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Abstract 

TiO2 powders with different specific surface area were prepared using 

reproducible, sol-gel synthetic route and their ability to form hybrids with 

catechol and 5-amino salicylic acid was compared with the commercially 

available Degussa P25 TiO2 powder. Microstructural characterization involving 

transmission electron microscopy, X-ray diffraction analysis and nitrogen 

adsorption-desorption isotherms indicated that TiO2 samples cover reasonably 

wide size and/or specific surface area range (50-115 m2/g). The surface 

modification of TiO2 powders with catechol and 5-amino salicylic acid induced 

significant shift of absorption to the visible spectral region due to charge transfer 

complex formation. It should be emphasized that tunable optical properties of 

TiO2 in powder form have never been reported in the literature. The largest red 
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shift of the absorption onset was observed for sample with the largest specific 

surface area upon surface modification with both ligands. The binding of the 

modifier molecules to the surface Ti atoms was studied using Fourier transform 

infrared spectroscopy.  

Key-words: TiO2, sol-gel, surface modification, catechol, 5-amino salicylic acid 

 

1 Introduction 

 

Titanium dioxide (TiO2) is one of the most studied semiconductors suitable for use in 

heterogeneous catalysis [1,2], photocatalysis [3,4], solar cells [5], production of 

hydrogen, ceramics, electric devices, as well as white pigment, corrosion-protective 

coatings, gas sensors [6], etc. Also, TiO2 nanoparticles deposited on textile fibers show 

antibacterial and self-cleaning activities [7,8]. Recently, new approaches for creating 

and utilizing bioinorganic composites of nanoscale TiO2 have been extensively 

investigated for biomedical applications [9]. It is well known that the bulk TiO2 material 

appears in three major crystal phases: rutile (tetragonal), anatase (tetragonal) and 

brookite (rhombohedral). Rutile is a high temperature stable phase and has band gap 

energy of 3.0 eV (415 nm), while the anatase formed at a lower temperature with band 

gap energy of 3.2 eV (387 nm), and refractive index of 2.3, is common in fine-grained 

(nanoscale) natural and synthetic samples [10]. Due to its large band gap, TiO2 absorbs 

less than 5 % of the available solar photons. There has been tremendous interest in 

recent years to improve visible light absorption of TiO2, including dye sensitization for 

photoexcitation of TiO2 in the visible spectral region via photoinduced interfacial 

electron transfer [11–13], and doping with light and heavy elements to promote less 
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energetic excitations of electrons from mid-gap dopant levels to conduction band of 

TiO2 [14–16]. Another emerging approach involves a charge transfer from surface 

modifier into the conduction band of nanocrystalline TiO2 particles. This type of 

binding is considered to be exclusive for colloidal TiO2 particles in the nanocrystalline 

domain due to change of the coordination of Ti surface atoms from octahedral to 

square-pyramidal [17,18]. So far, charge-transfer complex (CTC) formation 

accompanied with red shift of absorption onset up to 1.3 eV has been reported for 

colloidal TiO2 nanoparticles surface modified with either catecholate- or salicylate-type 

of ligands [19–23]. 

For a variety of applications, it is more desirable to use materials in powder form 

instead of colloidal solutions, and attempt was made to obtain spherical submicron TiO2 

powder particles in the aerosol-assisted processing of precursor TiO2 colloids [24,25]. 

Although submicron TiO2 particles were successfully modified with different ligands 

(ascorbic acid, dopamine, catechol, 2,3-dihydroxynaphthalene and anthrarobin) 

providing absorption in visible spectral range, main drawback of this synthetic approach 

lies in the fact that is time and energy consuming, and gives a low yield. 

This study is continuation of our efforts to improve light absorption of TiO2 powders by 

extending the absorption spectrum into the red, and making TiO2 functional over a more 

practical range of solar spectrum. The simplicity of the surface modification of TiO2 in 

powder form and their ability to form hybrids with catechol (CAT) and 5-amino 

salicylic acid (5-ASA) is the main advantage of the presented approach. For that 

purpose, the commercial photocatalyst Degussa P25 and TiO2 nano-powders, prepared 

using highly reproducible low cost sol-gel synthetic route, were studied. Thorough 

microstructural characterization of synthesized TiO2 nano-powders involving 
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transmission electron microscopy, X-ray diffraction analysis and nitrogen adsorption-

desorption isotherms indicated that the chosen samples cover a reasonably wide size 

and/or specific surface area range. Special attention was paid to the optical properties of 

surface modified TiO2 powders. Reflection spectroscopy was used for optical 

characterization of surface modified TiO2 powders, while infra-red spectroscopy was 

used in order to understand coordination of CAT and 5-ASA to surface Ti atoms. 

 

2 Experimental 

 

2.1 Synthesis of TiO2 nano-powders 

The incorporation of Eu3+ ions into TiO2 nanocrystals was performed using 

hydrolytic sol-gel route described elsewhere [26]. Briefly, for the synthesis of 

TiO2 nanopowder doped with 1.0 at.% of Eu3+ ions, titanium(IV) isopropoxide 

(Alfa Aesar, 95%), water, ethanol (JT Baker, HPLC grade) and nitric acid (JT 

Baker, 69.0–70.0%) were mixed at a molar ratio of 1:3:20:0.08. In the first step, 

5.9 ml of titanium(IV) isopropoxide was dissolved in 23.3 ml of ethanol under 

constant stirring. Next, 0.1056 g of Eu2O3 was dissolved into 0.11 ml of 

concentrated HNO3 and diluted with 1.1 ml of water. The obtained solution was 

added to titanium(IV) isopropoxide/ethanol mixture. Transparent gels were 

obtained within a few minutes at room temperature in air atmosphere. Then gels 

were dried at 70 °C for 5 h. The dried gels were transferred to crucibles and 

heated at a rate of 5 °C/min to a final temperature of 210 °C and held at that 

temperature for 20 min. Finally, samples were calcinated at 420 °C for 2 h. 

Undoped TiO2 nano-powder was prepared in the same manner as TiO2:Eu3+ 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

5 

 

nano-powder keeping exactly the same molar ratio between titanium(IV) 

isopropoxide, water, ethanol and nitric acid. The commercially available TiO2 

powder (Degussa P25) was used as received. 

 

2.2 Surface modification of TiO2 powders with catechol and 5-amino salicylic 

acid 

Surface modification of Degussa P25, TiO2 and TiO2:Eu3+ was performed by 

dispersing 0.1 g of powder in 10 ml of water containing either 22.0 mg of CAT or 

30.6 mg of 5-ASA; molar ratio between any of TiO2 powders and ligands (CAT 

and 5-ASA) was 6.25:1. Formation of CTC was indicated by immediate 

coloration of dispersion. Mixture was left overnight and after that surface-

modified TiO2 powders were separated by centrifugation, washed several times 

with a water/ethanol mixture in order to remove excess ligands, and finally dried 

at 40 °C in the vacuum oven for 24 h. 

 

2.3 Characterization 

Transmission electron microscopy (TEM) was performed using a JEOL JEM-2100 

LaB6 instrument operated at 200 kV. TEM images were acquired with a Gatan Orius 

CCD camera at 2× binning.  

X-ray diffraction (XRD) powder patterns were recorded using Rigaku SmartLab 

instrument under the Cu Kα1,2 radiation. The intensity of diffraction was measured with 

continuous scanning at 2º/min. The data were collected at 0.02º intervals.  

Nitrogen adsorption-desorption isotherms were determined on Sorptomatic 1990 

Thermo Finnigan automatic system using nitrogen physisorption at -196 ºC. Before 
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measurement the samples were outgassed at 130 ºC for 3 h. Specific surface area of the 

samples (SBET) was calculated from the nitrogen adsorption-desorption isotherms 

according to the Brunauer, Emmett and Teller (BET) method [27]. Pore size distribution 

was estimated by applying Barret, Joyner and Halenda (BJH) method [28] to the 

desorption branch of isotherm. 

Optical properties of TiO2 powders, as well as surface modified TiO2 powders with 

CAT and 5-ASA were studied in UV-Vis spectral range by diffuse reflectance 

measurements (Thermo Nicolet Evolution 500 spectrometer equipped with diffuse 

reflectance accessory).  

Diffuse reflectance infrared spectra of TiO2 powders, CAT and 5-ASA, as well as 

surface modified TiO2 powders with CAT and 5-ASA were measured using a Thermo 

Nicolet 6700 FTIR spectrometer with a Collector II Diffuse Reflectance Accessory at 

spectral resolution of 8 cm-1 in the region of 4000-400 cm-1. 

 

3 Results and Discussion 

 

3.1 Microstructural characterization of TiO2 and TiO2:Eu3+ powders 

Representative TEM images at high magnification of TiO2 and TiO2:Eu3+ powders are 

presented in Figure 1 (A and B, respectively). Both powders have similar morphology, 

and consist of loosely agglomerated nanoparticles with irregular, rounded and 

rectangular shapes, and variable dimensions. Detailed inspection of TiO2 and TiO2:Eu3+ 

samples showed the presence of well-crystallized TiO2 nanoparticles without 

irregularities or amorphous surface layers, and with similar sizes. Slightly reduced 

average size, from 13.6 to 7.3 nm, was induced by doping TiO2 nanoparticles with Eu3+ 
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ions at concentration level as low as 1 at.%. This result is in agreement with literature 

data concerning inhibition of crystal growth upon doping of TiO2 with rare-earth 

elements [29,30]. Analysis of the selected area electron diffraction (SAED) patterns of 

both TiO2 samples (see insets to Figures 1A and 1B) revealed prominent diffraction 

rings consistent with the anatase crystal structure, including 101, 103, 004, 112, 200, 

105, 211 and 204. Microstructural characteristics (phase composition, particle size, 

specific surface area, porosity) of Degussa P25 powder are well-known, and described 

elsewhere [31–33]. For the sake of clarity, this data are presented in Table 1, together 

with data obtained for undoped and doped TiO2 powders prepared by sol-gel synthetic 

route.  

The XRD patterns of TiO2 and TiO2:Eu3+ nano-powders are shown in Figure 2 (curves 

(a) and (b), respectively). Both patterns consists of the characteristic, intense peaks at 

25.3, 37.8, 48.0, 53.9, 55.1, and 62.1 degrees that correspond to 101, 004, 200, 105, 211 

and 204 main reflections from anatase titania (JCPDS 00-021-1272). It should be 

mentioned that there is no indication of the presence of any other crystalline phase in 

both samples. The grain size, determined from the peak broadening and Scherrer’s 

equation, was found to be 101 and 91 Å for TiO2 and TiO2:Eu3+ nano-powders, 

respectively. Thus, the grain sizes given by the XRD measurements are in agreement 

with the sizes of nanoparticles by TEM analysis of TiO2 samples. 

Nitrogen adsorption-desorption isotherms of synthesized TiO2 and TiO2:Eu3+ samples 

are shown in Figure 3A (curves (a) and (b), respectively). According to the IUPAC 

classification, isotherms of both TiO2 powders belong to type IV with a hysteresis loop 

associated to mesoporous materials. The shape of hysteresis loop is of type H2 which 

indicates poorly defined pore shapes. Specific surface areas calculated by the BET 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 

 

equation were found to be 88 and 114 m2g-1 for TiO2 and TiO2:Eu3+ powders, 

respectively. It should be noticed that specific surface areas of both synthesized samples 

are higher compared to commonly used commercial Degussa P25 TiO2 powder (50-60 

m2g-1) [31–33]. Pore size distribution of undoped and doped TiO2 samples are 

shown in Figure 3B (curves (a) and (b), respectively). It is clear that both, 

undoped and doped TiO2 powders are mesoporous with the pore diameter of 6.4 

and 3.6 nm, respectively.  

As mentioned earlier, microstructural characteristics of synthesized TiO2 and TiO2:Eu3+ 

powders, as well as commercial Degussa P25 powder are collected in Table 1. Obtained 

data using TEM, XRD and nitrogen adsorption isotherms are in good agreement. The 

results showed that samples differ significantly, indicating that the chosen samples 

cover a reasonably wide size and/or specific surface area range. 

 

3.2 Surface modification of Degussa P25, TiO2 and TiO2:Eu3+ powders with CAT and 

5-ASA 

Appearance of brawn color upon treatment of Degussa P25, TiO2 and TiO2:Eu3+ 

powders with CAT and 5-ASA indicated red shift in the absorption onset of surface 

modified TiO2 powders compared to the unmodified ones. Kubelka–Munk 

transformations of UV-Vis diffuse reflection data of unmodified TiO2 powders and 

surface modified TiO2 powders with CAT and 5-ASA are shown in Figure 4. In the case 

of unmodified TiO2 samples (Degussa P25, TiO2 and TiO2:Eu3+ powders synthesized by 

sol-gel technique), a steep rise of absorption can be observed in UV spectral range 

bellow 400 nm (Figure 4A), corresponding to the band gap energy of anatase (3.2 eV). 

Bumps at 2.67 and 2.32 eV, observed upon Kubelka–Munk transformations of diffuse 
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reflection data from TiO2:Eu3+ powder belong to 5D2 → 7F0 and 5D1 → 7F0 transitions of 

Eu3+ dopant ions, respectively [34]. 

On the other hand, surface modification with CAT (Figure 4B) and 5-ASA (Figure 4C) 

induced significant red shift of optical absorption of Degussa P25, as well as TiO2 and 

TiO2:Eu3+ powders synthesized by sol-gel technique (curves (a), (b) and (c) in Figures 

4B and 4C, respectively). For comparison, reflection spectra of free ligands (CAT and 

5-ASA) in powder form are also included in Figures 4B and 4C, respectively. 

Coordination of CAT and 5-ASA to the sample with the largest specific surface area 

(TiO2:Eu3+ powder) induced the largest red shift of optical absorption (peaks were 

found to be around 1.9 eV (≈650 nm) in both cases). It should be noticed that TiO2 

powders with smaller specific surface area (Degussa P25 and TiO2 powder prepared by 

sol-gel route) surface modified with CAT and 5-ASA have two peaks/shoulders whose 

position does not depend on the specific surface area. Peaks/shoulders in low energy 

part of the spectra upon surface modification of all TiO2 powders with both ligands are 

placed at almost the same position (≈1.9 eV). On the other hand, surface modified 

Degussa P25 and TiO2 powder prepared by sol-gel route have peaks in high-energy 

spectral region whose positions are slightly different depending on used ligand (around 

2.8 and 3.0 eV for 5-ASA and CAT, respectively). It seems that the increase of the low-

energy peak takes place at the expense of the high energy peak upon CTC formation 

between TiO2 powder with the highest specific surface area and CAT or 5-ASA. Due to 

increased background absorption ranging from 400 to 800 nm, it is difficult to 

determine the values for absorption onset upon surface modification of TiO2 powders. 

The red absorption shift due to CTC formation is roughly estimated to be at least 1.3 

eV. 
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It should be emphasized that CTC formation and consequent red shift of optical 

absorption after surface modification of commercial Degussa P25 TiO2 powder with the 

same/similar ligands has not been previously reported in the literature. So far, the 

optical changes were observed for small (less than 20 nm) TiO2 nanospheres [17,19–

23], submicron TiO2 spheres obtained using nanometer in size TiO2 colloids as a 

precursor in the aerosol-assisted processing [24, 25], and commercially available 

sodium trititanate (Na2Ti3O7) nanotubes with outer diameters of 5–8 nm and lengths of 

50–500 nm [35]. 

The significant change of effective band gap energy of small TiO2 nanoparticles was 

assigned to the formation of CTC between electron-donating ligands and coordinately 

unsaturated Ti atoms at the surface. It is well known that, in the nanosize regime, due to 

the large curvature of TiO2 particles, the coordination of surface Ti atoms changes from 

octahedral to square-pyramidal [17,18]. Binding of electron-donating ligands to 

coordinately unsaturated Ti atoms simultaneously restores their coordination to 

octahedral geometry and changes the electronic properties of a TiO2 semiconductor 

[36]. As a consequence, absorption of light by the CTC promotes electrons from the 

chelating ligand directly into the conduction band of TiO2 nanocrystallites, resulting in 

the red shift of the semiconductor absorption compared to unmodified nanocrystallites 

[17]. The importance of this finding – that the CTC formation between Degussa P25 

and catecholate- or salicylate-type of ligands takes place – lies in the indication that 

tunable optical properties are not exclusively characteristics of small TiO2 particles with 

distorted coordination of surface Ti atoms, but, rather a general phenomenon, occurring, 

under proper conditions, with commercially available, larger than 20 nm TiO2 particles. 

In addition, surface modification, followed with red shift of optical absorption, was 
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achieved with mesoporous TiO2 and TiO2:Eu3+ powders consisting of nanoparticles 

smaller than 20 nm, prepared using sol-gel route involving high-temperature treatment 

for several hours. So far, the CTC formations with the same/similar ligands have been 

reported in literature for colloidal TiO2 nanoparticles prepared in a different way (acidic 

hydrolysis of TiCl4) [17,19–23]. Sol-gel synthesis, as a robust and simple approach, 

provides an easy way to produce a larger quantity of material in comparison to the 

colloidal route. 

Having in mind that the main purpose of extending the absorption spectrum of TiO2 into 

the red spectral region is usage of less energetic photons to drive photo-induced 

reactions, preliminary/row data concerning photocatalytic performance of surface 

modified Degussa P25 powder with CAT are presented in Supplement 1. Photocatalytic 

ability of red-shifted TiO2 powder was tested under visible light illumination by 

following the degradation of organic dye crystal violet. The low energy band-pass 450 

nm cut-off filter was used to eliminate photons with energy higher than 2.75 eV. The 

preliminary results clearly indicate that surface modified Degussa P25 powder with 

CAT is able to photocatalytically perform under visible light illumination.  The level of 

enhancement of redox chemistry in red-shifted TiO2 powders by taking advantage of 

electron promotion from the ground state of CTC into the conduction band of TiO2 will 

be the subject of our detailed study.  

FTIR spectroscopy measurements were performed to elucidate the mechanism for 

binding of CAT and 5-ASA to the surface of TiO2 powders. Because the infrared 

spectrum of TiO2 powder has only the characteristic broadband in 3700–2000 cm-1 

spectral region [37], we were able to measure surface-modified TiO2 powders in 1700–

1000 cm-1 spectral region, where the characteristic bands of ligands exist. The FTIR 
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spectra of CAT and 5-ASA, free and bound to the surface of commercial TiO2 powder 

(Degussa P25) are presented in Figures 5A and 5B, respectively. The FTIR spectra of 

surface modified TiO2 powders, prepared using sol-gel synthetic approach, are almost 

the same as the FTIR spectra of surface modified Degussa P25 powder, and for the sake 

of clarity are not shown. 

The main bands and their assignment [38–40] in free CAT (Figure 5A, curve a) are as 

follows: stretching vibrations of aromatic ring ν(C–C)/ν(C=C) at 1624, 1605, 1530 and 

1475 cm-1, stretching vibrations of the phenolic group ν(C–OH) at 1288, 1266 and 1250 

cm-1, bending vibrations of the phenolic group δ(C–OH) at 1374, 1201, 1169 and 1150 

cm-1, and bending vibrations of δ(C–H) at 1100 and 1043 cm-1. Upon adsorption of 

CAT onto TiO2 particles (Figure 5A, curve (b)), the difference between FTIR spectra of 

free and adsorbed ligands appears, indicating surface complexation with CAT bound to 

the oxide surface. All bands associated with the bending vibrations of the phenolic 

group δ(C–OH) completely disappeared, indicating the binding of CAT to TiO2 via two 

adjacent phenolic groups. The binding of CAT to TiO2 via two adjacent phenolic groups 

affects the stretching vibrations of the aromatic ring and stretching vibrations of the 

phenolic group, followed with disappearance of all bands with exception of bands at 

1485 and 1261 cm-1. The binding of CAT onto colloidal TiO2 nanoparticles (4.5 nm), 

whose surface Ti atoms are coordinately unsaturated was reported to result in the 

formation of bidentate binuclear bridging complexes [19,20]. Having in mind that 

commercial TiO2 particles (Degussa P25) are larger than the critical size necessary for 

development of unsaturated coordination of surface Ti atoms and that the rutile phase is 

also present, formation of monodentate chelating complexes cannot be rule out. 
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The FTIR spectrum of free 5-ASA (Figure 5B, curve (a)) is in agreement with literature 

data [41,42]. The main bands in free (protonated) acid can be assigned [43–51] to 

overlapping stretching vibrations of the C=O of the carboxyl group with stretching 

vibration of amino group at 1666 cm-1, stretching vibrations of the aromatic ring ν(C-

C)/ν(C=C) at 1506 and 1471 cm-1, bending vibrations of the phenolic group δ(C-OH) at 

1389, 1365 and 1250 cm-1, stretching vibration of amino group at 1316 and 1272 cm-1 

and bending δ(C–H) vibrations at 1193, 1139 and 1088 cm-1. The adsorption of 5-ASA 

onto TiO2 powder (Figure 5B, curve (b)) leads to the almost complete disappearance of 

the bands at 1506, 1471, 1389, 1365 and 1250 cm-1. Since these bands correspond to 

vibrations of the phenolic and carboxylic groups, it is obvious that both groups take part 

in the chelation of titanium atoms.  The appearance of bands at 1379/1350 and 1575  

cm-1 that can be attributed to carboxylate symmetric and asymmetric stretching 

vibrations [44,45], respectively, prove the deprotonation of the COOH group as a 

consequence of its binding to Ti atoms with the formation of the delocalized 

carboxylate group [52,53]. It should be mentioned that the adsorption of 5-ASA onto 

TiO2 powder even affected bending δ(C–H) vibrations at 1193, 1139 and 1088 cm-1, 

and induced their complete disappearance. On the other hand, vibrations that belong to 

amino group can be observed upon adsorption of 5-ASA onto TiO2 powders at slightly 

shifted positions (1656, 1291 and 1256 cm-1). Having in mind reactivity of amino group 

[54], its availability might be important for synthesis of more complex systems. 

 

4 Conclusions 
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The abilities of commercially available Degussa P25 TiO2 powder, as well as undoped 

TiO2 powder, and TiO2 powder doped with 1.0 at.% of Eu3+ ions, prepared using 

reproducible sol-gel synthetic route, to form CTCs with catechol and 5-amino salicylic 

was tested. Thorough microstructural characterization of TiO2 samples was performed 

indicating reasonable wide size and/or specific surface area range (50-115 m2/g). On the 

other hand, chosen modifiers (CAT and 5-ASA) represent typical catecholate- or 

salicylate-type of ligands. The binding of the modifier molecules to surface Ti atoms 

induced significant shift of absorption to the visible spectral range due to CTC 

formation. The extent of red shift, as well as a way of binding of the modifier molecules 

to the surface Ti atoms, for all studied TiO2 powders, is similar to literature data 

concerning colloidal TiO2 nanoparticles with distorted coordination of Ti surface atoms 

from octahedral to square-pyramidal. The CTC formation between Degussa P25 and 

catecholate- or salicylate-type of ligands indicates that tunable optical properties are not 

exclusive for small TiO2 particles with distorted coordination of surface Ti atoms. 

Adjustment of optical properties of commercially available TiO2 powders or custom-

made TiO2 powders provides the possibility to extend this type of research from entirely 

fundamental to more applicable. Investigation of photocatalytic performance of surface 

modified TiO2 powders is underway in our laboratories. The preliminary results, using 

degradation of organic dye crystal violet as a test reaction, indicated that red-shifted 

TiO2 powders have photocatalytic activity under the illumination with photons whose 

energy is smaller than 2.75 eV. 
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Table 1. Comparison of phase composition, size, specific surface area and pore diameter 

of TiO2 powders used in this study  

 Degussa P25 TiO2 TiO2:Eu3+ 

Phase 80% anatase and 20% rutilea Pure anatase Pure anatase 

Particle Size 
(TEM) [nm] 

26a 

30b 13.6±2.3 7.3±2.7 

Grain Size 
(XRD) [nm] 

21a 

27c 10.1 9.1 

Specific Surface Area 
 (BET) [m2/g] 

50b 
56a 

57.4c 
87.9 114.4 

Pore Diameter 
(BJH) [nm] 

17.5a 6.4 3.6 

aRef. 32 
bRef. 31 
cRef. 33 
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Figure captions 

 

Figure 1. TEM data from TiO2 powders: typical TEM image of TiO2 powder (A), and 

1.0 at.% Eu3+ doped TiO2 powder (B) at high magnification; insets: corresponding 

SAED patterns. 

  

Figure 2. XRD patterns of undoped (a), and 1 at.% Eu3+ doped TiO2 (b) powders; the 

most pronounced reflections are indexed according to JCPDS card no. 21-1272 (anatase 

TiO2). 

 

Figure 3. (A) Nitrogen adsorption isotherms of undoped (a) and 1 at.% Eu3+ doped TiO2 

(b) powders. (B) BJH pore size distribution of undoped (a) and 1 at.% Eu3+ doped TiO2 

(b) powders. 

 

Figure 4. Kubelka-Munk transformations of diffuse reflection data for Degussa P25 

(curves a), TiO2 (curves b), and TiO2:Eu3+ (curves c) powders: (A) as 

prepared/received, (B) surface modified with CAT, and (C) surface modified with 5-

ASA. Reflection spectra of free ligands (CAT and 5-ASA) in powder form are included 

in B and C, respectively. 

 

Figure 5. (A) FTIR spectra of free CAT (a), and CAT adsorbed on Degussa P25 TiO2 

powder (b). (B) FTIR spectra of free 5-ASA (a), and 5-ASA adsorbed on Degussa P25 

TiO2 powder (b).  

 

Supplement 1. Photocatalytic ability of Degussa P25 powder surface modified with 

CAT (Kubelka-Munk transformation of the reflection spectrum of red shifted TiO2 

powder is given as inset to Supplement 1) was studied using the degradation of organic 

dye crystal violet (CV). The photocatalytic reactions were induced using Osram Vitalux 

lamp (300 W). The low energy band pass 450 nm cut-off filter was used to exclude UV 

part from the illumination light (transmission spectrum of the cut-off filter is given as 

inset to Supplement 1). Concentration of photocatalyst was 2 mg/mL, while initial 

concentration of CV was 11.5 µM. Absorption spectra of initial CV solution and after 
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equilibration in dark with red shifted Degussa P25 powder are given by black and red 

lines, respectively. Absorption spectra of CV after 1.5 and 3.0 hours of illumination 

with visible light are given by green and blue lines, respectively. 
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Highlights 

- Adjustment of optical properties of commercial and mesoporous TiO2 powders 

- Charge transfer complex formation between surface Ti atoms and benzene derivatives 

- Extent of absorption in visible proportional to the specific surface area of TiO2  

- Tunable optical properties are not exclusive for “small” TiO2 particles 
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