution stage.

5.5.2 Features

We judiciously designed a variety of features that capture information a human reader
would use in order to determine if text mention x and table cell t denote the same quan-
tity. The alternative—automatic representation learning, e.g., with Deep Learning—was
not viable for our problem due to the limited amount of labeled data and the high cost
for obtaining it (see Section 5.8). Overall, we believe that the complexity of our problem
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5.5 Mention-Pair Classification

setting is better served by modeling informative features rather than solely relying on
end-to-end learning with limited training data.
The most obvious basic feature is surface form similarity, f1(x, t). We adopted the
Jaro-Winkler distance measure to compute the string similarity between the surface
form of the text mention against the table mention. We use Jaro-Winkler because it
emphasizes a match at the beginning of the string, which is desirable when comparing
quantity mentions. For example, a quantity mention “26.7$” in the text is closer to
“26.65$” than to “29.75$”.

Context Features

Local context word overlap, f2(x, t), measures the similarity between the local con-
texts of a pair of text and table mention. A window of n words preceding and following
the text mention is considered; for the table mention it is the full row and the full column
content. The feature value is defined as the weighted overlap coefficient between the two
bags of words. That is, we assign a weight to each word relative to its position. We
use the following formula to compute the weight of a word e at distance d from the text
mention:

weight(e) = 1−
(

d

stepSize
· stepWeight

)
,

where stepWeight is the discounted weight at each stepSize away from the text mention.
Then, we compute the overlap coefficient using these weights. We tune n, stepSize, and
stepWeight on the withheld validation dataset.

Global context word overlap, f3(x, t), is similar to f2(x, t), but uses the entire
paragraph as the context of the text mention; and the entire table content as the
context of the table mention.

Local context phrase overlap, f4(x, t), measures the similarity between the noun
phrases in the local context of text and table mention. The local context of the text
mention is the sentence in which the text mention occurs; and for the table mention
it is the full row and the full column content. For example, the noun phrase “segment
profit’ in Figure 5.3.

Global context phrase overlap, f5(x, t), is defined analogously, but considers noun
phrases in the entire paragraph as the global context of the text mention; and the noun
phrases in the entire table as the global context of the table mention.

Quantity Features

Relative difference between normalized quantity values, f6(x, t) = |x−t|
max(x,t) ,

reflects the numeric distance between mentions. Here, x and t denote the numerical
values of the respective mentions, after normalization. In Figure 5.1 the normalized
value of mention ‘37K EUR’ is 37000.
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Unnormalized relative difference between quantities, f7(x, t), is the relative
difference of the values without normalization. For example, the unnormalized value of
mention ‘37K EUR’ is 37.

Unit match, f8(x, t), is a four-valued categorical feature that captures the degree to
which the quantity units match. A strong match occurs when both mentions have
a specified unit and these units match; a weak match when both mentions have no
specified units; a weak mismatch when only one mention has a specified unit; and a
strong mismatch when both mentions have a specified unit and these units do not match.

Scale difference, f9(x, t), is the difference in the orders of magnitude between two
quantities. For example, the scale difference of ‘37000’ and ‘37’ is 3 (powers of ten).

Precision difference, f10(x, t), captures the difference in the number of digits after
the decimal point. For example the precision difference of ‘1.5’ and ‘1.543’ is 2.

Approximation indicator, f11(x, t), reflects if the text mention is accompanied by
a modifier indicating an approximation. This categorical feature can take on values
‘approximate’, ‘exact’, ‘upper bound’, and ‘lower bound’. These are derived from text
cues like “ca.”, “about”, “nearly”, “more than”, etc.

Aggregate function match, f12(x, t), is the degree to which the aggregate function
for computing the value of the cell or virtual cell matches the kind of aggregation for
the text mention as inferred from text cues. We implement this by looking up the
words around the text mention in a dictionary that maps words to names of aggregate
functions. (We set the neighborhood size by default to five words; but this could also
be tuned on the validation data.) Analogous to the unit-match feature, there are four
possible values: strong match, weak match, weak mismatch, and strong mismatch. For
example in Figure 5.1(a) the inferred aggregation of mention ‘total of 123 patients’ is
sum and it has a strong match with the aggregation of the virtual cell carrying the
sum of the last column; and it has a strong mismatch with the virtual cell carrying the
average of the last column.

5.6 Adaptive Filtering

As discussed in Section 5.3, it is essential for performance to significantly reduce the
number of mention-pair candidates for global resolution, typically from 1000s of candi-
dates to 100s for tractability of global inference algorithms. An obvious approach for
the necessary filtering would be to use the classifier’s confidence scores: we could retain
only candidates above a certain threshold, or we could keep a certain number of highest-
scoring candidates. While superficially appealing, it is rather rigid and disregards the
need to handle different kinds of quantity mentions in a more flexible way, e.g., simple
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quantities vs. aggregate quantities. Hence we devised an adaptive filtering strategy as
follows. First we develop a text mention tagger to predict the aggregation function for
each text mention, or tag the mention as a single-cell match. Then, we prune mention-
pairs based on this tagger’s outcome. In a second step, we further prune mention-pairs
based on value difference and unit agreement. Finally, we sort mention-pairs according
to classifier scores, and select top-k mention-pairs for each quantity mention based on
mention type and score distribution.

5.6.1 Text-Mention Tagger

We tag text mentions, based on local features, with one of the following labels: difference,
sum, change ratio, percentage, or single cell. Each of the four aggregation labels is
associated with a small list of manually compiled cue words, such as “total, summed,
overall, together” for sum, and analogous lists for the other tags. Likewise, words like
“around, about, ca., approximately, nearly, almost” are considered as indicators for
mention values being approximate. Observing the presence of such cue words in the
proximity of a text mention is used for the following features that the tagger considers:

• Approximation Indicator: A categorical feature that specifies an approximation
indicator accompanying the mention. The indicator is inferred from the immedi-
ate context of the text mention, where the immediate context is a window of 10
words around the text mention. The approximation indicator can take one of the
following values: approximate, exact, upper bound, lower bound, and none.

• Aggregation Function Features: For each aggregation function we compute the
count of supporting cue words in the mention context under the following scopes:

1. Immediate Context: contains the tokens occurring within a window of 10
words around the text mention.

2. Local Context: contains the tokens occurring in the same sentence with the
text mention.

3. Global Context: contains the tokens occurring in the same paragraph with
the text mention.

• Scale: numerical value indicating the order of magnitude of the text mention.

• Precision: numerical value indicating the number of digits after the decimal point.

• Unit: a categorical feature that specifies the unit associated with the mention.
The following is the list of units we consider: dollar, euro, percent, pound, and
unknown unit.

• Exact Match in Table(s): the number of table mentions that exactly matches
the surface form of the text mention. This number is summed up over all tables
associated with the document.
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We train the tagger, as a simple classifier, with a small labeled dataset, withheld from all
other components and experiments. The tagger achieves high precision for the four kinds
of aggregation functions. We intentionally optimize for high precision, at the expense of
lower recall: the tagger sometimes confuses text mentions that match single cells with
aggregates, incorrectly tagging them as sum or diff etc. However, this is not a problem as
we can prune mention-pairs conservatively, by avoiding to eliminate single-cell matches
at this stage. We use the tagger for the following pruning heuristics for mention-pairs:

• We keep all mention-pairs for single-cell mentions in tables.

• We prune aggregate mention-pairs if the aggregation function for the virtual cell
does not match the predicted tag.

So this pruning step typically discards mention-pairs for all but one aggregation-function
virtual cell, but keeps all mention-pairs with single cells. Further pruning steps for the
single-cell cases are presented next.

5.6.2 Mention-Pair Pruning

Pruning based on Value Difference and Unit Mismatch: Based on the
confidence scores returned by the mention-pair classifier, we prune mention-pairs
whose numeric values differ by more than a threshold v if the classifier score is
less than p. We tune the values of v and p on the withheld validation dataset. In
addition, for mentions with specified units, we prune mention-pairs that disagree in unit.

After these pruning steps, we select the top-k candidate pairs for each text mention by
the following criteria:

• Mention Type: We determine the mention type based on its surface form, context
and the table mentions it potentially pairs with. A text mention can be exact
(12.374), approximate (12.4) or truncated (12.3). First we rely on the context
to determine the type of the quantity mention, by extracting quantity modifiers,
such as ‘approximately’, ‘exactly’, and ‘about’. If the context is insufficient to
determine the mention type, we compare the surface form of the mention to that
of potential table mentions with high confidence returned by the classifier. Then,
we determine the mention type by majority vote. For example, if most of the high-
confidence potential table mentions exactly match the text mention, then the text
mention is exact. For exact mentions we pick the top kexact mention-pairs and for
approximate and truncated mentions we pick the top kapprox mention-pairs, where
kexact and kapprox are tunable parameters.

• Distribution Entropy: We consider the distribution of confidence scores re-
turned by the classifier for the pairs with the same text mention. Sometimes, this
distribution can be so skewed that only few candidates need to be kept, whereas in
other cases a large number of candidates could be near-ties and should all be kept.
To reflect this intuition, we compute the entropy of the distribution, and adjust k
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for the top-k candidates in proportion to the entropy. We set a specific threshold
for the entropy value, and for distributions with entropy falling below this thresh-
old, we pick the top ks mention-pairs, otherwise we pick the top kl mention-pairs,
where ks and kl are tunable parameters.

5.7 Global Resolution

The need for joint inference over candidate pairs for multiple text mentions arises due
to dependencies among mentions, which need to be harnessed to resolve ambiguties.
Consider the example in Figure 5.3. The text mentions “11%” and “13.3%” have exact
matches in both of the shown tables, and local-resolution algorithms cannot infer the
proper alignment. However, when considering these two mentions jointly with “60 bps”
and “5%”, it becomes clear that all of these refer to the first table.
We have devised an unsupervised algorithm for this kind of global resolution. The
algorithm encodes dependencies among mentions into a graph and uses random walks
to infer the best joint alignment. We also considered an alternative algorithm based on
constraint reasoning with Integer Linear Programming (ILP) and experimented with it,
but that approach did not scale sufficiently well.

Sales were up 5% on both a reported and organic basis, compared with the second
quarter of 2012. Segment profit was up 11% and segment margins increased 60 bps to
13.3% primarily driven by strong productivity and volume leverage.

Table 1: Transportation Systems
($ Millions) 2Q 2012 2Q 2013 % Change

Sales 900 947 5%
Segment Profit 114 126 11%
Segment Margin 12.7% 13.3% 60 bps

Table 2: Automation & Control
($ Millions) 2Q 2012 2Q 2013 % Change

Sales 3,962 4,065 3%
Segment Profit 525 585 11%
Segment Margin 13.3% 14.4% 110 bps

Figure 5.3: Example with Coupled Quantities

A human reader who glances a text mention and wants to identify to which table cell
it refers, would first consider some matching values, including approximate or aggregate
matches. These are candidate pairs, which we encode as edges in a graph, using the
classifier’s confidence scores as prior edge weights. In case of ambiguity, the human
user would then spot neighboring quantities in either text or table to assess the possible
options and refine the hypothesis space of viable pairs. This would include looking at
other quantities in textual proximity as well as other table cells in the same row or
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Figure 5.4: Fragment of the Graph for Figure 5.3

column. This intuition of human inference is cast into dependency edges between such
context-related mentions, in both text and table—with weights based on relatedness
strengths. Finally, the “strongest paths” connecting a text mention with table mention
candidates determine the best alignment. We cast this intuition into a random walk
over the weighted graph.

5.7.1 Graph Construction

We construct an undirected edge-weighted graph G = (V,E) for each document:

• The node set V consists of all quantity mentions in the document’s text and tables.

• The edge set E consists of three kinds of edges connecting related nodes: text-text
edges, table-table edges, and text-table edges as explained below.

Text-text edges: There is an edge for each pair of text quantity mentions that are
within a certain proximity or have similar surface forms. Edge weights (Wxx) are com-
puted based on the following linear combination of proximity and string similarity:

Wxx(x1, x2) = λ1fprox(x1, x2) + λ2fstrsim(x1, x2).

The hyperparameters λ1 and λ2 are tuned using grid search on the withheld validation
dataset. We define fprox(x1, x2) as the number of tokens separating the two mentions,
divided by the length of the document. String similarity fstrsim(x1, x2) is defined as the
Jaro-Winkler distance as described in Section 5.5.2.

Table-table edges: There is an edge for each pair of table quantity mentions in the
same row or the same column of the same table. Edge weights Wtt are set uniformly for
each pair of table mentions sharing the same row or the same column.

Text-table edges: There is an edge for each pair of text and table mention that
is kept by the adaptive filtering stage. Edge weights (Wxt) are set to the confidence
scores returned by the classifier. This can be viewed as an informed prior for the global
resolution stage.
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After this initial graph construction, all edge weights are normalized to obtain a stochas-
tic graph, via dividing each node’s outgoing weights by the total weight of these edges.

5.7.2 Graph Algorithm

Random walk with restart (RWR): Random walks have been widely used for rank-
ing and alignment tasks over graphs (e.g. [TFP06, LMC11, PJN13]), the most famous
case being PageRank. In our setting, we employ random walks with restart: starting
from a text mention, the graph is stochastically traversed, with a certain probability of
jumping back to the initial node. This technique is also known as topic-specific or per-
sonalized PageRank [Hav03]. It approximates the stationary visiting probabilities π(t|x)
of table-mention node t for walks starting from a text mention x. Our implementation
iterates RWRs for each text mention until the estimated visiting probabilities of the can-
didate table mentions change by less than a specified convergence bound. This way we
can rank the candidate table mentions t for the text mention x. Finally, this information
is combined with the prior scores σ(t|x) of the previous-stage classifier, leading to the
overall scoring:

OverallScore(t|x) = α · π(t|x) + β · σ(t|x), (5.1)

with hyper-parameters α and β (which are tuned on the validation data).

Alignment decisions: The RWR from text mention x computes π(t|x) for each
table mention t. Pair 〈x, t∗〉 forms an alignment if and only if (i) t∗ is the table
mention with the highest overall score OverallScore(t∗|x), and (ii) its overall score
OverallScore(t∗|x) exceeds a tunable threshold ε. Interestingly, making an alignment
decision adds knowledge, and we propose to exploit that by updating the graph. In
particular, after identifying an alignment 〈x, t∗〉, x cannot have alignments with any
other table mention, and hence we modify the graph by removing all edges (x, t) for
any t 6= t∗ (if no alignment is found for x, then all text-table edges adjacent to x are
removed.) This way the next RWR for another text mention is able to leverage the new
alignment information for improved results. This introduces a new issue: the order in
which text mentions are processed. We discuss our approach to this next.

Entropy-based ordering: Note that a correct alignment decision will improve knowl-
edge for future RWR executions, but an incorrect alignment decision can be harmful.
Hence one intuitively should make decisions for the easier text mentions first, and then
factor this information into the later decisions on the harder cases. To quantify the dif-
ficulty of aligning a text mention, we use the entropy of the classifier’s confidence scores
(see Section 5.6). High entropy, close to uniform scores, means that there are several
candidates among the table mentions that are not easy to distinguish. Low entropy, with
highly skewed scores, indicates that there is one strongly preferred candidate—with the
extreme case of having exactly one candidate only. Thus we process text mentions in
order of increasing entropy. Once an alignment is resolved for a text mention, only this
text-table edge is kept and all edges to other table-mention candidates are removed.
Pseudo-code for the overall graph algorithm is given in Algorithm 1.
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Algorithm 1 Graph-based global resolution

Data: undirected edge-weighted graph G = (V,E); set C of mention-pair candidates
(x, t) ∈ E with prior confidence scores σ(x, t)

Result: subset A ⊆ C of pairs for final alignment

A := ∅
for each text mention x with ∃t : (x, t) ∈ C do

normalize {σ(x, t) : (x, t) ∈ C} to a probability distribution compute its entropy
H(x)

end

for each x in increasing order of H(x) do
run RWR from x to compute stationary probabilities π(t|x) for all t with (x, t) ∈ C
OverallScore(t|x) = α · π(t|x) + β · σ(t|x) let t∗ := argmaxt OverallScore(t|x)

if OverallScore(t∗|x) > ε then
add (x, t∗) to A delete edges (x, t) for all t 6= t∗ from G

end
else

delete edges (x, t) for all t from G
end

end

5.8 Experimental Setup

5.8.1 Data

To evaluate BriQ, we use the Dresden Web Table Corpus (DWTC) which comprises
about 125 Million tables extracted from 3.6 Billion web pages in the Common Crawl of
July 2014 [ETBL15]. We compiled two datasets:

• tableS: a small annotated corpus from 495 web pages with complete assessment
of ground-truth alignments, used to evaluate precision and recall of our method,
and

• tableL: a large set from 1.5 million web pages, used to perform run-time measure-
ments and demonstrate scalability of our method.

To construct the larger tableL corpus, we filtered the DWTC collection for web pages
that meet a variety of criteria: English language, table(s) containing numerical cells,
numerical mentions in text, overlap of tokens between table(s) and text. The resulting
1.5 million pages mostly fall under five major topics: finance, environment, health,
politics, and sports (as determined by simple surface cues, and validated by manual
sampling).
The tableS corpus is constructed from tableL by randomly selecting 505 pages and
having them manually annotated by 8 hired annotators, all being non-CS students.
We refrained from using mturk-like crowdsourcing for this purpose, as the annotation
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required fairly sophisticated guidelines and very thorough inspection of web pages; crowd
workers would be unlikely to meet this quality assurance. In total, the 8 annotators
spent about 130 person-hours on judging text-table mention pairs, and classifying them
by their type: exact-match with single cell, sum, average, percentage, difference, ratio,
minimum, maximum, unrelated, or other.
The inter-annotator agreement, with Fleiss’ Kappa [Fle71] being 0.6854, was substantial.
All mention pairs confirmed by at least two annotators were kept, resulting in a final
tableS corpus of 495 pages corresponding to 1,598 documents with 1,703 tables and 7,468
distinct text mentions of quantities.

5.8.2 Classifier Training

The tableS dataset was randomly split into disjoint training (80%), test (10%) and
validation sets (10%). For each ground-truth mention pair in the training data (serving
as positive samples), we automatically generated 5 negative samples by picking the table
cells with the highest similarity to the positive sample (i.e., approximately the same
values and similar context). These included many virtual cells for aggregate values,
making the task very challenging. Table 5.1 gives a break-down of positive and negative
samples by mention type.
We counter the label imbalance (#pos�#neg) by giving different weights to the positive
and negative labels in the classifiers’ loss functions [JS02, LBB+12]. These weights are
inversely proportional to the ratio of the positive or negative labels in the dataset. The
loss function is optimized for the area under the ROC curve, to ensure that neither
precision nor recall could be neglected.

Table 5.1: Classifier training data.

type #pos type #neg
single-cell 4376 single-cell 3315
sum 267 sum 9300
percent 115 percent 4995
diff. 134 diff. 7924
ratio 141 ratio 5002
total 5039 total 39767

5.8.3 Metrics, Tuning and Testing

The traditional classifier performance metrics like accuracy and error rate are not in-
formative in our setting with high imbalance between the positive and negative class.
Therefore, we use precision, recall and F1 as major metrics to evaluate the BriQ system.
For tuning hyper-parameters, we use the withheld validation set of the annotated tableS
corpus (10%). We use grid search to choose the best values for the hyper-parameters,
for the classifiers as well as for the graph-based algorithm.
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For testing classifiers, we use the withheld part of the annotated tableS corpus (10%).
We apply the learned models on all possible mention pairs between text and table (i.e.,
not just limited to the negative samples generated for training.) Overall, the test set
has 687,321 mention pairs out of which only 0.1% are correct. The global resolution
algorithm is tested with the outputs of the classifier and the adaptive filtering stage,
typically reducing the size by two orders of magnitude.

5.8.4 Baselines

We compare BriQ against the following two baselines:

• Classifier-only (RF): the Random Forest algorithm deployed in the first stage of
BriQ, trained the same way as BriQ. For each text mention, the cell of the classi-
fier’s top-ranked mention-pair is chosen as output.

• Random-Walk-only (RWR): a graph-based algorithm similar to the one used in the
second stage of BriQ. The algorithm uses all features that are available to BriQ
(see Section 5.5.2). However, as there are no prior probabilities computed from the
first stage, these features are combined using uniform weights and then normalized
to graph-traversal probabilities. Also, there is no pruning of any mention-pairs,
making this baseline fairly expensive while still being an interesting comparison
point.

We also considered an additional baseline derived from our earlier work on linking quan-
tities to a knowledge base (QKB) [IRW16]. Given a candidate mention-pair, we map
both the text mention and the table cell to the QKB, this way normalizing them. Then
we compare the two mentions if they are the same (i.e., link to the same QKB entry with
exact-matching values). While this takes care of unit matching, it is limited to the units
registered in the QKB and does not nearly cover all the diverse units in our large-scale
input data. Moreover, the test can work only if the values of the two normalized men-
tions match exactly. For approximate matches where one text mention could be mapped
to different single or virtual cells, the approach is unsuitable. Since approximate matches
are very frequent in our test data, we did not pursue this possible baseline any further.

5.9 Experimental Results

5.9.1 Alignment Quality

We conducted experiments with three variations of text mentions, with increasing diffi-
culty:

• Original text mentions, as given in the document. This is the main experiment.

• Truncated text mentions, where we removed the least significant digit of each
original text mention. For example, 6746, 2.74, 0.19 became 6740, 2.7, and 0.1.
This is meant as an additional test of robustness, making all test cases more diffi-
cult.
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• Rounded text mentions, where we numerically rounded the least significant
digit of each text mention. For example, 6746, 2.74, 0.19 became 6750, 2.7, and
0.2. This is meant as a stress test, with the additional challenge of making surface-
form similarity less informative.

Original mentions: Table 5.2 shows the results for the original, truncated and rounded
mentions. For the original mentions, BriQ outperforms both baselines, RF and RWR,
by a large margin, regarding both precision and recall. BriQ achieved an F1 score of
more than 70%, which is remarkably high given the noisy nature of the real-life data
and the difficulty of the alignment problem.

Table 5.2: Results for original, truncated and rounded text mentions.

Original Truncated Rounded

RF RWR BriQ RF RWR BriQ RF RWR BriQ

recall 0.43 0.52 0.68 0.27 0.42 0.58 0.13 0.34 0.49
prec. 0.37 0.53 0.79 0.25 0.44 0.63 0.10 0.35 0.52
F1 0.40 0.53 0.73 0.26 0.43 0.60 0.11 0.34 0.51

Truncated and rounded mentions: As expected, the results for truncated and
rounded mentions in Table 5.2 show a drop in quality, and the decrease is more pro-
nounced for rounded mentions. In both of these situations, BriQ has the best results.
For truncated mentions, BriQ still achieves fairly good quality, with an F1 score of ca.
60%. For rounded mentions, it achieves decent quality, with an F1 score of ca. 51%.
In contrast, the two baselines degrade strongly. Especially, the RF classifier alone is
not competitive at all, demonstrating our insight that the quantity alignment problem
cannot be solved solely by supervised end-to-end machine learning.
Results by Mention Type: Tables 5.3, 5.4 and 5.5 break down the results by ag-
gregation type: sum, difference, percentage, change ratio and single-cell match. BriQ
clearly outperforms RF and RWR on all mention types and RWR outperforms RF on
all types except for single-cell. As expected, BriQ has the best F1 score, 79%, on text
mentions that refer to a single table cell. For sum and difference, BriQ achieved fairly
good F1 scores of 72% and 43%, respectively. For the remaining two cases—percentage
and ratio—all methods dropped substantially in output quality. The reason is that these
cases are rather infrequent, so that the classifier gave them very low prior scores, a bias
effect that the global resolution could not fully compensate.

Table 5.3: Results by mention type for original mentions, using RF.

sum diff. percent change ratio single-cell

recall 0.00 0.27 0.03 0.06 0.48
prec. 0.00 0.04 0.02 0.01 0.70
F1 0.00 0.06 0.03 0.02 0.57

Effectiveness of Adaptive Filtering: The adaptive filtering is crucial for BriQ to
reduce the input size of the global resolution stage. Table 5.6 shows the selectivity of
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Table 5.4: Results by mention type for original mentions, using RWR.

sum diff. percent change ratio single-cell

recall 0.61 0.33 0.09 0.18 0.57
prec. 0.52 0.22 0.43 0.27 0.57
F1 0.56 0.26 0.15 0.21 0.57

Table 5.5: Results by mention type for original mentions, using BriQ.

sum diff. percent change ratio single-cell

recall 0.74 0.62 0.10 0.20 0.75
prec. 0.71 0.33 0.75 0.30 0.84
F1 0.72 0.43 0.17 0.24 0.79

our filters (i.e., the ratio of retained mention pairs to all mention pairs that the classifier
dealt with) and the recall after the filters. These numbers clearly demonstrate the
enormous gains of the filtering stage. Conversely, the near-optimal recall numbers in the
table show that we rarely make false-negative errors: BriQ effectively avoids erroneously
dismissing good candidates from the mention-pair space.

Table 5.6: Selectivity and recall after filtering.

type selectivity recall

sum 0.01 1.00
difference 0.01 0.87
percentage < 0.01 0.91
change ratio < 0.01 0.88
single-cell 0.04 0.91

overall 0.01 0.91

5.9.2 Ablation Study

We studied the influence of different feature groups on the two baselines and BriQ. We
divide our feature space into three feature groups:

• surface form similarity.

• context features, including local and global word overlap, local and global noun
phrases overlap, aggregate function match, and approximate indicator.

• quantity features, including relative value difference, unnormalized value differ-
ence, unit match, precision difference, and scale difference.

For the ablation study, we carried out three experiments, each corresponding to one
feature group left out, thus training, tuning and testing the three models end-to-end
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on the remaining features. Table 5.7 shows the F1 score, precision and recall of the
three experiments in comparison with the full-feature model. The results underline
the robustness of BriQ in comparison to the other baselines. Although BriQ’s recall
is affected by leaving out some features, its precision is stable. Leaving out context
features leads to the highest degradation in BriQ’s performance. Interestingly, leaving
out the quantity features resulted in improvements of the RF classifier. The reason
is that, without these features, the classifier has fewer virtual cells to consider (i.e.,
approximately matching values from aggregation of several table cells), making it easier
to get the frequent single-cell cases right. However, BriQ still outperformed the RF
classifier by a large margin.

Table 5.7: Ablation Study: Recall, Precision and F1 score

Recall Precision F1

RF RWR BriQ RF RWR BriQ RF RWR BriQ

all features 0.43 0.52 0.68 0.37 0.53 0.79 0.40 0.53 0.73
w/o surf. sim. 0.37 0.36 0.65 0.33 0.39 0.77 0.35 0.37 0.70
w/o context 0.43 0.38 0.59 0.34 0.44 0.77 0.38 0.41 0.67
w/o quantity 0.43 0.31 0.61 0.54 0.35 0.77 0.48 0.33 0.68

5.9.3 Run-Time Results

BriQ is implemented in PySpark using Python, NetworkX, and SciPy libraries for the
graph algorithm. For the RF classifier, we use R with the caret package, integrated into
BriQ by the rpy2 library. All experiments were run on a Spark cluster with 10 executors,
each with 6 cores and 30GB of memory, and with 50GB of driver memory. Training and
tuning takes about 10 hours (on a very large dataset), with the grid search for the best
hyper-parameters being the major factor (as it is often the case in machine learning).
This is a one-time pre-processing effort.
To measure the run-time performance of BriQ for processing documents, we use the
tableL dataset of about 1.5 million web pages. Table 5.8 shows the throughput of BriQ
in terms of completed documents per minute, broken down into different thematic do-
mains (e.g., quantities in finance are different in nature from quantities in sports). The
throughput numbers clearly indicate that BriQ is practically viable at large scale. More-
over, it is 30 time faster than the RWR baseline that has a throughput of 76 documents
per minute.
Table 5.9 gives more statistics for each of these domains. We see that documents on
sports led to a large number of virtual cells for aggregated values, incurring higher load
and hence resulting in lower throughput than for the other domains.
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Table 5.8: BriQ throughput by domain.

pages documents mentions #docs/min

environment 118,724 986,180 3,062,943 2,935
finance 325,853 3,374,175 10,596,979 5,029
health 102,132 879,388 1,930,975 4,604
politics 128,318 2,762,873 4,123,800 6,223
sports 527,263 2,173,832 7,393,225 863
others 309,292 3,141,865 6,796,835 2,588

total 1,511,582 13,318,313 33,904,757 2,478

Table 5.9: Table statistics by domain.

rows columns single cells virtual cells

environment 7 4 21 243
finance 7 4 16 142
health 3 2 4 26
politics 8 3 17 137
sports 8 6 35 523
others 7 4 21 252

average 7 4 19 220

5.10 Discussion

Anecdotal examples: Figure 5.5 shows three alignments computed by BriQ. Exam-
ples (a) and (b) illustrate the ability to detect and align change rates and percentages
to the correct cell pairs. In example (c), BriQ is even able to discover the approximate
difference between two cells and align it properly.

Typical error cases: Figure 5.6 shows some of the typical errors made by BriQ. The
first case is in examples (a) and (b), having same-value collisions with several cells in
the tables. In (a) the value ‘3.2’ exists in two cells in the same row with very similar
context. As the immediate context of the quantity ‘3.2’ in the text, underlined, does not
contain any words related to the columns, BriQ fails to identify the correct alignment.
In (b) the immediate context of the quantity ‘$50’ contains both words ‘wholesale’ and
‘retail’. Moreover, the quantity ‘$100’ is closer to the incorrectly aligned cell ‘$50’. So
BriQ fails here because of high ambiguity.
The third example (c) illustrates the case where the immediate context of the text
mention ‘$7.32 billion’ has a single-word overlap with the table context, “August”. In
addition the scale of the quantity (i.e., billion) is missing in the table. Such cases are
extremely difficult to deal with, since neither the quantity features nor context features
can help in finding the correct alignment.
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CATEGORY OCTOBER 2011 OCTOBER 2012

Passenger 

Vehicles
184,611 246,725

Commercial 

Vehicles
62,013 66,722

Three-wheelers 49,069 55,241

Two-wheelers 1,144,716 1,285,015

Sugato Sen, senior director, SIAM said, “The 

car sales growth rate that we have achieved 

this October is the highest since January 2011, 

which was at 25.27 per cent. In terms of 

volumes, this is the highest since March this 

year when it was at 2,29,866 units.” Overall, 

246,725 passenger vehicles were sold in the 

domestic market, which is an increase of 

33.65% over the 184,611 units sold in the 

corresponding period last year

ratio

People
Fulham

Gardens
Australia

Total 5,911 18,769,249

Male 2,907 9,270,466

Female 3,004 9,498,783

Aboriginal and 

Torres Strait 

Islander people

23 410,003

On Census Night 7th August 2001, 

5,911 people were counted in Fulham

Gardens (State Suburbs): of these 

49.2% were male and 50.8% were 

female. Of the total population 0.4% 

were Aboriginal and Torres Strait 

Islander people

perc.

a) Detected change ratio. b) Detected percentage

Company 

Name

Q3 EPS 

Estimate

Q3 

Actual 

EPS

Q3 FY 

2012 Net 

Earnings

Q3 FY 2013 

Net 

Earnings

Bed Bath & 

Beyond

$1.15 $1.12 $232.8 

Million

$237.2 

Million

The 

Container 

Store Group

$0.08 $0.11 $(9.49) 

Million

$6.86 

Million

However, the Container Store's net income 

for the third quarter fell $16.3 million from 

the third quarter in fiscal 2012, earning the 

company a net loss of approximately $9.5 

million on account of the company's recent 

IPO-related expenses and shareholder 

payouts. On the brighter side, Bed Bath & 

Beyond gained a profit of $4 million from the 

same period one year earlier

diff.

b) Detected difference

Figure 5.5: Examples of alignments discovered by BriQ

Number of bedrooms
Scenic Rim
(R) -
Beaudesert

% Queensland % Australia %

None (includes
bedsitters) 42 0.9 8,676 0.6 42,160 0.5

1 bedroom 204 4.5 64,983 4.2 363,129 4.7
2 bedrooms 582 13.0 260,607 16.8 1,481,577 19.1
3 bedrooms 1,895 42.2 651,208 42.1 3,379,930 43.6

4 or more bedrooms 1,669 37.2 532,756 34.4 2,350,132 30.3

Number of bedrooms
not stated 97 2.2 29,075 1.9 143,394 1.8

Average number of
bedrooms per
dwelling

3.2 -- 3.2 -- 3.1 --

Average number of
people per household 2.6 -- 2.6 -- 2.6 --

In Scenic Rim (R) - Beaudesert (Statistical Local Areas), of
occupied private dwellings 4.5% had 1 bedroom, 13.0% had 2
bedrooms and 42.2% had 3 bedrooms. The average number of
bedrooms per occupied private dwelling was 3.2. The average
household size was 2.6 people

Ponoko making cost $18

Ponoko materials cost $7

Ponoko shipping cost $5

Extra parts cost $2
Self assembly instructions
cost $1

Packaging cost $1
Misc $1

Your cost price $35

Your creative fee (30%) $15

Your wholesale price $50

Your retail fee (50%) $50

Your retail price $100

So, if your cost for an item is $25,
and you see similar items selling for
$100 retail, then a $50 wholesale
cost gives you a nice profit of $25

a) Wrong  alignment b) Wrong  alignment

August
2005

July
2005* YTD 2005 YTD 2004*

Stock Mutual
Funds 6.31 9.95 89.77 128.69

Taxable Bond
Mutual Funds 5.82 5.58 23.50 -6.94

Municipal Bond
Mutual Funds 1.49 1.69 5.72 -12.83

Hybrid Mutual
Funds 1.77 1.45 23.49 30.14

Bond funds remained about the same. ICI said that
fixed-income portfolios had an inflow of $7.32 billion
in August, compared with an inflow of $7.27 billion
in July. Taxable bond funds had an inflow of $5.82
billion in August, compared with an inflow of $5.58
billion in July. Municipal bond funds had an inflow of
$1.49 billion in August, compared with an inflow of
$1.69 billion in July

c) Undetected alignment

None

sum

Figure 5.6: Examples of errors made by BriQ

5.11 Summary

We have introduced the new problem of aligning quantities between text and tables.
Our methodology combines supervised classification based on local contexts, adaptive
filtering techniques for computational tractability, and joint inference methods for global
resolution. Comprehensive experiments with ad-hoc web tables show that all stages of
this pipeline are essential, and together can achieve good precision and recall at affordable
computational cost.
As for future work, we plan to investigate this problem also in the context of enter-
prise content (e.g., spreadsheets in documents) and specialized domains such as material
science or biomedical documents.
Quantity alignment is an important step towards semantically understanding numbers
in unstructured and semi-structured content. This in turn can open up the path towards
next-generation search engines that can handle queries about quantities, such as Internet
companies with annual income above 5 Mio. USD, electric cars with energy consumption
below 100 MPGe (or equivalently, ca. 21 kWh/100km), or clinical trials with a daily
anti-coagulant dosage above 30 mg. All these examples are way beyond the scope of
today’s search engines; quantity understanding would bring them closer to feasibility.
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6 ExQuisiTe: Explaining Quantities in Text

6.1 Introduction

6.1.1 Motivation

The Web contains a wealth of pages with embedded tables, and reports with spreadsheets
are abundant in enterprises. Such documents, with financial or statistical data, are
challenging to read, as they are often packed with numbers and tables. For example,
in a financial report, a reader can stumble upon a statement like “..overall revenues
were up 21 percent year-over-year... ”, giving rise to questions such as: “What was the
revenue of the previous year?” or “Which particular product or sector contributed to
this increase?”. In such cases, the table(s) accompanying the text can provide answers.
However, long documents contain several tables, and table cells are referenced at many
spots throughout the report. Moreover, many textual references round or truncate
numbers, or refer to aggregates such as row or column totals, which are not explicitly
given in the table(s). Therefore, it is tedious work to navigate between text and tables
to answer the reader’s questions.
Generally, what a reader would desire is an easy and seamless way of drilling down from
text passages to the relevant table cells for additional detail, and zooming out from
tables to the relevant sentences that explain the numbers.

6.1.2 Contribution

Figure 6.1: Simple quantity reference.
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To address the above desiderata, we propose ExQuisiTe, a system that identifies relations
between quantities in text and tables. ExQuisiTe automatically detects these relations
and generates an easy-to-read document where numbers in text are linked to their source
tables and respective cells. It identifies simple mentions of single-cell table quantities as
well as mentions of aggregate quantities. For example, in Figure 6.1 the mention “1,683”
in the text refers to a simple quantity in the table; and in Figure 6.2 the mention “5.72%”
refers to an aggregate quantity (percentage) in the same table.

Figure 6.2: Aggregate quantity reference.

Furthermore, ExQuisiTe can guide Extractive Text Summarization (ETS) systems
by emphasizing sentences with aggregate quantities. Current summarization sys-
tems [NM12, GG17] do not include table data, and ExQuisiTe opens the opportunity for
them to harness table data. Once ExQuisiTe identifies references of simple and aggregate
table quantities in the text, it can suggest sentences with aggregations to be included in
the summary generated by the ETS algorithm.
For example, in Figure 6.2 the highlighted sentence covers more cells in the table than
the other sentences. It contains more aggregate mentions, and hence it provides a better
summary, with judicious consideration of the numbers in the tables.
ExQuisiTe is base on the BriQ algorithm explained in Chapter 5, and consists of four
configurable stages: (i) Document Extraction, (ii) Local Resolution, (iii) Global Resolu-
tion, and (iv) Markup and Summary Generation. The first stage extracts text segments
and their possible related tables using string similarity measures. The second stage iden-
tifies potential alignments between quantity mentions in text and tables based on local
features. Then, the third stage collectively aligns quantities in the text to their relevant
quantities in tables. Finally, the system generates markup for the document with the
inferred alignments and selects important sentences for summarization.
The code of ExQuisiTe as well as all the annotated data used for training is available on
the project web page 1. Our main contributions are:

1https://www.mpi-inf.mpg.de/briq/

80



6.2 Computational Model

• an end-to-end system for quantity alignment,

• a system that generates salient suggestions for a downstream ETS method,

• an open-source efficient pipeline that can be flexibly configured on a Spark cluster
for online document processing.

6.2 Computational Model

Our algorithm handles the following inputs:

• a piece of text, like a (part of a) web page, with a set of m text mentions of
quantities X = {xi : i = 1, . . . ,m},

• a table q with r rows and c columns and a set of n mentions of quantities T = {tj :
j = 1, . . . , n}.

Text mentions include terms containing numbers or numerals such as “123 patients”,
“37K EUR”, “1.5%” or “twenty pounds”.
Table mentions include two types of quantities. The first are simple mentions, such as
‘1,683’ in Figure 6.1. Given a table with r rows and c columns we have at most r · c
single-cell quantity mentions. The second type is aggregate mentions, computed as an
aggregation of one or more table cells, such as ‘5.72%’ in Figure 6.2.
In this demo we consider the following aggregate functions: average, sum, difference,
percentage, and change ratio.
For aligning quantity mentions between text and tables, we aim to compute as output
a subset of mention pairs 〈xi, tj〉 where xi ∈ X is a text mention and tj ∈ T is a table
mention, including aggregate quantities. These pairs should denote the same quantity
with high confidence.

6.3 System Components

6.3.1 Document Extraction

Long web pages can cover a variety of thematic aspects, along with several tables. There-
fore, we decompose the input web page into coherent segments which we refer to as
documents. We define a coherent document to be a paragraph together with all “re-
lated” tables from the same web page. Each document can be processed independently
from the other documents. Hence, we can leverage a distributed computing framework,
Spark, for online page processing.
This module first decomposes the input web page into paragraphs, then recognizes re-
lated tables for each paragraph using pairwise similarities between all paragraphs and
all tables in the web page.
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Quantity Extraction

For each document, quantity mentions are extracted from the text and the tables, us-
ing regular expressions. Our method pays particular attention to the challenges of ag-
gregated quantities (e.g., column totals). Therefore, we generate table candidates as
combinations of cells with an associated aggregate function. For example, we generate
aggregate mention for a column total even if the table does not explicitly show the to-
tal. Aggregate quantities are automatically generated by considering (i) all rows and
columns for totals and averages and (ii) all pairs of cells in the same row or column for
difference, percentage, and change ratio. We prune the aggregate quantity candidate, to
ensure computational tractability and to control spurious matches.

6.3.2 Local Resolution

This module first computes features for each text mention and each table mention by
analyzing the surrounding context. Then, it computes similarity-based features for each
pair of text mention and table mention including aggregate quantities. After that, it uses
a binary classifier that accepts or rejects candidate mention-pairs. This binary classifier
assigns a confidence score to each mention-pair, and we use this score in the following
steps. At the end of this module, we filter the candidate mention-pairs according to
their confidence score and other measures which we will explain later.

Mention-Pair Classification

We use manually annotated web pages with ground-truth alignment to train a Random
Forest (RF) classifier. The classifier operates locally in the sense that it predicts the
alignment confidence for each mention-cell pair in isolation, It serves two purposes:
First, it enables the subsequent filtering step, which significantly reduces the number of
candidate pairs for achieving an acceptable running time in the global resolution step.
Second, it provides a prior for that global resolution step.

Classifier Feature

For the mention-pair classifier, we designed a variety of features that capture information
a human reader would use in order to determine if text mention x and table cell t denote
the same quantity. This includes surface form similarities, context features, and quantity
features. For more details refer to Chapter 5

Adaptive Filtering

This stage reduces the number of mention-pair candidates from 1000s of candidates to
100s for tractability of global inference algorithms. We design the adaptive filtering
algorithm to work in two stages. In the first stage, we develop a text mention tagger to
predict the aggregation function for each text mention or tag the mention as a single-cell
match. Then, we prune mention-pairs based on this tagger’s outcome. In the second
stage, we prune mention-pairs based on value difference and unit mismatch. Finally, we
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Sales were up 5% on both a reported and organic basis, compared with the second quarter of 2012. Segment
profit was up 11% and segment margins increased 60 bps to 13.3%.

Table 1: Transportation Systems
($ Millions) 2Q 2012 2Q 2013 % Change
Sales 900 947 5%
Segment Profit 114 126 11%
Segment Margin 12.7% 13.3% 60 bps

Table 2: Automation & Control
($ Millions) 2Q 2012 2Q 2013 % Change
Sales 3,962 4,065 3%
Segment Profit 525 585 11%
Segment Margin 13.3% 14.4% 110 bps

Figure 6.3: Example with Coupled Quantities

sort mention-pairs according to classifier scores and select top-k mention-pairs for each
quantity mention based on mention type and score distribution. For more details refer
to Chapter 5.

6.3.3 Global Resolution

This module takes as input the candidate mention-pairs from the classifier and outputs
the alignment of quantity mentions. We harness dependencies among mentions to resolve
ambiguities. Consider the example in Figure 6.3. The text mentions “11%” and “13.3%”
have exact matches in both of the shown tables, and local-resolution algorithms cannot
infer the proper alignment. However, when considering these two mentions jointly with
“60 bps” and “5%”, it becomes clear that all of these refer to the first table.
We devised an unsupervised algorithm for this kind of global resolution. The algo-
rithm encodes dependencies among mentions into a graph and uses Random Walks with
Restarts(RWRs) to infer the best joint alignment.

Graph Construction

We construct an undirected weighted graph G = (V,E) for each document:

• The node set V consists of all quantity mentions in the document’s text and tables.

• The edge set E consists of three kinds of edges connecting related nodes: text-text
edges, table-table edges, and text-table edges as explained below.

(i) Text-text edges: connects each pair of text quantity mentions that are within a certain
proximity or have similar surface forms. Edge weights are computed based on a linear
combination of proximity and string similarity. (ii) Table-table edges: connects each pair
of table quantity mentions in the same row or the same column of the same table, and
edge weights are set uniformly. (iii) Text-table edges: connects each pair of text and
table mention that is kept by the adaptive filtering stage, and edge weights are set to
the confidence scores returned by the classifier.
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6 ExQuisiTe: Explaining Quantities in Text

After this initial graph construction, all edge weights are normalized to obtain a stochas-
tic graph, via dividing each node’s outgoing weights by the total weight of these edges.

Graph Algorithm

In our setting, we employ random walks with restart: starting from a text mention, the
graph is stochastically traversed, with a certain probability of jumping back to the initial
node. This technique is also known as topic-specific or personalized PageRank [Hav03].
Our implementation iterates RWRs for each text mention until the estimated visiting
probabilities of the candidate table mentions change by less than a specified convergence
bound. This way we obtain a ranked list of table mentions for each text mention x.
Alignment decisions: The RWR from text mention x computes the stationary probability
π(t|x) for each table mention t. Pair 〈x, t∗〉 forms an alignment if and only if (i) t∗ is the
table mention with the highest overall score, and (ii) its overall score exceeds the defined
confidence threshold. We then exploit the alignment decisions to update the graph, such
that after identifying an alignment 〈x, t∗〉, x we modify the graph by removing all edges
(x, t) for any t 6= t∗.(If no alignment is found for x, then all text-table edges adjacent to
x are removed.)

6.3.4 Markup and Summarization

This module integrates the output of our system with the content of the web page
and displays the results to the user in the form of an HTML page. This module is also
responsible for analyzing the aligned quantities and highlighting the important sentences
for the summarization engine. It estimates the importance of a sentence based on its
coverage of table cells.
We define the coverage of a quantity mention in the text to be the number of individual
single-cells it refers to. For mentions referring to an aggregate table quantity such as
the sum of a column, we include all the individual single-cells in this column. Then, we
compute the coverage of a sentence as the sum of the coverage of its mentions.
For each table, we extract all the sentences that reference it. Then, we compute a score
for each sentence based on its coverage. After that, we highlight the sentence with the
maximum score in the generated HTML. For example in Figure 6.4 even though the
second sentence has more simple quantity references to the table than the last sentence,
the latter provides a better summary of the table. The last sentence discusses the overall
CO2 emission in the world and has the highest coverage of table cells, while the second
sentence only discusses the emission of India and the EU.

6.4 Experimental Results

We trained and evaluated our system on a manually annotated corpus of 495 web pages.
The F1 score of our system is 79% for the simple quantity mentions, and 40% for the
aggregate mentions. We carried out a run time analysis on a Spark cluster with 10
executors, each with 6 cores and 30GB of memory, and with 50GB of driver memory.
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6.5 Demo Overview

Figure 6.4: The figure shows the results of the system as described in Section 6.5

The throughput of our system is 2.5K documents per minute. For full evaluation results
refer to Chapter 5.

6.5 Demo Overview

In this demonstration, we will show how ExQuisiTe aligns quantity mentions in web
pages. ExQuisiTe is web-based therefore it only requires a modern web browser. It has
two main views: the first view is for configuring the system and selecting the type of
input document, and the second view is for displaying the alignment results.

Configuration and Input

ExQuisiTe gives the user control over the settings of the different components. The user
can select the type of input she wants to process. Currently, we support HTML input
given as a valid page URL or a file containing the HTML content.
For the global resolution the user can choose either (i) Random Walk With Restart
(RWR) or (ii) No Global Resolution. RWR is the default option. The second option
deactivates the global resolution module and uses only the outcome of the classifier. It
uses the confidence value given by the classifier to select the highest-confidence table
mention for each text mention.
The user can adjust the threshold for the final confidence score: mapping the text
mention to a table mention or to a NIL. In the case of local resolution only, this threshold
is applied to the classifier’s confidence score. In the case of RWR global resolution, the
threshold is applied to the RWR outcome. Finally, there is an option to turn adaptive
filtering on or off.
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6 ExQuisiTe: Explaining Quantities in Text

Results Display and Interactive Exploration

The system processes the document according to the user’s configuration. Then, it
displays the results embedded in the original HTML document as shown in Figure 6.4.
The text quantity mentions appear between square bracket. Each text mention is hy-
perlinked to its aligned table mention using a colored button with the mention’s surface
form as the hypertext. The color of the button is determined by the table, such that
each table is assigned a color and all its related mentions in the text are assigned the
same color.
The system marks the aggregate quantity mentions with a ‘*’ superscript. When a text
mention is clicked, the system displays a pop-up with the table. This pop-up includes—
in addition to the table—the confidence of the alignment, the type of alignment, and the
related cells in the table. The type of alignment can take one of the following values:
single-cell, average, sum, difference, percentage, and change ratio.
The system marks the salient sentences for downstream summarization with yellow back-
ground. For each table, the system marks the sentence with the highest coverage. In
Figure 6.4, the last sentence has the highest coverage of table cells.

6.6 Related Work

Although information extraction research has targeted Web tables, no prior work has
examined the relation between mentions in the text and tables within a document.
Quantity annotation has been addressed in [SC14, IRW16], but these methods rely on
external knowledge bases, linking table cells to entries in the knowledge base. Further
methods focused on named entities, by annotating table cells with entities and classes
from the knowledge base [LSC10, RLB15, BND15, RB17, GRE+17]. Table data fusion
for search and schema inference was studied in [VHM+11, YGCC12, ZC13, LB17].
Our work differs from all these prior works in two main aspects: (i) we do not rely on
any external knowledge base, and (ii) we handle approximate and aggregated quantities
mentions which do not have exact matches.
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7 Lessons Learned and Outlook

This chapter summarizes the contributions of this thesis and discusses possible future
directions to pursue.

7.1 Contributions

7.1.1 Semantic Representation of Quantities

The first contribution of this thesis is the Quantity Knowledge Base (QKB). The QKB
provides a taxonomy that provides a semantic representation of quantity mentions as
a triple of unit, measure, and value. The QKB includes conversion rules to the inter-
national system of units (SI). When we began our research in quantity understanding,
there was limited support for quantities in Wikipedia and in other knowledge bases,
such as Yago or DBpedia. Therefore, it was essential for us to construct the QKB for
anchoring quantity mentions. However, now Wikipedia provides comprehensive lists of
SI base units and SI derived units.
We make the QKB available for download to the community. It can be extended to
include units of specialized domain, e.g. material science.

7.1.2 Canonicalization of Quantity Mentions

The second contribution of this thesis is the Equity framework. Equity disambiguates
table cells and headers to quantities, entities, concepts, and classes that reside in a
knowledge base. Equity disambiguates mentions of quantities to the QKB, mentions of
entities and classes to Yago, and mentions of concepts to Wikipedia pages. In Equity,
we model the disambiguation problem using an MRF model. We distantly train the
MRF model using relatedness measures from a knowledge base. Then, we cast the
disambiguation problem into an inference problem over a graph and we employ a Random
Walks algorithm to solve this inference task. Our algorithm incorporates cues from the
text and the table to jointly disambiguate the mentions.
A limitation of Equity lies within the coverage of the knowledge base. That is quite
evident in the limited data to estimate the relatedness between specific measures and
units or entities and concepts. However, adding new sources of data can overcome this
limitation.
We make the source code of Equity available for the research community. It can be
used with specialized knowledge bases to disambiguate mentions of quantities in specific
domains of interest.
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7.1.3 Alignment of Quantity Mentions in Tables and Text

The third contribution of this thesis is introducing the quantity alignment problem, and
proposing BriQ to solve it. We define the quantity alignment problem as computing
bidirectional links between textual mentions of quantities and the corresponding table
cells. The aim of finding these alignments is to support advanced content summarization
and to facilitate navigation between the explanation of quantities in text and the details
in tables. We also propose ExQuisiTe: a system that identifies relations between quan-
tities in text and tables. ExQuisiTe automatically detects these relations and generates
an easy-to-read document where numbers in the text are linked to their source tables
and respective cells.
We publish the source code of both BriQ and ExQuisiTe as well as the training dataset
for the research community.

7.2 Outlook

We believe that the following are important research directions to pursue further.

Quantity aggregation across multiple documents

We proposed Equity to anchor mentions of quantities, entities, concepts, and classes to
a knowledge base. However, Equity only processes single documents. It does not han-
dle multiple documents with potentially overlapping contents. An interesting question
arises here: how can anchoring mentions to a knowledge base help in data fusion tasks?
Canonicalizing mentions of quantities, entities, concepts, and classes to a knowledge base
is expected to aid data fusion tasks. Tables on the web contain valuable data, but each
table holds a certain view of the data. Fusing tables across multiple documents aids in
constructing a full view of the data.
Another question is how grouping multiple documents can facilitate the disambiguation
of mentions? We can examine the effect of adding textual cues from multiple documents
on the disambiguation task. Also, we can devise collective disambiguation algorithms
that can process multiple tables from multiple documents at a time. Then, we may
examine the effect of disambiguating tables collectively.

Generating natural language descriptions of web tables

BriQ aligns quantity mentions in text and tables. We can use BriQ to align quantities
in documents from a specific domain, then study these alignments to understand table
quantities that are mentioned in the text. Using the data produced by the alignment
task, we can develop Natural Language Generation (NLG) algorithms that are capable
of producing a textual description of tabular data in a specific domain. The challenges
in this task are: (i) How to identify important entities? (ii) How to identify important
quantities? (iii) How to use aggregations and approximations in the text?
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7.2 Outlook

Downstream Applications: smart editor and text summarization system

Our work facilitates multiple downstream applications. One straightforward application
would be a smart report editor that is capable of suggesting quantity mentions to add to
the text. Such an editor would hyperlink these mentions to their corresponding mentions
in tables. It can also suggest adding extra tables to support the content of the report.
Another class of applications that can benefit from the work in this thesis are text
summarization systems. Using the relations inferred by ExQuisiTe would potentially
enrich the generated summary and enhance comprehensibility.
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Andreas Both, Martin Brümmer, Diego Ceccarelli, Marco Cornolti, Di-
dier Cherix, Bernd Eickmann, Paolo Ferragina, Christiane Lemke, Andrea
Moro, Roberto Navigli, Francesco Piccinno, Giuseppe Rizzo, Harald Sack,
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